1 /* 2 * Performance event support - powerpc architecture code 3 * 4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/sched.h> 13 #include <linux/perf_event.h> 14 #include <linux/percpu.h> 15 #include <linux/hardirq.h> 16 #include <linux/uaccess.h> 17 #include <asm/reg.h> 18 #include <asm/pmc.h> 19 #include <asm/machdep.h> 20 #include <asm/firmware.h> 21 #include <asm/ptrace.h> 22 #include <asm/code-patching.h> 23 24 #define BHRB_MAX_ENTRIES 32 25 #define BHRB_TARGET 0x0000000000000002 26 #define BHRB_PREDICTION 0x0000000000000001 27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 28 29 struct cpu_hw_events { 30 int n_events; 31 int n_percpu; 32 int disabled; 33 int n_added; 34 int n_limited; 35 u8 pmcs_enabled; 36 struct perf_event *event[MAX_HWEVENTS]; 37 u64 events[MAX_HWEVENTS]; 38 unsigned int flags[MAX_HWEVENTS]; 39 /* 40 * The order of the MMCR array is: 41 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2 42 * - 32-bit, MMCR0, MMCR1, MMCR2 43 */ 44 unsigned long mmcr[4]; 45 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 46 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 47 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 48 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 49 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 50 51 unsigned int txn_flags; 52 int n_txn_start; 53 54 /* BHRB bits */ 55 u64 bhrb_filter; /* BHRB HW branch filter */ 56 unsigned int bhrb_users; 57 void *bhrb_context; 58 struct perf_branch_stack bhrb_stack; 59 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 60 u64 ic_init; 61 }; 62 63 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 64 65 static struct power_pmu *ppmu; 66 67 /* 68 * Normally, to ignore kernel events we set the FCS (freeze counters 69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 70 * hypervisor bit set in the MSR, or if we are running on a processor 71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 72 * then we need to use the FCHV bit to ignore kernel events. 73 */ 74 static unsigned int freeze_events_kernel = MMCR0_FCS; 75 76 /* 77 * 32-bit doesn't have MMCRA but does have an MMCR2, 78 * and a few other names are different. 79 */ 80 #ifdef CONFIG_PPC32 81 82 #define MMCR0_FCHV 0 83 #define MMCR0_PMCjCE MMCR0_PMCnCE 84 #define MMCR0_FC56 0 85 #define MMCR0_PMAO 0 86 #define MMCR0_EBE 0 87 #define MMCR0_BHRBA 0 88 #define MMCR0_PMCC 0 89 #define MMCR0_PMCC_U6 0 90 91 #define SPRN_MMCRA SPRN_MMCR2 92 #define MMCRA_SAMPLE_ENABLE 0 93 94 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 95 { 96 return 0; 97 } 98 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { } 99 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 100 { 101 return 0; 102 } 103 static inline void perf_read_regs(struct pt_regs *regs) 104 { 105 regs->result = 0; 106 } 107 static inline int perf_intr_is_nmi(struct pt_regs *regs) 108 { 109 return 0; 110 } 111 112 static inline int siar_valid(struct pt_regs *regs) 113 { 114 return 1; 115 } 116 117 static bool is_ebb_event(struct perf_event *event) { return false; } 118 static int ebb_event_check(struct perf_event *event) { return 0; } 119 static void ebb_event_add(struct perf_event *event) { } 120 static void ebb_switch_out(unsigned long mmcr0) { } 121 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 122 { 123 return cpuhw->mmcr[0]; 124 } 125 126 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 127 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 128 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} 129 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {} 130 static void pmao_restore_workaround(bool ebb) { } 131 static bool use_ic(u64 event) 132 { 133 return false; 134 } 135 #endif /* CONFIG_PPC32 */ 136 137 static bool regs_use_siar(struct pt_regs *regs) 138 { 139 /* 140 * When we take a performance monitor exception the regs are setup 141 * using perf_read_regs() which overloads some fields, in particular 142 * regs->result to tell us whether to use SIAR. 143 * 144 * However if the regs are from another exception, eg. a syscall, then 145 * they have not been setup using perf_read_regs() and so regs->result 146 * is something random. 147 */ 148 return ((TRAP(regs) == 0xf00) && regs->result); 149 } 150 151 /* 152 * Things that are specific to 64-bit implementations. 153 */ 154 #ifdef CONFIG_PPC64 155 156 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 157 { 158 unsigned long mmcra = regs->dsisr; 159 160 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 161 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 162 if (slot > 1) 163 return 4 * (slot - 1); 164 } 165 166 return 0; 167 } 168 169 /* 170 * The user wants a data address recorded. 171 * If we're not doing instruction sampling, give them the SDAR 172 * (sampled data address). If we are doing instruction sampling, then 173 * only give them the SDAR if it corresponds to the instruction 174 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 175 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 176 */ 177 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) 178 { 179 unsigned long mmcra = regs->dsisr; 180 bool sdar_valid; 181 182 if (ppmu->flags & PPMU_HAS_SIER) 183 sdar_valid = regs->dar & SIER_SDAR_VALID; 184 else { 185 unsigned long sdsync; 186 187 if (ppmu->flags & PPMU_SIAR_VALID) 188 sdsync = POWER7P_MMCRA_SDAR_VALID; 189 else if (ppmu->flags & PPMU_ALT_SIPR) 190 sdsync = POWER6_MMCRA_SDSYNC; 191 else if (ppmu->flags & PPMU_NO_SIAR) 192 sdsync = MMCRA_SAMPLE_ENABLE; 193 else 194 sdsync = MMCRA_SDSYNC; 195 196 sdar_valid = mmcra & sdsync; 197 } 198 199 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 200 *addrp = mfspr(SPRN_SDAR); 201 } 202 203 static bool regs_sihv(struct pt_regs *regs) 204 { 205 unsigned long sihv = MMCRA_SIHV; 206 207 if (ppmu->flags & PPMU_HAS_SIER) 208 return !!(regs->dar & SIER_SIHV); 209 210 if (ppmu->flags & PPMU_ALT_SIPR) 211 sihv = POWER6_MMCRA_SIHV; 212 213 return !!(regs->dsisr & sihv); 214 } 215 216 static bool regs_sipr(struct pt_regs *regs) 217 { 218 unsigned long sipr = MMCRA_SIPR; 219 220 if (ppmu->flags & PPMU_HAS_SIER) 221 return !!(regs->dar & SIER_SIPR); 222 223 if (ppmu->flags & PPMU_ALT_SIPR) 224 sipr = POWER6_MMCRA_SIPR; 225 226 return !!(regs->dsisr & sipr); 227 } 228 229 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 230 { 231 if (regs->msr & MSR_PR) 232 return PERF_RECORD_MISC_USER; 233 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 234 return PERF_RECORD_MISC_HYPERVISOR; 235 return PERF_RECORD_MISC_KERNEL; 236 } 237 238 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 239 { 240 bool use_siar = regs_use_siar(regs); 241 242 if (!use_siar) 243 return perf_flags_from_msr(regs); 244 245 /* 246 * If we don't have flags in MMCRA, rather than using 247 * the MSR, we intuit the flags from the address in 248 * SIAR which should give slightly more reliable 249 * results 250 */ 251 if (ppmu->flags & PPMU_NO_SIPR) { 252 unsigned long siar = mfspr(SPRN_SIAR); 253 if (is_kernel_addr(siar)) 254 return PERF_RECORD_MISC_KERNEL; 255 return PERF_RECORD_MISC_USER; 256 } 257 258 /* PR has priority over HV, so order below is important */ 259 if (regs_sipr(regs)) 260 return PERF_RECORD_MISC_USER; 261 262 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 263 return PERF_RECORD_MISC_HYPERVISOR; 264 265 return PERF_RECORD_MISC_KERNEL; 266 } 267 268 /* 269 * Overload regs->dsisr to store MMCRA so we only need to read it once 270 * on each interrupt. 271 * Overload regs->dar to store SIER if we have it. 272 * Overload regs->result to specify whether we should use the MSR (result 273 * is zero) or the SIAR (result is non zero). 