1 /* 2 * Performance event support - powerpc architecture code 3 * 4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/sched.h> 13 #include <linux/perf_event.h> 14 #include <linux/percpu.h> 15 #include <linux/hardirq.h> 16 #include <asm/reg.h> 17 #include <asm/pmc.h> 18 #include <asm/machdep.h> 19 #include <asm/firmware.h> 20 #include <asm/ptrace.h> 21 22 struct cpu_hw_events { 23 int n_events; 24 int n_percpu; 25 int disabled; 26 int n_added; 27 int n_limited; 28 u8 pmcs_enabled; 29 struct perf_event *event[MAX_HWEVENTS]; 30 u64 events[MAX_HWEVENTS]; 31 unsigned int flags[MAX_HWEVENTS]; 32 unsigned long mmcr[3]; 33 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 34 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 35 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 36 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 37 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 38 39 unsigned int group_flag; 40 int n_txn_start; 41 }; 42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 43 44 struct power_pmu *ppmu; 45 46 /* 47 * Normally, to ignore kernel events we set the FCS (freeze counters 48 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 49 * hypervisor bit set in the MSR, or if we are running on a processor 50 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 51 * then we need to use the FCHV bit to ignore kernel events. 52 */ 53 static unsigned int freeze_events_kernel = MMCR0_FCS; 54 55 /* 56 * 32-bit doesn't have MMCRA but does have an MMCR2, 57 * and a few other names are different. 58 */ 59 #ifdef CONFIG_PPC32 60 61 #define MMCR0_FCHV 0 62 #define MMCR0_PMCjCE MMCR0_PMCnCE 63 64 #define SPRN_MMCRA SPRN_MMCR2 65 #define MMCRA_SAMPLE_ENABLE 0 66 67 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 68 { 69 return 0; 70 } 71 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { } 72 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 73 { 74 return 0; 75 } 76 static inline void perf_read_regs(struct pt_regs *regs) { } 77 static inline int perf_intr_is_nmi(struct pt_regs *regs) 78 { 79 return 0; 80 } 81 82 #endif /* CONFIG_PPC32 */ 83 84 /* 85 * Things that are specific to 64-bit implementations. 86 */ 87 #ifdef CONFIG_PPC64 88 89 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 90 { 91 unsigned long mmcra = regs->dsisr; 92 93 if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) { 94 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 95 if (slot > 1) 96 return 4 * (slot - 1); 97 } 98 return 0; 99 } 100 101 /* 102 * The user wants a data address recorded. 103 * If we're not doing instruction sampling, give them the SDAR 104 * (sampled data address). If we are doing instruction sampling, then 105 * only give them the SDAR if it corresponds to the instruction 106 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC 107 * bit in MMCRA. 108 */ 109 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) 110 { 111 unsigned long mmcra = regs->dsisr; 112 unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ? 113 POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC; 114 115 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync)) 116 *addrp = mfspr(SPRN_SDAR); 117 } 118 119 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 120 { 121 if (regs->msr & MSR_PR) 122 return PERF_RECORD_MISC_USER; 123 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 124 return PERF_RECORD_MISC_HYPERVISOR; 125 return PERF_RECORD_MISC_KERNEL; 126 } 127 128 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 129 { 130 unsigned long mmcra = regs->dsisr; 131 unsigned long sihv = MMCRA_SIHV; 132 unsigned long sipr = MMCRA_SIPR; 133 134 /* Not a PMU interrupt: Make up flags from regs->msr */ 135 if (TRAP(regs) != 0xf00) 136 return perf_flags_from_msr(regs); 137 138 /* 139 * If we don't support continuous sampling and this 140 * is not a marked event, same deal 141 */ 142 if ((ppmu->flags & PPMU_NO_CONT_SAMPLING) && 143 !(mmcra & MMCRA_SAMPLE_ENABLE)) 144 return perf_flags_from_msr(regs); 145 146 /* 147 * If we don't have flags in MMCRA, rather than using 148 * the MSR, we intuit the flags from the address in 149 * SIAR which should give slightly more reliable 150 * results 151 */ 152 if (ppmu->flags & PPMU_NO_SIPR) { 153 unsigned long siar = mfspr(SPRN_SIAR); 154 if (siar >= PAGE_OFFSET) 155 return PERF_RECORD_MISC_KERNEL; 156 return PERF_RECORD_MISC_USER; 157 } 158 159 if (ppmu->flags & PPMU_ALT_SIPR) { 160 sihv = POWER6_MMCRA_SIHV; 161 sipr = POWER6_MMCRA_SIPR; 162 } 163 164 /* PR has priority over HV, so order below is important */ 165 if (mmcra & sipr) 166 return PERF_RECORD_MISC_USER; 167 if ((mmcra & sihv) && (freeze_events_kernel != MMCR0_FCHV)) 168 return PERF_RECORD_MISC_HYPERVISOR; 169 return PERF_RECORD_MISC_KERNEL; 170 } 171 172 /* 173 * Overload regs->dsisr to store MMCRA so we only need to read it once 174 * on each interrupt. 