xref: /openbmc/linux/arch/powerpc/perf/core-book3s.c (revision 63dc02bd)
1 /*
2  * Performance event support - powerpc architecture code
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
21 
22 struct cpu_hw_events {
23 	int n_events;
24 	int n_percpu;
25 	int disabled;
26 	int n_added;
27 	int n_limited;
28 	u8  pmcs_enabled;
29 	struct perf_event *event[MAX_HWEVENTS];
30 	u64 events[MAX_HWEVENTS];
31 	unsigned int flags[MAX_HWEVENTS];
32 	unsigned long mmcr[3];
33 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
34 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
36 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
37 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
38 
39 	unsigned int group_flag;
40 	int n_txn_start;
41 };
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
43 
44 struct power_pmu *ppmu;
45 
46 /*
47  * Normally, to ignore kernel events we set the FCS (freeze counters
48  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
49  * hypervisor bit set in the MSR, or if we are running on a processor
50  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
51  * then we need to use the FCHV bit to ignore kernel events.
52  */
53 static unsigned int freeze_events_kernel = MMCR0_FCS;
54 
55 /*
56  * 32-bit doesn't have MMCRA but does have an MMCR2,
57  * and a few other names are different.
58  */
59 #ifdef CONFIG_PPC32
60 
61 #define MMCR0_FCHV		0
62 #define MMCR0_PMCjCE		MMCR0_PMCnCE
63 
64 #define SPRN_MMCRA		SPRN_MMCR2
65 #define MMCRA_SAMPLE_ENABLE	0
66 
67 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
68 {
69 	return 0;
70 }
71 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
72 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
73 {
74 	return 0;
75 }
76 static inline void perf_read_regs(struct pt_regs *regs) { }
77 static inline int perf_intr_is_nmi(struct pt_regs *regs)
78 {
79 	return 0;
80 }
81 
82 #endif /* CONFIG_PPC32 */
83 
84 /*
85  * Things that are specific to 64-bit implementations.
86  */
87 #ifdef CONFIG_PPC64
88 
89 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
90 {
91 	unsigned long mmcra = regs->dsisr;
92 
93 	if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
94 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
95 		if (slot > 1)
96 			return 4 * (slot - 1);
97 	}
98 	return 0;
99 }
100 
101 /*
102  * The user wants a data address recorded.
103  * If we're not doing instruction sampling, give them the SDAR
104  * (sampled data address).  If we are doing instruction sampling, then
105  * only give them the SDAR if it corresponds to the instruction
106  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC
107  * bit in MMCRA.
108  */
109 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
110 {
111 	unsigned long mmcra = regs->dsisr;
112 	unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
113 		POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
114 
115 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
116 		*addrp = mfspr(SPRN_SDAR);
117 }
118 
119 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
120 {
121 	if (regs->msr & MSR_PR)
122 		return PERF_RECORD_MISC_USER;
123 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
124 		return PERF_RECORD_MISC_HYPERVISOR;
125 	return PERF_RECORD_MISC_KERNEL;
126 }
127 
128 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
129 {
130 	unsigned long mmcra = regs->dsisr;
131 	unsigned long sihv = MMCRA_SIHV;
132 	unsigned long sipr = MMCRA_SIPR;
133 
134 	/* Not a PMU interrupt: Make up flags from regs->msr */
135 	if (TRAP(regs) != 0xf00)
136 		return perf_flags_from_msr(regs);
137 
138 	/*
139 	 * If we don't support continuous sampling and this
140 	 * is not a marked event, same deal
141 	 */
142 	if ((ppmu->flags & PPMU_NO_CONT_SAMPLING) &&
143 	    !(mmcra & MMCRA_SAMPLE_ENABLE))
144 		return perf_flags_from_msr(regs);
145 
146 	/*
147 	 * If we don't have flags in MMCRA, rather than using
148 	 * the MSR, we intuit the flags from the address in
149 	 * SIAR which should give slightly more reliable
150 	 * results
151 	 */
152 	if (ppmu->flags & PPMU_NO_SIPR) {
153 		unsigned long siar = mfspr(SPRN_SIAR);
154 		if (siar >= PAGE_OFFSET)
155 			return PERF_RECORD_MISC_KERNEL;
156 		return PERF_RECORD_MISC_USER;
157 	}
158 
159 	if (ppmu->flags & PPMU_ALT_SIPR) {
160 		sihv = POWER6_MMCRA_SIHV;
161 		sipr = POWER6_MMCRA_SIPR;
162 	}
163 
164 	/* PR has priority over HV, so order below is important */
165 	if (mmcra & sipr)
166 		return PERF_RECORD_MISC_USER;
167 	if ((mmcra & sihv) && (freeze_events_kernel != MMCR0_FCHV))
168 		return PERF_RECORD_MISC_HYPERVISOR;
169 	return PERF_RECORD_MISC_KERNEL;
170 }
171 
172 /*
173  * Overload regs->dsisr to store MMCRA so we only need to read it once
174  * on each interrupt.
175  */
176 static inline void perf_read_regs(struct pt_regs *regs)
177 {
178 	regs->dsisr = mfspr(SPRN_MMCRA);
179 }
180 
181 /*
182  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
183  * it as an NMI.
184  */
185 static inline int perf_intr_is_nmi(struct pt_regs *regs)
186 {
187 	return !regs->softe;
188 }
189 
190 #endif /* CONFIG_PPC64 */
191 
192 static void perf_event_interrupt(struct pt_regs *regs);
193 
194 void perf_event_print_debug(void)
195 {
196 }
197 
198 /*
199  * Read one performance monitor counter (PMC).
