1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Performance event support - powerpc architecture code 4 * 5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 6 */ 7 #include <linux/kernel.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/perf_event.h> 11 #include <linux/percpu.h> 12 #include <linux/hardirq.h> 13 #include <linux/uaccess.h> 14 #include <asm/reg.h> 15 #include <asm/pmc.h> 16 #include <asm/machdep.h> 17 #include <asm/firmware.h> 18 #include <asm/ptrace.h> 19 #include <asm/code-patching.h> 20 #include <asm/interrupt.h> 21 22 #ifdef CONFIG_PPC64 23 #include "internal.h" 24 #endif 25 26 #define BHRB_MAX_ENTRIES 32 27 #define BHRB_TARGET 0x0000000000000002 28 #define BHRB_PREDICTION 0x0000000000000001 29 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 30 31 struct cpu_hw_events { 32 int n_events; 33 int n_percpu; 34 int disabled; 35 int n_added; 36 int n_limited; 37 u8 pmcs_enabled; 38 struct perf_event *event[MAX_HWEVENTS]; 39 u64 events[MAX_HWEVENTS]; 40 unsigned int flags[MAX_HWEVENTS]; 41 struct mmcr_regs mmcr; 42 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 43 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 44 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 45 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 46 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 47 48 unsigned int txn_flags; 49 int n_txn_start; 50 51 /* BHRB bits */ 52 u64 bhrb_filter; /* BHRB HW branch filter */ 53 unsigned int bhrb_users; 54 void *bhrb_context; 55 struct perf_branch_stack bhrb_stack; 56 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 57 u64 ic_init; 58 59 /* Store the PMC values */ 60 unsigned long pmcs[MAX_HWEVENTS]; 61 }; 62 63 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 64 65 static struct power_pmu *ppmu; 66 67 /* 68 * Normally, to ignore kernel events we set the FCS (freeze counters 69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 70 * hypervisor bit set in the MSR, or if we are running on a processor 71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 72 * then we need to use the FCHV bit to ignore kernel events. 73 */ 74 static unsigned int freeze_events_kernel = MMCR0_FCS; 75 76 /* 77 * 32-bit doesn't have MMCRA but does have an MMCR2, 78 * and a few other names are different. 79 * Also 32-bit doesn't have MMCR3, SIER2 and SIER3. 80 * Define them as zero knowing that any code path accessing 81 * these registers (via mtspr/mfspr) are done under ppmu flag 82 * check for PPMU_ARCH_31 and we will not enter that code path 83 * for 32-bit. 84 */ 85 #ifdef CONFIG_PPC32 86 87 #define MMCR0_FCHV 0 88 #define MMCR0_PMCjCE MMCR0_PMCnCE 89 #define MMCR0_FC56 0 90 #define MMCR0_PMAO 0 91 #define MMCR0_EBE 0 92 #define MMCR0_BHRBA 0 93 #define MMCR0_PMCC 0 94 #define MMCR0_PMCC_U6 0 95 96 #define SPRN_MMCRA SPRN_MMCR2 97 #define SPRN_MMCR3 0 98 #define SPRN_SIER2 0 99 #define SPRN_SIER3 0 100 #define MMCRA_SAMPLE_ENABLE 0 101 #define MMCRA_BHRB_DISABLE 0 102 #define MMCR0_PMCCEXT 0 103 104 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 105 { 106 return 0; 107 } 108 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { } 109 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 110 { 111 return 0; 112 } 113 static inline void perf_read_regs(struct pt_regs *regs) 114 { 115 regs->result = 0; 116 } 117 118 static inline int siar_valid(struct pt_regs *regs) 119 { 120 return 1; 121 } 122 123 static bool is_ebb_event(struct perf_event *event) { return false; } 124 static int ebb_event_check(struct perf_event *event) { return 0; } 125 static void ebb_event_add(struct perf_event *event) { } 126 static void ebb_switch_out(unsigned long mmcr0) { } 127 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 128 { 129 return cpuhw->mmcr.mmcr0; 130 } 131 132 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 133 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 134 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} 135 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {} 136 static void pmao_restore_workaround(bool ebb) { } 137 #endif /* CONFIG_PPC32 */ 138 139 bool is_sier_available(void) 140 { 141 if (!ppmu) 142 return false; 143 144 if (ppmu->flags & PPMU_HAS_SIER) 145 return true; 146 147 return false; 148 } 149 150 /* 151 * Return PMC value corresponding to the 152 * index passed. 153 */ 154 unsigned long get_pmcs_ext_regs(int idx) 155 { 156 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 157 158 return cpuhw->pmcs[idx]; 159 } 160 161 static bool regs_use_siar(struct pt_regs *regs) 162 { 163 /* 164 * When we take a performance monitor exception the regs are setup 165 * using perf_read_regs() which overloads some fields, in particular 166 * regs->result to tell us whether to use SIAR. 167 * 168 * However if the regs are from another exception, eg. a syscall, then 169 * they have not been setup using perf_read_regs() and so regs->result 170 * is something random. 171 */ 172 return ((TRAP(regs) == INTERRUPT_PERFMON) && regs->result); 173 } 174 175 /* 176 * Things that are specific to 64-bit implementations. 177 */ 178 #ifdef CONFIG_PPC64 179 180 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 181 { 182 unsigned long mmcra = regs->dsisr; 183 184 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 185 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 186 if (slot > 1) 187 return 4 * (slot - 1); 188 } 189 190 return 0; 191 } 192 193 /* 194 * The user wants a data address recorded. 195 * If we're not doing instruction sampling, give them the SDAR 196 * (sampled data address). If we are doing instruction sampling, then 197 * only give them the SDAR if it corresponds to the instruction 198 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 199 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 200 */ 201 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) 202 { 203 unsigned long mmcra = regs->dsisr; 204 bool sdar_valid; 205 206 if (ppmu->flags & PPMU_HAS_SIER) 207 sdar_valid = regs->dar & SIER_SDAR_VALID; 208 else { 209 unsigned long sdsync; 210 211 if (ppmu->flags & PPMU_SIAR_VALID) 212 sdsync = POWER7P_MMCRA_SDAR_VALID; 213 else if (ppmu->flags & PPMU_ALT_SIPR) 214 sdsync = POWER6_MMCRA_SDSYNC; 215 else if (ppmu->flags & PPMU_NO_SIAR) 216 sdsync = MMCRA_SAMPLE_ENABLE; 217 else 218 sdsync = MMCRA_SDSYNC; 219 220 sdar_valid = mmcra & sdsync; 221 } 222 223 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 224 *addrp = mfspr(SPRN_SDAR); 225 226 if (is_kernel_addr(mfspr(SPRN_SDAR)) && event->attr.exclude_kernel) 227 *addrp = 0; 228 } 229 230 static bool regs_sihv(struct pt_regs *regs) 231 { 232 unsigned long sihv = MMCRA_SIHV; 233 234 if (ppmu->flags & PPMU_HAS_SIER) 235 return !!(regs->dar & SIER_SIHV); 236 237 if (ppmu->flags & PPMU_ALT_SIPR) 238 sihv = POWER6_MMCRA_SIHV; 239 240 return !!(regs->dsisr & sihv); 241 } 242 243 static bool regs_sipr(struct pt_regs *regs) 244 { 245 unsigned long sipr = MMCRA_SIPR; 246 247 if (ppmu->flags & PPMU_HAS_SIER) 248 return !!(regs->dar & SIER_SIPR); 249 250 if (ppmu->flags & PPMU_ALT_SIPR) 251 sipr = POWER6_MMCRA_SIPR; 252 253 return !!(regs->dsisr & sipr); 254 } 255 256 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 257 { 258 if (regs->msr & MSR_PR) 259 return PERF_RECORD_MISC_USER; 260 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 261 return PERF_RECORD_MISC_HYPERVISOR; 262 return PERF_RECORD_MISC_KERNEL; 263 } 264 265 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 266 { 267 bool use_siar = regs_use_siar(regs); 268 unsigned long mmcra = regs->dsisr; 269 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 270 271 if (!use_siar) 272 return perf_flags_from_msr(regs); 273 274 /* 275 * Check the address in SIAR to identify the 276 * privilege levels since the SIER[MSR_HV, MSR_PR] 277 * bits are not set for marked events in power10 278 * DD1. 279 */ 280 if (marked && (ppmu->flags & PPMU_P10_DD1)) { 281 unsigned long siar = mfspr(SPRN_SIAR); 282 if (siar) { 283 if (is_kernel_addr(siar)) 284 return PERF_RECORD_MISC_KERNEL; 285 return PERF_RECORD_MISC_USER; 286 } else { 287 if (is_kernel_addr(regs->nip)) 288 return PERF_RECORD_MISC_KERNEL; 289 return PERF_RECORD_MISC_USER; 290 } 291 } 292 293 /* 294 * If we don't have flags in MMCRA, rather than using 295 * the MSR, we intuit the flags from the address in 296 * SIAR which should give slightly more reliable 297 * results 298 */ 299 if (ppmu->flags & PPMU_NO_SIPR) { 300 unsigned long siar = mfspr(SPRN_SIAR); 301 if (is_kernel_addr(siar)) 302 return PERF_RECORD_MISC_KERNEL; 303 return PERF_RECORD_MISC_USER; 304 } 305 306 /* PR has priority over HV, so order below is important */ 307 if (regs_sipr(regs)) 308 return PERF_RECORD_MISC_USER; 309 310 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 311 return PERF_RECORD_MISC_HYPERVISOR; 312 313 return PERF_RECORD_MISC_KERNEL; 314 } 315 316 /* 317 * Overload regs->dsisr to store MMCRA so we only need to read it once 318 * on each interrupt. 