175 */ 176 static inline void perf_read_regs(struct pt_regs *regs) 177 { 178 regs->dsisr = mfspr(SPRN_MMCRA); 179 } 180 181 /* 182 * If interrupts were soft-disabled when a PMU interrupt occurs, treat 183 * it as an NMI. 184 */ 185 static inline int perf_intr_is_nmi(struct pt_regs *regs) 186 { 187 return !regs->softe; 188 } 189 190 #endif /* CONFIG_PPC64 */ 191 192 static void perf_event_interrupt(struct pt_regs *regs); 193 194 void perf_event_print_debug(void) 195 { 196 } 197 198 /* 199 * Read one performance monitor counter (PMC). 200 */ 201 static unsigned long read_pmc(int idx) 202 { 203 unsigned long val; 204 205 switch (idx) { 206 case 1: 207 val = mfspr(SPRN_PMC1); 208 break; 209 case 2: 210 val = mfspr(SPRN_PMC2); 211 break; 212 case 3: 213 val = mfspr(SPRN_PMC3); 214 break; 215 case 4: 216 val = mfspr(SPRN_PMC4); 217 break; 218 case 5: 219 val = mfspr(SPRN_PMC5); 220 break; 221 case 6: 222 val = mfspr(SPRN_PMC6); 223 break; 224 #ifdef CONFIG_PPC64 225 case 7: 226 val = mfspr(SPRN_PMC7); 227 break; 228 case 8: 229 val = mfspr(SPRN_PMC8); 230 break; 231 #endif /* CONFIG_PPC64 */ 232 default: 233 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 234 val = 0; 235 } 236 return val; 237 } 238 239 /* 240 * Write one PMC. 241 */ 242 static void write_pmc(int idx, unsigned long val) 243 { 244 switch (idx) { 245 case 1: 246 mtspr(SPRN_PMC1, val); 247 break; 248 case 2: 249 mtspr(SPRN_PMC2, val); 250 break; 251 case 3: 252 mtspr(SPRN_PMC3, val); 253 break; 254 case 4: 255 mtspr(SPRN_PMC4, val); 256 break; 257 case 5: 258 mtspr(SPRN_PMC5, val); 259 break; 260 case 6: 261 mtspr(SPRN_PMC6, val); 262 break; 263 #ifdef CONFIG_PPC64 264 case 7: 265 mtspr(SPRN_PMC7, val); 266 break; 267 case 8: 268 mtspr(SPRN_PMC8, val); 269 break; 270 #endif /* CONFIG_PPC64 */ 271 default: 272 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 273 } 274 } 275 276 /* 277 * Check if a set of events can all go on the PMU at once. 278 * If they can't, this will look at alternative codes for the events 279 * and see if any combination of alternative codes is feasible. 280 * The feasible set is returned in event_id[]. 281 */ 282 static int power_check_constraints(struct cpu_hw_events *cpuhw, 283 u64 event_id[], unsigned int cflags[], 284 int n_ev) 285 { 286 unsigned long mask, value, nv; 287 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 288 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 289 int i, j; 290 unsigned long addf = ppmu->add_fields; 291 unsigned long tadd = ppmu->test_adder; 292 293 if (n_ev > ppmu->n_counter) 294 return -1; 295 296 /* First see if the events will go on as-is */ 297 for (i = 0; i < n_ev; ++i) { 298 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 299 && !ppmu->limited_pmc_event(event_id[i])) { 300 ppmu->get_alternatives(event_id[i], cflags[i], 301 cpuhw->alternatives[i]); 302 event_id[i] = cpuhw->alternatives[i][0]; 303 } 304 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 305 &cpuhw->avalues[i][0])) 306 return -1; 307 } 308 value = mask = 0; 309 for (i = 0; i < n_ev; ++i) { 310 nv = (value | cpuhw->avalues[i][0]) + 311 (value & cpuhw->avalues[i][0] & addf); 312 if ((((nv + tadd) ^ value) & mask) != 0 || 313 (((nv + tadd) ^ cpuhw->avalues[i][0]) & 314 cpuhw->amasks[i][0]) != 0) 315 break; 316 value = nv; 317 mask |= cpuhw->amasks[i][0]; 318 } 319 if (i == n_ev) 320 return 0; /* all OK */ 321 322 /* doesn't work, gather alternatives... */ 323 if (!ppmu->get_alternatives) 324 return -1; 325 for (i = 0; i < n_ev; ++i) { 326 choice[i] = 0; 327 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 328 cpuhw->alternatives[i]); 329 for (j = 1; j < n_alt[i]; ++j) 330 ppmu->get_constraint(cpuhw->alternatives[i][j], 331 &cpuhw->amasks[i][j], 332 &cpuhw->avalues[i][j]); 333 } 334 335 /* enumerate all possibilities and see if any will work */ 336 i = 0; 337 j = -1; 338 value = mask = nv = 0; 339 while (i < n_ev) { 340 if (j >= 0) { 341 /* we're backtracking, restore context */ 342 value = svalues[i]; 343 mask = smasks[i]; 344 j = choice[i]; 345 } 346 /* 347 * See if any alternative k for event_id i, 348 * where k > j, will satisfy the constraints. 