200  */
201 static unsigned long read_pmc(int idx)
202 {
203 	unsigned long val;
204 
205 	switch (idx) {
206 	case 1:
207 		val = mfspr(SPRN_PMC1);
208 		break;
209 	case 2:
210 		val = mfspr(SPRN_PMC2);
211 		break;
212 	case 3:
213 		val = mfspr(SPRN_PMC3);
214 		break;
215 	case 4:
216 		val = mfspr(SPRN_PMC4);
217 		break;
218 	case 5:
219 		val = mfspr(SPRN_PMC5);
220 		break;
221 	case 6:
222 		val = mfspr(SPRN_PMC6);
223 		break;
224 #ifdef CONFIG_PPC64
225 	case 7:
226 		val = mfspr(SPRN_PMC7);
227 		break;
228 	case 8:
229 		val = mfspr(SPRN_PMC8);
230 		break;
231 #endif /* CONFIG_PPC64 */
232 	default:
233 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
234 		val = 0;
235 	}
236 	return val;
237 }
238 
239 /*
240  * Write one PMC.
241  */
242 static void write_pmc(int idx, unsigned long val)
243 {
244 	switch (idx) {
245 	case 1:
246 		mtspr(SPRN_PMC1, val);
247 		break;
248 	case 2:
249 		mtspr(SPRN_PMC2, val);
250 		break;
251 	case 3:
252 		mtspr(SPRN_PMC3, val);
253 		break;
254 	case 4:
255 		mtspr(SPRN_PMC4, val);
256 		break;
257 	case 5:
258 		mtspr(SPRN_PMC5, val);
259 		break;
260 	case 6:
261 		mtspr(SPRN_PMC6, val);
262 		break;
263 #ifdef CONFIG_PPC64
264 	case 7:
265 		mtspr(SPRN_PMC7, val);
266 		break;
267 	case 8:
268 		mtspr(SPRN_PMC8, val);
269 		break;
270 #endif /* CONFIG_PPC64 */
271 	default:
272 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
273 	}
274 }
275 
276 /*
277  * Check if a set of events can all go on the PMU at once.
278  * If they can't, this will look at alternative codes for the events
279  * and see if any combination of alternative codes is feasible.
280  * The feasible set is returned in event_id[].
281  */
282 static int power_check_constraints(struct cpu_hw_events *cpuhw,
283 				   u64 event_id[], unsigned int cflags[],
284 				   int n_ev)
285 {
286 	unsigned long mask, value, nv;
287 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
288 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
289 	int i, j;
290 	unsigned long addf = ppmu->add_fields;
291 	unsigned long tadd = ppmu->test_adder;
292 
293 	if (n_ev > ppmu->n_counter)
294 		return -1;
295 
296 	/* First see if the events will go on as-is */
297 	for (i = 0; i < n_ev; ++i) {
298 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
299 		    && !ppmu->limited_pmc_event(event_id[i])) {
300 			ppmu->get_alternatives(event_id[i], cflags[i],
301 					       cpuhw->alternatives[i]);
302 			event_id[i] = cpuhw->alternatives[i][0];
303 		}
304 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
305 					 &cpuhw->avalues[i][0]))
306 			return -1;
307 	}
308 	value = mask = 0;
309 	for (i = 0; i < n_ev; ++i) {
310 		nv = (value | cpuhw->avalues[i][0]) +
311 			(value & cpuhw->avalues[i][0] & addf);
312 		if ((((nv + tadd) ^ value) & mask) != 0 ||
313 		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
314 		     cpuhw->amasks[i][0]) != 0)
315 			break;
316 		value = nv;
317 		mask |= cpuhw->amasks[i][0];
318 	}
319 	if (i == n_ev)
320 		return 0;	/* all OK */
321 
322 	/* doesn't work, gather alternatives... */
323 	if (!ppmu->get_alternatives)
324 		return -1;
325 	for (i = 0; i < n_ev; ++i) {
326 		choice[i] = 0;
327 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
328 						  cpuhw->alternatives[i]);
329 		for (j = 1; j < n_alt[i]; ++j)
330 			ppmu->get_constraint(cpuhw->alternatives[i][j],
331 					     &cpuhw->amasks[i][j],
332 					     &cpuhw->avalues[i][j]);
333 	}
334 
335 	/* enumerate all possibilities and see if any will work */
336 	i = 0;
337 	j = -1;
338 	value = mask = nv = 0;
339 	while (i < n_ev) {
340 		if (j >= 0) {
341 			/* we're backtracking, restore context */
342 			value = svalues[i];
343 			mask = smasks[i];
344 			j = choice[i];
345 		}
346 		/*
347 		 * See if any alternative k for event_id i,
348 		 * where k > j, will satisfy the constraints.
349 		 */
350 		while (++j < n_alt[i]) {
351 			nv = (value | cpuhw->avalues[i][j]) +
352 				(value & cpuhw->avalues[i][j] & addf);
353 			if ((((nv + tadd) ^ value) & mask) == 0 &&
354 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
355 			     & cpuhw->amasks[i][j]) == 0)
356 				break;
357 		}
358 		if (j >= n_alt[i]) {
359 			/*
360 			 * No feasible alternative, backtrack
361 			 * to event_id i-1 and continue enumerating its
362 			 * alternatives from where we got up to.
363 			 */
364 			if (--i < 0)
365 				return -1;
366 		} else {
367 			/*
368 			 * Found a feasible alternative for event_id i,
369 			 * remember where we got up to with this event_id,
370 			 * go on to the next event_id, and start with
371 			 * the first alternative for it.
372 			 */
373 			choice[i] = j;
374 			svalues[i] = value;
375 			smasks[i] = mask;
376 			value = nv;
377 			mask |= cpuhw->amasks[i][j];
378 			++i;
379 			j = -1;
380 		}
381 	}
382 
383 	/* OK, we have a feasible combination, tell the caller the solution */
384 	for (i = 0; i < n_ev; ++i)
385 		event_id[i] = cpuhw->alternatives[i][choice[i]];
386 	return 0;
387 }
388 
389 /*
390  * Check if newly-added events have consistent settings for
391  * exclude_{user,kernel,hv} with each other and any previously
392  * added events.
