1 /* 2 * Performance event support - powerpc architecture code 3 * 4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/sched.h> 13 #include <linux/perf_event.h> 14 #include <linux/percpu.h> 15 #include <linux/hardirq.h> 16 #include <asm/reg.h> 17 #include <asm/pmc.h> 18 #include <asm/machdep.h> 19 #include <asm/firmware.h> 20 #include <asm/ptrace.h> 21 22 struct cpu_hw_events { 23 int n_events; 24 int n_percpu; 25 int disabled; 26 int n_added; 27 int n_limited; 28 u8 pmcs_enabled; 29 struct perf_event *event[MAX_HWEVENTS]; 30 u64 events[MAX_HWEVENTS]; 31 unsigned int flags[MAX_HWEVENTS]; 32 unsigned long mmcr[3]; 33 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 34 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 35 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 36 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 37 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 38 39 unsigned int group_flag; 40 int n_txn_start; 41 }; 42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 43 44 struct power_pmu *ppmu; 45 46 /* 47 * Normally, to ignore kernel events we set the FCS (freeze counters 48 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 49 * hypervisor bit set in the MSR, or if we are running on a processor 50 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 51 * then we need to use the FCHV bit to ignore kernel events. 52 */ 53 static unsigned int freeze_events_kernel = MMCR0_FCS; 54 55 /* 56 * 32-bit doesn't have MMCRA but does have an MMCR2, 57 * and a few other names are different. 58 */ 59 #ifdef CONFIG_PPC32 60 61 #define MMCR0_FCHV 0 62 #define MMCR0_PMCjCE MMCR0_PMCnCE 63 64 #define SPRN_MMCRA SPRN_MMCR2 65 #define MMCRA_SAMPLE_ENABLE 0 66 67 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 68 { 69 return 0; 70 } 71 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { } 72 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 73 { 74 return 0; 75 } 76 static inline void perf_read_regs(struct pt_regs *regs) 77 { 78 regs->result = 0; 79 } 80 static inline int perf_intr_is_nmi(struct pt_regs *regs) 81 { 82 return 0; 83 } 84 85 static inline int siar_valid(struct pt_regs *regs) 86 { 87 return 1; 88 } 89 90 #endif /* CONFIG_PPC32 */ 91 92 /* 93 * Things that are specific to 64-bit implementations. 94 */ 95 #ifdef CONFIG_PPC64 96 97 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 98 { 99 unsigned long mmcra = regs->dsisr; 100 101 if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) { 102 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 103 if (slot > 1) 104 return 4 * (slot - 1); 105 } 106 return 0; 107 } 108 109 /* 110 * The user wants a data address recorded. 111 * If we're not doing instruction sampling, give them the SDAR 112 * (sampled data address). If we are doing instruction sampling, then 113 * only give them the SDAR if it corresponds to the instruction 114 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC or 115 * the [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA. 116 */ 117 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) 118 { 119 unsigned long mmcra = regs->dsisr; 120 unsigned long sdsync; 121 122 if (ppmu->flags & PPMU_SIAR_VALID) 123 sdsync = POWER7P_MMCRA_SDAR_VALID; 124 else if (ppmu->flags & PPMU_ALT_SIPR) 125 sdsync = POWER6_MMCRA_SDSYNC; 126 else 127 sdsync = MMCRA_SDSYNC; 128 129 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync)) 130 *addrp = mfspr(SPRN_SDAR); 131 } 132 133 static bool mmcra_sihv(unsigned long mmcra) 134 { 135 unsigned long sihv = MMCRA_SIHV; 136 137 if (ppmu->flags & PPMU_ALT_SIPR) 138 sihv = POWER6_MMCRA_SIHV; 139 140 return !!(mmcra & sihv); 141 } 142 143 static bool mmcra_sipr(unsigned long mmcra) 144 { 145 unsigned long sipr = MMCRA_SIPR; 146 147 if (ppmu->flags & PPMU_ALT_SIPR) 148 sipr = POWER6_MMCRA_SIPR; 149 150 return !!(mmcra & sipr); 151 } 152 153 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 154 { 155 if (regs->msr & MSR_PR) 156 return PERF_RECORD_MISC_USER; 157 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 158 return PERF_RECORD_MISC_HYPERVISOR; 159 return PERF_RECORD_MISC_KERNEL; 160 } 161 162 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 163 { 164 unsigned long mmcra = regs->dsisr; 165 unsigned long use_siar = regs->result; 166 167 if (!use_siar) 168 return perf_flags_from_msr(regs); 169 170 /* 171 * If we don't have flags in MMCRA, rather than using 172 * the MSR, we intuit the flags from the address in 173 * SIAR which should give slightly more reliable 174 * results 175 */ 176 if (ppmu->flags & PPMU_NO_SIPR) { 177 unsigned long siar = mfspr(SPRN_SIAR); 178 if (siar >= PAGE_OFFSET) 179 return PERF_RECORD_MISC_KERNEL; 180 return PERF_RECORD_MISC_USER; 181 } 182 183 /* PR has priority over HV, so order below is important */ 184 if (mmcra_sipr(mmcra)) 185 return PERF_RECORD_MISC_USER; 186 if (mmcra_sihv(mmcra) && (freeze_events_kernel != MMCR0_FCHV)) 187 return PERF_RECORD_MISC_HYPERVISOR; 188 return PERF_RECORD_MISC_KERNEL; 189 } 190 191 /* 192 * Overload regs->dsisr to store MMCRA so we only need to read it once 193 * on each interrupt. 194 * Overload regs->result to specify whether we should use the MSR (result 195 * is zero) or the SIAR (result is non zero). 