319 * Overload regs->dar to store SIER if we have it. 320 * Overload regs->result to specify whether we should use the MSR (result 321 * is zero) or the SIAR (result is non zero). 322 */ 323 static inline void perf_read_regs(struct pt_regs *regs) 324 { 325 unsigned long mmcra = mfspr(SPRN_MMCRA); 326 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 327 int use_siar; 328 329 regs->dsisr = mmcra; 330 331 if (ppmu->flags & PPMU_HAS_SIER) 332 regs->dar = mfspr(SPRN_SIER); 333 334 /* 335 * If this isn't a PMU exception (eg a software event) the SIAR is 336 * not valid. Use pt_regs. 337 * 338 * If it is a marked event use the SIAR. 339 * 340 * If the PMU doesn't update the SIAR for non marked events use 341 * pt_regs. 342 * 343 * If regs is a kernel interrupt, always use SIAR. Some PMUs have an 344 * issue with regs_sipr not being in synch with SIAR in interrupt entry 345 * and return sequences, which can result in regs_sipr being true for 346 * kernel interrupts and SIAR, which has the effect of causing samples 347 * to pile up at mtmsrd MSR[EE] 0->1 or pending irq replay around 348 * interrupt entry/exit. 349 * 350 * If the PMU has HV/PR flags then check to see if they 351 * place the exception in userspace. If so, use pt_regs. In 352 * continuous sampling mode the SIAR and the PMU exception are 353 * not synchronised, so they may be many instructions apart. 354 * This can result in confusing backtraces. We still want 355 * hypervisor samples as well as samples in the kernel with 356 * interrupts off hence the userspace check. 357 */ 358 if (TRAP(regs) != INTERRUPT_PERFMON) 359 use_siar = 0; 360 else if ((ppmu->flags & PPMU_NO_SIAR)) 361 use_siar = 0; 362 else if (marked) 363 use_siar = 1; 364 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 365 use_siar = 0; 366 else if (!user_mode(regs)) 367 use_siar = 1; 368 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 369 use_siar = 0; 370 else 371 use_siar = 1; 372 373 regs->result = use_siar; 374 } 375 376 /* 377 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 378 * must be sampled only if the SIAR-valid bit is set. 379 * 380 * For unmarked instructions and for processors that don't have the SIAR-Valid 381 * bit, assume that SIAR is valid. 382 */ 383 static inline int siar_valid(struct pt_regs *regs) 384 { 385 unsigned long mmcra = regs->dsisr; 386 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 387 388 if (marked) { 389 /* 390 * SIER[SIAR_VALID] is not set for some 391 * marked events on power10 DD1, so drop 392 * the check for SIER[SIAR_VALID] and return true. 393 */ 394 if (ppmu->flags & PPMU_P10_DD1) 395 return 0x1; 396 else if (ppmu->flags & PPMU_HAS_SIER) 397 return regs->dar & SIER_SIAR_VALID; 398 399 if (ppmu->flags & PPMU_SIAR_VALID) 400 return mmcra & POWER7P_MMCRA_SIAR_VALID; 401 } 402 403 return 1; 404 } 405 406 407 /* Reset all possible BHRB entries */ 408 static void power_pmu_bhrb_reset(void) 409 { 410 asm volatile(PPC_CLRBHRB); 411 } 412 413 static void power_pmu_bhrb_enable(struct perf_event *event) 414 { 415 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 416 417 if (!ppmu->bhrb_nr) 418 return; 419 420 /* Clear BHRB if we changed task context to avoid data leaks */ 421 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 422 power_pmu_bhrb_reset(); 423 cpuhw->bhrb_context = event->ctx; 424 } 425 cpuhw->bhrb_users++; 426 perf_sched_cb_inc(event->ctx->pmu); 427 } 428 429 static void power_pmu_bhrb_disable(struct perf_event *event) 430 { 431 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 432 433 if (!ppmu->bhrb_nr) 434 return; 435 436 WARN_ON_ONCE(!cpuhw->bhrb_users); 437 cpuhw->bhrb_users--; 438 perf_sched_cb_dec(event->ctx->pmu); 439 440 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 441 /* BHRB cannot be turned off when other 442 * events are active on the PMU. 443 */ 444 445 /* avoid stale pointer */ 446 cpuhw->bhrb_context = NULL; 447 } 448 } 449 450 /* Called from ctxsw to prevent one process's branch entries to 451 * mingle with the other process's entries during context switch. 452 */ 453 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 454 { 455 if (!ppmu->bhrb_nr) 456 return; 457 458 if (sched_in) 459 power_pmu_bhrb_reset(); 460 } 461 /* Calculate the to address for a branch */ 462 static __u64 power_pmu_bhrb_to(u64 addr) 463 { 464 unsigned int instr; 465 __u64 target; 466 467 if (is_kernel_addr(addr)) { 468 if (copy_from_kernel_nofault(&instr, (void *)addr, 469 sizeof(instr))) 470 return 0; 471 472 return branch_target(&instr); 473 } 474 475 /* Userspace: need copy instruction here then translate it */ 476 if (copy_from_user_nofault(&instr, (unsigned int __user *)addr, 477 sizeof(instr))) 478 return 0; 479 480 target = branch_target(&instr); 481 if ((!target) || (instr & BRANCH_ABSOLUTE)) 482 return target; 483 484 /* Translate relative branch target from kernel to user address */ 485 return target - (unsigned long)&instr + addr; 486 } 487 488 /* Processing BHRB entries */ 489 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) 490 { 491 u64 val; 492 u64 addr; 493 int r_index, u_index, pred; 494 495 r_index = 0; 496 u_index = 0; 497 while (r_index < ppmu->bhrb_nr) { 498 /* Assembly read function */ 499 val = read_bhrb(r_index++); 500 if (!val) 501 /* Terminal marker: End of valid BHRB entries */ 502 break; 503 else { 504 addr = val & BHRB_EA; 505 pred = val & BHRB_PREDICTION; 506 507 if (!addr) 508 /* invalid entry */ 509 continue; 510 511 /* 512 * BHRB rolling buffer could very much contain the kernel 513 * addresses at this point. Check the privileges before 514 * exporting it to userspace (avoid exposure of regions 515 * where we could have speculative execution) 516 * Incase of ISA v3.1, BHRB will capture only user-space 517 * addresses, hence include a check before filtering code 518 */ 519 if (!(ppmu->flags & PPMU_ARCH_31) && 520 is_kernel_addr(addr) && event->attr.exclude_kernel) 521 continue; 522 523 /* Branches are read most recent first (ie. mfbhrb 0 is 524 * the most recent branch). 525 * There are two types of valid entries: 526 * 1) a target entry which is the to address of a 527 * computed goto like a blr,bctr,btar. The next 528 * entry read from the bhrb will be branch 529 * corresponding to this target (ie. the actual 530 * blr/bctr/btar instruction). 531 * 2) a from address which is an actual branch. If a 532 * target entry proceeds this, then this is the 533 * matching branch for that target. If this is not 534 * following a target entry, then this is a branch 535 * where the target is given as an immediate field 536 * in the instruction (ie. an i or b form branch). 537 * In this case we need to read the instruction from 538 * memory to determine the target/to address. 539 */ 540 541 if (val & BHRB_TARGET) { 542 /* Target branches use two entries 543 * (ie. computed gotos/XL form) 544 */ 545 cpuhw->bhrb_entries[u_index].to = addr; 546 cpuhw->bhrb_entries[u_index].mispred = pred; 547 cpuhw->bhrb_entries[u_index].predicted = ~pred; 548 549 /* Get from address in next entry */ 550 val = read_bhrb(r_index++); 551 addr = val & BHRB_EA; 552 if (val & BHRB_TARGET) { 553 /* Shouldn't have two targets in a 554 row.. Reset index and try again */ 555 r_index--; 556 addr = 0; 557 } 558 cpuhw->bhrb_entries[u_index].from = addr; 559 } else { 560 /* Branches to immediate field 561 (ie I or B form) */ 562 cpuhw->bhrb_entries[u_index].from = addr; 563 cpuhw->bhrb_entries[u_index].to = 564 power_pmu_bhrb_to(addr); 565 cpuhw->bhrb_entries[u_index].mispred = pred; 566 cpuhw->bhrb_entries[u_index].predicted = ~pred; 567 } 568 u_index++; 569 570 } 571 } 572 cpuhw->bhrb_stack.nr = u_index; 573 cpuhw->bhrb_stack.hw_idx = -1ULL; 574 return; 575 } 576 577 static bool is_ebb_event(struct perf_event *event) 578 { 579 /* 580 * This could be a per-PMU callback, but we'd rather avoid the cost. We 581 * check that the PMU supports EBB, meaning those that don't can still 582 * use bit 63 of the event code for something else if they wish. 583 */ 584 return (ppmu->flags & PPMU_ARCH_207S) && 585 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 586 } 587 588 static int ebb_event_check(struct perf_event *event) 589 { 590 struct perf_event *leader = event->group_leader; 591 592 /* Event and group leader must agree on EBB */ 593 if (is_ebb_event(leader) != is_ebb_event(event)) 594 return -EINVAL; 595 596 if (is_ebb_event(event)) { 597 if (!