393  */
394 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
395 			  int n_prev, int n_new)
396 {
397 	int eu = 0, ek = 0, eh = 0;
398 	int i, n, first;
399 	struct perf_event *event;
400 
401 	n = n_prev + n_new;
402 	if (n <= 1)
403 		return 0;
404 
405 	first = 1;
406 	for (i = 0; i < n; ++i) {
407 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
408 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
409 			continue;
410 		}
411 		event = ctrs[i];
412 		if (first) {
413 			eu = event->attr.exclude_user;
414 			ek = event->attr.exclude_kernel;
415 			eh = event->attr.exclude_hv;
416 			first = 0;
417 		} else if (event->attr.exclude_user != eu ||
418 			   event->attr.exclude_kernel != ek ||
419 			   event->attr.exclude_hv != eh) {
420 			return -EAGAIN;
421 		}
422 	}
423 
424 	if (eu || ek || eh)
425 		for (i = 0; i < n; ++i)
426 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
427 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
428 
429 	return 0;
430 }
431 
432 static u64 check_and_compute_delta(u64 prev, u64 val)
433 {
434 	u64 delta = (val - prev) & 0xfffffffful;
435 
436 	/*
437 	 * POWER7 can roll back counter values, if the new value is smaller
438 	 * than the previous value it will cause the delta and the counter to
439 	 * have bogus values unless we rolled a counter over.  If a coutner is
440 	 * rolled back, it will be smaller, but within 256, which is the maximum
441 	 * number of events to rollback at once.  If we dectect a rollback
442 	 * return 0.  This can lead to a small lack of precision in the
443 	 * counters.
444 	 */
445 	if (prev > val && (prev - val) < 256)
446 		delta = 0;
447 
448 	return delta;
449 }
450 
451 static void power_pmu_read(struct perf_event *event)
452 {
453 	s64 val, delta, prev;
454 
455 	if (event->hw.state & PERF_HES_STOPPED)
456 		return;
457 
458 	if (!event->hw.idx)
459 		return;
460 	/*
461 	 * Performance monitor interrupts come even when interrupts
462 	 * are soft-disabled, as long as interrupts are hard-enabled.
463 	 * Therefore we treat them like NMIs.
464 	 */
465 	do {
466 		prev = local64_read(&event->hw.prev_count);
467 		barrier();
468 		val = read_pmc(event->hw.idx);
469 		delta = check_and_compute_delta(prev, val);
470 		if (!delta)
471 			return;
472 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
473 
474 	local64_add(delta, &event->count);
475 	local64_sub(delta, &event->hw.period_left);
476 }
477 
478 /*
479  * On some machines, PMC5 and PMC6 can't be written, don't respect
480  * the freeze conditions, and don't generate interrupts.  This tells
481  * us if `event' is using such a PMC.
482  */
483 static int is_limited_pmc(int pmcnum)
484 {
485 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
486 		&& (pmcnum == 5 || pmcnum == 6);
487 }
488 
489 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
490 				    unsigned long pmc5, unsigned long pmc6)
491 {
492 	struct perf_event *event;
493 	u64 val, prev, delta;
494 	int i;
495 
496 	for (i = 0; i < cpuhw->n_limited; ++i) {
497 		event = cpuhw->limited_counter[i];
498 		if (!event->hw.idx)
499 			continue;
500 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
501 		prev = local64_read(&event->hw.prev_count);
502 		event->hw.idx = 0;
503 		delta = check_and_compute_delta(prev, val);
504 		if (delta)
505 			local64_add(delta, &event->count);
506 	}
507 }
508 
509 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
510 				  unsigned long pmc5, unsigned long pmc6)
511 {
512 	struct perf_event *event;
513 	u64 val, prev;
514 	int i;
515 
516 	for (i = 0; i < cpuhw->n_limited; ++i) {
517 		event = cpuhw->limited_counter[i];
518 		event->hw.idx = cpuhw->limited_hwidx[i];
519 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
520 		prev = local64_read(&event->hw.prev_count);
521 		if (check_and_compute_delta(prev, val))
522 			local64_set(&event->hw.prev_count, val);
523 		perf_event_update_userpage(event);
524 	}
525 }
526 
527 /*
528  * Since limited events don't respect the freeze conditions, we
529  * have to read them immediately after freezing or unfreezing the
530  * other events.  We try to keep the values from the limited
531  * events as consistent as possible by keeping the delay (in
532  * cycles and instructions) between freezing/unfreezing and reading
533  * the limited events as small and consistent as possible.
534  * Therefore, if any limited events are in use, we read them
535  * both, and always in the same order, to minimize variability,
536  * and do it inside the same asm that writes MMCR0.
537  */
538 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
539 {
540 	unsigned long pmc5, pmc6;
541 
542 	if (!cpuhw->n_limited) {
543 		mtspr(SPRN_MMCR0, mmcr0);
544 		return;
545 	}
546 
547 	/*
548 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
549 	 * To ensure we don't get a performance monitor interrupt
550 	 * between writing MMCR0 and freezing/thawing the limited
551 	 * events, we first write MMCR0 with the event overflow
552 	 * interrupt enable bits turned off.
553 	 */
554 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
555 		     : "=&r" (pmc5), "=&r" (pmc6)
556 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
557 		       "i" (SPRN_MMCR0),
558 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
559 
560 	if (mmcr0 & MMCR0_FC)
561 		freeze_limited_counters(cpuhw, pmc5, pmc6);
562 	else
563 		thaw_limited_counters(cpuhw, pmc5, pmc6);
564 
565 	/*
566 	 * Write the full MMCR0 including the event overflow interrupt
567 	 * enable bits, if necessary.
568 	 */
569 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
570 		mtspr(SPRN_MMCR0, mmcr0);
571 }
572 
573 /*
574  * Disable all events to prevent PMU interrupts and to allow
575  * events to be added or removed.