196 */ 197 static inline void perf_read_regs(struct pt_regs *regs) 198 { 199 unsigned long mmcra = mfspr(SPRN_MMCRA); 200 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 201 int use_siar; 202 203 /* 204 * If this isn't a PMU exception (eg a software event) the SIAR is 205 * not valid. Use pt_regs. 206 * 207 * If it is a marked event use the SIAR. 208 * 209 * If the PMU doesn't update the SIAR for non marked events use 210 * pt_regs. 211 * 212 * If the PMU has HV/PR flags then check to see if they 213 * place the exception in userspace. If so, use pt_regs. In 214 * continuous sampling mode the SIAR and the PMU exception are 215 * not synchronised, so they may be many instructions apart. 216 * This can result in confusing backtraces. We still want 217 * hypervisor samples as well as samples in the kernel with 218 * interrupts off hence the userspace check. 219 */ 220 if (TRAP(regs) != 0xf00) 221 use_siar = 0; 222 else if (marked) 223 use_siar = 1; 224 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 225 use_siar = 0; 226 else if (!(ppmu->flags & PPMU_NO_SIPR) && mmcra_sipr(mmcra)) 227 use_siar = 0; 228 else 229 use_siar = 1; 230 231 regs->dsisr = mmcra; 232 regs->result = use_siar; 233 } 234 235 /* 236 * If interrupts were soft-disabled when a PMU interrupt occurs, treat 237 * it as an NMI. 238 */ 239 static inline int perf_intr_is_nmi(struct pt_regs *regs) 240 { 241 return !regs->softe; 242 } 243 244 /* 245 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 246 * must be sampled only if the SIAR-valid bit is set. 247 * 248 * For unmarked instructions and for processors that don't have the SIAR-Valid 249 * bit, assume that SIAR is valid. 250 */ 251 static inline int siar_valid(struct pt_regs *regs) 252 { 253 unsigned long mmcra = regs->dsisr; 254 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 255 256 if ((ppmu->flags & PPMU_SIAR_VALID) && marked) 257 return mmcra & POWER7P_MMCRA_SIAR_VALID; 258 259 return 1; 260 } 261 262 #endif /* CONFIG_PPC64 */ 263 264 static void perf_event_interrupt(struct pt_regs *regs); 265 266 void perf_event_print_debug(void) 267 { 268 } 269 270 /* 271 * Read one performance monitor counter (PMC). 272 */ 273 static unsigned long read_pmc(int idx) 274 { 275 unsigned long val; 276 277 switch (idx) { 278 case 1: 279 val = mfspr(SPRN_PMC1); 280 break; 281 case 2: 282 val = mfspr(SPRN_PMC2); 283 break; 284 case 3: 285 val = mfspr(SPRN_PMC3); 286 break; 287 case 4: 288 val = mfspr(SPRN_PMC4); 289 break; 290 case 5: 291 val = mfspr(SPRN_PMC5); 292 break; 293 case 6: 294 val = mfspr(SPRN_PMC6); 295 break; 296 #ifdef CONFIG_PPC64 297 case 7: 298 val = mfspr(SPRN_PMC7); 299 break; 300 case 8: 301 val = mfspr(SPRN_PMC8); 302 break; 303 #endif /* CONFIG_PPC64 */ 304 default: 305 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 306 val = 0; 307 } 308 return val; 309 } 310 311 /* 312 * Write one PMC. 313 */ 314 static void write_pmc(int idx, unsigned long val) 315 { 316 switch (idx) { 317 case 1: 318 mtspr(SPRN_PMC1, val); 319 break; 320 case 2: 321 mtspr(SPRN_PMC2, val); 322 break; 323 case 3: 324 mtspr(SPRN_PMC3, val); 325 break; 326 case 4: 327 mtspr(SPRN_PMC4, val); 328 break; 329 case 5: 330 mtspr(SPRN_PMC5, val); 331 break; 332 case 6: 333 mtspr(SPRN_PMC6, val); 334 break; 335 #ifdef CONFIG_PPC64 336 case 7: 337 mtspr(SPRN_PMC7, val); 338 break; 339 case 8: 340 mtspr(SPRN_PMC8, val); 341 break; 342 #endif /* CONFIG_PPC64 */ 343 default: 344 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 345 } 346 } 347 348 /* 349 * Check if a set of events can all go on the PMU at once. 350 * If they can't, this will look at alternative codes for the events 351 * and see if any combination of alternative codes is feasible. 352 * The feasible set is returned in event_id[]. 353 */ 354 static int power_check_constraints(struct cpu_hw_events *cpuhw, 355 u64 event_id[], unsigned int cflags[], 356 int n_ev) 357 { 358 unsigned long mask, value, nv; 359 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 360 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 361 int i, j; 362 unsigned long addf = ppmu->add_fields; 363 unsigned long tadd = ppmu->test_adder; 364 365 if (n_ev > ppmu->n_counter) 366 return -1; 367 368 /* First see if the events will go on as-is */ 369 for (i = 0; i < n_ev; ++i) { 370 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 371 && !ppmu->limited_pmc_event(event_id[i])) { 372 ppmu->get_alternatives(event_id[i], cflags[i], 373 cpuhw->alternatives[i]); 374 event_id[i] = cpuhw->alternatives[i][0]; 375 } 376 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 377 &cpuhw->avalues[i][0])) 378 return -1; 379 } 380 value = mask = 0; 381 for (i = 0; i < n_ev; ++i) { 382 nv = (value | cpuhw->avalues[i][0]) + 383 (value & cpuhw->avalues[i][0] & addf); 384 if ((((nv + tadd) ^ value) & mask) != 0 || 385 (((nv + tadd) ^ cpuhw->avalues[i][0]) & 386 cpuhw->amasks[i][0]) != 0) 387 break; 388 value = nv; 389 mask |= cpuhw->amasks[i][0]; 390 } 391 if (i == n_ev) 392 return 0; /* all OK */ 393 394 /* doesn't work, gather alternatives... */ 395 if (!ppmu->get_alternatives) 396 return -1; 397 for (i = 0; i < n_ev; ++i) { 398 choice[i] = 0; 399 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 400 cpuhw->alternatives[i]); 401 for (j = 1; j < n_alt[i]; ++j) 402 ppmu->get_constraint(cpuhw->alternatives[i][j], 403 &cpuhw->amasks[i][j], 404 &cpuhw->avalues[i][j]); 405 } 406 407 /* enumerate all possibilities and see if any will work */ 408 i = 0; 409 j = -1; 410 value = mask = nv = 0; 411 while (i < n_ev) { 412 if (j >= 0) { 413 /* we're backtracking, restore context */ 414 value = svalues[i]; 415 mask = smasks[i]; 416 j = choice[i]; 417 } 418 /* 419 * See if any alternative k for event_id i, 420 * where k > j, will satisfy the constraints. 