349 */ 350 while (++j < n_alt[i]) { 351 nv = (value | cpuhw->avalues[i][j]) + 352 (value & cpuhw->avalues[i][j] & addf); 353 if ((((nv + tadd) ^ value) & mask) == 0 && 354 (((nv + tadd) ^ cpuhw->avalues[i][j]) 355 & cpuhw->amasks[i][j]) == 0) 356 break; 357 } 358 if (j >= n_alt[i]) { 359 /* 360 * No feasible alternative, backtrack 361 * to event_id i-1 and continue enumerating its 362 * alternatives from where we got up to. 363 */ 364 if (--i < 0) 365 return -1; 366 } else { 367 /* 368 * Found a feasible alternative for event_id i, 369 * remember where we got up to with this event_id, 370 * go on to the next event_id, and start with 371 * the first alternative for it. 372 */ 373 choice[i] = j; 374 svalues[i] = value; 375 smasks[i] = mask; 376 value = nv; 377 mask |= cpuhw->amasks[i][j]; 378 ++i; 379 j = -1; 380 } 381 } 382 383 /* OK, we have a feasible combination, tell the caller the solution */ 384 for (i = 0; i < n_ev; ++i) 385 event_id[i] = cpuhw->alternatives[i][choice[i]]; 386 return 0; 387 } 388 389 /* 390 * Check if newly-added events have consistent settings for 391 * exclude_{user,kernel,hv} with each other and any previously 392 * added events. 393 */ 394 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 395 int n_prev, int n_new) 396 { 397 int eu = 0, ek = 0, eh = 0; 398 int i, n, first; 399 struct perf_event *event; 400 401 n = n_prev + n_new; 402 if (n <= 1) 403 return 0; 404 405 first = 1; 406 for (i = 0; i < n; ++i) { 407 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 408 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 409 continue; 410 } 411 event = ctrs[i]; 412 if (first) { 413 eu = event->attr.exclude_user; 414 ek = event->attr.exclude_kernel; 415 eh = event->attr.exclude_hv; 416 first = 0; 417 } else if (event->attr.exclude_user != eu || 418 event->attr.exclude_kernel != ek || 419 event->attr.exclude_hv != eh) { 420 return -EAGAIN; 421 } 422 } 423 424 if (eu || ek || eh) 425 for (i = 0; i < n; ++i) 426 if (cflags[i] & PPMU_LIMITED_PMC_OK) 427 cflags[i] |= PPMU_LIMITED_PMC_REQD; 428 429 return 0; 430 } 431 432 static u64 check_and_compute_delta(u64 prev, u64 val) 433 { 434 u64 delta = (val - prev) & 0xfffffffful; 435 436 /* 437 * POWER7 can roll back counter values, if the new value is smaller 438 * than the previous value it will cause the delta and the counter to 439 * have bogus values unless we rolled a counter over. If a coutner is 440 * rolled back, it will be smaller, but within 256, which is the maximum 441 * number of events to rollback at once. If we dectect a rollback 442 * return 0. This can lead to a small lack of precision in the 443 * counters. 444 */ 445 if (prev > val && (prev - val) < 256) 446 delta = 0; 447 448 return delta; 449 } 450 451 static void power_pmu_read(struct perf_event *event) 452 { 453 s64 val, delta, prev; 454 455 if (event->hw.state & PERF_HES_STOPPED) 456 return; 457 458 if (!event->hw.idx) 459 return; 460 /* 461 * Performance monitor interrupts come even when interrupts 462 * are soft-disabled, as long as interrupts are hard-enabled. 463 * Therefore we treat them like NMIs. 464 */ 465 do { 466 prev = local64_read(&event->hw.prev_count); 467 barrier(); 468 val = read_pmc(event->hw.idx); 469 delta = check_and_compute_delta(prev, val); 470 if (!delta) 471 return; 472 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 473 474 local64_add(delta, &event->count); 475 local64_sub(delta, &event->hw.period_left); 476 } 477 478 /* 479 * On some machines, PMC5 and PMC6 can't be written, don't respect 480 * the freeze conditions, and don't generate interrupts. This tells 481 * us if `event' is using such a PMC. 482 */ 483 static int is_limited_pmc(int pmcnum) 484 { 485 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 486 && (pmcnum == 5 || pmcnum == 6); 487 } 488 489 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 490 unsigned long pmc5, unsigned long pmc6) 491 { 492 struct perf_event *event; 493 u64 val, prev, delta; 494 int i; 495 496 for (i = 0; i < cpuhw->n_limited; ++i) { 497 event = cpuhw->limited_counter[i]; 498 if (!event->hw.idx) 499 continue; 500 val = (event->hw.idx == 5) ? pmc5 : pmc6; 501 prev = local64_read(&event->hw.prev_count); 502 event->hw.idx = 0; 503 delta = check_and_compute_delta(prev, val); 504 if (delta) 505 local64_add(delta, &event->count); 506 } 507 } 508 509 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 510 unsigned long pmc5, unsigned long pmc6) 511 { 512 struct perf_event *event; 513 u64 val, prev; 514 int i; 515 516 for (i = 0; i < cpuhw->n_limited; ++i) { 517 event = cpuhw->limited_counter[i]; 518 event->hw.idx = cpuhw->limited_hwidx[i]; 519 val = (event->hw.idx == 5) ? pmc5 : pmc6; 520 prev = local64_read(&event->hw.prev_count); 521 if (check_and_compute_delta(prev, val)) 522 local64_set(&event->hw.prev_count, val); 523 perf_event_update_userpage(event); 524 } 525 } 526 527 /* 528 * Since limited events don't respect the freeze conditions, we 529 * have to read them immediately after freezing or unfreezing the 530 * other events. We try to keep the values from the limited 531 * events as consistent as possible by keeping the delay (in 532 * cycles and instructions) between freezing/unfreezing and reading 533 * the limited events as small and consistent as possible. 