274 */ 275 static inline void perf_read_regs(struct pt_regs *regs) 276 { 277 unsigned long mmcra = mfspr(SPRN_MMCRA); 278 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 279 int use_siar; 280 281 regs->dsisr = mmcra; 282 283 if (ppmu->flags & PPMU_HAS_SIER) 284 regs->dar = mfspr(SPRN_SIER); 285 286 /* 287 * If this isn't a PMU exception (eg a software event) the SIAR is 288 * not valid. Use pt_regs. 289 * 290 * If it is a marked event use the SIAR. 291 * 292 * If the PMU doesn't update the SIAR for non marked events use 293 * pt_regs. 294 * 295 * If the PMU has HV/PR flags then check to see if they 296 * place the exception in userspace. If so, use pt_regs. In 297 * continuous sampling mode the SIAR and the PMU exception are 298 * not synchronised, so they may be many instructions apart. 299 * This can result in confusing backtraces. We still want 300 * hypervisor samples as well as samples in the kernel with 301 * interrupts off hence the userspace check. 302 */ 303 if (TRAP(regs) != 0xf00) 304 use_siar = 0; 305 else if ((ppmu->flags & PPMU_NO_SIAR)) 306 use_siar = 0; 307 else if (marked) 308 use_siar = 1; 309 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 310 use_siar = 0; 311 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 312 use_siar = 0; 313 else 314 use_siar = 1; 315 316 regs->result = use_siar; 317 } 318 319 /* 320 * If interrupts were soft-disabled when a PMU interrupt occurs, treat 321 * it as an NMI. 322 */ 323 static inline int perf_intr_is_nmi(struct pt_regs *regs) 324 { 325 return !regs->softe; 326 } 327 328 /* 329 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 330 * must be sampled only if the SIAR-valid bit is set. 331 * 332 * For unmarked instructions and for processors that don't have the SIAR-Valid 333 * bit, assume that SIAR is valid. 334 */ 335 static inline int siar_valid(struct pt_regs *regs) 336 { 337 unsigned long mmcra = regs->dsisr; 338 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 339 340 if (marked) { 341 if (ppmu->flags & PPMU_HAS_SIER) 342 return regs->dar & SIER_SIAR_VALID; 343 344 if (ppmu->flags & PPMU_SIAR_VALID) 345 return mmcra & POWER7P_MMCRA_SIAR_VALID; 346 } 347 348 return 1; 349 } 350 351 352 /* Reset all possible BHRB entries */ 353 static void power_pmu_bhrb_reset(void) 354 { 355 asm volatile(PPC_CLRBHRB); 356 } 357 358 static void power_pmu_bhrb_enable(struct perf_event *event) 359 { 360 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 361 362 if (!ppmu->bhrb_nr) 363 return; 364 365 /* Clear BHRB if we changed task context to avoid data leaks */ 366 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 367 power_pmu_bhrb_reset(); 368 cpuhw->bhrb_context = event->ctx; 369 } 370 cpuhw->bhrb_users++; 371 perf_sched_cb_inc(event->ctx->pmu); 372 } 373 374 static void power_pmu_bhrb_disable(struct perf_event *event) 375 { 376 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 377 378 if (!ppmu->bhrb_nr) 379 return; 380 381 WARN_ON_ONCE(!cpuhw->bhrb_users); 382 cpuhw->bhrb_users--; 383 perf_sched_cb_dec(event->ctx->pmu); 384 385 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 386 /* BHRB cannot be turned off when other 387 * events are active on the PMU. 388 */ 389 390 /* avoid stale pointer */ 391 cpuhw->bhrb_context = NULL; 392 } 393 } 394 395 /* Called from ctxsw to prevent one process's branch entries to 396 * mingle with the other process's entries during context switch. 397 */ 398 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 399 { 400 if (!ppmu->bhrb_nr) 401 return; 402 403 if (sched_in) 404 power_pmu_bhrb_reset(); 405 } 406 /* Calculate the to address for a branch */ 407 static __u64 power_pmu_bhrb_to(u64 addr) 408 { 409 unsigned int instr; 410 int ret; 411 __u64 target; 412 413 if (is_kernel_addr(addr)) 414 return branch_target((unsigned int *)addr); 415 416 /* Userspace: need copy instruction here then translate it */ 417 pagefault_disable(); 418 ret = __get_user_inatomic(instr, (unsigned int __user *)addr); 419 if (ret) { 420 pagefault_enable(); 421 return 0; 422 } 423 pagefault_enable(); 424 425 target = branch_target(&instr); 426 if ((!target) || (instr & BRANCH_ABSOLUTE)) 427 return target; 428 429 /* Translate relative branch target from kernel to user address */ 430 return target - (unsigned long)&instr + addr; 431 } 432 433 /* Processing BHRB entries */ 434 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) 435 { 436 u64 val; 437 u64 addr; 438 int r_index, u_index, pred; 439 440 r_index = 0; 441 u_index = 0; 442 while (r_index < ppmu->bhrb_nr) { 443 /* Assembly read function */ 444 val = read_bhrb(r_index++); 445 if (!val) 446 /* Terminal marker: End of valid BHRB entries */ 447 break; 448 else { 449 addr = val & BHRB_EA; 450 pred = val & BHRB_PREDICTION; 451 452 if (!addr) 453 /* invalid entry */ 454 continue; 455 456 /* Branches are read most recent first (ie. mfbhrb 0 is 457 * the most recent branch). 458 * There are two types of valid entries: 459 * 1) a target entry which is the to address of a 460 * computed goto like a blr,bctr,btar. The next 461 * entry read from the bhrb will be branch 462 * corresponding to this target (ie. the actual 463 * blr/bctr/btar instruction). 464 * 2) a from address which is an actual branch. If a 465 * target entry proceeds this, then this is the 466 * matching branch for that target. If this is not 467 * following a target entry, then this is a branch 468 * where the target is given as an immediate field 469 * in the instruction (ie. an i or b form branch). 470 * In this case we need to read the instruction from 471 * memory to determine the target/to address. 472 */ 473 474 if (val & BHRB_TARGET) { 475 /* Target branches use two entries 476 * (ie. computed gotos/XL form) 477 */ 478 cpuhw->bhrb_entries[u_index].to = addr; 479 cpuhw->bhrb_entries[u_index].mispred = pred; 480 cpuhw->bhrb_entries[u_index].predicted = ~pred; 481 482 /* Get from address in next entry */ 483 val = read_bhrb(r_index++); 484 addr = val & BHRB_EA; 485 if (val & BHRB_TARGET) { 486 /* Shouldn't have two targets in a 487 row.. Reset index and try again */ 488 r_index--; 489 addr = 0; 490 } 491 cpuhw->bhrb_entries[u_index].from = addr; 492 } else { 493 /* Branches to immediate field 494 (ie I or B form) */ 495 cpuhw->bhrb_entries[u_index].from = addr; 496 cpuhw->bhrb_entries[u_index].to = 497 power_pmu_bhrb_to(addr); 498 cpuhw->bhrb_entries[u_index].mispred = pred; 499 cpuhw->bhrb_entries[u_index].predicted = ~pred; 500 } 501 u_index++; 502 503 } 504 } 505 cpuhw->bhrb_stack.nr = u_index; 506 return; 507 } 508 509 static bool is_ebb_event(struct perf_event *event) 510 { 511 /* 512 * This could be a per-PMU callback, but we'd rather avoid the cost. We 513 * check that the PMU supports EBB, meaning those that don't can still 514 * use bit 63 of the event code for something else if they wish. 515 */ 516 return (ppmu->flags & PPMU_ARCH_207S) && 517 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 518 } 519 520 static int ebb_event_check(struct perf_event *event) 521 { 522 struct perf_event *leader = event->group_leader; 523 524 /* Event and group leader must agree on EBB */ 525 if (is_ebb_event(leader) != is_ebb_event(event)) 526 return -EINVAL; 527 528 if (is_ebb_event(event)) { 529 if (!(event->attach_state & PERF_ATTACH_TASK)) 530 return -EINVAL; 531 532 if (!leader->attr.pinned || !leader->attr.exclusive) 533 return -EINVAL; 534 535 if (event->attr.freq || 536 event->attr.inherit || 537 event->attr.sample_type || 538 event->attr.sample_period || 539 event->attr.enable_on_exec) 540 return -EINVAL; 541 } 542 543 return 0; 544 } 545 546 static void ebb_event_add(struct perf_event *event) 547 { 548 if (!is_ebb_event(event) || current->thread.used_ebb) 549 return; 550 551 /* 552 * IFF this is the first time we've added an EBB event, set 553 * PMXE in the user MMCR0 so we can detect when it's cleared by 554 * userspace. We need this so that we can context switch while 555 * userspace is in the EBB handler (where PMXE is 0). 556 */ 557 current->thread.used_ebb = 1; 558 current->thread.mmcr0 |= MMCR0_PMXE; 559 } 560 561 static void ebb_switch_out(unsigned long mmcr0) 562 { 563 if (!