421 */ 422 while (++j < n_alt[i]) { 423 nv = (value | cpuhw->avalues[i][j]) + 424 (value & cpuhw->avalues[i][j] & addf); 425 if ((((nv + tadd) ^ value) & mask) == 0 && 426 (((nv + tadd) ^ cpuhw->avalues[i][j]) 427 & cpuhw->amasks[i][j]) == 0) 428 break; 429 } 430 if (j >= n_alt[i]) { 431 /* 432 * No feasible alternative, backtrack 433 * to event_id i-1 and continue enumerating its 434 * alternatives from where we got up to. 435 */ 436 if (--i < 0) 437 return -1; 438 } else { 439 /* 440 * Found a feasible alternative for event_id i, 441 * remember where we got up to with this event_id, 442 * go on to the next event_id, and start with 443 * the first alternative for it. 444 */ 445 choice[i] = j; 446 svalues[i] = value; 447 smasks[i] = mask; 448 value = nv; 449 mask |= cpuhw->amasks[i][j]; 450 ++i; 451 j = -1; 452 } 453 } 454 455 /* OK, we have a feasible combination, tell the caller the solution */ 456 for (i = 0; i < n_ev; ++i) 457 event_id[i] = cpuhw->alternatives[i][choice[i]]; 458 return 0; 459 } 460 461 /* 462 * Check if newly-added events have consistent settings for 463 * exclude_{user,kernel,hv} with each other and any previously 464 * added events. 465 */ 466 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 467 int n_prev, int n_new) 468 { 469 int eu = 0, ek = 0, eh = 0; 470 int i, n, first; 471 struct perf_event *event; 472 473 n = n_prev + n_new; 474 if (n <= 1) 475 return 0; 476 477 first = 1; 478 for (i = 0; i < n; ++i) { 479 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 480 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 481 continue; 482 } 483 event = ctrs[i]; 484 if (first) { 485 eu = event->attr.exclude_user; 486 ek = event->attr.exclude_kernel; 487 eh = event->attr.exclude_hv; 488 first = 0; 489 } else if (event->attr.exclude_user != eu || 490 event->attr.exclude_kernel != ek || 491 event->attr.exclude_hv != eh) { 492 return -EAGAIN; 493 } 494 } 495 496 if (eu || ek || eh) 497 for (i = 0; i < n; ++i) 498 if (cflags[i] & PPMU_LIMITED_PMC_OK) 499 cflags[i] |= PPMU_LIMITED_PMC_REQD; 500 501 return 0; 502 } 503 504 static u64 check_and_compute_delta(u64 prev, u64 val) 505 { 506 u64 delta = (val - prev) & 0xfffffffful; 507 508 /* 509 * POWER7 can roll back counter values, if the new value is smaller 510 * than the previous value it will cause the delta and the counter to 511 * have bogus values unless we rolled a counter over. If a coutner is 512 * rolled back, it will be smaller, but within 256, which is the maximum 513 * number of events to rollback at once. If we dectect a rollback 514 * return 0. This can lead to a small lack of precision in the 515 * counters. 516 */ 517 if (prev > val && (prev - val) < 256) 518 delta = 0; 519 520 return delta; 521 } 522 523 static void power_pmu_read(struct perf_event *event) 524 { 525 s64 val, delta, prev; 526 527 if (event->hw.state & PERF_HES_STOPPED) 528 return; 529 530 if (!event->hw.idx) 531 return; 532 /* 533 * Performance monitor interrupts come even when interrupts 534 * are soft-disabled, as long as interrupts are hard-enabled. 535 * Therefore we treat them like NMIs. 536 */ 537 do { 538 prev = local64_read(&event->hw.prev_count); 539 barrier(); 540 val = read_pmc(event->hw.idx); 541 delta = check_and_compute_delta(prev, val); 542 if (!delta) 543 return; 544 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 545 546 local64_add(delta, &event->count); 547 local64_sub(delta, &event->hw.period_left); 548 } 549 550 /* 551 * On some machines, PMC5 and PMC6 can't be written, don't respect 552 * the freeze conditions, and don't generate interrupts. This tells 553 * us if `event' is using such a PMC. 554 */ 555 static int is_limited_pmc(int pmcnum) 556 { 557 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 558 && (pmcnum == 5 || pmcnum == 6); 559 } 560 561 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 562 unsigned long pmc5, unsigned long pmc6) 563 { 564 struct perf_event *event; 565 u64 val, prev, delta; 566 int i; 567 568 for (i = 0; i < cpuhw->n_limited; ++i) { 569 event = cpuhw->limited_counter[i]; 570 if (!event->hw.idx) 571 continue; 572 val = (event->hw.idx == 5) ? pmc5 : pmc6; 573 prev = local64_read(&event->hw.prev_count); 574 event->hw.idx = 0; 575 delta = check_and_compute_delta(prev, val); 576 if (delta) 577 local64_add(delta, &event->count); 578 } 579 } 580 581 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 582 unsigned long pmc5, unsigned long pmc6) 583 { 584 struct perf_event *event; 585 u64 val, prev; 586 int i; 587 588 for (i = 0; i < cpuhw->n_limited; ++i) { 589 event = cpuhw->limited_counter[i]; 590 event->hw.idx = cpuhw->limited_hwidx[i]; 591 val = (event->hw.idx == 5) ? pmc5 : pmc6; 592 prev = local64_read(&event->hw.prev_count); 593 if (check_and_compute_delta(prev, val)) 594 local64_set(&event->hw.prev_count, val); 595 perf_event_update_userpage(event); 596 } 597 } 598 599 /* 600 * Since limited events don't respect the freeze conditions, we 601 * have to read them immediately after freezing or unfreezing the 602 * other events. We try to keep the values from the limited 603 * events as consistent as possible by keeping the delay (in 604 * cycles and instructions) between freezing/unfreezing and reading 605 * the limited events as small and consistent as possible. 