534 * Therefore, if any limited events are in use, we read them 535 * both, and always in the same order, to minimize variability, 536 * and do it inside the same asm that writes MMCR0. 537 */ 538 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 539 { 540 unsigned long pmc5, pmc6; 541 542 if (!cpuhw->n_limited) { 543 mtspr(SPRN_MMCR0, mmcr0); 544 return; 545 } 546 547 /* 548 * Write MMCR0, then read PMC5 and PMC6 immediately. 549 * To ensure we don't get a performance monitor interrupt 550 * between writing MMCR0 and freezing/thawing the limited 551 * events, we first write MMCR0 with the event overflow 552 * interrupt enable bits turned off. 553 */ 554 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 555 : "=&r" (pmc5), "=&r" (pmc6) 556 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 557 "i" (SPRN_MMCR0), 558 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 559 560 if (mmcr0 & MMCR0_FC) 561 freeze_limited_counters(cpuhw, pmc5, pmc6); 562 else 563 thaw_limited_counters(cpuhw, pmc5, pmc6); 564 565 /* 566 * Write the full MMCR0 including the event overflow interrupt 567 * enable bits, if necessary. 568 */ 569 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 570 mtspr(SPRN_MMCR0, mmcr0); 571 } 572 573 /* 574 * Disable all events to prevent PMU interrupts and to allow 575 * events to be added or removed. 576 */ 577 static void power_pmu_disable(struct pmu *pmu) 578 { 579 struct cpu_hw_events *cpuhw; 580 unsigned long flags; 581 582 if (!ppmu) 583 return; 584 local_irq_save(flags); 585 cpuhw = &__get_cpu_var(cpu_hw_events); 586 587 if (!cpuhw->disabled) { 588 cpuhw->disabled = 1; 589 cpuhw->n_added = 0; 590 591 /* 592 * Check if we ever enabled the PMU on this cpu. 593 */ 594 if (!cpuhw->pmcs_enabled) { 595 ppc_enable_pmcs(); 596 cpuhw->pmcs_enabled = 1; 597 } 598 599 /* 600 * Disable instruction sampling if it was enabled 601 */ 602 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 603 mtspr(SPRN_MMCRA, 604 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 605 mb(); 606 } 607 608 /* 609 * Set the 'freeze counters' bit. 610 * The barrier is to make sure the mtspr has been 611 * executed and the PMU has frozen the events 612 * before we return. 613 */ 614 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC); 615 mb(); 616 } 617 local_irq_restore(flags); 618 } 619 620 /* 621 * Re-enable all events if disable == 0. 622 * If we were previously disabled and events were added, then 623 * put the new config on the PMU. 624 */ 625 static void power_pmu_enable(struct pmu *pmu) 626 { 627 struct perf_event *event; 628 struct cpu_hw_events *cpuhw; 629 unsigned long flags; 630 long i; 631 unsigned long val; 632 s64 left; 633 unsigned int hwc_index[MAX_HWEVENTS]; 634 int n_lim; 635 int idx; 636 637 if (!ppmu) 638 return; 639 local_irq_save(flags); 640 cpuhw = &__get_cpu_var(cpu_hw_events); 641 if (!cpuhw->disabled) { 642 local_irq_restore(flags); 643 return; 644 } 645 cpuhw->disabled = 0; 646 647 /* 648 * If we didn't change anything, or only removed events, 649 * no need to recalculate MMCR* settings and reset the PMCs. 650 * Just reenable the PMU with the current MMCR* settings 651 * (possibly updated for removal of events). 652 */ 653 if (!cpuhw->n_added) { 654 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 655 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 656 if (cpuhw->n_events == 0) 657 ppc_set_pmu_inuse(0); 658 goto out_enable; 659 } 660 661 /* 662 * Compute MMCR* values for the new set of events 663 */ 664 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 665 cpuhw->mmcr)) { 666 /* shouldn't ever get here */ 667 printk(KERN_ERR "oops compute_mmcr failed\n"); 668 goto out; 669 } 670 671 /* 672 * Add in MMCR0 freeze bits corresponding to the 673 * attr.exclude_* bits for the first event. 674 * We have already checked that all events have the 675 * same values for these bits as the first event. 676 */ 677 event = cpuhw->event[0]; 678 if (event->attr.exclude_user) 679 cpuhw->mmcr[0] |= MMCR0_FCP; 680 if (event->attr.exclude_kernel) 681 cpuhw->mmcr[0] |= freeze_events_kernel; 682 if (event->attr.exclude_hv) 683 cpuhw->mmcr[0] |= MMCR0_FCHV; 684 685 /* 686 * Write the new configuration to MMCR* with the freeze 687 * bit set and set the hardware events to their initial values. 