(mmcr0 & MMCR0_EBE)) 564 return; 565 566 current->thread.siar = mfspr(SPRN_SIAR); 567 current->thread.sier = mfspr(SPRN_SIER); 568 current->thread.sdar = mfspr(SPRN_SDAR); 569 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 570 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 571 } 572 573 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 574 { 575 unsigned long mmcr0 = cpuhw->mmcr[0]; 576 577 if (!ebb) 578 goto out; 579 580 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 581 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 582 583 /* 584 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 585 * with pmao_restore_workaround() because we may add PMAO but we never 586 * clear it here. 587 */ 588 mmcr0 |= current->thread.mmcr0; 589 590 /* 591 * Be careful not to set PMXE if userspace had it cleared. This is also 592 * compatible with pmao_restore_workaround() because it has already 593 * cleared PMXE and we leave PMAO alone. 594 */ 595 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 596 mmcr0 &= ~MMCR0_PMXE; 597 598 mtspr(SPRN_SIAR, current->thread.siar); 599 mtspr(SPRN_SIER, current->thread.sier); 600 mtspr(SPRN_SDAR, current->thread.sdar); 601 602 /* 603 * Merge the kernel & user values of MMCR2. The semantics we implement 604 * are that the user MMCR2 can set bits, ie. cause counters to freeze, 605 * but not clear bits. If a task wants to be able to clear bits, ie. 606 * unfreeze counters, it should not set exclude_xxx in its events and 607 * instead manage the MMCR2 entirely by itself. 608 */ 609 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2); 610 out: 611 return mmcr0; 612 } 613 614 static void pmao_restore_workaround(bool ebb) 615 { 616 unsigned pmcs[6]; 617 618 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 619 return; 620 621 /* 622 * On POWER8E there is a hardware defect which affects the PMU context 623 * switch logic, ie. power_pmu_disable/enable(). 624 * 625 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 626 * by the hardware. Sometime later the actual PMU exception is 627 * delivered. 628 * 629 * If we context switch, or simply disable/enable, the PMU prior to the 630 * exception arriving, the exception will be lost when we clear PMAO. 631 * 632 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 633 * set, and this _should_ generate an exception. However because of the 634 * defect no exception is generated when we write PMAO, and we get 635 * stuck with no counters counting but no exception delivered. 636 * 637 * The workaround is to detect this case and tweak the hardware to 638 * create another pending PMU exception. 639 * 640 * We do that by setting up PMC6 (cycles) for an imminent overflow and 641 * enabling the PMU. That causes a new exception to be generated in the 642 * chip, but we don't take it yet because we have interrupts hard 643 * disabled. We then write back the PMU state as we want it to be seen 644 * by the exception handler. When we reenable interrupts the exception 645 * handler will be called and see the correct state. 646 * 647 * The logic is the same for EBB, except that the exception is gated by 648 * us having interrupts hard disabled as well as the fact that we are 649 * not in userspace. The exception is finally delivered when we return 650 * to userspace. 651 */ 652 653 /* Only if PMAO is set and PMAO_SYNC is clear */ 654 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 655 return; 656 657 /* If we're doing EBB, only if BESCR[GE] is set */ 658 if (ebb && !(current->thread.bescr & BESCR_GE)) 659 return; 660 661 /* 662 * We are already soft-disabled in power_pmu_enable(). We need to hard 663 * disable to actually prevent the PMU exception from firing. 664 */ 665 hard_irq_disable(); 666 667 /* 668 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 669 * Using read/write_pmc() in a for loop adds 12 function calls and 670 * almost doubles our code size. 671 */ 672 pmcs[0] = mfspr(SPRN_PMC1); 673 pmcs[1] = mfspr(SPRN_PMC2); 674 pmcs[2] = mfspr(SPRN_PMC3); 675 pmcs[3] = mfspr(SPRN_PMC4); 676 pmcs[4] = mfspr(SPRN_PMC5); 677 pmcs[5] = mfspr(SPRN_PMC6); 678 679 /* Ensure all freeze bits are unset */ 680 mtspr(SPRN_MMCR2, 0); 681 682 /* Set up PMC6 to overflow in one cycle */ 683 mtspr(SPRN_PMC6, 0x7FFFFFFE); 684 685 /* Enable exceptions and unfreeze PMC6 */ 686 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 687 688 /* Now we need to refreeze and restore the PMCs */ 689 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 690 691 mtspr(SPRN_PMC1, pmcs[0]); 692 mtspr(SPRN_PMC2, pmcs[1]); 693 mtspr(SPRN_PMC3, pmcs[2]); 694 mtspr(SPRN_PMC4, pmcs[3]); 695 mtspr(SPRN_PMC5, pmcs[4]); 696 mtspr(SPRN_PMC6, pmcs[5]); 697 } 698 699 static bool use_ic(u64 event) 700 { 701 if (cpu_has_feature(CPU_FTR_POWER9_DD1) && 702 (event == 0x200f2 || event == 0x300f2)) 703 return true; 704 705 return false; 706 } 707 #endif /* CONFIG_PPC64 */ 708 709 static void perf_event_interrupt(struct pt_regs *regs); 710 711 /* 712 * Read one performance monitor counter (PMC). 713 */ 714 static unsigned long read_pmc(int idx) 715 { 716 unsigned long val; 717 718 switch (idx) { 719 case 1: 720 val = mfspr(SPRN_PMC1); 721 break; 722 case 2: 723 val = mfspr(SPRN_PMC2); 724 break; 725 case 3: 726 val = mfspr(SPRN_PMC3); 727 break; 728 case 4: 729 val = mfspr(SPRN_PMC4); 730 break; 731 case 5: 732 val = mfspr(SPRN_PMC5); 733 break; 734 case 6: 735 val = mfspr(SPRN_PMC6); 736 break; 737 #ifdef CONFIG_PPC64 738 case 7: 739 val = mfspr(SPRN_PMC7); 740 break; 741 case 8: 742 val = mfspr(SPRN_PMC8); 743 break; 744 #endif /* CONFIG_PPC64 */ 745 default: 746 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 747 val = 0; 748 } 749 return val; 750 } 751 752 /* 753 * Write one PMC. 754 */ 755 static void write_pmc(int idx, unsigned long val) 756 { 757 switch (idx) { 758 case 1: 759 mtspr(SPRN_PMC1, val); 760 break; 761 case 2: 762 mtspr(SPRN_PMC2, val); 763 break; 764 case 3: 765 mtspr(SPRN_PMC3, val); 766 break; 767 case 4: 768 mtspr(SPRN_PMC4, val); 769 break; 770 case 5: 771 mtspr(SPRN_PMC5, val); 772 break; 773 case 6: 774 mtspr(SPRN_PMC6, val); 775 break; 776 #ifdef CONFIG_PPC64 777 case 7: 778 mtspr(SPRN_PMC7, val); 779 break; 780 case 8: 781 mtspr(SPRN_PMC8, val); 782 break; 783 #endif /* CONFIG_PPC64 */ 784 default: 785 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 786 } 787 } 788 789 /* Called from sysrq_handle_showregs() */ 790 void perf_event_print_debug(void) 791 { 792 unsigned long sdar, sier, flags; 793 u32 pmcs[MAX_HWEVENTS]; 794 int i; 795 796 if (!ppmu) { 797 pr_info("Performance monitor hardware not registered.\n"); 798 return; 799 } 800 801 if (!ppmu->n_counter) 802 return; 803 804 local_irq_save(flags); 805 806 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 807 smp_processor_id(), ppmu->name, ppmu->n_counter); 808 809 for (i = 0; i < ppmu->n_counter; i++) 810 pmcs[i] = read_pmc(i + 1); 811 812 for (; i < MAX_HWEVENTS; i++) 813 pmcs[i] = 0xdeadbeef; 814 815 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 816 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 817 818 if (ppmu->n_counter > 4) 819 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 820 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 821 822 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 823 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 824 825 sdar = sier = 0; 826 #ifdef CONFIG_PPC64 827 sdar = mfspr(SPRN_SDAR); 828 829 if (ppmu->flags & PPMU_HAS_SIER) 830 sier = mfspr(SPRN_SIER); 831 832 if (ppmu->flags & PPMU_ARCH_207S) { 833 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 834 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 835 pr_info("EBBRR: %016lx BESCR: %016lx\n", 836 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 837 } 838 #endif 839 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 840 mfspr(SPRN_SIAR), sdar, sier); 841 842 local_irq_restore(flags); 843 } 844 845 /* 846 * Check if a set of events can all go on the PMU at once. 847 * If they can't, this will look at alternative codes for the events 848 * and see if any combination of alternative codes is feasible. 