606 * Therefore, if any limited events are in use, we read them 607 * both, and always in the same order, to minimize variability, 608 * and do it inside the same asm that writes MMCR0. 609 */ 610 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 611 { 612 unsigned long pmc5, pmc6; 613 614 if (!cpuhw->n_limited) { 615 mtspr(SPRN_MMCR0, mmcr0); 616 return; 617 } 618 619 /* 620 * Write MMCR0, then read PMC5 and PMC6 immediately. 621 * To ensure we don't get a performance monitor interrupt 622 * between writing MMCR0 and freezing/thawing the limited 623 * events, we first write MMCR0 with the event overflow 624 * interrupt enable bits turned off. 625 */ 626 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 627 : "=&r" (pmc5), "=&r" (pmc6) 628 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 629 "i" (SPRN_MMCR0), 630 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 631 632 if (mmcr0 & MMCR0_FC) 633 freeze_limited_counters(cpuhw, pmc5, pmc6); 634 else 635 thaw_limited_counters(cpuhw, pmc5, pmc6); 636 637 /* 638 * Write the full MMCR0 including the event overflow interrupt 639 * enable bits, if necessary. 640 */ 641 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 642 mtspr(SPRN_MMCR0, mmcr0); 643 } 644 645 /* 646 * Disable all events to prevent PMU interrupts and to allow 647 * events to be added or removed. 648 */ 649 static void power_pmu_disable(struct pmu *pmu) 650 { 651 struct cpu_hw_events *cpuhw; 652 unsigned long flags; 653 654 if (!ppmu) 655 return; 656 local_irq_save(flags); 657 cpuhw = &__get_cpu_var(cpu_hw_events); 658 659 if (!cpuhw->disabled) { 660 cpuhw->disabled = 1; 661 cpuhw->n_added = 0; 662 663 /* 664 * Check if we ever enabled the PMU on this cpu. 665 */ 666 if (!cpuhw->pmcs_enabled) { 667 ppc_enable_pmcs(); 668 cpuhw->pmcs_enabled = 1; 669 } 670 671 /* 672 * Disable instruction sampling if it was enabled 673 */ 674 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 675 mtspr(SPRN_MMCRA, 676 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 677 mb(); 678 } 679 680 /* 681 * Set the 'freeze counters' bit. 682 * The barrier is to make sure the mtspr has been 683 * executed and the PMU has frozen the events 684 * before we return. 685 */ 686 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC); 687 mb(); 688 } 689 local_irq_restore(flags); 690 } 691 692 /* 693 * Re-enable all events if disable == 0. 694 * If we were previously disabled and events were added, then 695 * put the new config on the PMU. 696 */ 697 static void power_pmu_enable(struct pmu *pmu) 698 { 699 struct perf_event *event; 700 struct cpu_hw_events *cpuhw; 701 unsigned long flags; 702 long i; 703 unsigned long val; 704 s64 left; 705 unsigned int hwc_index[MAX_HWEVENTS]; 706 int n_lim; 707 int idx; 708 709 if (!ppmu) 710 return; 711 local_irq_save(flags); 712 cpuhw = &__get_cpu_var(cpu_hw_events); 713 if (!cpuhw->disabled) { 714 local_irq_restore(flags); 715 return; 716 } 717 cpuhw->disabled = 0; 718 719 /* 720 * If we didn't change anything, or only removed events, 721 * no need to recalculate MMCR* settings and reset the PMCs. 722 * Just reenable the PMU with the current MMCR* settings 723 * (possibly updated for removal of events). 724 */ 725 if (!cpuhw->n_added) { 726 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 727 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 728 if (cpuhw->n_events == 0) 729 ppc_set_pmu_inuse(0); 730 goto out_enable; 731 } 732 733 /* 734 * Compute MMCR* values for the new set of events 735 */ 736 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 737 cpuhw->mmcr)) { 738 /* shouldn't ever get here */ 739 printk(KERN_ERR "oops compute_mmcr failed\n"); 740 goto out; 741 } 742 743 /* 744 * Add in MMCR0 freeze bits corresponding to the 745 * attr.exclude_* bits for the first event. 746 * We have already checked that all events have the 747 * same values for these bits as the first event. 748 */ 749 event = cpuhw->event[0]; 750 if (event->attr.exclude_user) 751 cpuhw->mmcr[0] |= MMCR0_FCP; 752 if (event->attr.exclude_kernel) 753 cpuhw->mmcr[0] |= freeze_events_kernel; 754 if (event->attr.exclude_hv) 755 cpuhw->mmcr[0] |= MMCR0_FCHV; 756 757 /* 758 * Write the new configuration to MMCR* with the freeze 759 * bit set and set the hardware events to their initial values. 760 * Then unfreeze the events. 761 */ 762 ppc_set_pmu_inuse(1); 763 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 764 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 765 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 766 | MMCR0_FC); 767 768 /* 769 * Read off any pre-existing events that need to move 770 * to another PMC. 771 */ 772 for (i = 0; i < cpuhw->n_events; ++i) { 773 event = cpuhw->event[i]; 774 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 775 power_pmu_read(event); 776 write_pmc(event->hw.idx, 0); 777 event->hw.idx = 0; 778 } 779 } 780 781 /* 782 * Initialize the PMCs for all the new and moved events. 