688 * Then unfreeze the events. 689 */ 690 ppc_set_pmu_inuse(1); 691 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 692 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 693 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 694 | MMCR0_FC); 695 696 /* 697 * Read off any pre-existing events that need to move 698 * to another PMC. 699 */ 700 for (i = 0; i < cpuhw->n_events; ++i) { 701 event = cpuhw->event[i]; 702 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 703 power_pmu_read(event); 704 write_pmc(event->hw.idx, 0); 705 event->hw.idx = 0; 706 } 707 } 708 709 /* 710 * Initialize the PMCs for all the new and moved events. 711 */ 712 cpuhw->n_limited = n_lim = 0; 713 for (i = 0; i < cpuhw->n_events; ++i) { 714 event = cpuhw->event[i]; 715 if (event->hw.idx) 716 continue; 717 idx = hwc_index[i] + 1; 718 if (is_limited_pmc(idx)) { 719 cpuhw->limited_counter[n_lim] = event; 720 cpuhw->limited_hwidx[n_lim] = idx; 721 ++n_lim; 722 continue; 723 } 724 val = 0; 725 if (event->hw.sample_period) { 726 left = local64_read(&event->hw.period_left); 727 if (left < 0x80000000L) 728 val = 0x80000000L - left; 729 } 730 local64_set(&event->hw.prev_count, val); 731 event->hw.idx = idx; 732 if (event->hw.state & PERF_HES_STOPPED) 733 val = 0; 734 write_pmc(idx, val); 735 perf_event_update_userpage(event); 736 } 737 cpuhw->n_limited = n_lim; 738 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; 739 740 out_enable: 741 mb(); 742 write_mmcr0(cpuhw, cpuhw->mmcr[0]); 743 744 /* 745 * Enable instruction sampling if necessary 746 */ 747 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 748 mb(); 749 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); 750 } 751 752 out: 753 local_irq_restore(flags); 754 } 755 756 static int collect_events(struct perf_event *group, int max_count, 757 struct perf_event *ctrs[], u64 *events, 758 unsigned int *flags) 759 { 760 int n = 0; 761 struct perf_event *event; 762 763 if (!is_software_event(group)) { 764 if (n >= max_count) 765 return -1; 766 ctrs[n] = group; 767 flags[n] = group->hw.event_base; 768 events[n++] = group->hw.config; 769 } 770 list_for_each_entry(event, &group->sibling_list, group_entry) { 771 if (!is_software_event(event) && 772 event->state != PERF_EVENT_STATE_OFF) { 773 if (n >= max_count) 774 return -1; 775 ctrs[n] = event; 776 flags[n] = event->hw.event_base; 777 events[n++] = event->hw.config; 778 } 779 } 780 return n; 781 } 782 783 /* 784 * Add a event to the PMU. 785 * If all events are not already frozen, then we disable and 786 * re-enable the PMU in order to get hw_perf_enable to do the 787 * actual work of reconfiguring the PMU. 788 */ 789 static int power_pmu_add(struct perf_event *event, int ef_flags) 790 { 791 struct cpu_hw_events *cpuhw; 792 unsigned long flags; 793 int n0; 794 int ret = -EAGAIN; 795 796 local_irq_save(flags); 797 perf_pmu_disable(event->pmu); 798 799 /* 800 * Add the event to the list (if there is room) 801 * and check whether the total set is still feasible. 802 */ 803 cpuhw = &__get_cpu_var(cpu_hw_events); 804 n0 = cpuhw->n_events; 805 if (n0 >= ppmu->n_counter) 806 goto out; 807 cpuhw->event[n0] = event; 808 cpuhw->events[n0] = event->hw.config; 809 cpuhw->flags[n0] = event->hw.event_base; 810 811 if (!(ef_flags & PERF_EF_START)) 812 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 813 814 /* 815 * If group events scheduling transaction was started, 816 * skip the schedulability test here, it will be performed 817 * at commit time(->commit_txn) as a whole 818 */ 819 if (cpuhw->group_flag & PERF_EVENT_TXN) 820 goto nocheck; 821 822 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 823 goto out; 824 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) 825 goto out; 826 event->hw.config = cpuhw->events[n0]; 827 828 nocheck: 829 ++cpuhw->n_events; 830 ++cpuhw->n_added; 831 832 ret = 0; 833 out: 834 perf_pmu_enable(event->pmu); 835 local_irq_restore(flags); 836 return ret; 837 } 838 839 /* 840 * Remove a event from the PMU. 841 */ 842 static void power_pmu_del(struct perf_event *event, int ef_flags) 843 { 844 struct cpu_hw_events *cpuhw; 845 long i; 846 unsigned long flags; 847 848 local_irq_save(flags); 849 perf_pmu_disable(event->pmu); 850 851 power_pmu_read(event); 852 853 cpuhw = &__get_cpu_var(cpu_hw_events); 854 for (i = 0; i < cpuhw->n_events; ++i) { 855 if (event == cpuhw->event[i]) { 856 while (++i < cpuhw->n_events) { 857 cpuhw->event[i-1] = cpuhw->event[i]; 858 cpuhw->events[i-1] = cpuhw->events[i]; 859 cpuhw->flags[i-1] = cpuhw->flags[i]; 860 } 861 --cpuhw->n_events; 862 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); 