576  */
577 static void power_pmu_disable(struct pmu *pmu)
578 {
579 	struct cpu_hw_events *cpuhw;
580 	unsigned long flags;
581 
582 	if (!ppmu)
583 		return;
584 	local_irq_save(flags);
585 	cpuhw = &__get_cpu_var(cpu_hw_events);
586 
587 	if (!cpuhw->disabled) {
588 		cpuhw->disabled = 1;
589 		cpuhw->n_added = 0;
590 
591 		/*
592 		 * Check if we ever enabled the PMU on this cpu.
593 		 */
594 		if (!cpuhw->pmcs_enabled) {
595 			ppc_enable_pmcs();
596 			cpuhw->pmcs_enabled = 1;
597 		}
598 
599 		/*
600 		 * Disable instruction sampling if it was enabled
601 		 */
602 		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
603 			mtspr(SPRN_MMCRA,
604 			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
605 			mb();
606 		}
607 
608 		/*
609 		 * Set the 'freeze counters' bit.
610 		 * The barrier is to make sure the mtspr has been
611 		 * executed and the PMU has frozen the events
612 		 * before we return.
613 		 */
614 		write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
615 		mb();
616 	}
617 	local_irq_restore(flags);
618 }
619 
620 /*
621  * Re-enable all events if disable == 0.
622  * If we were previously disabled and events were added, then
623  * put the new config on the PMU.
624  */
625 static void power_pmu_enable(struct pmu *pmu)
626 {
627 	struct perf_event *event;
628 	struct cpu_hw_events *cpuhw;
629 	unsigned long flags;
630 	long i;
631 	unsigned long val;
632 	s64 left;
633 	unsigned int hwc_index[MAX_HWEVENTS];
634 	int n_lim;
635 	int idx;
636 
637 	if (!ppmu)
638 		return;
639 	local_irq_save(flags);
640 	cpuhw = &__get_cpu_var(cpu_hw_events);
641 	if (!cpuhw->disabled) {
642 		local_irq_restore(flags);
643 		return;
644 	}
645 	cpuhw->disabled = 0;
646 
647 	/*
648 	 * If we didn't change anything, or only removed events,
649 	 * no need to recalculate MMCR* settings and reset the PMCs.
650 	 * Just reenable the PMU with the current MMCR* settings
651 	 * (possibly updated for removal of events).
652 	 */
653 	if (!cpuhw->n_added) {
654 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
655 		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
656 		if (cpuhw->n_events == 0)
657 			ppc_set_pmu_inuse(0);
658 		goto out_enable;
659 	}
660 
661 	/*
662 	 * Compute MMCR* values for the new set of events
663 	 */
664 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
665 			       cpuhw->mmcr)) {
666 		/* shouldn't ever get here */
667 		printk(KERN_ERR "oops compute_mmcr failed\n");
668 		goto out;
669 	}
670 
671 	/*
672 	 * Add in MMCR0 freeze bits corresponding to the
673 	 * attr.exclude_* bits for the first event.
674 	 * We have already checked that all events have the
675 	 * same values for these bits as the first event.
676 	 */
677 	event = cpuhw->event[0];
678 	if (event->attr.exclude_user)
679 		cpuhw->mmcr[0] |= MMCR0_FCP;
680 	if (event->attr.exclude_kernel)
681 		cpuhw->mmcr[0] |= freeze_events_kernel;
682 	if (event->attr.exclude_hv)
683 		cpuhw->mmcr[0] |= MMCR0_FCHV;
684 
685 	/*
686 	 * Write the new configuration to MMCR* with the freeze
687 	 * bit set and set the hardware events to their initial values.
688 	 * Then unfreeze the events.
689 	 */
690 	ppc_set_pmu_inuse(1);
691 	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
692 	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
693 	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
694 				| MMCR0_FC);
695 
696 	/*
697 	 * Read off any pre-existing events that need to move
698 	 * to another PMC.
699 	 */
700 	for (i = 0; i < cpuhw->n_events; ++i) {
701 		event = cpuhw->event[i];
702 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
703 			power_pmu_read(event);
704 			write_pmc(event->hw.idx, 0);
705 			event->hw.idx = 0;
706 		}
707 	}
708 
709 	/*
710 	 * Initialize the PMCs for all the new and moved events.
711 	 */
712 	cpuhw->n_limited = n_lim = 0;
713 	for (i = 0; i < cpuhw->n_events; ++i) {
714 		event = cpuhw->event[i];
715 		if (event->hw.idx)
716 			continue;
717 		idx = hwc_index[i] + 1;
718 		if (is_limited_pmc(idx)) {
719 			cpuhw->limited_counter[n_lim] = event;
720 			cpuhw->limited_hwidx[n_lim] = idx;
721 			++n_lim;
722 			continue;
723 		}
724 		val = 0;
725 		if (event->hw.sample_period) {
726 			left = local64_read(&event->hw.period_left);
727 			if (left < 0x80000000L)
728 				val = 0x80000000L - left;
729 		}
730 		local64_set(&event->hw.prev_count, val);
731 		event->hw.idx = idx;
732 		if (event->hw.state & PERF_HES_STOPPED)
733 			val = 0;
734 		write_pmc(idx, val);
735 		perf_event_update_userpage(event);
736 	}
737 	cpuhw->n_limited = n_lim;
738 	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
739 
740  out_enable:
741 	mb();
742 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
743 
744 	/*
745 	 * Enable instruction sampling if necessary
746 	 */
747 	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
748 		mb();
749 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
750 	}
751 
752  out:
753 	local_irq_restore(flags);
754 }
755 
756 static int collect_events(struct perf_event *group, int max_count,
757 			  struct perf_event *ctrs[], u64 *events,
758 			  unsigned int *flags)
759 {
760 	int n = 0;
761 	struct perf_event *event;
762 
763 	if (!is_software_event(group)) {
764 		if (n >= max_count)
765 			return -1;
766 		ctrs[n] = group;
767 		flags[n] = group->hw.event_base;
768 		events[n++] = group->hw.config;
769 	}
770 	list_for_each_entry(event, &group->sibling_list, group_entry) {
771 		if (!is_software_event(event) &&
772 		    event->state != PERF_EVENT_STATE_OFF) {
773 			if (n >= max_count)
774 				return -1;
775 			ctrs[n] = event;
776 			flags[n] = event->hw.event_base;
777 			events[n++] = event->hw.config;
778 		}
779 	}
780 	return n;
781 }
782 
783 /*
784  * Add a event to the PMU.