(event->attach_state & PERF_ATTACH_TASK)) 598 return -EINVAL; 599 600 if (!leader->attr.pinned || !leader->attr.exclusive) 601 return -EINVAL; 602 603 if (event->attr.freq || 604 event->attr.inherit || 605 event->attr.sample_type || 606 event->attr.sample_period || 607 event->attr.enable_on_exec) 608 return -EINVAL; 609 } 610 611 return 0; 612 } 613 614 static void ebb_event_add(struct perf_event *event) 615 { 616 if (!is_ebb_event(event) || current->thread.used_ebb) 617 return; 618 619 /* 620 * IFF this is the first time we've added an EBB event, set 621 * PMXE in the user MMCR0 so we can detect when it's cleared by 622 * userspace. We need this so that we can context switch while 623 * userspace is in the EBB handler (where PMXE is 0). 624 */ 625 current->thread.used_ebb = 1; 626 current->thread.mmcr0 |= MMCR0_PMXE; 627 } 628 629 static void ebb_switch_out(unsigned long mmcr0) 630 { 631 if (!(mmcr0 & MMCR0_EBE)) 632 return; 633 634 current->thread.siar = mfspr(SPRN_SIAR); 635 current->thread.sier = mfspr(SPRN_SIER); 636 current->thread.sdar = mfspr(SPRN_SDAR); 637 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 638 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 639 if (ppmu->flags & PPMU_ARCH_31) { 640 current->thread.mmcr3 = mfspr(SPRN_MMCR3); 641 current->thread.sier2 = mfspr(SPRN_SIER2); 642 current->thread.sier3 = mfspr(SPRN_SIER3); 643 } 644 } 645 646 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 647 { 648 unsigned long mmcr0 = cpuhw->mmcr.mmcr0; 649 650 if (!ebb) 651 goto out; 652 653 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 654 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 655 656 /* 657 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 658 * with pmao_restore_workaround() because we may add PMAO but we never 659 * clear it here. 660 */ 661 mmcr0 |= current->thread.mmcr0; 662 663 /* 664 * Be careful not to set PMXE if userspace had it cleared. This is also 665 * compatible with pmao_restore_workaround() because it has already 666 * cleared PMXE and we leave PMAO alone. 667 */ 668 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 669 mmcr0 &= ~MMCR0_PMXE; 670 671 mtspr(SPRN_SIAR, current->thread.siar); 672 mtspr(SPRN_SIER, current->thread.sier); 673 mtspr(SPRN_SDAR, current->thread.sdar); 674 675 /* 676 * Merge the kernel & user values of MMCR2. The semantics we implement 677 * are that the user MMCR2 can set bits, ie. cause counters to freeze, 678 * but not clear bits. If a task wants to be able to clear bits, ie. 679 * unfreeze counters, it should not set exclude_xxx in its events and 680 * instead manage the MMCR2 entirely by itself. 681 */ 682 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2); 683 684 if (ppmu->flags & PPMU_ARCH_31) { 685 mtspr(SPRN_MMCR3, current->thread.mmcr3); 686 mtspr(SPRN_SIER2, current->thread.sier2); 687 mtspr(SPRN_SIER3, current->thread.sier3); 688 } 689 out: 690 return mmcr0; 691 } 692 693 static void pmao_restore_workaround(bool ebb) 694 { 695 unsigned pmcs[6]; 696 697 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 698 return; 699 700 /* 701 * On POWER8E there is a hardware defect which affects the PMU context 702 * switch logic, ie. power_pmu_disable/enable(). 703 * 704 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 705 * by the hardware. Sometime later the actual PMU exception is 706 * delivered. 707 * 708 * If we context switch, or simply disable/enable, the PMU prior to the 709 * exception arriving, the exception will be lost when we clear PMAO. 710 * 711 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 712 * set, and this _should_ generate an exception. However because of the 713 * defect no exception is generated when we write PMAO, and we get 714 * stuck with no counters counting but no exception delivered. 715 * 716 * The workaround is to detect this case and tweak the hardware to 717 * create another pending PMU exception. 718 * 719 * We do that by setting up PMC6 (cycles) for an imminent overflow and 720 * enabling the PMU. That causes a new exception to be generated in the 721 * chip, but we don't take it yet because we have interrupts hard 722 * disabled. We then write back the PMU state as we want it to be seen 723 * by the exception handler. When we reenable interrupts the exception 724 * handler will be called and see the correct state. 725 * 726 * The logic is the same for EBB, except that the exception is gated by 727 * us having interrupts hard disabled as well as the fact that we are 728 * not in userspace. The exception is finally delivered when we return 729 * to userspace. 730 */ 731 732 /* Only if PMAO is set and PMAO_SYNC is clear */ 733 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 734 return; 735 736 /* If we're doing EBB, only if BESCR[GE] is set */ 737 if (ebb && !(current->thread.bescr & BESCR_GE)) 738 return; 739 740 /* 741 * We are already soft-disabled in power_pmu_enable(). We need to hard 742 * disable to actually prevent the PMU exception from firing. 743 */ 744 hard_irq_disable(); 745 746 /* 747 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 748 * Using read/write_pmc() in a for loop adds 12 function calls and 749 * almost doubles our code size. 750 */ 751 pmcs[0] = mfspr(SPRN_PMC1); 752 pmcs[1] = mfspr(SPRN_PMC2); 753 pmcs[2] = mfspr(SPRN_PMC3); 754 pmcs[3] = mfspr(SPRN_PMC4); 755 pmcs[4] = mfspr(SPRN_PMC5); 756 pmcs[5] = mfspr(SPRN_PMC6); 757 758 /* Ensure all freeze bits are unset */ 759 mtspr(SPRN_MMCR2, 0); 760 761 /* Set up PMC6 to overflow in one cycle */ 762 mtspr(SPRN_PMC6, 0x7FFFFFFE); 763 764 /* Enable exceptions and unfreeze PMC6 */ 765 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 766 767 /* Now we need to refreeze and restore the PMCs */ 768 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 769 770 mtspr(SPRN_PMC1, pmcs[0]); 771 mtspr(SPRN_PMC2, pmcs[1]); 772 mtspr(SPRN_PMC3, pmcs[2]); 773 mtspr(SPRN_PMC4, pmcs[3]); 774 mtspr(SPRN_PMC5, pmcs[4]); 775 mtspr(SPRN_PMC6, pmcs[5]); 776 } 777 778 #endif /* CONFIG_PPC64 */ 779 780 static void perf_event_interrupt(struct pt_regs *regs); 781 782 /* 783 * Read one performance monitor counter (PMC). 784 */ 785 static unsigned long read_pmc(int idx) 786 { 787 unsigned long val; 788 789 switch (idx) { 790 case 1: 791 val = mfspr(SPRN_PMC1); 792 break; 793 case 2: 794 val = mfspr(SPRN_PMC2); 795 break; 796 case 3: 797 val = mfspr(SPRN_PMC3); 798 break; 799 case 4: 800 val = mfspr(SPRN_PMC4); 801 break; 802 case 5: 803 val = mfspr(SPRN_PMC5); 804 break; 805 case 6: 806 val = mfspr(SPRN_PMC6); 807 break; 808 #ifdef CONFIG_PPC64 809 case 7: 810 val = mfspr(SPRN_PMC7); 811 break; 812 case 8: 813 val = mfspr(SPRN_PMC8); 814 break; 815 #endif /* CONFIG_PPC64 */ 816 default: 817 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 818 val = 0; 819 } 820 return val; 821 } 822 823 /* 824 * Write one PMC. 825 */ 826 static void write_pmc(int idx, unsigned long val) 827 { 828 switch (idx) { 829 case 1: 830 mtspr(SPRN_PMC1, val); 831 break; 832 case 2: 833 mtspr(SPRN_PMC2, val); 834 break; 835 case 3: 836 mtspr(SPRN_PMC3, val); 837 break; 838 case 4: 839 mtspr(SPRN_PMC4, val); 840 break; 841 case 5: 842 mtspr(SPRN_PMC5, val); 843 break; 844 case 6: 845 mtspr(SPRN_PMC6, val); 846 break; 847 #ifdef CONFIG_PPC64 848 case 7: 849 mtspr(SPRN_PMC7, val); 850 break; 851 case 8: 852 mtspr(SPRN_PMC8, val); 853 break; 854 #endif /* CONFIG_PPC64 */ 855 default: 856 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 857 } 858 } 859 860 /* Called from sysrq_handle_showregs() */ 861 void perf_event_print_debug(void) 862 { 863 unsigned long sdar, sier, flags; 864 u32 pmcs[MAX_HWEVENTS]; 865 int i; 866 867 if (!ppmu) { 868 pr_info("Performance monitor hardware not registered.\n"); 869 return; 870 } 871 872 if (!ppmu->n_counter) 873 return; 874 875 local_irq_save(flags); 876 877 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 878 smp_processor_id(), ppmu->name, ppmu->n_counter); 879 880 for (i = 0; i < ppmu->n_counter; i++) 881 pmcs[i] = read_pmc(i + 1); 882 883 for (; i < MAX_HWEVENTS; i++) 884 pmcs[i] = 0xdeadbeef; 885 886 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 887 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 888 889 if (ppmu->n_counter > 4) 890 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 891 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 892 893 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 894 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 895 896 sdar = sier = 0; 897 #ifdef CONFIG_PPC64 898 sdar = mfspr(SPRN_SDAR); 899 900 if (ppmu->flags & PPMU_HAS_SIER) 901 sier = mfspr(SPRN_SIER); 902 903 if (ppmu->flags & PPMU_ARCH_207S) { 904 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 905 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 906 pr_info("EBBRR: %016lx BESCR: %016lx\n", 907 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 908 } 909 910 if (ppmu->flags & PPMU_ARCH_31) { 911 pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n", 912 mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3)); 913 } 914 #endif 915 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 916 mfspr(SPRN_SIAR), sdar, sier); 917 918 local_irq_restore(flags); 919 } 920 921 /* 922 * Check if a set of events can all go on the PMU at once. 923 * If they can't, this will look at alternative codes for the events 924 * and see if any combination of alternative codes is feasible. 