849 * The feasible set is returned in event_id[]. 850 */ 851 static int power_check_constraints(struct cpu_hw_events *cpuhw, 852 u64 event_id[], unsigned int cflags[], 853 int n_ev) 854 { 855 unsigned long mask, value, nv; 856 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 857 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 858 int i, j; 859 unsigned long addf = ppmu->add_fields; 860 unsigned long tadd = ppmu->test_adder; 861 862 if (n_ev > ppmu->n_counter) 863 return -1; 864 865 /* First see if the events will go on as-is */ 866 for (i = 0; i < n_ev; ++i) { 867 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 868 && !ppmu->limited_pmc_event(event_id[i])) { 869 ppmu->get_alternatives(event_id[i], cflags[i], 870 cpuhw->alternatives[i]); 871 event_id[i] = cpuhw->alternatives[i][0]; 872 } 873 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 874 &cpuhw->avalues[i][0])) 875 return -1; 876 } 877 value = mask = 0; 878 for (i = 0; i < n_ev; ++i) { 879 nv = (value | cpuhw->avalues[i][0]) + 880 (value & cpuhw->avalues[i][0] & addf); 881 if ((((nv + tadd) ^ value) & mask) != 0 || 882 (((nv + tadd) ^ cpuhw->avalues[i][0]) & 883 cpuhw->amasks[i][0]) != 0) 884 break; 885 value = nv; 886 mask |= cpuhw->amasks[i][0]; 887 } 888 if (i == n_ev) 889 return 0; /* all OK */ 890 891 /* doesn't work, gather alternatives... */ 892 if (!ppmu->get_alternatives) 893 return -1; 894 for (i = 0; i < n_ev; ++i) { 895 choice[i] = 0; 896 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 897 cpuhw->alternatives[i]); 898 for (j = 1; j < n_alt[i]; ++j) 899 ppmu->get_constraint(cpuhw->alternatives[i][j], 900 &cpuhw->amasks[i][j], 901 &cpuhw->avalues[i][j]); 902 } 903 904 /* enumerate all possibilities and see if any will work */ 905 i = 0; 906 j = -1; 907 value = mask = nv = 0; 908 while (i < n_ev) { 909 if (j >= 0) { 910 /* we're backtracking, restore context */ 911 value = svalues[i]; 912 mask = smasks[i]; 913 j = choice[i]; 914 } 915 /* 916 * See if any alternative k for event_id i, 917 * where k > j, will satisfy the constraints. 918 */ 919 while (++j < n_alt[i]) { 920 nv = (value | cpuhw->avalues[i][j]) + 921 (value & cpuhw->avalues[i][j] & addf); 922 if ((((nv + tadd) ^ value) & mask) == 0 && 923 (((nv + tadd) ^ cpuhw->avalues[i][j]) 924 & cpuhw->amasks[i][j]) == 0) 925 break; 926 } 927 if (j >= n_alt[i]) { 928 /* 929 * No feasible alternative, backtrack 930 * to event_id i-1 and continue enumerating its 931 * alternatives from where we got up to. 932 */ 933 if (--i < 0) 934 return -1; 935 } else { 936 /* 937 * Found a feasible alternative for event_id i, 938 * remember where we got up to with this event_id, 939 * go on to the next event_id, and start with 940 * the first alternative for it. 941 */ 942 choice[i] = j; 943 svalues[i] = value; 944 smasks[i] = mask; 945 value = nv; 946 mask |= cpuhw->amasks[i][j]; 947 ++i; 948 j = -1; 949 } 950 } 951 952 /* OK, we have a feasible combination, tell the caller the solution */ 953 for (i = 0; i < n_ev; ++i) 954 event_id[i] = cpuhw->alternatives[i][choice[i]]; 955 return 0; 956 } 957 958 /* 959 * Check if newly-added events have consistent settings for 960 * exclude_{user,kernel,hv} with each other and any previously 961 * added events. 962 */ 963 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 964 int n_prev, int n_new) 965 { 966 int eu = 0, ek = 0, eh = 0; 967 int i, n, first; 968 struct perf_event *event; 969 970 /* 971 * If the PMU we're on supports per event exclude settings then we 972 * don't need to do any of this logic. NB. This assumes no PMU has both 973 * per event exclude and limited PMCs. 974 */ 975 if (ppmu->flags & PPMU_ARCH_207S) 976 return 0; 977 978 n = n_prev + n_new; 979 if (n <= 1) 980 return 0; 981 982 first = 1; 983 for (i = 0; i < n; ++i) { 984 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 985 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 986 continue; 987 } 988 event = ctrs[i]; 989 if (first) { 990 eu = event->attr.exclude_user; 991 ek = event->attr.exclude_kernel; 992 eh = event->attr.exclude_hv; 993 first = 0; 994 } else if (event->attr.exclude_user != eu || 995 event->attr.exclude_kernel != ek || 996 event->attr.exclude_hv != eh) { 997 return -EAGAIN; 998 } 999 } 1000 1001 if (eu || ek || eh) 1002 for (i = 0; i < n; ++i) 1003 if (cflags[i] & PPMU_LIMITED_PMC_OK) 1004 cflags[i] |= PPMU_LIMITED_PMC_REQD; 1005 1006 return 0; 1007 } 1008 1009 static u64 check_and_compute_delta(u64 prev, u64 val) 1010 { 1011 u64 delta = (val - prev) & 0xfffffffful; 1012 1013 /* 1014 * POWER7 can roll back counter values, if the new value is smaller 1015 * than the previous value it will cause the delta and the counter to 1016 * have bogus values unless we rolled a counter over. If a coutner is 1017 * rolled back, it will be smaller, but within 256, which is the maximum 1018 * number of events to rollback at once. If we detect a rollback 1019 * return 0. This can lead to a small lack of precision in the 1020 * counters. 1021 */ 1022 if (prev > val && (prev - val) < 256) 1023 delta = 0; 1024 1025 return delta; 1026 } 1027 1028 static void power_pmu_read(struct perf_event *event) 1029 { 1030 s64 val, delta, prev; 1031 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1032 1033 if (event->hw.state & PERF_HES_STOPPED) 1034 return; 1035 1036 if (!event->hw.idx) 1037 return; 1038 1039 if (is_ebb_event(event)) { 1040 val = read_pmc(event->hw.idx); 1041 if (use_ic(event->attr.config)) { 1042 val = mfspr(SPRN_IC); 1043 if (val > cpuhw->ic_init) 1044 val = val - cpuhw->ic_init; 1045 else 1046 val = val + (0 - cpuhw->ic_init); 1047 } 1048 local64_set(&event->hw.prev_count, val); 1049 return; 1050 } 1051 1052 /* 1053 * Performance monitor interrupts come even when interrupts 1054 * are soft-disabled, as long as interrupts are hard-enabled. 1055 * Therefore we treat them like NMIs. 1056 */ 1057 do { 1058 prev = local64_read(&event->hw.prev_count); 1059 barrier(); 1060 val = read_pmc(event->hw.idx); 1061 if (use_ic(event->attr.config)) { 1062 val = mfspr(SPRN_IC); 1063 if (val > cpuhw->ic_init) 1064 val = val - cpuhw->ic_init; 1065 else 1066 val = val + (0 - cpuhw->ic_init); 1067 } 1068 delta = check_and_compute_delta(prev, val); 1069 if (!delta) 1070 return; 1071 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 1072 1073 local64_add(delta, &event->count); 1074 1075 /* 1076 * A number of places program the PMC with (0x80000000 - period_left). 1077 * We never want period_left to be less than 1 because we will program 1078 * the PMC with a value >= 0x800000000 and an edge detected PMC will 1079 * roll around to 0 before taking an exception. We have seen this 1080 * on POWER8. 1081 * 1082 * To fix this, clamp the minimum value of period_left to 1. 1083 */ 1084 do { 1085 prev = local64_read(&event->hw.period_left); 1086 val = prev - delta; 1087 if (val < 1) 1088 val = 1; 1089 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); 1090 } 1091 1092 /* 1093 * On some machines, PMC5 and PMC6 can't be written, don't respect 1094 * the freeze conditions, and don't generate interrupts. This tells 1095 * us if `event' is using such a PMC. 1096 */ 1097 static int is_limited_pmc(int pmcnum) 1098 { 1099 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1100 && (pmcnum == 5 || pmcnum == 6); 1101 } 1102 1103 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1104 unsigned long pmc5, unsigned long pmc6) 1105 { 1106 struct perf_event *event; 1107 u64 val, prev, delta; 1108 int i; 1109 1110 for (i = 0; i < cpuhw->n_limited; ++i) { 1111 event = cpuhw->limited_counter[i]; 1112 if (!event->hw.idx) 1113 continue; 1114 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1115 prev = local64_read(&event->hw.prev_count); 1116 event->hw.idx = 0; 1117 delta = check_and_compute_delta(prev, val); 1118 if (delta) 1119 local64_add(delta, &event->count); 1120 } 1121 } 1122 1123 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1124 unsigned long pmc5, unsigned long pmc6) 1125 { 1126 struct perf_event *event; 1127 u64 val, prev; 1128 int i; 1129 1130 for (i = 0; i < cpuhw->n_limited; ++i) { 1131 event = cpuhw->limited_counter[i]; 1132 event->hw.idx = cpuhw->limited_hwidx[i]; 1133 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1134 prev = local64_read(&event->hw.prev_count); 1135 if (check_and_compute_delta(prev, val)) 1136 local64_set(&event->hw.prev_count, val); 1137 perf_event_update_userpage(event); 1138 } 1139 } 1140 1141 /* 1142 * Since limited events don't respect the freeze conditions, we 1143 * have to read them immediately after freezing or unfreezing the 1144 * other events. We try to keep the values from the limited 1145 * events as consistent as possible by keeping the delay (in 1146 * cycles and instructions) between freezing/unfreezing and reading 1147 * the limited events as small and consistent as possible. 