785  * If all events are not already frozen, then we disable and
786  * re-enable the PMU in order to get hw_perf_enable to do the
787  * actual work of reconfiguring the PMU.
788  */
789 static int power_pmu_add(struct perf_event *event, int ef_flags)
790 {
791 	struct cpu_hw_events *cpuhw;
792 	unsigned long flags;
793 	int n0;
794 	int ret = -EAGAIN;
795 
796 	local_irq_save(flags);
797 	perf_pmu_disable(event->pmu);
798 
799 	/*
800 	 * Add the event to the list (if there is room)
801 	 * and check whether the total set is still feasible.
802 	 */
803 	cpuhw = &__get_cpu_var(cpu_hw_events);
804 	n0 = cpuhw->n_events;
805 	if (n0 >= ppmu->n_counter)
806 		goto out;
807 	cpuhw->event[n0] = event;
808 	cpuhw->events[n0] = event->hw.config;
809 	cpuhw->flags[n0] = event->hw.event_base;
810 
811 	if (!(ef_flags & PERF_EF_START))
812 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
813 
814 	/*
815 	 * If group events scheduling transaction was started,
816 	 * skip the schedulability test here, it will be performed
817 	 * at commit time(->commit_txn) as a whole
818 	 */
819 	if (cpuhw->group_flag & PERF_EVENT_TXN)
820 		goto nocheck;
821 
822 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
823 		goto out;
824 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
825 		goto out;
826 	event->hw.config = cpuhw->events[n0];
827 
828 nocheck:
829 	++cpuhw->n_events;
830 	++cpuhw->n_added;
831 
832 	ret = 0;
833  out:
834 	perf_pmu_enable(event->pmu);
835 	local_irq_restore(flags);
836 	return ret;
837 }
838 
839 /*
840  * Remove a event from the PMU.
841  */
842 static void power_pmu_del(struct perf_event *event, int ef_flags)
843 {
844 	struct cpu_hw_events *cpuhw;
845 	long i;
846 	unsigned long flags;
847 
848 	local_irq_save(flags);
849 	perf_pmu_disable(event->pmu);
850 
851 	power_pmu_read(event);
852 
853 	cpuhw = &__get_cpu_var(cpu_hw_events);
854 	for (i = 0; i < cpuhw->n_events; ++i) {
855 		if (event == cpuhw->event[i]) {
856 			while (++i < cpuhw->n_events) {
857 				cpuhw->event[i-1] = cpuhw->event[i];
858 				cpuhw->events[i-1] = cpuhw->events[i];
859 				cpuhw->flags[i-1] = cpuhw->flags[i];
860 			}
861 			--cpuhw->n_events;
862 			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
863 			if (event->hw.idx) {
864 				write_pmc(event->hw.idx, 0);
865 				event->hw.idx = 0;
866 			}
867 			perf_event_update_userpage(event);
868 			break;
869 		}
870 	}
871 	for (i = 0; i < cpuhw->n_limited; ++i)
872 		if (event == cpuhw->limited_counter[i])
873 			break;
874 	if (i < cpuhw->n_limited) {
875 		while (++i < cpuhw->n_limited) {
876 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
877 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
878 		}
879 		--cpuhw->n_limited;
880 	}
881 	if (cpuhw->n_events == 0) {
882 		/* disable exceptions if no events are running */
883 		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
884 	}
885 
886 	perf_pmu_enable(event->pmu);
887 	local_irq_restore(flags);
888 }
889 
890 /*
891  * POWER-PMU does not support disabling individual counters, hence
892  * program their cycle counter to their max value and ignore the interrupts.
893  */
894 
895 static void power_pmu_start(struct perf_event *event, int ef_flags)
896 {
897 	unsigned long flags;
898 	s64 left;
899 	unsigned long val;
900 
901 	if (!event->hw.idx || !event->hw.sample_period)
902 		return;
903 
904 	if (!(event->hw.state & PERF_HES_STOPPED))
905 		return;
906 
907 	if (ef_flags & PERF_EF_RELOAD)
908 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
909 
910 	local_irq_save(flags);
911 	perf_pmu_disable(event->pmu);
912 
913 	event->hw.state = 0;
914 	left = local64_read(&event->hw.period_left);
915 
916 	val = 0;
917 	if (left < 0x80000000L)
918 		val = 0x80000000L - left;
919 
920 	write_pmc(event->hw.idx, val);
921 
922 	perf_event_update_userpage(event);
923 	perf_pmu_enable(event->pmu);
924 	local_irq_restore(flags);
925 }
926 
927 static void power_pmu_stop(struct perf_event *event, int ef_flags)
928 {
929 	unsigned long flags;
930 
931 	if (!event->hw.idx || !event->hw.sample_period)
932 		return;
933 
934 	if (event->hw.state & PERF_HES_STOPPED)
935 		return;
936 
937 	local_irq_save(flags);
938 	perf_pmu_disable(event->pmu);
939 
940 	power_pmu_read(event);
941 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
942 	write_pmc(event->hw.idx, 0);
943 
944 	perf_event_update_userpage(event);
945 	perf_pmu_enable(event->pmu);
946 	local_irq_restore(flags);
947 }
948 
949 /*
950  * Start group events scheduling transaction
951  * Set the flag to make pmu::enable() not perform the
952  * schedulability test, it will be performed at commit time
953  */
954 void power_pmu_start_txn(struct pmu *pmu)
955 {
956 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
957 
958 	perf_pmu_disable(pmu);
959 	cpuhw->group_flag |= PERF_EVENT_TXN;
960 	cpuhw->n_txn_start = cpuhw->n_events;
961 }
962 
963 /*
964  * Stop group events scheduling transaction
965  * Clear the flag and pmu::enable() will perform the
966  * schedulability test.