925 * The feasible set is returned in event_id[]. 926 */ 927 static int power_check_constraints(struct cpu_hw_events *cpuhw, 928 u64 event_id[], unsigned int cflags[], 929 int n_ev, struct perf_event **event) 930 { 931 unsigned long mask, value, nv; 932 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 933 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 934 int i, j; 935 unsigned long addf = ppmu->add_fields; 936 unsigned long tadd = ppmu->test_adder; 937 unsigned long grp_mask = ppmu->group_constraint_mask; 938 unsigned long grp_val = ppmu->group_constraint_val; 939 940 if (n_ev > ppmu->n_counter) 941 return -1; 942 943 /* First see if the events will go on as-is */ 944 for (i = 0; i < n_ev; ++i) { 945 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 946 && !ppmu->limited_pmc_event(event_id[i])) { 947 ppmu->get_alternatives(event_id[i], cflags[i], 948 cpuhw->alternatives[i]); 949 event_id[i] = cpuhw->alternatives[i][0]; 950 } 951 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 952 &cpuhw->avalues[i][0], event[i]->attr.config1)) 953 return -1; 954 } 955 value = mask = 0; 956 for (i = 0; i < n_ev; ++i) { 957 nv = (value | cpuhw->avalues[i][0]) + 958 (value & cpuhw->avalues[i][0] & addf); 959 960 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0) 961 break; 962 963 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0]) 964 & (~grp_mask)) != 0) 965 break; 966 967 value = nv; 968 mask |= cpuhw->amasks[i][0]; 969 } 970 if (i == n_ev) { 971 if ((value & mask & grp_mask) != (mask & grp_val)) 972 return -1; 973 else 974 return 0; /* all OK */ 975 } 976 977 /* doesn't work, gather alternatives... */ 978 if (!ppmu->get_alternatives) 979 return -1; 980 for (i = 0; i < n_ev; ++i) { 981 choice[i] = 0; 982 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 983 cpuhw->alternatives[i]); 984 for (j = 1; j < n_alt[i]; ++j) 985 ppmu->get_constraint(cpuhw->alternatives[i][j], 986 &cpuhw->amasks[i][j], 987 &cpuhw->avalues[i][j], 988 event[i]->attr.config1); 989 } 990 991 /* enumerate all possibilities and see if any will work */ 992 i = 0; 993 j = -1; 994 value = mask = nv = 0; 995 while (i < n_ev) { 996 if (j >= 0) { 997 /* we're backtracking, restore context */ 998 value = svalues[i]; 999 mask = smasks[i]; 1000 j = choice[i]; 1001 } 1002 /* 1003 * See if any alternative k for event_id i, 1004 * where k > j, will satisfy the constraints. 1005 */ 1006 while (++j < n_alt[i]) { 1007 nv = (value | cpuhw->avalues[i][j]) + 1008 (value & cpuhw->avalues[i][j] & addf); 1009 if ((((nv + tadd) ^ value) & mask) == 0 && 1010 (((nv + tadd) ^ cpuhw->avalues[i][j]) 1011 & cpuhw->amasks[i][j]) == 0) 1012 break; 1013 } 1014 if (j >= n_alt[i]) { 1015 /* 1016 * No feasible alternative, backtrack 1017 * to event_id i-1 and continue enumerating its 1018 * alternatives from where we got up to. 1019 */ 1020 if (--i < 0) 1021 return -1; 1022 } else { 1023 /* 1024 * Found a feasible alternative for event_id i, 1025 * remember where we got up to with this event_id, 1026 * go on to the next event_id, and start with 1027 * the first alternative for it. 1028 */ 1029 choice[i] = j; 1030 svalues[i] = value; 1031 smasks[i] = mask; 1032 value = nv; 1033 mask |= cpuhw->amasks[i][j]; 1034 ++i; 1035 j = -1; 1036 } 1037 } 1038 1039 /* OK, we have a feasible combination, tell the caller the solution */ 1040 for (i = 0; i < n_ev; ++i) 1041 event_id[i] = cpuhw->alternatives[i][choice[i]]; 1042 return 0; 1043 } 1044 1045 /* 1046 * Check if newly-added events have consistent settings for 1047 * exclude_{user,kernel,hv} with each other and any previously 1048 * added events. 1049 */ 1050 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 1051 int n_prev, int n_new) 1052 { 1053 int eu = 0, ek = 0, eh = 0; 1054 int i, n, first; 1055 struct perf_event *event; 1056 1057 /* 1058 * If the PMU we're on supports per event exclude settings then we 1059 * don't need to do any of this logic. NB. This assumes no PMU has both 1060 * per event exclude and limited PMCs. 1061 */ 1062 if (ppmu->flags & PPMU_ARCH_207S) 1063 return 0; 1064 1065 n = n_prev + n_new; 1066 if (n <= 1) 1067 return 0; 1068 1069 first = 1; 1070 for (i = 0; i < n; ++i) { 1071 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 1072 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 1073 continue; 1074 } 1075 event = ctrs[i]; 1076 if (first) { 1077 eu = event->attr.exclude_user; 1078 ek = event->attr.exclude_kernel; 1079 eh = event->attr.exclude_hv; 1080 first = 0; 1081 } else if (event->attr.exclude_user != eu || 1082 event->attr.exclude_kernel != ek || 1083 event->attr.exclude_hv != eh) { 1084 return -EAGAIN; 1085 } 1086 } 1087 1088 if (eu || ek || eh) 1089 for (i = 0; i < n; ++i) 1090 if (cflags[i] & PPMU_LIMITED_PMC_OK) 1091 cflags[i] |= PPMU_LIMITED_PMC_REQD; 1092 1093 return 0; 1094 } 1095 1096 static u64 check_and_compute_delta(u64 prev, u64 val) 1097 { 1098 u64 delta = (val - prev) & 0xfffffffful; 1099 1100 /* 1101 * POWER7 can roll back counter values, if the new value is smaller 1102 * than the previous value it will cause the delta and the counter to 1103 * have bogus values unless we rolled a counter over. If a coutner is 1104 * rolled back, it will be smaller, but within 256, which is the maximum 1105 * number of events to rollback at once. If we detect a rollback 1106 * return 0. This can lead to a small lack of precision in the 1107 * counters. 1108 */ 1109 if (prev > val && (prev - val) < 256) 1110 delta = 0; 1111 1112 return delta; 1113 } 1114 1115 static void power_pmu_read(struct perf_event *event) 1116 { 1117 s64 val, delta, prev; 1118 1119 if (event->hw.state & PERF_HES_STOPPED) 1120 return; 1121 1122 if (!event->hw.idx) 1123 return; 1124 1125 if (is_ebb_event(event)) { 1126 val = read_pmc(event->hw.idx); 1127 local64_set(&event->hw.prev_count, val); 1128 return; 1129 } 1130 1131 /* 1132 * Performance monitor interrupts come even when interrupts 1133 * are soft-disabled, as long as interrupts are hard-enabled. 1134 * Therefore we treat them like NMIs. 1135 */ 1136 do { 1137 prev = local64_read(&event->hw.prev_count); 1138 barrier(); 1139 val = read_pmc(event->hw.idx); 1140 delta = check_and_compute_delta(prev, val); 1141 if (!delta) 1142 return; 1143 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 1144 1145 local64_add(delta, &event->count); 1146 1147 /* 1148 * A number of places program the PMC with (0x80000000 - period_left). 1149 * We never want period_left to be less than 1 because we will program 1150 * the PMC with a value >= 0x800000000 and an edge detected PMC will 1151 * roll around to 0 before taking an exception. We have seen this 1152 * on POWER8. 1153 * 1154 * To fix this, clamp the minimum value of period_left to 1. 1155 */ 1156 do { 1157 prev = local64_read(&event->hw.period_left); 1158 val = prev - delta; 1159 if (val < 1) 1160 val = 1; 1161 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); 1162 } 1163 1164 /* 1165 * On some machines, PMC5 and PMC6 can't be written, don't respect 1166 * the freeze conditions, and don't generate interrupts. This tells 1167 * us if `event' is using such a PMC. 1168 */ 1169 static int is_limited_pmc(int pmcnum) 1170 { 1171 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1172 && (pmcnum == 5 || pmcnum == 6); 1173 } 1174 1175 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1176 unsigned long pmc5, unsigned long pmc6) 1177 { 1178 struct perf_event *event; 1179 u64 val, prev, delta; 1180 int i; 1181 1182 for (i = 0; i < cpuhw->n_limited; ++i) { 1183 event = cpuhw->limited_counter[i]; 1184 if (!event->hw.idx) 1185 continue; 1186 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1187 prev = local64_read(&event->hw.prev_count); 1188 event->hw.idx = 0; 1189 delta = check_and_compute_delta(prev, val); 1190 if (delta) 1191 local64_add(delta, &event->count); 1192 } 1193 } 1194 1195 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1196 unsigned long pmc5, unsigned long pmc6) 1197 { 1198 struct perf_event *event; 1199 u64 val, prev; 1200 int i; 1201 1202 for (i = 0; i < cpuhw->n_limited; ++i) { 1203 event = cpuhw->limited_counter[i]; 1204 event->hw.idx = cpuhw->limited_hwidx[i]; 1205 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1206 prev = local64_read(&event->hw.prev_count); 1207 if (check_and_compute_delta(prev, val)) 1208 local64_set(&event->hw.prev_count, val); 1209 perf_event_update_userpage(event); 1210 } 1211 } 1212 1213 /* 1214 * Since limited events don't respect the freeze conditions, we 1215 * have to read them immediately after freezing or unfreezing the 1216 * other events. We try to keep the values from the limited 1217 * events as consistent as possible by keeping the delay (in 1218 * cycles and instructions) between freezing/unfreezing and reading 1219 * the limited events as small and consistent as possible. 