783 */ 784 cpuhw->n_limited = n_lim = 0; 785 for (i = 0; i < cpuhw->n_events; ++i) { 786 event = cpuhw->event[i]; 787 if (event->hw.idx) 788 continue; 789 idx = hwc_index[i] + 1; 790 if (is_limited_pmc(idx)) { 791 cpuhw->limited_counter[n_lim] = event; 792 cpuhw->limited_hwidx[n_lim] = idx; 793 ++n_lim; 794 continue; 795 } 796 val = 0; 797 if (event->hw.sample_period) { 798 left = local64_read(&event->hw.period_left); 799 if (left < 0x80000000L) 800 val = 0x80000000L - left; 801 } 802 local64_set(&event->hw.prev_count, val); 803 event->hw.idx = idx; 804 if (event->hw.state & PERF_HES_STOPPED) 805 val = 0; 806 write_pmc(idx, val); 807 perf_event_update_userpage(event); 808 } 809 cpuhw->n_limited = n_lim; 810 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; 811 812 out_enable: 813 mb(); 814 write_mmcr0(cpuhw, cpuhw->mmcr[0]); 815 816 /* 817 * Enable instruction sampling if necessary 818 */ 819 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 820 mb(); 821 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); 822 } 823 824 out: 825 local_irq_restore(flags); 826 } 827 828 static int collect_events(struct perf_event *group, int max_count, 829 struct perf_event *ctrs[], u64 *events, 830 unsigned int *flags) 831 { 832 int n = 0; 833 struct perf_event *event; 834 835 if (!is_software_event(group)) { 836 if (n >= max_count) 837 return -1; 838 ctrs[n] = group; 839 flags[n] = group->hw.event_base; 840 events[n++] = group->hw.config; 841 } 842 list_for_each_entry(event, &group->sibling_list, group_entry) { 843 if (!is_software_event(event) && 844 event->state != PERF_EVENT_STATE_OFF) { 845 if (n >= max_count) 846 return -1; 847 ctrs[n] = event; 848 flags[n] = event->hw.event_base; 849 events[n++] = event->hw.config; 850 } 851 } 852 return n; 853 } 854 855 /* 856 * Add a event to the PMU. 857 * If all events are not already frozen, then we disable and 858 * re-enable the PMU in order to get hw_perf_enable to do the 859 * actual work of reconfiguring the PMU. 860 */ 861 static int power_pmu_add(struct perf_event *event, int ef_flags) 862 { 863 struct cpu_hw_events *cpuhw; 864 unsigned long flags; 865 int n0; 866 int ret = -EAGAIN; 867 868 local_irq_save(flags); 869 perf_pmu_disable(event->pmu); 870 871 /* 872 * Add the event to the list (if there is room) 873 * and check whether the total set is still feasible. 874 */ 875 cpuhw = &__get_cpu_var(cpu_hw_events); 876 n0 = cpuhw->n_events; 877 if (n0 >= ppmu->n_counter) 878 goto out; 879 cpuhw->event[n0] = event; 880 cpuhw->events[n0] = event->hw.config; 881 cpuhw->flags[n0] = event->hw.event_base; 882 883 /* 884 * This event may have been disabled/stopped in record_and_restart() 885 * because we exceeded the ->event_limit. If re-starting the event, 886 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 887 * notification is re-enabled. 888 */ 889 if (!(ef_flags & PERF_EF_START)) 890 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 891 else 892 event->hw.state = 0; 893 894 /* 895 * If group events scheduling transaction was started, 896 * skip the schedulability test here, it will be performed 897 * at commit time(->commit_txn) as a whole 898 */ 899 if (cpuhw->group_flag & PERF_EVENT_TXN) 900 goto nocheck; 901 902 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 903 goto out; 904 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) 905 goto out; 906 event->hw.config = cpuhw->events[n0]; 907 908 nocheck: 909 ++cpuhw->n_events; 910 ++cpuhw->n_added; 911 912 ret = 0; 913 out: 914 perf_pmu_enable(event->pmu); 915 local_irq_restore(flags); 916 return ret; 917 } 918 919 /* 920 * Remove a event from the PMU. 921 */ 922 static void power_pmu_del(struct perf_event *event, int ef_flags) 923 { 924 struct cpu_hw_events *cpuhw; 925 long i; 926 unsigned long flags; 927 928 local_irq_save(flags); 929 perf_pmu_disable(event->pmu); 930 931 power_pmu_read(event); 932 933 cpuhw = &__get_cpu_var(cpu_hw_events); 934 for (i = 0; i < cpuhw->n_events; ++i) { 935 if (event == cpuhw->event[i]) { 936 while (++i < cpuhw->n_events) { 937 cpuhw->event[i-1] = cpuhw->event[i]; 938 cpuhw->events[i-1] = cpuhw->events[i]; 939 cpuhw->flags[i-1] = cpuhw->flags[i]; 940 } 941 --cpuhw->n_events; 942 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); 943 if (event->hw.idx) { 944 write_pmc(event->hw.idx, 0); 945 event->hw.idx = 0; 946 } 947 perf_event_update_userpage(event); 948 break; 949 } 950 } 951 for (i = 0; i < cpuhw->n_limited; ++i) 952 if (event == cpuhw->limited_counter[i]) 953 break; 954 if (i < cpuhw->n_limited) { 955 while (++i < cpuhw->n_limited) { 956 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 957 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 958 } 959 --cpuhw->n_limited; 960 } 961 if (cpuhw->n_events == 0) { 962 /* disable exceptions if no events are running */ 963 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); 964 } 965 966 perf_pmu_enable(event->pmu); 967 local_irq_restore(flags); 968 } 969 970 /* 971 * POWER-PMU does not support disabling individual counters, hence 972 * program their cycle counter to their max value and ignore the interrupts. 973 */ 974 975 static void power_pmu_start(struct perf_event *event, int ef_flags) 976 { 977 unsigned long flags; 978 s64 left; 979 unsigned long val; 980 981 if (!event->hw.idx || !event->hw.sample_period) 982 return; 983 984 if (!