967  */
968 void power_pmu_cancel_txn(struct pmu *pmu)
969 {
970 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
971 
972 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
973 	perf_pmu_enable(pmu);
974 }
975 
976 /*
977  * Commit group events scheduling transaction
978  * Perform the group schedulability test as a whole
979  * Return 0 if success
980  */
981 int power_pmu_commit_txn(struct pmu *pmu)
982 {
983 	struct cpu_hw_events *cpuhw;
984 	long i, n;
985 
986 	if (!ppmu)
987 		return -EAGAIN;
988 	cpuhw = &__get_cpu_var(cpu_hw_events);
989 	n = cpuhw->n_events;
990 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
991 		return -EAGAIN;
992 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
993 	if (i < 0)
994 		return -EAGAIN;
995 
996 	for (i = cpuhw->n_txn_start; i < n; ++i)
997 		cpuhw->event[i]->hw.config = cpuhw->events[i];
998 
999 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1000 	perf_pmu_enable(pmu);
1001 	return 0;
1002 }
1003 
1004 /*
1005  * Return 1 if we might be able to put event on a limited PMC,
1006  * or 0 if not.
1007  * A event can only go on a limited PMC if it counts something
1008  * that a limited PMC can count, doesn't require interrupts, and
1009  * doesn't exclude any processor mode.
1010  */
1011 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1012 				 unsigned int flags)
1013 {
1014 	int n;
1015 	u64 alt[MAX_EVENT_ALTERNATIVES];
1016 
1017 	if (event->attr.exclude_user
1018 	    || event->attr.exclude_kernel
1019 	    || event->attr.exclude_hv
1020 	    || event->attr.sample_period)
1021 		return 0;
1022 
1023 	if (ppmu->limited_pmc_event(ev))
1024 		return 1;
1025 
1026 	/*
1027 	 * The requested event_id isn't on a limited PMC already;
1028 	 * see if any alternative code goes on a limited PMC.
1029 	 */
1030 	if (!ppmu->get_alternatives)
1031 		return 0;
1032 
1033 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1034 	n = ppmu->get_alternatives(ev, flags, alt);
1035 
1036 	return n > 0;
1037 }
1038 
1039 /*
1040  * Find an alternative event_id that goes on a normal PMC, if possible,
1041  * and return the event_id code, or 0 if there is no such alternative.
1042  * (Note: event_id code 0 is "don't count" on all machines.)
1043  */
1044 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1045 {
1046 	u64 alt[MAX_EVENT_ALTERNATIVES];
1047 	int n;
1048 
1049 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1050 	n = ppmu->get_alternatives(ev, flags, alt);
1051 	if (!n)
1052 		return 0;
1053 	return alt[0];
1054 }
1055 
1056 /* Number of perf_events counting hardware events */
1057 static atomic_t num_events;
1058 /* Used to avoid races in calling reserve/release_pmc_hardware */
1059 static DEFINE_MUTEX(pmc_reserve_mutex);
1060 
1061 /*
1062  * Release the PMU if this is the last perf_event.
1063  */
1064 static void hw_perf_event_destroy(struct perf_event *event)
1065 {
1066 	if (!atomic_add_unless(&num_events, -1, 1)) {
1067 		mutex_lock(&pmc_reserve_mutex);
1068 		if (atomic_dec_return(&num_events) == 0)
1069 			release_pmc_hardware();
1070 		mutex_unlock(&pmc_reserve_mutex);
1071 	}
1072 }
1073 
1074 /*
1075  * Translate a generic cache event_id config to a raw event_id code.
1076  */
1077 static int hw_perf_cache_event(u64 config, u64 *eventp)
1078 {
1079 	unsigned long type, op, result;
1080 	int ev;
1081 
1082 	if (!ppmu->cache_events)
1083 		return -EINVAL;
1084 
1085 	/* unpack config */
1086 	type = config & 0xff;
1087 	op = (config >> 8) & 0xff;
1088 	result = (config >> 16) & 0xff;
1089 
1090 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1091 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1092 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1093 		return -EINVAL;
1094 
1095 	ev = (*ppmu->cache_events)[type][op][result];
1096 	if (ev == 0)
1097 		return -EOPNOTSUPP;
1098 	if (ev == -1)
1099 		return -EINVAL;
1100 	*eventp = ev;
1101 	return 0;
1102 }
1103 
1104 static int power_pmu_event_init(struct perf_event *event)
1105 {
1106 	u64 ev;
1107 	unsigned long flags;
1108 	struct perf_event *ctrs[MAX_HWEVENTS];
1109 	u64 events[MAX_HWEVENTS];
1110 	unsigned int cflags[MAX_HWEVENTS];
1111 	int n;
1112 	int err;
1113 	struct cpu_hw_events *cpuhw;
1114 
1115 	if (!ppmu)
1116 		return -ENOENT;
1117 
1118 	/* does not support taken branch sampling */
1119 	if (has_branch_stack(event))
1120 		return -EOPNOTSUPP;
1121 
1122 	switch (event->attr.type) {
1123 	case PERF_TYPE_HARDWARE:
1124 		ev = event->attr.config;
1125 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1126 			return -EOPNOTSUPP;
1127 		ev = ppmu->generic_events[ev];
1128 		break;
1129 	case PERF_TYPE_HW_CACHE:
1130 		err = hw_perf_cache_event(event->attr.config, &ev);
1131 		if (err)
1132 			return err;
1133 		break;
1134 	case PERF_TYPE_RAW:
1135 		ev = event->attr.config;
1136 		break;
1137 	default:
1138 		return -ENOENT;
1139 	}
1140 
1141 	event->hw.config_base = ev;
1142 	event->hw.idx = 0;
1143 
1144 	/*
1145 	 * If we are not running on a hypervisor, force the
1146 	 * exclude_hv bit to 0 so that we don't care what
1147 	 * the user set it to.