1220 * Therefore, if any limited events are in use, we read them 1221 * both, and always in the same order, to minimize variability, 1222 * and do it inside the same asm that writes MMCR0. 1223 */ 1224 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1225 { 1226 unsigned long pmc5, pmc6; 1227 1228 if (!cpuhw->n_limited) { 1229 mtspr(SPRN_MMCR0, mmcr0); 1230 return; 1231 } 1232 1233 /* 1234 * Write MMCR0, then read PMC5 and PMC6 immediately. 1235 * To ensure we don't get a performance monitor interrupt 1236 * between writing MMCR0 and freezing/thawing the limited 1237 * events, we first write MMCR0 with the event overflow 1238 * interrupt enable bits turned off. 1239 */ 1240 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1241 : "=&r" (pmc5), "=&r" (pmc6) 1242 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1243 "i" (SPRN_MMCR0), 1244 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1245 1246 if (mmcr0 & MMCR0_FC) 1247 freeze_limited_counters(cpuhw, pmc5, pmc6); 1248 else 1249 thaw_limited_counters(cpuhw, pmc5, pmc6); 1250 1251 /* 1252 * Write the full MMCR0 including the event overflow interrupt 1253 * enable bits, if necessary. 1254 */ 1255 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1256 mtspr(SPRN_MMCR0, mmcr0); 1257 } 1258 1259 /* 1260 * Disable all events to prevent PMU interrupts and to allow 1261 * events to be added or removed. 1262 */ 1263 static void power_pmu_disable(struct pmu *pmu) 1264 { 1265 struct cpu_hw_events *cpuhw; 1266 unsigned long flags, mmcr0, val, mmcra; 1267 1268 if (!ppmu) 1269 return; 1270 local_irq_save(flags); 1271 cpuhw = this_cpu_ptr(&cpu_hw_events); 1272 1273 if (!cpuhw->disabled) { 1274 /* 1275 * Check if we ever enabled the PMU on this cpu. 1276 */ 1277 if (!cpuhw->pmcs_enabled) { 1278 ppc_enable_pmcs(); 1279 cpuhw->pmcs_enabled = 1; 1280 } 1281 1282 /* 1283 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1284 */ 1285 val = mmcr0 = mfspr(SPRN_MMCR0); 1286 val |= MMCR0_FC; 1287 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1288 MMCR0_FC56); 1289 /* Set mmcr0 PMCCEXT for p10 */ 1290 if (ppmu->flags & PPMU_ARCH_31) 1291 val |= MMCR0_PMCCEXT; 1292 1293 /* 1294 * The barrier is to make sure the mtspr has been 1295 * executed and the PMU has frozen the events etc. 1296 * before we return. 1297 */ 1298 write_mmcr0(cpuhw, val); 1299 mb(); 1300 isync(); 1301 1302 val = mmcra = cpuhw->mmcr.mmcra; 1303 1304 /* 1305 * Disable instruction sampling if it was enabled 1306 */ 1307 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) 1308 val &= ~MMCRA_SAMPLE_ENABLE; 1309 1310 /* Disable BHRB via mmcra (BHRBRD) for p10 */ 1311 if (ppmu->flags & PPMU_ARCH_31) 1312 val |= MMCRA_BHRB_DISABLE; 1313 1314 /* 1315 * Write SPRN_MMCRA if mmcra has either disabled 1316 * instruction sampling or BHRB. 1317 */ 1318 if (val != mmcra) { 1319 mtspr(SPRN_MMCRA, mmcra); 1320 mb(); 1321 isync(); 1322 } 1323 1324 cpuhw->disabled = 1; 1325 cpuhw->n_added = 0; 1326 1327 ebb_switch_out(mmcr0); 1328 1329 #ifdef CONFIG_PPC64 1330 /* 1331 * These are readable by userspace, may contain kernel 1332 * addresses and are not switched by context switch, so clear 1333 * them now to avoid leaking anything to userspace in general 1334 * including to another process. 1335 */ 1336 if (ppmu->flags & PPMU_ARCH_207S) { 1337 mtspr(SPRN_SDAR, 0); 1338 mtspr(SPRN_SIAR, 0); 1339 } 1340 #endif 1341 } 1342 1343 local_irq_restore(flags); 1344 } 1345 1346 /* 1347 * Re-enable all events if disable == 0. 1348 * If we were previously disabled and events were added, then 1349 * put the new config on the PMU. 1350 */ 1351 static void power_pmu_enable(struct pmu *pmu) 1352 { 1353 struct perf_event *event; 1354 struct cpu_hw_events *cpuhw; 1355 unsigned long flags; 1356 long i; 1357 unsigned long val, mmcr0; 1358 s64 left; 1359 unsigned int hwc_index[MAX_HWEVENTS]; 1360 int n_lim; 1361 int idx; 1362 bool ebb; 1363 1364 if (!ppmu) 1365 return; 1366 local_irq_save(flags); 1367 1368 cpuhw = this_cpu_ptr(&cpu_hw_events); 1369 if (!cpuhw->disabled) 1370 goto out; 1371 1372 if (cpuhw->n_events == 0) { 1373 ppc_set_pmu_inuse(0); 1374 goto out; 1375 } 1376 1377 cpuhw->disabled = 0; 1378 1379 /* 1380 * EBB requires an exclusive group and all events must have the EBB 1381 * flag set, or not set, so we can just check a single event. Also we 1382 * know we have at least one event. 1383 */ 1384 ebb = is_ebb_event(cpuhw->event[0]); 1385 1386 /* 1387 * If we didn't change anything, or only removed events, 1388 * no need to recalculate MMCR* settings and reset the PMCs. 1389 * Just reenable the PMU with the current MMCR* settings 1390 * (possibly updated for removal of events). 1391 */ 1392 if (!cpuhw->n_added) { 1393 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE); 1394 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1); 1395 if (ppmu->flags & PPMU_ARCH_31) 1396 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3); 1397 goto out_enable; 1398 } 1399 1400 /* 1401 * Clear all MMCR settings and recompute them for the new set of events. 1402 */ 1403 memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); 1404 1405 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1406 &cpuhw->mmcr, cpuhw->event, ppmu->flags)) { 1407 /* shouldn't ever get here */ 1408 printk(KERN_ERR "oops compute_mmcr failed\n"); 1409 goto out; 1410 } 1411 1412 if (!(ppmu->flags & PPMU_ARCH_207S)) { 1413 /* 1414 * Add in MMCR0 freeze bits corresponding to the attr.exclude_* 1415 * bits for the first event. We have already checked that all 1416 * events have the same value for these bits as the first event. 1417 */ 1418 event = cpuhw->event[0]; 1419 if (event->attr.exclude_user) 1420 cpuhw->mmcr.mmcr0 |= MMCR0_FCP; 1421 if (event->attr.exclude_kernel) 1422 cpuhw->mmcr.mmcr0 |= freeze_events_kernel; 1423 if (event->attr.exclude_hv) 1424 cpuhw->mmcr.mmcr0 |= MMCR0_FCHV; 1425 } 1426 1427 /* 1428 * Write the new configuration to MMCR* with the freeze 1429 * bit set and set the hardware events to their initial values. 1430 * Then unfreeze the events. 1431 */ 1432 ppc_set_pmu_inuse(1); 1433 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE); 1434 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1); 1435 mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1436 | MMCR0_FC); 1437 if (ppmu->flags & PPMU_ARCH_207S) 1438 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2); 1439 1440 if (ppmu->flags & PPMU_ARCH_31) 1441 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3); 1442 1443 /* 1444 * Read off any pre-existing events that need to move 1445 * to another PMC. 1446 */ 1447 for (i = 0; i < cpuhw->n_events; ++i) { 1448 event = cpuhw->event[i]; 1449 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1450 power_pmu_read(event); 1451 write_pmc(event->hw.idx, 0); 1452 event->hw.idx = 0; 1453 } 1454 } 1455 1456 /* 1457 * Initialize the PMCs for all the new and moved events. 1458 */ 1459 cpuhw->n_limited = n_lim = 0; 1460 for (i = 0; i < cpuhw->n_events; ++i) { 1461 event = cpuhw->event[i]; 1462 if (event->hw.idx) 1463 continue; 1464 idx = hwc_index[i] + 1; 1465 if (is_limited_pmc(idx)) { 1466 cpuhw->limited_counter[n_lim] = event; 1467 cpuhw->limited_hwidx[n_lim] = idx; 1468 ++n_lim; 1469 continue; 1470 } 1471 1472 if (ebb) 1473 val = local64_read(&event->hw.prev_count); 1474 else { 1475 val = 0; 1476 if (event->hw.sample_period) { 1477 left = local64_read(&event->hw.period_left); 1478 if (left < 0x80000000L) 1479 val = 0x80000000L - left; 1480 } 1481 local64_set(&event->hw.prev_count, val); 1482 } 1483 1484 event->hw.idx = idx; 1485 if (event->hw.state & PERF_HES_STOPPED) 1486 val = 0; 1487 write_pmc(idx, val); 1488 1489 perf_event_update_userpage(event); 1490 } 1491 cpuhw->n_limited = n_lim; 1492 cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE; 1493 1494 out_enable: 1495 pmao_restore_workaround(ebb); 1496 1497 mmcr0 = ebb_switch_in(ebb, cpuhw); 1498 1499 mb(); 1500 if (cpuhw->bhrb_users) 1501 ppmu->config_bhrb(cpuhw->bhrb_filter); 1502 1503 write_mmcr0(cpuhw, mmcr0); 1504 1505 /* 1506 * Enable instruction sampling if necessary 1507 */ 1508 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) { 1509 mb(); 1510 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra); 