(event->hw.state & PERF_HES_STOPPED)) 985 return; 986 987 if (ef_flags & PERF_EF_RELOAD) 988 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 989 990 local_irq_save(flags); 991 perf_pmu_disable(event->pmu); 992 993 event->hw.state = 0; 994 left = local64_read(&event->hw.period_left); 995 996 val = 0; 997 if (left < 0x80000000L) 998 val = 0x80000000L - left; 999 1000 write_pmc(event->hw.idx, val); 1001 1002 perf_event_update_userpage(event); 1003 perf_pmu_enable(event->pmu); 1004 local_irq_restore(flags); 1005 } 1006 1007 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1008 { 1009 unsigned long flags; 1010 1011 if (!event->hw.idx || !event->hw.sample_period) 1012 return; 1013 1014 if (event->hw.state & PERF_HES_STOPPED) 1015 return; 1016 1017 local_irq_save(flags); 1018 perf_pmu_disable(event->pmu); 1019 1020 power_pmu_read(event); 1021 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1022 write_pmc(event->hw.idx, 0); 1023 1024 perf_event_update_userpage(event); 1025 perf_pmu_enable(event->pmu); 1026 local_irq_restore(flags); 1027 } 1028 1029 /* 1030 * Start group events scheduling transaction 1031 * Set the flag to make pmu::enable() not perform the 1032 * schedulability test, it will be performed at commit time 1033 */ 1034 void power_pmu_start_txn(struct pmu *pmu) 1035 { 1036 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 1037 1038 perf_pmu_disable(pmu); 1039 cpuhw->group_flag |= PERF_EVENT_TXN; 1040 cpuhw->n_txn_start = cpuhw->n_events; 1041 } 1042 1043 /* 1044 * Stop group events scheduling transaction 1045 * Clear the flag and pmu::enable() will perform the 1046 * schedulability test. 1047 */ 1048 void power_pmu_cancel_txn(struct pmu *pmu) 1049 { 1050 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 1051 1052 cpuhw->group_flag &= ~PERF_EVENT_TXN; 1053 perf_pmu_enable(pmu); 1054 } 1055 1056 /* 1057 * Commit group events scheduling transaction 1058 * Perform the group schedulability test as a whole 1059 * Return 0 if success 1060 */ 1061 int power_pmu_commit_txn(struct pmu *pmu) 1062 { 1063 struct cpu_hw_events *cpuhw; 1064 long i, n; 1065 1066 if (!ppmu) 1067 return -EAGAIN; 1068 cpuhw = &__get_cpu_var(cpu_hw_events); 1069 n = cpuhw->n_events; 1070 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1071 return -EAGAIN; 1072 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); 1073 if (i < 0) 1074 return -EAGAIN; 1075 1076 for (i = cpuhw->n_txn_start; i < n; ++i) 1077 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1078 1079 cpuhw->group_flag &= ~PERF_EVENT_TXN; 1080 perf_pmu_enable(pmu); 1081 return 0; 1082 } 1083 1084 /* 1085 * Return 1 if we might be able to put event on a limited PMC, 1086 * or 0 if not. 1087 * A event can only go on a limited PMC if it counts something 1088 * that a limited PMC can count, doesn't require interrupts, and 1089 * doesn't exclude any processor mode. 1090 */ 1091 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1092 unsigned int flags) 1093 { 1094 int n; 1095 u64 alt[MAX_EVENT_ALTERNATIVES]; 1096 1097 if (event->attr.exclude_user 1098 || event->attr.exclude_kernel 1099 || event->attr.exclude_hv 1100 || event->attr.sample_period) 1101 return 0; 1102 1103 if (ppmu->limited_pmc_event(ev)) 1104 return 1; 1105 1106 /* 1107 * The requested event_id isn't on a limited PMC already; 1108 * see if any alternative code goes on a limited PMC. 1109 */ 1110 if (!ppmu->get_alternatives) 1111 return 0; 1112 1113 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1114 n = ppmu->get_alternatives(ev, flags, alt); 1115 1116 return n > 0; 1117 } 1118 1119 /* 1120 * Find an alternative event_id that goes on a normal PMC, if possible, 1121 * and return the event_id code, or 0 if there is no such alternative. 1122 * (Note: event_id code 0 is "don't count" on all machines.) 1123 */ 1124 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1125 { 1126 u64 alt[MAX_EVENT_ALTERNATIVES]; 1127 int n; 1128 1129 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1130 n = ppmu->get_alternatives(ev, flags, alt); 1131 if (!n) 1132 return 0; 1133 return alt[0]; 1134 } 1135 1136 /* Number of perf_events counting hardware events */ 1137 static atomic_t num_events; 1138 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1139 static DEFINE_MUTEX(pmc_reserve_mutex); 1140 1141 /* 1142 * Release the PMU if this is the last perf_event. 1143 */ 1144 static void hw_perf_event_destroy(struct perf_event *event) 1145 { 1146 if (!atomic_add_unless(&num_events, -1, 1)) { 1147 mutex_lock(&pmc_reserve_mutex); 1148 if (atomic_dec_return(&num_events) == 0) 1149 release_pmc_hardware(); 1150 mutex_unlock(&pmc_reserve_mutex); 1151 } 1152 } 1153 1154 /* 1155 * Translate a generic cache event_id config to a raw event_id code. 1156 */ 1157 static int hw_perf_cache_event(u64 config, u64 *eventp) 1158 { 1159 unsigned long type, op, result; 1160 int ev; 1161 1162 if (!ppmu->cache_events) 1163 return -EINVAL; 1164 1165 /* unpack config */ 1166 type = config & 0xff; 1167 op = (config >> 8) & 0xff; 1168 result = (config >> 16) & 0xff; 1169 1170 if (type >= PERF_COUNT_HW_CACHE_MAX || 1171 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1172 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1173 return -EINVAL; 1174 1175 ev = (*ppmu->cache_events)[type][op][result]; 1176 if (ev == 0) 1177 return -EOPNOTSUPP; 1178 if (ev == -1) 1179 return -EINVAL; 1180 *eventp = ev; 1181 return 0; 1182 } 1183 1184 static int power_pmu_event_init(struct perf_event *event) 1185 { 1186 u64 ev; 1187 unsigned long flags; 1188 struct perf_event *ctrs[MAX_HWEVENTS]; 1189 u64 events[MAX_HWEVENTS]; 1190 unsigned int cflags[MAX_HWEVENTS]; 1191 int n; 1192 int err; 1193 struct cpu_hw_events *cpuhw; 1194 1195 if (!ppmu) 1196 return -ENOENT; 1197 1198 /* does not support taken branch sampling */ 1199 if (has_branch_stack(event)) 1200 return -EOPNOTSUPP; 1201 1202 switch (event->attr.type) { 1203 case PERF_TYPE_HARDWARE: 1204 ev = event->attr.config; 1205 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1206 return -EOPNOTSUPP; 1207 ev = ppmu->generic_events[ev]; 