1148 * Therefore, if any limited events are in use, we read them 1149 * both, and always in the same order, to minimize variability, 1150 * and do it inside the same asm that writes MMCR0. 1151 */ 1152 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1153 { 1154 unsigned long pmc5, pmc6; 1155 1156 if (!cpuhw->n_limited) { 1157 mtspr(SPRN_MMCR0, mmcr0); 1158 return; 1159 } 1160 1161 /* 1162 * Write MMCR0, then read PMC5 and PMC6 immediately. 1163 * To ensure we don't get a performance monitor interrupt 1164 * between writing MMCR0 and freezing/thawing the limited 1165 * events, we first write MMCR0 with the event overflow 1166 * interrupt enable bits turned off. 1167 */ 1168 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1169 : "=&r" (pmc5), "=&r" (pmc6) 1170 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1171 "i" (SPRN_MMCR0), 1172 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1173 1174 if (mmcr0 & MMCR0_FC) 1175 freeze_limited_counters(cpuhw, pmc5, pmc6); 1176 else 1177 thaw_limited_counters(cpuhw, pmc5, pmc6); 1178 1179 /* 1180 * Write the full MMCR0 including the event overflow interrupt 1181 * enable bits, if necessary. 1182 */ 1183 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1184 mtspr(SPRN_MMCR0, mmcr0); 1185 } 1186 1187 /* 1188 * Disable all events to prevent PMU interrupts and to allow 1189 * events to be added or removed. 1190 */ 1191 static void power_pmu_disable(struct pmu *pmu) 1192 { 1193 struct cpu_hw_events *cpuhw; 1194 unsigned long flags, mmcr0, val; 1195 1196 if (!ppmu) 1197 return; 1198 local_irq_save(flags); 1199 cpuhw = this_cpu_ptr(&cpu_hw_events); 1200 1201 if (!cpuhw->disabled) { 1202 /* 1203 * Check if we ever enabled the PMU on this cpu. 1204 */ 1205 if (!cpuhw->pmcs_enabled) { 1206 ppc_enable_pmcs(); 1207 cpuhw->pmcs_enabled = 1; 1208 } 1209 1210 /* 1211 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1212 */ 1213 val = mmcr0 = mfspr(SPRN_MMCR0); 1214 val |= MMCR0_FC; 1215 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1216 MMCR0_FC56); 1217 1218 /* 1219 * The barrier is to make sure the mtspr has been 1220 * executed and the PMU has frozen the events etc. 1221 * before we return. 1222 */ 1223 write_mmcr0(cpuhw, val); 1224 mb(); 1225 1226 /* 1227 * Disable instruction sampling if it was enabled 1228 */ 1229 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1230 mtspr(SPRN_MMCRA, 1231 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1232 mb(); 1233 } 1234 1235 cpuhw->disabled = 1; 1236 cpuhw->n_added = 0; 1237 1238 ebb_switch_out(mmcr0); 1239 } 1240 1241 local_irq_restore(flags); 1242 } 1243 1244 /* 1245 * Re-enable all events if disable == 0. 1246 * If we were previously disabled and events were added, then 1247 * put the new config on the PMU. 1248 */ 1249 static void power_pmu_enable(struct pmu *pmu) 1250 { 1251 struct perf_event *event; 1252 struct cpu_hw_events *cpuhw; 1253 unsigned long flags; 1254 long i; 1255 unsigned long val, mmcr0; 1256 s64 left; 1257 unsigned int hwc_index[MAX_HWEVENTS]; 1258 int n_lim; 1259 int idx; 1260 bool ebb; 1261 1262 if (!ppmu) 1263 return; 1264 local_irq_save(flags); 1265 1266 cpuhw = this_cpu_ptr(&cpu_hw_events); 1267 if (!cpuhw->disabled) 1268 goto out; 1269 1270 if (cpuhw->n_events == 0) { 1271 ppc_set_pmu_inuse(0); 1272 goto out; 1273 } 1274 1275 cpuhw->disabled = 0; 1276 1277 /* 1278 * EBB requires an exclusive group and all events must have the EBB 1279 * flag set, or not set, so we can just check a single event. Also we 1280 * know we have at least one event. 1281 */ 1282 ebb = is_ebb_event(cpuhw->event[0]); 1283 1284 /* 1285 * If we didn't change anything, or only removed events, 1286 * no need to recalculate MMCR* settings and reset the PMCs. 1287 * Just reenable the PMU with the current MMCR* settings 1288 * (possibly updated for removal of events). 1289 */ 1290 if (!cpuhw->n_added) { 1291 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1292 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1293 goto out_enable; 1294 } 1295 1296 /* 1297 * Clear all MMCR settings and recompute them for the new set of events. 1298 */ 1299 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); 1300 1301 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1302 cpuhw->mmcr, cpuhw->event)) { 1303 /* shouldn't ever get here */ 1304 printk(KERN_ERR "oops compute_mmcr failed\n"); 1305 goto out; 1306 } 1307 1308 if (!(ppmu->flags & PPMU_ARCH_207S)) { 1309 /* 1310 * Add in MMCR0 freeze bits corresponding to the attr.exclude_* 1311 * bits for the first event. We have already checked that all 1312 * events have the same value for these bits as the first event. 1313 */ 1314 event = cpuhw->event[0]; 1315 if (event->attr.exclude_user) 1316 cpuhw->mmcr[0] |= MMCR0_FCP; 1317 if (event->attr.exclude_kernel) 1318 cpuhw->mmcr[0] |= freeze_events_kernel; 1319 if (event->attr.exclude_hv) 1320 cpuhw->mmcr[0] |= MMCR0_FCHV; 1321 } 1322 1323 /* 1324 * Write the new configuration to MMCR* with the freeze 1325 * bit set and set the hardware events to their initial values. 1326 * Then unfreeze the events. 1327 */ 1328 ppc_set_pmu_inuse(1); 1329 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1330 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1331 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1332 | MMCR0_FC); 1333 if (ppmu->flags & PPMU_ARCH_207S) 1334 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]); 1335 1336 /* 1337 * Read off any pre-existing events that need to move 1338 * to another PMC. 1339 */ 1340 for (i = 0; i < cpuhw->n_events; ++i) { 1341 event = cpuhw->event[i]; 1342 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1343 power_pmu_read(event); 1344 write_pmc(event->hw.idx, 0); 1345 event->hw.idx = 0; 1346 } 1347 } 1348 1349 /* 1350 * Initialize the PMCs for all the new and moved events. 