863 if (event->hw.idx) { 864 write_pmc(event->hw.idx, 0); 865 event->hw.idx = 0; 866 } 867 perf_event_update_userpage(event); 868 break; 869 } 870 } 871 for (i = 0; i < cpuhw->n_limited; ++i) 872 if (event == cpuhw->limited_counter[i]) 873 break; 874 if (i < cpuhw->n_limited) { 875 while (++i < cpuhw->n_limited) { 876 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 877 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 878 } 879 --cpuhw->n_limited; 880 } 881 if (cpuhw->n_events == 0) { 882 /* disable exceptions if no events are running */ 883 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); 884 } 885 886 perf_pmu_enable(event->pmu); 887 local_irq_restore(flags); 888 } 889 890 /* 891 * POWER-PMU does not support disabling individual counters, hence 892 * program their cycle counter to their max value and ignore the interrupts. 893 */ 894 895 static void power_pmu_start(struct perf_event *event, int ef_flags) 896 { 897 unsigned long flags; 898 s64 left; 899 unsigned long val; 900 901 if (!event->hw.idx || !event->hw.sample_period) 902 return; 903 904 if (!(event->hw.state & PERF_HES_STOPPED)) 905 return; 906 907 if (ef_flags & PERF_EF_RELOAD) 908 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 909 910 local_irq_save(flags); 911 perf_pmu_disable(event->pmu); 912 913 event->hw.state = 0; 914 left = local64_read(&event->hw.period_left); 915 916 val = 0; 917 if (left < 0x80000000L) 918 val = 0x80000000L - left; 919 920 write_pmc(event->hw.idx, val); 921 922 perf_event_update_userpage(event); 923 perf_pmu_enable(event->pmu); 924 local_irq_restore(flags); 925 } 926 927 static void power_pmu_stop(struct perf_event *event, int ef_flags) 928 { 929 unsigned long flags; 930 931 if (!event->hw.idx || !event->hw.sample_period) 932 return; 933 934 if (event->hw.state & PERF_HES_STOPPED) 935 return; 936 937 local_irq_save(flags); 938 perf_pmu_disable(event->pmu); 939 940 power_pmu_read(event); 941 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 942 write_pmc(event->hw.idx, 0); 943 944 perf_event_update_userpage(event); 945 perf_pmu_enable(event->pmu); 946 local_irq_restore(flags); 947 } 948 949 /* 950 * Start group events scheduling transaction 951 * Set the flag to make pmu::enable() not perform the 952 * schedulability test, it will be performed at commit time 953 */ 954 void power_pmu_start_txn(struct pmu *pmu) 955 { 956 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 957 958 perf_pmu_disable(pmu); 959 cpuhw->group_flag |= PERF_EVENT_TXN; 960 cpuhw->n_txn_start = cpuhw->n_events; 961 } 962 963 /* 964 * Stop group events scheduling transaction 965 * Clear the flag and pmu::enable() will perform the 966 * schedulability test. 967 */ 968 void power_pmu_cancel_txn(struct pmu *pmu) 969 { 970 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 971 972 cpuhw->group_flag &= ~PERF_EVENT_TXN; 973 perf_pmu_enable(pmu); 974 } 975 976 /* 977 * Commit group events scheduling transaction 978 * Perform the group schedulability test as a whole 979 * Return 0 if success 980 */ 981 int power_pmu_commit_txn(struct pmu *pmu) 982 { 983 struct cpu_hw_events *cpuhw; 984 long i, n; 985 986 if (!ppmu) 987 return -EAGAIN; 988 cpuhw = &__get_cpu_var(cpu_hw_events); 989 n = cpuhw->n_events; 990 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 991 return -EAGAIN; 992 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); 993 if (i < 0) 994 return -EAGAIN; 995 996 for (i = cpuhw->n_txn_start; i < n; ++i) 997 cpuhw->event[i]->hw.config = cpuhw->events[i]; 998 999 cpuhw->group_flag &= ~PERF_EVENT_TXN; 1000 perf_pmu_enable(pmu); 1001 return 0; 1002 } 1003 1004 /* 1005 * Return 1 if we might be able to put event on a limited PMC, 1006 * or 0 if not. 1007 * A event can only go on a limited PMC if it counts something 1008 * that a limited PMC can count, doesn't require interrupts, and 1009 * doesn't exclude any processor mode. 1010 */ 1011 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1012 unsigned int flags) 1013 { 1014 int n; 1015 u64 alt[MAX_EVENT_ALTERNATIVES]; 1016 1017 if (event->attr.exclude_user 1018 || event->attr.exclude_kernel 1019 || event->attr.exclude_hv 1020 || event->attr.sample_period) 1021 return 0; 1022 1023 if (ppmu->limited_pmc_event(ev)) 1024 return 1; 1025 1026 /* 1027 * The requested event_id isn't on a limited PMC already; 1028 * see if any alternative code goes on a limited PMC. 1029 */ 1030 if (!ppmu->get_alternatives) 1031 return 0; 1032 1033 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1034 n = ppmu->get_alternatives(ev, flags, alt); 1035 1036 return n > 0; 1037 } 1038 1039 /* 1040 * Find an alternative event_id that goes on a normal PMC, if possible, 1041 * and return the event_id code, or 0 if there is no such alternative. 