1208 break; 1209 case PERF_TYPE_HW_CACHE: 1210 err = hw_perf_cache_event(event->attr.config, &ev); 1211 if (err) 1212 return err; 1213 break; 1214 case PERF_TYPE_RAW: 1215 ev = event->attr.config; 1216 break; 1217 default: 1218 return -ENOENT; 1219 } 1220 1221 event->hw.config_base = ev; 1222 event->hw.idx = 0; 1223 1224 /* 1225 * If we are not running on a hypervisor, force the 1226 * exclude_hv bit to 0 so that we don't care what 1227 * the user set it to. 1228 */ 1229 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1230 event->attr.exclude_hv = 0; 1231 1232 /* 1233 * If this is a per-task event, then we can use 1234 * PM_RUN_* events interchangeably with their non RUN_* 1235 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1236 * XXX we should check if the task is an idle task. 1237 */ 1238 flags = 0; 1239 if (event->attach_state & PERF_ATTACH_TASK) 1240 flags |= PPMU_ONLY_COUNT_RUN; 1241 1242 /* 1243 * If this machine has limited events, check whether this 1244 * event_id could go on a limited event. 1245 */ 1246 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1247 if (can_go_on_limited_pmc(event, ev, flags)) { 1248 flags |= PPMU_LIMITED_PMC_OK; 1249 } else if (ppmu->limited_pmc_event(ev)) { 1250 /* 1251 * The requested event_id is on a limited PMC, 1252 * but we can't use a limited PMC; see if any 1253 * alternative goes on a normal PMC. 1254 */ 1255 ev = normal_pmc_alternative(ev, flags); 1256 if (!ev) 1257 return -EINVAL; 1258 } 1259 } 1260 1261 /* 1262 * If this is in a group, check if it can go on with all the 1263 * other hardware events in the group. We assume the event 1264 * hasn't been linked into its leader's sibling list at this point. 1265 */ 1266 n = 0; 1267 if (event->group_leader != event) { 1268 n = collect_events(event->group_leader, ppmu->n_counter - 1, 1269 ctrs, events, cflags); 1270 if (n < 0) 1271 return -EINVAL; 1272 } 1273 events[n] = ev; 1274 ctrs[n] = event; 1275 cflags[n] = flags; 1276 if (check_excludes(ctrs, cflags, n, 1)) 1277 return -EINVAL; 1278 1279 cpuhw = &get_cpu_var(cpu_hw_events); 1280 err = power_check_constraints(cpuhw, events, cflags, n + 1); 1281 put_cpu_var(cpu_hw_events); 1282 if (err) 1283 return -EINVAL; 1284 1285 event->hw.config = events[n]; 1286 event->hw.event_base = cflags[n]; 1287 event->hw.last_period = event->hw.sample_period; 1288 local64_set(&event->hw.period_left, event->hw.last_period); 1289 1290 /* 1291 * See if we need to reserve the PMU. 1292 * If no events are currently in use, then we have to take a 1293 * mutex to ensure that we don't race with another task doing 1294 * reserve_pmc_hardware or release_pmc_hardware. 1295 */ 1296 err = 0; 1297 if (!atomic_inc_not_zero(&num_events)) { 1298 mutex_lock(&pmc_reserve_mutex); 1299 if (atomic_read(&num_events) == 0 && 1300 reserve_pmc_hardware(perf_event_interrupt)) 1301 err = -EBUSY; 1302 else 1303 atomic_inc(&num_events); 1304 mutex_unlock(&pmc_reserve_mutex); 1305 } 1306 event->destroy = hw_perf_event_destroy; 1307 1308 return err; 1309 } 1310 1311 static int power_pmu_event_idx(struct perf_event *event) 1312 { 1313 return event->hw.idx; 1314 } 1315 1316 ssize_t power_events_sysfs_show(struct device *dev, 1317 struct device_attribute *attr, char *page) 1318 { 1319 struct perf_pmu_events_attr *pmu_attr; 1320 1321 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 1322 1323 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 1324 } 1325 1326 struct pmu power_pmu = { 1327 .pmu_enable = power_pmu_enable, 1328 .pmu_disable = power_pmu_disable, 1329 .event_init = power_pmu_event_init, 1330 .add = power_pmu_add, 1331 .del = power_pmu_del, 1332 .start = power_pmu_start, 1333 .stop = power_pmu_stop, 1334 .read = power_pmu_read, 1335 .start_txn = power_pmu_start_txn, 1336 .cancel_txn = power_pmu_cancel_txn, 1337 .commit_txn = power_pmu_commit_txn, 1338 .event_idx = power_pmu_event_idx, 1339 }; 1340 1341 1342 /* 1343 * A counter has overflowed; update its count and record 1344 * things if requested. Note that interrupts are hard-disabled 1345 * here so there is no possibility of being interrupted. 1346 */ 1347 static void record_and_restart(struct perf_event *event, unsigned long val, 1348 struct pt_regs *regs) 1349 { 1350 u64 period = event->hw.sample_period; 1351 s64 prev, delta, left; 1352 int record = 0; 1353 1354 if (event->hw.state & PERF_HES_STOPPED) { 1355 write_pmc(event->hw.idx, 0); 1356 return; 1357 } 1358 1359 /* we don't have to worry about interrupts here */ 1360 prev = local64_read(&event->hw.prev_count); 1361 delta = check_and_compute_delta(prev, val); 1362 local64_add(delta, &event->count); 1363 1364 /* 1365 * See if the total period for this event has expired, 1366 * and update for the next period. 1367 */ 1368 val = 0; 1369 left = local64_read(&event->hw.period_left) - delta; 1370 if (delta == 0) 1371 left++; 1372 if (period) { 1373 if (left <= 0) { 1374 left += period; 1375 if (left <= 0) 1376 left = period; 1377 record = siar_valid(regs); 1378 event->hw.last_period = event->hw.sample_period; 1379 } 1380 if (left < 0x80000000LL) 1381 val = 0x80000000LL - left; 1382 } 1383 1384 write_pmc(event->hw.idx, val); 1385 local64_set(&event->hw.prev_count, val); 1386 local64_set(&event->hw.period_left, left); 1387 perf_event_update_userpage(event); 1388 1389 /* 1390 * Finally record data if requested. 