1351 */ 1352 cpuhw->n_limited = n_lim = 0; 1353 for (i = 0; i < cpuhw->n_events; ++i) { 1354 event = cpuhw->event[i]; 1355 if (event->hw.idx) 1356 continue; 1357 idx = hwc_index[i] + 1; 1358 if (is_limited_pmc(idx)) { 1359 cpuhw->limited_counter[n_lim] = event; 1360 cpuhw->limited_hwidx[n_lim] = idx; 1361 ++n_lim; 1362 continue; 1363 } 1364 1365 if (ebb) 1366 val = local64_read(&event->hw.prev_count); 1367 else { 1368 val = 0; 1369 if (event->hw.sample_period) { 1370 left = local64_read(&event->hw.period_left); 1371 if (left < 0x80000000L) 1372 val = 0x80000000L - left; 1373 } 1374 local64_set(&event->hw.prev_count, val); 1375 } 1376 1377 event->hw.idx = idx; 1378 if (event->hw.state & PERF_HES_STOPPED) 1379 val = 0; 1380 write_pmc(idx, val); 1381 1382 perf_event_update_userpage(event); 1383 } 1384 cpuhw->n_limited = n_lim; 1385 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; 1386 1387 out_enable: 1388 pmao_restore_workaround(ebb); 1389 1390 mmcr0 = ebb_switch_in(ebb, cpuhw); 1391 1392 mb(); 1393 if (cpuhw->bhrb_users) 1394 ppmu->config_bhrb(cpuhw->bhrb_filter); 1395 1396 write_mmcr0(cpuhw, mmcr0); 1397 1398 /* 1399 * Enable instruction sampling if necessary 1400 */ 1401 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1402 mb(); 1403 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); 1404 } 1405 1406 out: 1407 1408 local_irq_restore(flags); 1409 } 1410 1411 static int collect_events(struct perf_event *group, int max_count, 1412 struct perf_event *ctrs[], u64 *events, 1413 unsigned int *flags) 1414 { 1415 int n = 0; 1416 struct perf_event *event; 1417 1418 if (!is_software_event(group)) { 1419 if (n >= max_count) 1420 return -1; 1421 ctrs[n] = group; 1422 flags[n] = group->hw.event_base; 1423 events[n++] = group->hw.config; 1424 } 1425 list_for_each_entry(event, &group->sibling_list, group_entry) { 1426 if (!is_software_event(event) && 1427 event->state != PERF_EVENT_STATE_OFF) { 1428 if (n >= max_count) 1429 return -1; 1430 ctrs[n] = event; 1431 flags[n] = event->hw.event_base; 1432 events[n++] = event->hw.config; 1433 } 1434 } 1435 return n; 1436 } 1437 1438 /* 1439 * Add a event to the PMU. 1440 * If all events are not already frozen, then we disable and 1441 * re-enable the PMU in order to get hw_perf_enable to do the 1442 * actual work of reconfiguring the PMU. 1443 */ 1444 static int power_pmu_add(struct perf_event *event, int ef_flags) 1445 { 1446 struct cpu_hw_events *cpuhw; 1447 unsigned long flags; 1448 int n0; 1449 int ret = -EAGAIN; 1450 1451 local_irq_save(flags); 1452 perf_pmu_disable(event->pmu); 1453 1454 /* 1455 * Add the event to the list (if there is room) 1456 * and check whether the total set is still feasible. 1457 */ 1458 cpuhw = this_cpu_ptr(&cpu_hw_events); 1459 n0 = cpuhw->n_events; 1460 if (n0 >= ppmu->n_counter) 1461 goto out; 1462 cpuhw->event[n0] = event; 1463 cpuhw->events[n0] = event->hw.config; 1464 cpuhw->flags[n0] = event->hw.event_base; 1465 1466 /* 1467 * This event may have been disabled/stopped in record_and_restart() 1468 * because we exceeded the ->event_limit. If re-starting the event, 1469 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1470 * notification is re-enabled. 1471 */ 1472 if (!(ef_flags & PERF_EF_START)) 1473 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1474 else 1475 event->hw.state = 0; 1476 1477 /* 1478 * If group events scheduling transaction was started, 1479 * skip the schedulability test here, it will be performed 1480 * at commit time(->commit_txn) as a whole 1481 */ 1482 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD) 1483 goto nocheck; 1484 1485 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1486 goto out; 1487 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) 1488 goto out; 1489 event->hw.config = cpuhw->events[n0]; 1490 1491 nocheck: 1492 ebb_event_add(event); 1493 1494 ++cpuhw->n_events; 1495 ++cpuhw->n_added; 1496 1497 ret = 0; 1498 out: 1499 if (has_branch_stack(event)) { 1500 power_pmu_bhrb_enable(event); 1501 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1502 event->attr.branch_sample_type); 1503 } 1504 1505 /* 1506 * Workaround for POWER9 DD1 to use the Instruction Counter 1507 * register value for instruction counting 1508 */ 1509 if (use_ic(event->attr.config)) 1510 cpuhw->ic_init = mfspr(SPRN_IC); 1511 1512 perf_pmu_enable(event->pmu); 1513 local_irq_restore(flags); 1514 return ret; 1515 } 1516 1517 /* 1518 * Remove a event from the PMU. 1519 */ 1520 static void power_pmu_del(struct perf_event *event, int ef_flags) 1521 { 1522 struct cpu_hw_events *cpuhw; 1523 long i; 1524 unsigned long flags; 1525 1526 local_irq_save(flags); 1527 perf_pmu_disable(event->pmu); 1528 1529 power_pmu_read(event); 1530 1531 cpuhw = this_cpu_ptr(&cpu_hw_events); 1532 for (i = 0; i < cpuhw->n_events; ++i) { 1533 if (event == cpuhw->event[i]) { 1534 while (++i < cpuhw->n_events) { 1535 cpuhw->event[i-1] = cpuhw->event[i]; 1536 cpuhw->events[i-1] = cpuhw->events[i]; 1537 cpuhw->flags[i-1] = cpuhw->flags[i]; 1538 } 1539 --cpuhw->n_events; 1540 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); 1541 if (event->hw.idx) { 1542 write_pmc(event->hw.idx, 0); 1543 event->hw.idx = 0; 1544 } 1545 perf_event_update_userpage(event); 1546 break; 1547 } 1548 } 1549 for (i = 0; i < cpuhw->n_limited; ++i) 1550 if (event == cpuhw->limited_counter[i]) 1551 break; 1552 if (i < cpuhw->n_limited) { 1553 while (++i < cpuhw->n_limited) { 1554 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1555 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1556 } 1557 --cpuhw->n_limited; 1558 } 1559 if (cpuhw->n_events == 0) { 1560 /* disable exceptions if no events are running */ 1561 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); 1562 } 1563 1564 if (has_branch_stack(event)) 1565 power_pmu_bhrb_disable(event); 1566 1567 perf_pmu_enable(event->pmu); 1568 local_irq_restore(flags); 1569 } 1570 1571 /* 1572 * POWER-PMU does not support disabling individual counters, hence 1573 * program their cycle counter to their max value and ignore the interrupts. 1574 */ 1575 1576 static void power_pmu_start(struct perf_event *event, int ef_flags) 1577 { 1578 unsigned long flags; 1579 s64 left; 1580 unsigned long val; 1581 1582 if (!event->hw.idx || !event->hw.sample_period) 1583 return; 1584 1585 if (!(event->hw.state & PERF_HES_STOPPED)) 1586 return; 1587 1588 if (ef_flags & PERF_EF_RELOAD) 1589 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1590 1591 local_irq_save(flags); 1592 perf_pmu_disable(event->pmu); 1593 1594 event->hw.state = 0; 1595 left = local64_read(&event->hw.period_left); 1596 1597 val = 0; 1598 if (left < 0x80000000L) 1599 val = 0x80000000L - left; 1600 1601 write_pmc(event->hw.idx, val); 1602 1603 perf_event_update_userpage(event); 1604 perf_pmu_enable(event->pmu); 1605 local_irq_restore(flags); 1606 } 1607 1608 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1609 { 1610 unsigned long flags; 1611 1612 if (!event->hw.idx || !event->hw.sample_period) 1613 return; 1614 1615 if (event->hw.state & PERF_HES_STOPPED) 1616 return; 1617 1618 local_irq_save(flags); 1619 perf_pmu_disable(event->pmu); 1620 1621 power_pmu_read(event); 1622 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1623 write_pmc(event->hw.idx, 0); 1624 1625 perf_event_update_userpage(event); 1626 perf_pmu_enable(event->pmu); 1627 local_irq_restore(flags); 1628 } 1629 1630 /* 1631 * Start group events scheduling transaction 1632 * Set the flag to make pmu::enable() not perform the 1633 * schedulability test, it will be performed at commit time 1634 * 1635 * We only support PERF_PMU_TXN_ADD transactions. Save the 1636 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1637 * transactions. 1638 */ 1639 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1640 { 1641 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1642 1643 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ 1644 1645 cpuhw->txn_flags = txn_flags; 1646 if (txn_flags & ~PERF_PMU_TXN_ADD) 1647 return; 1648 1649 perf_pmu_disable(pmu); 1650 cpuhw->n_txn_start = cpuhw->n_events; 1651 } 1652 1653 /* 1654 * Stop group events scheduling transaction 1655 * Clear the flag and pmu::enable() will perform the 1656 * schedulability test. 1657 */ 1658 static void power_pmu_cancel_txn(struct pmu *pmu) 1659 { 1660 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1661 unsigned int txn_flags; 1662 1663 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1664 1665 txn_flags = cpuhw->txn_flags; 1666 cpuhw->txn_flags = 0; 1667 if (txn_flags & ~PERF_PMU_TXN_ADD) 1668 return; 1669 1670 perf_pmu_enable(pmu); 1671 } 1672 1673 /* 1674 * Commit group events scheduling transaction 1675 * Perform the group schedulability test as a whole 1676 * Return 0 if success 1677 */ 1678 static int power_pmu_commit_txn(struct pmu *pmu) 1679 { 1680 struct cpu_hw_events *cpuhw; 1681 long i, n; 1682 1683 if (!ppmu) 1684 return -EAGAIN; 1685 1686 cpuhw = this_cpu_ptr(&cpu_hw_events); 1687 