1042 * (Note: event_id code 0 is "don't count" on all machines.) 1043 */ 1044 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1045 { 1046 u64 alt[MAX_EVENT_ALTERNATIVES]; 1047 int n; 1048 1049 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1050 n = ppmu->get_alternatives(ev, flags, alt); 1051 if (!n) 1052 return 0; 1053 return alt[0]; 1054 } 1055 1056 /* Number of perf_events counting hardware events */ 1057 static atomic_t num_events; 1058 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1059 static DEFINE_MUTEX(pmc_reserve_mutex); 1060 1061 /* 1062 * Release the PMU if this is the last perf_event. 1063 */ 1064 static void hw_perf_event_destroy(struct perf_event *event) 1065 { 1066 if (!atomic_add_unless(&num_events, -1, 1)) { 1067 mutex_lock(&pmc_reserve_mutex); 1068 if (atomic_dec_return(&num_events) == 0) 1069 release_pmc_hardware(); 1070 mutex_unlock(&pmc_reserve_mutex); 1071 } 1072 } 1073 1074 /* 1075 * Translate a generic cache event_id config to a raw event_id code. 1076 */ 1077 static int hw_perf_cache_event(u64 config, u64 *eventp) 1078 { 1079 unsigned long type, op, result; 1080 int ev; 1081 1082 if (!ppmu->cache_events) 1083 return -EINVAL; 1084 1085 /* unpack config */ 1086 type = config & 0xff; 1087 op = (config >> 8) & 0xff; 1088 result = (config >> 16) & 0xff; 1089 1090 if (type >= PERF_COUNT_HW_CACHE_MAX || 1091 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1092 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1093 return -EINVAL; 1094 1095 ev = (*ppmu->cache_events)[type][op][result]; 1096 if (ev == 0) 1097 return -EOPNOTSUPP; 1098 if (ev == -1) 1099 return -EINVAL; 1100 *eventp = ev; 1101 return 0; 1102 } 1103 1104 static int power_pmu_event_init(struct perf_event *event) 1105 { 1106 u64 ev; 1107 unsigned long flags; 1108 struct perf_event *ctrs[MAX_HWEVENTS]; 1109 u64 events[MAX_HWEVENTS]; 1110 unsigned int cflags[MAX_HWEVENTS]; 1111 int n; 1112 int err; 1113 struct cpu_hw_events *cpuhw; 1114 1115 if (!ppmu) 1116 return -ENOENT; 1117 1118 /* does not support taken branch sampling */ 1119 if (has_branch_stack(event)) 1120 return -EOPNOTSUPP; 1121 1122 switch (event->attr.type) { 1123 case PERF_TYPE_HARDWARE: 1124 ev = event->attr.config; 1125 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1126 return -EOPNOTSUPP; 1127 ev = ppmu->generic_events[ev]; 1128 break; 1129 case PERF_TYPE_HW_CACHE: 1130 err = hw_perf_cache_event(event->attr.config, &ev); 1131 if (err) 1132 return err; 1133 break; 1134 case PERF_TYPE_RAW: 1135 ev = event->attr.config; 1136 break; 1137 default: 1138 return -ENOENT; 1139 } 1140 1141 event->hw.config_base = ev; 1142 event->hw.idx = 0; 1143 1144 /* 1145 * If we are not running on a hypervisor, force the 1146 * exclude_hv bit to 0 so that we don't care what 1147 * the user set it to. 1148 */ 1149 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1150 event->attr.exclude_hv = 0; 1151 1152 /* 1153 * If this is a per-task event, then we can use 1154 * PM_RUN_* events interchangeably with their non RUN_* 1155 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1156 * XXX we should check if the task is an idle task. 1157 */ 1158 flags = 0; 1159 if (event->attach_state & PERF_ATTACH_TASK) 1160 flags |= PPMU_ONLY_COUNT_RUN; 1161 1162 /* 1163 * If this machine has limited events, check whether this 1164 * event_id could go on a limited event. 1165 */ 1166 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1167 if (can_go_on_limited_pmc(event, ev, flags)) { 1168 flags |= PPMU_LIMITED_PMC_OK; 1169 } else if (ppmu->limited_pmc_event(ev)) { 1170 /* 1171 * The requested event_id is on a limited PMC, 1172 * but we can't use a limited PMC; see if any 1173 * alternative goes on a normal PMC. 1174 */ 1175 ev = normal_pmc_alternative(ev, flags); 1176 if (!ev) 1177 return -EINVAL; 1178 } 1179 } 1180 1181 /* 1182 * If this is in a group, check if it can go on with all the 1183 * other hardware events in the group. We assume the event 1184 * hasn't been linked into its leader's sibling list at this point. 1185 */ 1186 n = 0; 1187 if (event->group_leader != event) { 1188 n = collect_events(event->group_leader, ppmu->n_counter - 1, 1189 ctrs, events, cflags); 1190 if (n < 0) 1191 return -EINVAL; 1192 } 1193 events[n] = ev; 1194 ctrs[n] = event; 1195 cflags[n] = flags; 1196 if (check_excludes(ctrs, cflags, n, 1)) 1197 return -EINVAL; 1198 1199 cpuhw = &get_cpu_var(cpu_hw_events); 1200 err = power_check_constraints(cpuhw, events, cflags, n + 1); 1201 put_cpu_var(cpu_hw_events); 1202 if (err) 1203 return -EINVAL; 1204 1205 event->hw.config = events[n]; 1206 event->hw.event_base = cflags[n]; 1207 event->hw.last_period = event->hw.sample_period; 1208 local64_set(&event->hw.period_left, event->hw.last_period); 1209 1210 /* 1211 * See if we need to reserve the PMU. 1212 * If no events are currently in use, then we have to take a 1213 * mutex to ensure that we don't race with another task doing 1214 * reserve_pmc_hardware or release_pmc_hardware. 