1391 */ 1392 if (record) { 1393 struct perf_sample_data data; 1394 1395 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 1396 1397 if (event->attr.sample_type & PERF_SAMPLE_ADDR) 1398 perf_get_data_addr(regs, &data.addr); 1399 1400 if (perf_event_overflow(event, &data, regs)) 1401 power_pmu_stop(event, 0); 1402 } 1403 } 1404 1405 /* 1406 * Called from generic code to get the misc flags (i.e. processor mode) 1407 * for an event_id. 1408 */ 1409 unsigned long perf_misc_flags(struct pt_regs *regs) 1410 { 1411 u32 flags = perf_get_misc_flags(regs); 1412 1413 if (flags) 1414 return flags; 1415 return user_mode(regs) ? PERF_RECORD_MISC_USER : 1416 PERF_RECORD_MISC_KERNEL; 1417 } 1418 1419 /* 1420 * Called from generic code to get the instruction pointer 1421 * for an event_id. 1422 */ 1423 unsigned long perf_instruction_pointer(struct pt_regs *regs) 1424 { 1425 unsigned long use_siar = regs->result; 1426 1427 if (use_siar && siar_valid(regs)) 1428 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 1429 else if (use_siar) 1430 return 0; // no valid instruction pointer 1431 else 1432 return regs->nip; 1433 } 1434 1435 static bool pmc_overflow_power7(unsigned long val) 1436 { 1437 /* 1438 * Events on POWER7 can roll back if a speculative event doesn't 1439 * eventually complete. Unfortunately in some rare cases they will 1440 * raise a performance monitor exception. We need to catch this to 1441 * ensure we reset the PMC. In all cases the PMC will be 256 or less 1442 * cycles from overflow. 1443 * 1444 * We only do this if the first pass fails to find any overflowing 1445 * PMCs because a user might set a period of less than 256 and we 1446 * don't want to mistakenly reset them. 1447 */ 1448 if ((0x80000000 - val) <= 256) 1449 return true; 1450 1451 return false; 1452 } 1453 1454 static bool pmc_overflow(unsigned long val) 1455 { 1456 if ((int)val < 0) 1457 return true; 1458 1459 return false; 1460 } 1461 1462 /* 1463 * Performance monitor interrupt stuff 1464 */ 1465 static void perf_event_interrupt(struct pt_regs *regs) 1466 { 1467 int i, j; 1468 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 1469 struct perf_event *event; 1470 unsigned long val[8]; 1471 int found, active; 1472 int nmi; 1473 1474 if (cpuhw->n_limited) 1475 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 1476 mfspr(SPRN_PMC6)); 1477 1478 perf_read_regs(regs); 1479 1480 nmi = perf_intr_is_nmi(regs); 1481 if (nmi) 1482 nmi_enter(); 1483 else 1484 irq_enter(); 1485 1486 /* Read all the PMCs since we'll need them a bunch of times */ 1487 for (i = 0; i < ppmu->n_counter; ++i) 1488 val[i] = read_pmc(i + 1); 1489 1490 /* Try to find what caused the IRQ */ 1491 found = 0; 1492 for (i = 0; i < ppmu->n_counter; ++i) { 1493 if (!pmc_overflow(val[i])) 1494 continue; 1495 if (is_limited_pmc(i + 1)) 1496 continue; /* these won't generate IRQs */ 1497 /* 1498 * We've found one that's overflowed. For active 1499 * counters we need to log this. For inactive 1500 * counters, we need to reset it anyway 1501 */ 1502 found = 1; 1503 active = 0; 1504 for (j = 0; j < cpuhw->n_events; ++j) { 1505 event = cpuhw->event[j]; 1506 if (event->hw.idx == (i + 1)) { 1507 active = 1; 1508 record_and_restart(event, val[i], regs); 1509 break; 1510 } 1511 } 1512 if (!active) 1513 /* reset non active counters that have overflowed */ 1514 write_pmc(i + 1, 0); 1515 } 1516 if (!found && pvr_version_is(PVR_POWER7)) { 1517 /* check active counters for special buggy p7 overflow */ 1518 for (i = 0; i < cpuhw->n_events; ++i) { 1519 event = cpuhw->event[i]; 1520 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 1521 continue; 1522 if (pmc_overflow_power7(val[event->hw.idx - 1])) { 1523 /* event has overflowed in a buggy way*/ 1524 found = 1; 1525 record_and_restart(event, 1526 val[event->hw.idx - 1], 1527 regs); 1528 } 1529 } 1530 } 1531 if ((!found) && printk_ratelimit()) 1532 printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); 1533 1534 /* 1535 * Reset MMCR0 to its normal value. This will set PMXE and 1536 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 1537 * and thus allow interrupts to occur again. 1538 * XXX might want to use MSR.PM to keep the events frozen until 1539 * we get back out of this interrupt. 1540 */ 1541 write_mmcr0(cpuhw, cpuhw->mmcr[0]); 1542 1543 if (nmi) 1544 nmi_exit(); 1545 else 1546 irq_exit(); 1547 } 1548 1549 static void power_pmu_setup(int cpu) 1550 { 1551 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 1552 1553 if (!ppmu) 1554 return; 1555 memset(cpuhw, 0, sizeof(*cpuhw)); 1556 cpuhw->mmcr[0] = MMCR0_FC; 1557 } 1558 1559 static int __cpuinit 1560 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) 1561 { 1562 unsigned int cpu = (long)hcpu; 1563 1564 switch (action & ~CPU_TASKS_FROZEN) { 1565 case CPU_UP_PREPARE: 1566 power_pmu_setup(cpu); 1567 break; 1568 1569 default: 1570 break; 1571 } 1572 1573 return NOTIFY_OK; 1574 } 1575 1576 int __cpuinit register_power_pmu(struct power_pmu *pmu) 1577 { 1578 if (ppmu) 1579 return -EBUSY; /* something's already registered */ 1580 1581 ppmu = pmu; 1582 pr_info("%s performance monitor hardware support registered\n", 1583 pmu->name); 1584 1585 power_pmu.attr_groups = ppmu->attr_groups; 1586 1587 #ifdef MSR_HV 1588 /* 1589 * Use FCHV to ignore kernel events if MSR.HV is set. 1590 */ 1591 if (mfmsr() & MSR_HV) 1592 freeze_events_kernel = MMCR0_FCHV; 1593 #endif /* CONFIG_PPC64 */ 1594 1595 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 1596 perf_cpu_notifier(power_pmu_notifier); 1597 1598 return 0; 1599 } 1600