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1688 1689 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) { 1690 cpuhw->txn_flags = 0; 1691 return 0; 1692 } 1693 1694 n = cpuhw->n_events; 1695 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1696 return -EAGAIN; 1697 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); 1698 if (i < 0) 1699 return -EAGAIN; 1700 1701 for (i = cpuhw->n_txn_start; i < n; ++i) 1702 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1703 1704 cpuhw->txn_flags = 0; 1705 perf_pmu_enable(pmu); 1706 return 0; 1707 } 1708 1709 /* 1710 * Return 1 if we might be able to put event on a limited PMC, 1711 * or 0 if not. 1712 * A event can only go on a limited PMC if it counts something 1713 * that a limited PMC can count, doesn't require interrupts, and 1714 * doesn't exclude any processor mode. 1715 */ 1716 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1717 unsigned int flags) 1718 { 1719 int n; 1720 u64 alt[MAX_EVENT_ALTERNATIVES]; 1721 1722 if (event->attr.exclude_user 1723 || event->attr.exclude_kernel 1724 || event->attr.exclude_hv 1725 || event->attr.sample_period) 1726 return 0; 1727 1728 if (ppmu->limited_pmc_event(ev)) 1729 return 1; 1730 1731 /* 1732 * The requested event_id isn't on a limited PMC already; 1733 * see if any alternative code goes on a limited PMC. 1734 */ 1735 if (!ppmu->get_alternatives) 1736 return 0; 1737 1738 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1739 n = ppmu->get_alternatives(ev, flags, alt); 1740 1741 return n > 0; 1742 } 1743 1744 /* 1745 * Find an alternative event_id that goes on a normal PMC, if possible, 1746 * and return the event_id code, or 0 if there is no such alternative. 1747 * (Note: event_id code 0 is "don't count" on all machines.) 1748 */ 1749 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1750 { 1751 u64 alt[MAX_EVENT_ALTERNATIVES]; 1752 int n; 1753 1754 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1755 n = ppmu->get_alternatives(ev, flags, alt); 1756 if (!n) 1757 return 0; 1758 return alt[0]; 1759 } 1760 1761 /* Number of perf_events counting hardware events */ 1762 static atomic_t num_events; 1763 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1764 static DEFINE_MUTEX(pmc_reserve_mutex); 1765 1766 /* 1767 * Release the PMU if this is the last perf_event. 1768 */ 1769 static void hw_perf_event_destroy(struct perf_event *event) 1770 { 1771 if (!atomic_add_unless(&num_events, -1, 1)) { 1772 mutex_lock(&pmc_reserve_mutex); 1773 if (atomic_dec_return(&num_events) == 0) 1774 release_pmc_hardware(); 1775 mutex_unlock(&pmc_reserve_mutex); 1776 } 1777 } 1778 1779 /* 1780 * Translate a generic cache event_id config to a raw event_id code. 1781 */ 1782 static int hw_perf_cache_event(u64 config, u64 *eventp) 1783 { 1784 unsigned long type, op, result; 1785 int ev; 1786 1787 if (!ppmu->cache_events) 1788 return -EINVAL; 1789 1790 /* unpack config */ 1791 type = config & 0xff; 1792 op = (config >> 8) & 0xff; 1793 result = (config >> 16) & 0xff; 1794 1795 if (type >= PERF_COUNT_HW_CACHE_MAX || 1796 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1797 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1798 return -EINVAL; 1799 1800 ev = (*ppmu->cache_events)[type][op][result]; 1801 if (ev == 0) 1802 return -EOPNOTSUPP; 1803 if (ev == -1) 1804 return -EINVAL; 1805 *eventp = ev; 1806 return 0; 1807 } 1808 1809 static int power_pmu_event_init(struct perf_event *event) 1810 { 1811 u64 ev; 1812 unsigned long flags; 1813 struct perf_event *ctrs[MAX_HWEVENTS]; 1814 u64 events[MAX_HWEVENTS]; 1815 unsigned int cflags[MAX_HWEVENTS]; 1816 int n; 1817 int err; 1818 struct cpu_hw_events *cpuhw; 1819 1820 if (!ppmu) 1821 return -ENOENT; 1822 1823 if (has_branch_stack(event)) { 1824 /* PMU has BHRB enabled */ 1825 if (!(ppmu->flags & PPMU_ARCH_207S)) 1826 return -EOPNOTSUPP; 1827 } 1828 1829 switch (event->attr.type) { 1830 case PERF_TYPE_HARDWARE: 1831 ev = event->attr.config; 1832 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1833 return -EOPNOTSUPP; 1834 ev = ppmu->generic_events[ev]; 1835 break; 1836 case PERF_TYPE_HW_CACHE: 1837 err = hw_perf_cache_event(event->attr.config, &ev); 1838 if (err) 1839 return err; 1840 break; 1841 case PERF_TYPE_RAW: 1842 ev = event->attr.config; 1843 break; 1844 default: 1845 return -ENOENT; 1846 } 1847 1848 event->hw.config_base = ev; 1849 event->hw.idx = 0; 1850 1851 /* 1852 * If we are not running on a hypervisor, force the 1853 * exclude_hv bit to 0 so that we don't care what 1854 * the user set it to. 1855 */ 1856 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1857 event->attr.exclude_hv = 0; 1858 1859 /* 1860 * If this is a per-task event, then we can use 1861 * PM_RUN_* events interchangeably with their non RUN_* 1862 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1863 * XXX we should check if the task is an idle task. 1864 */ 1865 flags = 0; 1866 if (event->attach_state & PERF_ATTACH_TASK) 1867 flags |= PPMU_ONLY_COUNT_RUN; 1868 1869 /* 1870 * If this machine has limited events, check whether this 1871 * event_id could go on a limited event. 1872 */ 1873 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1874 if (can_go_on_limited_pmc(event, ev, flags)) { 1875 flags |= PPMU_LIMITED_PMC_OK; 1876 } else if (ppmu->limited_pmc_event(ev)) { 1877 /* 1878 * The requested event_id is on a limited PMC, 1879 * but we can't use a limited PMC; see if any 1880 * alternative goes on a normal PMC. 1881 */ 1882 ev = normal_pmc_alternative(ev, flags); 1883 if (!ev) 1884 return -EINVAL; 1885 } 1886 } 1887 1888 /* Extra checks for EBB */ 1889 err = ebb_event_check(event); 1890 if (err) 1891 return err; 1892 1893 /* 1894 * If this is in a group, check if it can go on with all the 1895 * other hardware events in the group. We assume the event 1896 * hasn't been linked into its leader's sibling list at this point. 1897 */ 1898 n = 0; 1899 if (event->group_leader != event) { 1900 n = collect_events(event->group_leader, ppmu->n_counter - 1, 1901 ctrs, events, cflags); 1902 if (n < 0) 1903 return -EINVAL; 1904 } 1905 events[n] = ev; 1906 ctrs[n] = event; 1907 cflags[n] = flags; 1908 if (check_excludes(ctrs, cflags, n, 1)) 1909 return -EINVAL; 1910 1911 cpuhw = &get_cpu_var(cpu_hw_events); 1912 err = power_check_constraints(cpuhw, events, cflags, n + 1); 1913 1914 if (has_branch_stack(event)) { 1915 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1916 event->attr.branch_sample_type); 1917 1918 if (cpuhw->bhrb_filter == -1) { 1919 put_cpu_var(cpu_hw_events); 1920 return -EOPNOTSUPP; 1921 } 1922 } 1923 1924 put_cpu_var(cpu_hw_events); 1925 if (err) 1926 return -EINVAL; 1927 1928 event->hw.config = events[n]; 1929 event->hw.event_base = cflags[n]; 1930 event->hw.last_period = event->hw.sample_period; 1931 local64_set(&event->hw.period_left, event->hw.last_period); 1932 1933 /* 1934 * For EBB events we just context switch the PMC value, we don't do any 1935 * of the sample_period logic. We use hw.prev_count for this. 1936 */ 1937 if (is_ebb_event(event)) 1938 local64_set(&event->hw.prev_count, 0); 1939 1940 /* 1941 * See if we need to reserve the PMU. 1942 * If no events are currently in use, then we have to take a 1943 * mutex to ensure that we don't race with another task doing 1944 * reserve_pmc_hardware or release_pmc_hardware. 