1511 } 1512 1513 out: 1514 1515 local_irq_restore(flags); 1516 } 1517 1518 static int collect_events(struct perf_event *group, int max_count, 1519 struct perf_event *ctrs[], u64 *events, 1520 unsigned int *flags) 1521 { 1522 int n = 0; 1523 struct perf_event *event; 1524 1525 if (group->pmu->task_ctx_nr == perf_hw_context) { 1526 if (n >= max_count) 1527 return -1; 1528 ctrs[n] = group; 1529 flags[n] = group->hw.event_base; 1530 events[n++] = group->hw.config; 1531 } 1532 for_each_sibling_event(event, group) { 1533 if (event->pmu->task_ctx_nr == perf_hw_context && 1534 event->state != PERF_EVENT_STATE_OFF) { 1535 if (n >= max_count) 1536 return -1; 1537 ctrs[n] = event; 1538 flags[n] = event->hw.event_base; 1539 events[n++] = event->hw.config; 1540 } 1541 } 1542 return n; 1543 } 1544 1545 /* 1546 * Add an event to the PMU. 1547 * If all events are not already frozen, then we disable and 1548 * re-enable the PMU in order to get hw_perf_enable to do the 1549 * actual work of reconfiguring the PMU. 1550 */ 1551 static int power_pmu_add(struct perf_event *event, int ef_flags) 1552 { 1553 struct cpu_hw_events *cpuhw; 1554 unsigned long flags; 1555 int n0; 1556 int ret = -EAGAIN; 1557 1558 local_irq_save(flags); 1559 perf_pmu_disable(event->pmu); 1560 1561 /* 1562 * Add the event to the list (if there is room) 1563 * and check whether the total set is still feasible. 1564 */ 1565 cpuhw = this_cpu_ptr(&cpu_hw_events); 1566 n0 = cpuhw->n_events; 1567 if (n0 >= ppmu->n_counter) 1568 goto out; 1569 cpuhw->event[n0] = event; 1570 cpuhw->events[n0] = event->hw.config; 1571 cpuhw->flags[n0] = event->hw.event_base; 1572 1573 /* 1574 * This event may have been disabled/stopped in record_and_restart() 1575 * because we exceeded the ->event_limit. If re-starting the event, 1576 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1577 * notification is re-enabled. 1578 */ 1579 if (!(ef_flags & PERF_EF_START)) 1580 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1581 else 1582 event->hw.state = 0; 1583 1584 /* 1585 * If group events scheduling transaction was started, 1586 * skip the schedulability test here, it will be performed 1587 * at commit time(->commit_txn) as a whole 1588 */ 1589 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD) 1590 goto nocheck; 1591 1592 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1593 goto out; 1594 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1, cpuhw->event)) 1595 goto out; 1596 event->hw.config = cpuhw->events[n0]; 1597 1598 nocheck: 1599 ebb_event_add(event); 1600 1601 ++cpuhw->n_events; 1602 ++cpuhw->n_added; 1603 1604 ret = 0; 1605 out: 1606 if (has_branch_stack(event)) { 1607 u64 bhrb_filter = -1; 1608 1609 if (ppmu->bhrb_filter_map) 1610 bhrb_filter = ppmu->bhrb_filter_map( 1611 event->attr.branch_sample_type); 1612 1613 if (bhrb_filter != -1) { 1614 cpuhw->bhrb_filter = bhrb_filter; 1615 power_pmu_bhrb_enable(event); 1616 } 1617 } 1618 1619 perf_pmu_enable(event->pmu); 1620 local_irq_restore(flags); 1621 return ret; 1622 } 1623 1624 /* 1625 * Remove an event from the PMU. 1626 */ 1627 static void power_pmu_del(struct perf_event *event, int ef_flags) 1628 { 1629 struct cpu_hw_events *cpuhw; 1630 long i; 1631 unsigned long flags; 1632 1633 local_irq_save(flags); 1634 perf_pmu_disable(event->pmu); 1635 1636 power_pmu_read(event); 1637 1638 cpuhw = this_cpu_ptr(&cpu_hw_events); 1639 for (i = 0; i < cpuhw->n_events; ++i) { 1640 if (event == cpuhw->event[i]) { 1641 while (++i < cpuhw->n_events) { 1642 cpuhw->event[i-1] = cpuhw->event[i]; 1643 cpuhw->events[i-1] = cpuhw->events[i]; 1644 cpuhw->flags[i-1] = cpuhw->flags[i]; 1645 } 1646 --cpuhw->n_events; 1647 ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr); 1648 if (event->hw.idx) { 1649 write_pmc(event->hw.idx, 0); 1650 event->hw.idx = 0; 1651 } 1652 perf_event_update_userpage(event); 1653 break; 1654 } 1655 } 1656 for (i = 0; i < cpuhw->n_limited; ++i) 1657 if (event == cpuhw->limited_counter[i]) 1658 break; 1659 if (i < cpuhw->n_limited) { 1660 while (++i < cpuhw->n_limited) { 1661 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1662 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1663 } 1664 --cpuhw->n_limited; 1665 } 1666 if (cpuhw->n_events == 0) { 1667 /* disable exceptions if no events are running */ 1668 cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE); 1669 } 1670 1671 if (has_branch_stack(event)) 1672 power_pmu_bhrb_disable(event); 1673 1674 perf_pmu_enable(event->pmu); 1675 local_irq_restore(flags); 1676 } 1677 1678 /* 1679 * POWER-PMU does not support disabling individual counters, hence 1680 * program their cycle counter to their max value and ignore the interrupts. 1681 */ 1682 1683 static void power_pmu_start(struct perf_event *event, int ef_flags) 1684 { 1685 unsigned long flags; 1686 s64 left; 1687 unsigned long val; 1688 1689 if (!event->hw.idx || !event->hw.sample_period) 1690 return; 1691 1692 if (!(event->hw.state & PERF_HES_STOPPED)) 1693 return; 1694 1695 if (ef_flags & PERF_EF_RELOAD) 1696 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1697 1698 local_irq_save(flags); 1699 perf_pmu_disable(event->pmu); 1700 1701 event->hw.state = 0; 1702 left = local64_read(&event->hw.period_left); 1703 1704 val = 0; 1705 if (left < 0x80000000L) 1706 val = 0x80000000L - left; 1707 1708 write_pmc(event->hw.idx, val); 1709 1710 perf_event_update_userpage(event); 1711 perf_pmu_enable(event->pmu); 1712 local_irq_restore(flags); 1713 } 1714 1715 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1716 { 1717 unsigned long flags; 1718 1719 if (!event->hw.idx || !event->hw.sample_period) 1720 return; 1721 1722 if (event->hw.state & PERF_HES_STOPPED) 1723 return; 1724 1725 local_irq_save(flags); 1726 perf_pmu_disable(event->pmu); 1727 1728 power_pmu_read(event); 1729 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1730 write_pmc(event->hw.idx, 0); 1731 1732 perf_event_update_userpage(event); 1733 perf_pmu_enable(event->pmu); 1734 local_irq_restore(flags); 1735 } 1736 1737 /* 1738 * Start group events scheduling transaction 1739 * Set the flag to make pmu::enable() not perform the 1740 * schedulability test, it will be performed at commit time 1741 * 1742 * We only support PERF_PMU_TXN_ADD transactions. Save the 1743 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1744 * transactions. 1745 */ 1746 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1747 { 1748 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1749 1750 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ 1751 1752 cpuhw->txn_flags = txn_flags; 1753 if (txn_flags & ~PERF_PMU_TXN_ADD) 1754 return; 1755 1756 perf_pmu_disable(pmu); 1757 cpuhw->n_txn_start = cpuhw->n_events; 1758 } 1759 1760 /* 1761 * Stop group events scheduling transaction 1762 * Clear the flag and pmu::enable() will perform the 1763 * schedulability test. 1764 */ 1765 static void power_pmu_cancel_txn(struct pmu *pmu) 1766 { 1767 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1768 unsigned int txn_flags; 1769 1770 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1771 1772 txn_flags = cpuhw->txn_flags; 1773 cpuhw->txn_flags = 0; 1774 if (txn_flags & ~PERF_PMU_TXN_ADD) 1775 return; 1776 1777 perf_pmu_enable(pmu); 1778 } 1779 1780 /* 1781 * Commit group events scheduling transaction 1782 * Perform the group schedulability test as a whole 1783 * Return 0 if success 1784 */ 1785 static int power_pmu_commit_txn(struct pmu *pmu) 1786 { 1787 struct cpu_hw_events *cpuhw; 1788 long i, n; 1789 1790 if (!ppmu) 1791 return -EAGAIN; 1792 1793 cpuhw = this_cpu_ptr(&cpu_hw_events); 1794 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1795 1796 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) { 1797 cpuhw->txn_flags = 0; 1798 return 0; 1799 } 1800 1801 n = cpuhw->n_events; 1802 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1803 return -EAGAIN; 1804 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n, cpuhw->event); 1805 if (i < 0) 1806 return -EAGAIN; 1807 1808 for (i = cpuhw->n_txn_start; i < n; ++i) 1809 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1810 1811 cpuhw->txn_flags = 0; 1812 perf_pmu_enable(pmu); 1813 return 0; 1814 } 1815 1816 /* 1817 * Return 1 if we might be able to put event on a limited PMC, 1818 * or 0 if not. 1819 * An event can only go on a limited PMC if it counts something 1820 * that a limited PMC can count, doesn't require interrupts, and 1821 * doesn't exclude any processor mode. 1822 */ 1823 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1824 unsigned int flags) 1825 { 1826 int n; 1827 u64 alt[MAX_EVENT_ALTERNATIVES]; 1828 1829 if (event->attr.exclude_user 1830 || event->attr.exclude_kernel 1831 || event->attr.exclude_hv 1832 || event->attr.sample_period) 1833 return 0; 1834 1835 if (ppmu->limited_pmc_event(ev)) 1836 return 1; 1837 1838 /* 1839 * The requested event_id isn't on a limited PMC already; 1840 * see if any alternative code goes on a limited PMC. 1841 */ 1842 if (!ppmu->get_alternatives) 1843 return 0; 1844 1845 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1846 n = ppmu->get_alternatives(ev, flags, alt); 1847 1848 return n > 0; 1849 } 1850 1851 /* 1852 * Find an alternative event_id that goes on a normal PMC, if possible, 1853 * and return the event_id code, or 0 if there is no such alternative. 