1148 	 */
1149 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1150 		event->attr.exclude_hv = 0;
1151 
1152 	/*
1153 	 * If this is a per-task event, then we can use
1154 	 * PM_RUN_* events interchangeably with their non RUN_*
1155 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1156 	 * XXX we should check if the task is an idle task.
1157 	 */
1158 	flags = 0;
1159 	if (event->attach_state & PERF_ATTACH_TASK)
1160 		flags |= PPMU_ONLY_COUNT_RUN;
1161 
1162 	/*
1163 	 * If this machine has limited events, check whether this
1164 	 * event_id could go on a limited event.
1165 	 */
1166 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1167 		if (can_go_on_limited_pmc(event, ev, flags)) {
1168 			flags |= PPMU_LIMITED_PMC_OK;
1169 		} else if (ppmu->limited_pmc_event(ev)) {
1170 			/*
1171 			 * The requested event_id is on a limited PMC,
1172 			 * but we can't use a limited PMC; see if any
1173 			 * alternative goes on a normal PMC.
1174 			 */
1175 			ev = normal_pmc_alternative(ev, flags);
1176 			if (!ev)
1177 				return -EINVAL;
1178 		}
1179 	}
1180 
1181 	/*
1182 	 * If this is in a group, check if it can go on with all the
1183 	 * other hardware events in the group.  We assume the event
1184 	 * hasn't been linked into its leader's sibling list at this point.
1185 	 */
1186 	n = 0;
1187 	if (event->group_leader != event) {
1188 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1189 				   ctrs, events, cflags);
1190 		if (n < 0)
1191 			return -EINVAL;
1192 	}
1193 	events[n] = ev;
1194 	ctrs[n] = event;
1195 	cflags[n] = flags;
1196 	if (check_excludes(ctrs, cflags, n, 1))
1197 		return -EINVAL;
1198 
1199 	cpuhw = &get_cpu_var(cpu_hw_events);
1200 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1201 	put_cpu_var(cpu_hw_events);
1202 	if (err)
1203 		return -EINVAL;
1204 
1205 	event->hw.config = events[n];
1206 	event->hw.event_base = cflags[n];
1207 	event->hw.last_period = event->hw.sample_period;
1208 	local64_set(&event->hw.period_left, event->hw.last_period);
1209 
1210 	/*
1211 	 * See if we need to reserve the PMU.
1212 	 * If no events are currently in use, then we have to take a
1213 	 * mutex to ensure that we don't race with another task doing
1214 	 * reserve_pmc_hardware or release_pmc_hardware.
1215 	 */
1216 	err = 0;
1217 	if (!atomic_inc_not_zero(&num_events)) {
1218 		mutex_lock(&pmc_reserve_mutex);
1219 		if (atomic_read(&num_events) == 0 &&
1220 		    reserve_pmc_hardware(perf_event_interrupt))
1221 			err = -EBUSY;
1222 		else
1223 			atomic_inc(&num_events);
1224 		mutex_unlock(&pmc_reserve_mutex);
1225 	}
1226 	event->destroy = hw_perf_event_destroy;
1227 
1228 	return err;
1229 }
1230 
1231 static int power_pmu_event_idx(struct perf_event *event)
1232 {
1233 	return event->hw.idx;
1234 }
1235 
1236 struct pmu power_pmu = {
1237 	.pmu_enable	= power_pmu_enable,
1238 	.pmu_disable	= power_pmu_disable,
1239 	.event_init	= power_pmu_event_init,
1240 	.add		= power_pmu_add,
1241 	.del		= power_pmu_del,
1242 	.start		= power_pmu_start,
1243 	.stop		= power_pmu_stop,
1244 	.read		= power_pmu_read,
1245 	.start_txn	= power_pmu_start_txn,
1246 	.cancel_txn	= power_pmu_cancel_txn,
1247 	.commit_txn	= power_pmu_commit_txn,
1248 	.event_idx	= power_pmu_event_idx,
1249 };
1250 
1251 /*
1252  * A counter has overflowed; update its count and record
1253  * things if requested.  Note that interrupts are hard-disabled
1254  * here so there is no possibility of being interrupted.
1255  */
1256 static void record_and_restart(struct perf_event *event, unsigned long val,
1257 			       struct pt_regs *regs)
1258 {
1259 	u64 period = event->hw.sample_period;
1260 	s64 prev, delta, left;
1261 	int record = 0;
1262 
1263 	if (event->hw.state & PERF_HES_STOPPED) {
1264 		write_pmc(event->hw.idx, 0);
1265 		return;
1266 	}
1267 
1268 	/* we don't have to worry about interrupts here */
1269 	prev = local64_read(&event->hw.prev_count);
1270 	delta = check_and_compute_delta(prev, val);
1271 	local64_add(delta, &event->count);
1272 
1273 	/*
1274 	 * See if the total period for this event has expired,
1275 	 * and update for the next period.
1276 	 */
1277 	val = 0;
1278 	left = local64_read(&event->hw.period_left) - delta;
1279 	if (period) {
1280 		if (left <= 0) {
1281 			left += period;
1282 			if (left <= 0)
1283 				left = period;
1284 			record = 1;
1285 			event->hw.last_period = event->hw.sample_period;
1286 		}
1287 		if (left < 0x80000000LL)
1288 			val = 0x80000000LL - left;
1289 	}
1290 
1291 	write_pmc(event->hw.idx, val);
1292 	local64_set(&event->hw.prev_count, val);
1293 	local64_set(&event->hw.period_left, left);
1294 	perf_event_update_userpage(event);
1295 
1296 	/*
1297 	 * Finally record data if requested.