1945 */ 1946 err = 0; 1947 if (!atomic_inc_not_zero(&num_events)) { 1948 mutex_lock(&pmc_reserve_mutex); 1949 if (atomic_read(&num_events) == 0 && 1950 reserve_pmc_hardware(perf_event_interrupt)) 1951 err = -EBUSY; 1952 else 1953 atomic_inc(&num_events); 1954 mutex_unlock(&pmc_reserve_mutex); 1955 } 1956 event->destroy = hw_perf_event_destroy; 1957 1958 return err; 1959 } 1960 1961 static int power_pmu_event_idx(struct perf_event *event) 1962 { 1963 return event->hw.idx; 1964 } 1965 1966 ssize_t power_events_sysfs_show(struct device *dev, 1967 struct device_attribute *attr, char *page) 1968 { 1969 struct perf_pmu_events_attr *pmu_attr; 1970 1971 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 1972 1973 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 1974 } 1975 1976 static struct pmu power_pmu = { 1977 .pmu_enable = power_pmu_enable, 1978 .pmu_disable = power_pmu_disable, 1979 .event_init = power_pmu_event_init, 1980 .add = power_pmu_add, 1981 .del = power_pmu_del, 1982 .start = power_pmu_start, 1983 .stop = power_pmu_stop, 1984 .read = power_pmu_read, 1985 .start_txn = power_pmu_start_txn, 1986 .cancel_txn = power_pmu_cancel_txn, 1987 .commit_txn = power_pmu_commit_txn, 1988 .event_idx = power_pmu_event_idx, 1989 .sched_task = power_pmu_sched_task, 1990 }; 1991 1992 /* 1993 * A counter has overflowed; update its count and record 1994 * things if requested. Note that interrupts are hard-disabled 1995 * here so there is no possibility of being interrupted. 1996 */ 1997 static void record_and_restart(struct perf_event *event, unsigned long val, 1998 struct pt_regs *regs) 1999 { 2000 u64 period = event->hw.sample_period; 2001 s64 prev, delta, left; 2002 int record = 0; 2003 2004 if (event->hw.state & PERF_HES_STOPPED) { 2005 write_pmc(event->hw.idx, 0); 2006 return; 2007 } 2008 2009 /* we don't have to worry about interrupts here */ 2010 prev = local64_read(&event->hw.prev_count); 2011 delta = check_and_compute_delta(prev, val); 2012 local64_add(delta, &event->count); 2013 2014 /* 2015 * See if the total period for this event has expired, 2016 * and update for the next period. 2017 */ 2018 val = 0; 2019 left = local64_read(&event->hw.period_left) - delta; 2020 if (delta == 0) 2021 left++; 2022 if (period) { 2023 if (left <= 0) { 2024 left += period; 2025 if (left <= 0) 2026 left = period; 2027 record = siar_valid(regs); 2028 event->hw.last_period = event->hw.sample_period; 2029 } 2030 if (left < 0x80000000LL) 2031 val = 0x80000000LL - left; 2032 } 2033 2034 write_pmc(event->hw.idx, val); 2035 local64_set(&event->hw.prev_count, val); 2036 local64_set(&event->hw.period_left, left); 2037 perf_event_update_userpage(event); 2038 2039 /* 2040 * Finally record data if requested. 2041 */ 2042 if (record) { 2043 struct perf_sample_data data; 2044 2045 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 2046 2047 if (event->attr.sample_type & 2048 (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) 2049 perf_get_data_addr(regs, &data.addr); 2050 2051 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 2052 struct cpu_hw_events *cpuhw; 2053 cpuhw = this_cpu_ptr(&cpu_hw_events); 2054 power_pmu_bhrb_read(cpuhw); 2055 data.br_stack = &cpuhw->bhrb_stack; 2056 } 2057 2058 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC && 2059 ppmu->get_mem_data_src) 2060 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs); 2061 2062 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT && 2063 ppmu->get_mem_weight) 2064 ppmu->get_mem_weight(&data.weight); 2065 2066 if (perf_event_overflow(event, &data, regs)) 2067 power_pmu_stop(event, 0); 2068 } 2069 } 2070 2071 /* 2072 * Called from generic code to get the misc flags (i.e. processor mode) 2073 * for an event_id. 2074 */ 2075 unsigned long perf_misc_flags(struct pt_regs *regs) 2076 { 2077 u32 flags = perf_get_misc_flags(regs); 2078 2079 if (flags) 2080 return flags; 2081 return user_mode(regs) ? PERF_RECORD_MISC_USER : 2082 PERF_RECORD_MISC_KERNEL; 2083 } 2084 2085 /* 2086 * Called from generic code to get the instruction pointer 2087 * for an event_id. 2088 */ 2089 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2090 { 2091 bool use_siar = regs_use_siar(regs); 2092 2093 if (use_siar && siar_valid(regs)) 2094 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 2095 else if (use_siar) 2096 return 0; // no valid instruction pointer 2097 else 2098 return regs->nip; 2099 } 2100 2101 static bool pmc_overflow_power7(unsigned long val) 2102 { 2103 /* 2104 * Events on POWER7 can roll back if a speculative event doesn't 2105 * eventually complete. Unfortunately in some rare cases they will 2106 * raise a performance monitor exception. We need to catch this to 2107 * ensure we reset the PMC. In all cases the PMC will be 256 or less 2108 * cycles from overflow. 2109 * 2110 * We only do this if the first pass fails to find any overflowing 2111 * PMCs because a user might set a period of less than 256 and we 2112 * don't want to mistakenly reset them. 2113 */ 2114 if ((0x80000000 - val) <= 256) 2115 return true; 2116 2117 return false; 2118 } 2119 2120 static bool pmc_overflow(unsigned long val) 2121 { 2122 if ((int)val < 0) 2123 return true; 2124 2125 return false; 2126 } 2127 2128 /* 2129 * Performance monitor interrupt stuff 2130 */ 2131 static void perf_event_interrupt(struct pt_regs *regs) 2132 { 2133 int i, j; 2134 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 2135 struct perf_event *event; 2136 unsigned long val[8]; 2137 int found, active; 2138 int nmi; 2139 2140 if (cpuhw->n_limited) 2141 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2142 mfspr(SPRN_PMC6)); 2143 2144 perf_read_regs(regs); 2145 2146 nmi = perf_intr_is_nmi(regs); 2147 if (nmi) 2148 nmi_enter(); 2149 else 2150 irq_enter(); 2151 2152 /* Read all the PMCs since we'll need them a bunch of times */ 2153 for (i = 0; i < ppmu->n_counter; ++i) 2154 val[i] = read_pmc(i + 1); 2155 2156 /* Try to find what caused the IRQ */ 2157 found = 0; 2158 for (i = 0; i < ppmu->n_counter; ++i) { 2159 if (!pmc_overflow(val[i])) 2160 continue; 2161 if (is_limited_pmc(i + 1)) 2162 continue; /* these won't generate IRQs */ 2163 /* 2164 * We've found one that's overflowed. For active 2165 * counters we need to log this. For inactive 2166 * counters, we need to reset it anyway 2167 */ 2168 found = 1; 2169 active = 0; 2170 for (j = 0; j < cpuhw->n_events; ++j) { 2171 event = cpuhw->event[j]; 2172 if (event->hw.idx == (i + 1)) { 2173 active = 1; 2174 record_and_restart(event, val[i], regs); 2175 break; 2176 } 2177 } 2178 if (!active) 2179 /* reset non active counters that have overflowed */ 2180 write_pmc(i + 1, 0); 2181 } 2182 if (!found && pvr_version_is(PVR_POWER7)) { 2183 /* check active counters for special buggy p7 overflow */ 2184 for (i = 0; i < cpuhw->n_events; ++i) { 2185 event = cpuhw->event[i]; 2186 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2187 continue; 2188 if (pmc_overflow_power7(val[event->hw.idx - 1])) { 2189 /* event has overflowed in a buggy way*/ 2190 found = 1; 2191 record_and_restart(event, 2192 val[event->hw.idx - 1], 2193 regs); 2194 } 2195 } 2196 } 2197 if (!found && !nmi && printk_ratelimit()) 2198 printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2199 2200 /* 2201 * Reset MMCR0 to its normal value. This will set PMXE and 2202 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2203 * and thus allow interrupts to occur again. 2204 * XXX might want to use MSR.PM to keep the events frozen until 2205 * we get back out of this interrupt. 2206 */ 2207 write_mmcr0(cpuhw, cpuhw->mmcr[0]); 2208 2209 if (nmi) 2210 nmi_exit(); 2211 else 2212 irq_exit(); 2213 } 2214 2215 static int power_pmu_prepare_cpu(unsigned int cpu) 2216 { 2217 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2218 2219 if (ppmu) { 2220 memset(cpuhw, 0, sizeof(*cpuhw)); 2221 cpuhw->mmcr[0] = MMCR0_FC; 2222 } 2223 return 0; 2224 } 2225 2226 int register_power_pmu(struct power_pmu *pmu) 2227 { 2228 if (ppmu) 2229 return -EBUSY; /* something's already registered */ 2230 2231 ppmu = pmu; 2232 pr_info("%s performance monitor hardware support registered\n", 2233 pmu->name); 2234 2235 power_pmu.attr_groups = ppmu->attr_groups; 2236 2237 #ifdef MSR_HV 2238 /* 2239 * Use FCHV to ignore kernel events if MSR.HV is set. 2240 */ 2241 if (mfmsr() & MSR_HV) 2242 freeze_events_kernel = MMCR0_FCHV; 2243 #endif /* CONFIG_PPC64 */ 2244 2245 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2246 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", 2247 power_pmu_prepare_cpu, NULL); 2248 return 0; 2249 } 2250