1854 * (Note: event_id code 0 is "don't count" on all machines.) 1855 */ 1856 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1857 { 1858 u64 alt[MAX_EVENT_ALTERNATIVES]; 1859 int n; 1860 1861 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1862 n = ppmu->get_alternatives(ev, flags, alt); 1863 if (!n) 1864 return 0; 1865 return alt[0]; 1866 } 1867 1868 /* Number of perf_events counting hardware events */ 1869 static atomic_t num_events; 1870 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1871 static DEFINE_MUTEX(pmc_reserve_mutex); 1872 1873 /* 1874 * Release the PMU if this is the last perf_event. 1875 */ 1876 static void hw_perf_event_destroy(struct perf_event *event) 1877 { 1878 if (!atomic_add_unless(&num_events, -1, 1)) { 1879 mutex_lock(&pmc_reserve_mutex); 1880 if (atomic_dec_return(&num_events) == 0) 1881 release_pmc_hardware(); 1882 mutex_unlock(&pmc_reserve_mutex); 1883 } 1884 } 1885 1886 /* 1887 * Translate a generic cache event_id config to a raw event_id code. 1888 */ 1889 static int hw_perf_cache_event(u64 config, u64 *eventp) 1890 { 1891 unsigned long type, op, result; 1892 u64 ev; 1893 1894 if (!ppmu->cache_events) 1895 return -EINVAL; 1896 1897 /* unpack config */ 1898 type = config & 0xff; 1899 op = (config >> 8) & 0xff; 1900 result = (config >> 16) & 0xff; 1901 1902 if (type >= PERF_COUNT_HW_CACHE_MAX || 1903 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1904 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1905 return -EINVAL; 1906 1907 ev = (*ppmu->cache_events)[type][op][result]; 1908 if (ev == 0) 1909 return -EOPNOTSUPP; 1910 if (ev == -1) 1911 return -EINVAL; 1912 *eventp = ev; 1913 return 0; 1914 } 1915 1916 static bool is_event_blacklisted(u64 ev) 1917 { 1918 int i; 1919 1920 for (i=0; i < ppmu->n_blacklist_ev; i++) { 1921 if (ppmu->blacklist_ev[i] == ev) 1922 return true; 1923 } 1924 1925 return false; 1926 } 1927 1928 static int power_pmu_event_init(struct perf_event *event) 1929 { 1930 u64 ev; 1931 unsigned long flags, irq_flags; 1932 struct perf_event *ctrs[MAX_HWEVENTS]; 1933 u64 events[MAX_HWEVENTS]; 1934 unsigned int cflags[MAX_HWEVENTS]; 1935 int n; 1936 int err; 1937 struct cpu_hw_events *cpuhw; 1938 1939 if (!ppmu) 1940 return -ENOENT; 1941 1942 if (has_branch_stack(event)) { 1943 /* PMU has BHRB enabled */ 1944 if (!(ppmu->flags & PPMU_ARCH_207S)) 1945 return -EOPNOTSUPP; 1946 } 1947 1948 switch (event->attr.type) { 1949 case PERF_TYPE_HARDWARE: 1950 ev = event->attr.config; 1951 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1952 return -EOPNOTSUPP; 1953 1954 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1955 return -EINVAL; 1956 ev = ppmu->generic_events[ev]; 1957 break; 1958 case PERF_TYPE_HW_CACHE: 1959 err = hw_perf_cache_event(event->attr.config, &ev); 1960 if (err) 1961 return err; 1962 1963 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1964 return -EINVAL; 1965 break; 1966 case PERF_TYPE_RAW: 1967 ev = event->attr.config; 1968 1969 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1970 return -EINVAL; 1971 break; 1972 default: 1973 return -ENOENT; 1974 } 1975 1976 /* 1977 * PMU config registers have fields that are 1978 * reserved and some specific values for bit fields are reserved. 1979 * For ex., MMCRA[61:62] is Randome Sampling Mode (SM) 1980 * and value of 0b11 to this field is reserved. 1981 * Check for invalid values in attr.config. 1982 */ 1983 if (ppmu->check_attr_config && 1984 ppmu->check_attr_config(event)) 1985 return -EINVAL; 1986 1987 event->hw.config_base = ev; 1988 event->hw.idx = 0; 1989 1990 /* 1991 * If we are not running on a hypervisor, force the 1992 * exclude_hv bit to 0 so that we don't care what 1993 * the user set it to. 1994 */ 1995 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1996 event->attr.exclude_hv = 0; 1997 1998 /* 1999 * If this is a per-task event, then we can use 2000 * PM_RUN_* events interchangeably with their non RUN_* 2001 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 2002 * XXX we should check if the task is an idle task. 2003 */ 2004 flags = 0; 2005 if (event->attach_state & PERF_ATTACH_TASK) 2006 flags |= PPMU_ONLY_COUNT_RUN; 2007 2008 /* 2009 * If this machine has limited events, check whether this 2010 * event_id could go on a limited event. 2011 */ 2012 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 2013 if (can_go_on_limited_pmc(event, ev, flags)) { 2014 flags |= PPMU_LIMITED_PMC_OK; 2015 } else if (ppmu->limited_pmc_event(ev)) { 2016 /* 2017 * The requested event_id is on a limited PMC, 2018 * but we can't use a limited PMC; see if any 2019 * alternative goes on a normal PMC. 2020 */ 2021 ev = normal_pmc_alternative(ev, flags); 2022 if (!ev) 2023 return -EINVAL; 2024 } 2025 } 2026 2027 /* Extra checks for EBB */ 2028 err = ebb_event_check(event); 2029 if (err) 2030 return err; 2031 2032 /* 2033 * If this is in a group, check if it can go on with all the 2034 * other hardware events in the group. We assume the event 2035 * hasn't been linked into its leader's sibling list at this point. 2036 */ 2037 n = 0; 2038 if (event->group_leader != event) { 2039 n = collect_events(event->group_leader, ppmu->n_counter - 1, 2040 ctrs, events, cflags); 2041 if (n < 0) 2042 return -EINVAL; 2043 } 2044 events[n] = ev; 2045 ctrs[n] = event; 2046 cflags[n] = flags; 2047 if (check_excludes(ctrs, cflags, n, 1)) 2048 return -EINVAL; 2049 2050 local_irq_save(irq_flags); 2051 cpuhw = this_cpu_ptr(&cpu_hw_events); 2052 2053 err = power_check_constraints(cpuhw, events, cflags, n + 1, ctrs); 2054 2055 if (has_branch_stack(event)) { 2056 u64 bhrb_filter = -1; 2057 2058 if (ppmu->bhrb_filter_map) 2059 bhrb_filter = ppmu->bhrb_filter_map( 2060 event->attr.branch_sample_type); 2061 2062 if (bhrb_filter == -1) { 2063 local_irq_restore(irq_flags); 2064 return -EOPNOTSUPP; 2065 } 2066 cpuhw->bhrb_filter = bhrb_filter; 2067 } 2068 2069 local_irq_restore(irq_flags); 2070 if (err) 2071 return -EINVAL; 2072 2073 event->hw.config = events[n]; 2074 event->hw.event_base = cflags[n]; 2075 event->hw.last_period = event->hw.sample_period; 2076 local64_set(&event->hw.period_left, event->hw.last_period); 2077 2078 /* 2079 * For EBB events we just context switch the PMC value, we don't do any 2080 * of the sample_period logic. We use hw.prev_count for this. 2081 */ 2082 if (is_ebb_event(event)) 2083 local64_set(&event->hw.prev_count, 0); 2084 2085 /* 2086 * See if we need to reserve the PMU. 2087 * If no events are currently in use, then we have to take a 2088 * mutex to ensure that we don't race with another task doing 2089 * reserve_pmc_hardware or release_pmc_hardware. 2090 */ 2091 err = 0; 2092 if (!atomic_inc_not_zero(&num_events)) { 2093 mutex_lock(&pmc_reserve_mutex); 2094 if (atomic_read(&num_events) == 0 && 2095 reserve_pmc_hardware(perf_event_interrupt)) 2096 err = -EBUSY; 2097 else 2098 atomic_inc(&num_events); 2099 mutex_unlock(&pmc_reserve_mutex); 2100 } 2101 event->destroy = hw_perf_event_destroy; 2102 2103 return err; 2104 } 2105 2106 static int power_pmu_event_idx(struct perf_event *event) 2107 { 2108 return event->hw.idx; 2109 } 2110 2111 ssize_t power_events_sysfs_show(struct device *dev, 2112 struct device_attribute *attr, char *page) 2113 { 2114 struct perf_pmu_events_attr *pmu_attr; 2115 2116 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 2117 2118 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 2119 } 2120 2121 static struct pmu power_pmu = { 2122 .pmu_enable = power_pmu_enable, 2123 .pmu_disable = power_pmu_disable, 2124 .event_init = power_pmu_event_init, 2125 .add = power_pmu_add, 2126 .del = power_pmu_del, 2127 .start = power_pmu_start, 2128 .stop = power_pmu_stop, 2129 .read = power_pmu_read, 2130 .start_txn = power_pmu_start_txn, 2131 .cancel_txn = power_pmu_cancel_txn, 2132 .commit_txn = power_pmu_commit_txn, 2133 .event_idx = power_pmu_event_idx, 2134 .sched_task = power_pmu_sched_task, 2135 }; 2136 2137 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \ 2138 PERF_SAMPLE_PHYS_ADDR | \ 2139 PERF_SAMPLE_DATA_PAGE_SIZE) 2140 /* 2141 * A counter has overflowed; update its count and record 2142 * things if requested. Note that interrupts are hard-disabled 2143 * here so there is no possibility of being interrupted. 