1298 	 */
1299 	if (record) {
1300 		struct perf_sample_data data;
1301 
1302 		perf_sample_data_init(&data, ~0ULL);
1303 		data.period = event->hw.last_period;
1304 
1305 		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1306 			perf_get_data_addr(regs, &data.addr);
1307 
1308 		if (perf_event_overflow(event, &data, regs))
1309 			power_pmu_stop(event, 0);
1310 	}
1311 }
1312 
1313 /*
1314  * Called from generic code to get the misc flags (i.e. processor mode)
1315  * for an event_id.
1316  */
1317 unsigned long perf_misc_flags(struct pt_regs *regs)
1318 {
1319 	u32 flags = perf_get_misc_flags(regs);
1320 
1321 	if (flags)
1322 		return flags;
1323 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
1324 		PERF_RECORD_MISC_KERNEL;
1325 }
1326 
1327 /*
1328  * Called from generic code to get the instruction pointer
1329  * for an event_id.
1330  */
1331 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1332 {
1333 	unsigned long mmcra = regs->dsisr;
1334 
1335 	/* Not a PMU interrupt */
1336 	if (TRAP(regs) != 0xf00)
1337 		return regs->nip;
1338 
1339 	/* Processor doesn't support sampling non marked events */
1340 	if ((ppmu->flags & PPMU_NO_CONT_SAMPLING) &&
1341 	    !(mmcra & MMCRA_SAMPLE_ENABLE))
1342 		return regs->nip;
1343 
1344 	return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1345 }
1346 
1347 static bool pmc_overflow(unsigned long val)
1348 {
1349 	if ((int)val < 0)
1350 		return true;
1351 
1352 	/*
1353 	 * Events on POWER7 can roll back if a speculative event doesn't
1354 	 * eventually complete. Unfortunately in some rare cases they will
1355 	 * raise a performance monitor exception. We need to catch this to
1356 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1357 	 * cycles from overflow.
1358 	 *
1359 	 * We only do this if the first pass fails to find any overflowing
1360 	 * PMCs because a user might set a period of less than 256 and we
1361 	 * don't want to mistakenly reset them.
1362 	 */
1363 	if (__is_processor(PV_POWER7) && ((0x80000000 - val) <= 256))
1364 		return true;
1365 
1366 	return false;
1367 }
1368 
1369 /*
1370  * Performance monitor interrupt stuff
1371  */
1372 static void perf_event_interrupt(struct pt_regs *regs)
1373 {
1374 	int i;
1375 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1376 	struct perf_event *event;
1377 	unsigned long val;
1378 	int found = 0;
1379 	int nmi;
1380 
1381 	if (cpuhw->n_limited)
1382 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1383 					mfspr(SPRN_PMC6));
1384 
1385 	perf_read_regs(regs);
1386 
1387 	nmi = perf_intr_is_nmi(regs);
1388 	if (nmi)
1389 		nmi_enter();
1390 	else
1391 		irq_enter();
1392 
1393 	for (i = 0; i < cpuhw->n_events; ++i) {
1394 		event = cpuhw->event[i];
1395 		if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1396 			continue;
1397 		val = read_pmc(event->hw.idx);
1398 		if ((int)val < 0) {
1399 			/* event has overflowed */
1400 			found = 1;
1401 			record_and_restart(event, val, regs);
1402 		}
1403 	}
1404 
1405 	/*
1406 	 * In case we didn't find and reset the event that caused
1407 	 * the interrupt, scan all events and reset any that are
1408 	 * negative, to avoid getting continual interrupts.
1409 	 * Any that we processed in the previous loop will not be negative.
1410 	 */
1411 	if (!found) {
1412 		for (i = 0; i < ppmu->n_counter; ++i) {
1413 			if (is_limited_pmc(i + 1))
1414 				continue;
1415 			val = read_pmc(i + 1);
1416 			if (pmc_overflow(val))
1417 				write_pmc(i + 1, 0);
1418 		}
1419 	}
1420 
1421 	/*
1422 	 * Reset MMCR0 to its normal value.  This will set PMXE and
1423 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1424 	 * and thus allow interrupts to occur again.
1425 	 * XXX might want to use MSR.PM to keep the events frozen until
1426 	 * we get back out of this interrupt.
1427 	 */
1428 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1429 
1430 	if (nmi)
1431 		nmi_exit();
1432 	else
1433 		irq_exit();
1434 }
1435 
1436 static void power_pmu_setup(int cpu)
1437 {
1438 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1439 
1440 	if (!ppmu)
1441 		return;
1442 	memset(cpuhw, 0, sizeof(*cpuhw));
1443 	cpuhw->mmcr[0] = MMCR0_FC;
1444 }
1445 
1446 static int __cpuinit
1447 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1448 {
1449 	unsigned int cpu = (long)hcpu;
1450 
1451 	switch (action & ~CPU_TASKS_FROZEN) {
1452 	case CPU_UP_PREPARE:
1453 		power_pmu_setup(cpu);
1454 		break;
1455 
1456 	default:
1457 		break;
1458 	}
1459 
1460 	return NOTIFY_OK;
1461 }
1462 
1463 int __cpuinit register_power_pmu(struct power_pmu *pmu)
1464 {
1465 	if (ppmu)
1466 		return -EBUSY;		/* something's already registered */
1467 
1468 	ppmu = pmu;
1469 	pr_info("%s performance monitor hardware support registered\n",
1470 		pmu->name);
1471 
1472 #ifdef MSR_HV
1473 	/*
1474 	 * Use FCHV to ignore kernel events if MSR.HV is set.
1475 	 */
1476 	if (mfmsr() & MSR_HV)
1477 		freeze_events_kernel = MMCR0_FCHV;
1478 #endif /* CONFIG_PPC64 */
1479 
1480 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1481 	perf_cpu_notifier(power_pmu_notifier);
1482 
1483 	return 0;
1484 }
1485