2144 */ 2145 static void record_and_restart(struct perf_event *event, unsigned long val, 2146 struct pt_regs *regs) 2147 { 2148 u64 period = event->hw.sample_period; 2149 s64 prev, delta, left; 2150 int record = 0; 2151 2152 if (event->hw.state & PERF_HES_STOPPED) { 2153 write_pmc(event->hw.idx, 0); 2154 return; 2155 } 2156 2157 /* we don't have to worry about interrupts here */ 2158 prev = local64_read(&event->hw.prev_count); 2159 delta = check_and_compute_delta(prev, val); 2160 local64_add(delta, &event->count); 2161 2162 /* 2163 * See if the total period for this event has expired, 2164 * and update for the next period. 2165 */ 2166 val = 0; 2167 left = local64_read(&event->hw.period_left) - delta; 2168 if (delta == 0) 2169 left++; 2170 if (period) { 2171 if (left <= 0) { 2172 left += period; 2173 if (left <= 0) 2174 left = period; 2175 2176 /* 2177 * If address is not requested in the sample via 2178 * PERF_SAMPLE_IP, just record that sample irrespective 2179 * of SIAR valid check. 2180 */ 2181 if (event->attr.sample_type & PERF_SAMPLE_IP) 2182 record = siar_valid(regs); 2183 else 2184 record = 1; 2185 2186 event->hw.last_period = event->hw.sample_period; 2187 } 2188 if (left < 0x80000000LL) 2189 val = 0x80000000LL - left; 2190 } 2191 2192 write_pmc(event->hw.idx, val); 2193 local64_set(&event->hw.prev_count, val); 2194 local64_set(&event->hw.period_left, left); 2195 perf_event_update_userpage(event); 2196 2197 /* 2198 * Due to hardware limitation, sometimes SIAR could sample a kernel 2199 * address even when freeze on supervisor state (kernel) is set in 2200 * MMCR2. Check attr.exclude_kernel and address to drop the sample in 2201 * these cases. 2202 */ 2203 if (event->attr.exclude_kernel && 2204 (event->attr.sample_type & PERF_SAMPLE_IP) && 2205 is_kernel_addr(mfspr(SPRN_SIAR))) 2206 record = 0; 2207 2208 /* 2209 * Finally record data if requested. 2210 */ 2211 if (record) { 2212 struct perf_sample_data data; 2213 2214 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 2215 2216 if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE) 2217 perf_get_data_addr(event, regs, &data.addr); 2218 2219 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 2220 struct cpu_hw_events *cpuhw; 2221 cpuhw = this_cpu_ptr(&cpu_hw_events); 2222 power_pmu_bhrb_read(event, cpuhw); 2223 data.br_stack = &cpuhw->bhrb_stack; 2224 } 2225 2226 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC && 2227 ppmu->get_mem_data_src) 2228 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs); 2229 2230 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE && 2231 ppmu->get_mem_weight) 2232 ppmu->get_mem_weight(&data.weight.full, event->attr.sample_type); 2233 2234 if (perf_event_overflow(event, &data, regs)) 2235 power_pmu_stop(event, 0); 2236 } else if (period) { 2237 /* Account for interrupt in case of invalid SIAR */ 2238 if (perf_event_account_interrupt(event)) 2239 power_pmu_stop(event, 0); 2240 } 2241 } 2242 2243 /* 2244 * Called from generic code to get the misc flags (i.e. processor mode) 2245 * for an event_id. 2246 */ 2247 unsigned long perf_misc_flags(struct pt_regs *regs) 2248 { 2249 u32 flags = perf_get_misc_flags(regs); 2250 2251 if (flags) 2252 return flags; 2253 return user_mode(regs) ? PERF_RECORD_MISC_USER : 2254 PERF_RECORD_MISC_KERNEL; 2255 } 2256 2257 /* 2258 * Called from generic code to get the instruction pointer 2259 * for an event_id. 2260 */ 2261 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2262 { 2263 unsigned long siar = mfspr(SPRN_SIAR); 2264 2265 if (regs_use_siar(regs) && siar_valid(regs) && siar) 2266 return siar + perf_ip_adjust(regs); 2267 else 2268 return regs->nip; 2269 } 2270 2271 static bool pmc_overflow_power7(unsigned long val) 2272 { 2273 /* 2274 * Events on POWER7 can roll back if a speculative event doesn't 2275 * eventually complete. Unfortunately in some rare cases they will 2276 * raise a performance monitor exception. We need to catch this to 2277 * ensure we reset the PMC. In all cases the PMC will be 256 or less 2278 * cycles from overflow. 2279 * 2280 * We only do this if the first pass fails to find any overflowing 2281 * PMCs because a user might set a period of less than 256 and we 2282 * don't want to mistakenly reset them. 2283 */ 2284 if ((0x80000000 - val) <= 256) 2285 return true; 2286 2287 return false; 2288 } 2289 2290 static bool pmc_overflow(unsigned long val) 2291 { 2292 if ((int)val < 0) 2293 return true; 2294 2295 return false; 2296 } 2297 2298 /* 2299 * Performance monitor interrupt stuff 2300 */ 2301 static void __perf_event_interrupt(struct pt_regs *regs) 2302 { 2303 int i, j; 2304 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 2305 struct perf_event *event; 2306 int found, active; 2307 2308 if (cpuhw->n_limited) 2309 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2310 mfspr(SPRN_PMC6)); 2311 2312 perf_read_regs(regs); 2313 2314 /* Read all the PMCs since we'll need them a bunch of times */ 2315 for (i = 0; i < ppmu->n_counter; ++i) 2316 cpuhw->pmcs[i] = read_pmc(i + 1); 2317 2318 /* Try to find what caused the IRQ */ 2319 found = 0; 2320 for (i = 0; i < ppmu->n_counter; ++i) { 2321 if (!pmc_overflow(cpuhw->pmcs[i])) 2322 continue; 2323 if (is_limited_pmc(i + 1)) 2324 continue; /* these won't generate IRQs */ 2325 /* 2326 * We've found one that's overflowed. For active 2327 * counters we need to log this. For inactive 2328 * counters, we need to reset it anyway 2329 */ 2330 found = 1; 2331 active = 0; 2332 for (j = 0; j < cpuhw->n_events; ++j) { 2333 event = cpuhw->event[j]; 2334 if (event->hw.idx == (i + 1)) { 2335 active = 1; 2336 record_and_restart(event, cpuhw->pmcs[i], regs); 2337 break; 2338 } 2339 } 2340 if (!active) 2341 /* reset non active counters that have overflowed */ 2342 write_pmc(i + 1, 0); 2343 } 2344 if (!found && pvr_version_is(PVR_POWER7)) { 2345 /* check active counters for special buggy p7 overflow */ 2346 for (i = 0; i < cpuhw->n_events; ++i) { 2347 event = cpuhw->event[i]; 2348 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2349 continue; 2350 if (pmc_overflow_power7(cpuhw->pmcs[event->hw.idx - 1])) { 2351 /* event has overflowed in a buggy way*/ 2352 found = 1; 2353 record_and_restart(event, 2354 cpuhw->pmcs[event->hw.idx - 1], 2355 regs); 2356 } 2357 } 2358 } 2359 if (unlikely(!found) && !arch_irq_disabled_regs(regs)) 2360 printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2361 2362 /* 2363 * Reset MMCR0 to its normal value. This will set PMXE and 2364 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2365 * and thus allow interrupts to occur again. 2366 * XXX might want to use MSR.PM to keep the events frozen until 2367 * we get back out of this interrupt. 2368 */ 2369 write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0); 2370 2371 /* Clear the cpuhw->pmcs */ 2372 memset(&cpuhw->pmcs, 0, sizeof(cpuhw->pmcs)); 2373 2374 } 2375 2376 static void perf_event_interrupt(struct pt_regs *regs) 2377 { 2378 u64 start_clock = sched_clock(); 2379 2380 __perf_event_interrupt(regs); 2381 perf_sample_event_took(sched_clock() - start_clock); 2382 } 2383 2384 static int power_pmu_prepare_cpu(unsigned int cpu) 2385 { 2386 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2387 2388 if (ppmu) { 2389 memset(cpuhw, 0, sizeof(*cpuhw)); 2390 cpuhw->mmcr.mmcr0 = MMCR0_FC; 2391 } 2392 return 0; 2393 } 2394 2395 int register_power_pmu(struct power_pmu *pmu) 2396 { 2397 if (ppmu) 2398 return -EBUSY; /* something's already registered */ 2399 2400 ppmu = pmu; 2401 pr_info("%s performance monitor hardware support registered\n", 2402 pmu->name); 2403 2404 power_pmu.attr_groups = ppmu->attr_groups; 2405 power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS); 2406 2407 #ifdef MSR_HV 2408 /* 2409 * Use FCHV to ignore kernel events if MSR.HV is set. 2410 */ 2411 if (mfmsr() & MSR_HV) 2412 freeze_events_kernel = MMCR0_FCHV; 2413 #endif /* CONFIG_PPC64 */ 2414 2415 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2416 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", 2417 power_pmu_prepare_cpu, NULL); 2418 return 0; 2419 } 2420 2421 #ifdef CONFIG_PPC64 2422 static int __init init_ppc64_pmu(void) 2423 { 2424 /* run through all the pmu drivers one at a time */ 2425 if (!init_power5_pmu()) 2426 return 0; 2427 else if (!init_power5p_pmu()) 2428 return 0; 2429 else if (!init_power6_pmu()) 2430 return 0; 2431 else if (!init_power7_pmu()) 2432 return 0; 2433 else if (!init_power8_pmu()) 2434 return 0; 2435 else if (!init_power9_pmu()) 2436 return 0; 2437 else if (!init_power10_pmu()) 2438 return 0; 2439 else if (!init_ppc970_pmu()) 2440 return 0; 2441 else 2442 return init_generic_compat_pmu(); 2443 } 2444 early_initcall(init_ppc64_pmu); 2445 #endif 2446