1215 */ 1216 err = 0; 1217 if (!atomic_inc_not_zero(&num_events)) { 1218 mutex_lock(&pmc_reserve_mutex); 1219 if (atomic_read(&num_events) == 0 && 1220 reserve_pmc_hardware(perf_event_interrupt)) 1221 err = -EBUSY; 1222 else 1223 atomic_inc(&num_events); 1224 mutex_unlock(&pmc_reserve_mutex); 1225 } 1226 event->destroy = hw_perf_event_destroy; 1227 1228 return err; 1229 } 1230 1231 static int power_pmu_event_idx(struct perf_event *event) 1232 { 1233 return event->hw.idx; 1234 } 1235 1236 struct pmu power_pmu = { 1237 .pmu_enable = power_pmu_enable, 1238 .pmu_disable = power_pmu_disable, 1239 .event_init = power_pmu_event_init, 1240 .add = power_pmu_add, 1241 .del = power_pmu_del, 1242 .start = power_pmu_start, 1243 .stop = power_pmu_stop, 1244 .read = power_pmu_read, 1245 .start_txn = power_pmu_start_txn, 1246 .cancel_txn = power_pmu_cancel_txn, 1247 .commit_txn = power_pmu_commit_txn, 1248 .event_idx = power_pmu_event_idx, 1249 }; 1250 1251 /* 1252 * A counter has overflowed; update its count and record 1253 * things if requested. Note that interrupts are hard-disabled 1254 * here so there is no possibility of being interrupted. 1255 */ 1256 static void record_and_restart(struct perf_event *event, unsigned long val, 1257 struct pt_regs *regs) 1258 { 1259 u64 period = event->hw.sample_period; 1260 s64 prev, delta, left; 1261 int record = 0; 1262 1263 if (event->hw.state & PERF_HES_STOPPED) { 1264 write_pmc(event->hw.idx, 0); 1265 return; 1266 } 1267 1268 /* we don't have to worry about interrupts here */ 1269 prev = local64_read(&event->hw.prev_count); 1270 delta = check_and_compute_delta(prev, val); 1271 local64_add(delta, &event->count); 1272 1273 /* 1274 * See if the total period for this event has expired, 1275 * and update for the next period. 1276 */ 1277 val = 0; 1278 left = local64_read(&event->hw.period_left) - delta; 1279 if (period) { 1280 if (left <= 0) { 1281 left += period; 1282 if (left <= 0) 1283 left = period; 1284 record = 1; 1285 event->hw.last_period = event->hw.sample_period; 1286 } 1287 if (left < 0x80000000LL) 1288 val = 0x80000000LL - left; 1289 } 1290 1291 write_pmc(event->hw.idx, val); 1292 local64_set(&event->hw.prev_count, val); 1293 local64_set(&event->hw.period_left, left); 1294 perf_event_update_userpage(event); 1295 1296 /* 1297 * Finally record data if requested. 1298 */ 1299 if (record) { 1300 struct perf_sample_data data; 1301 1302 perf_sample_data_init(&data, ~0ULL); 1303 data.period = event->hw.last_period; 1304 1305 if (event->attr.sample_type & PERF_SAMPLE_ADDR) 1306 perf_get_data_addr(regs, &data.addr); 1307 1308 if (perf_event_overflow(event, &data, regs)) 1309 power_pmu_stop(event, 0); 1310 } 1311 } 1312 1313 /* 1314 * Called from generic code to get the misc flags (i.e. processor mode) 1315 * for an event_id. 1316 */ 1317 unsigned long perf_misc_flags(struct pt_regs *regs) 1318 { 1319 u32 flags = perf_get_misc_flags(regs); 1320 1321 if (flags) 1322 return flags; 1323 return user_mode(regs) ? PERF_RECORD_MISC_USER : 1324 PERF_RECORD_MISC_KERNEL; 1325 } 1326 1327 /* 1328 * Called from generic code to get the instruction pointer 1329 * for an event_id. 1330 */ 1331 unsigned long perf_instruction_pointer(struct pt_regs *regs) 1332 { 1333 unsigned long mmcra = regs->dsisr; 1334 1335 /* Not a PMU interrupt */ 1336 if (TRAP(regs) != 0xf00) 1337 return regs->nip; 1338 1339 /* Processor doesn't support sampling non marked events */ 1340 if ((ppmu->flags & PPMU_NO_CONT_SAMPLING) && 1341 !(mmcra & MMCRA_SAMPLE_ENABLE)) 1342 return regs->nip; 1343 1344 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 1345 } 1346 1347 static bool pmc_overflow(unsigned long val) 1348 { 1349 if ((int)val < 0) 1350 return true; 1351 1352 /* 1353 * Events on POWER7 can roll back if a speculative event doesn't 1354 * eventually complete. Unfortunately in some rare cases they will 1355 * raise a performance monitor exception. We need to catch this to 1356 * ensure we reset the PMC. In all cases the PMC will be 256 or less 1357 * cycles from overflow. 1358 * 1359 * We only do this if the first pass fails to find any overflowing 1360 * PMCs because a user might set a period of less than 256 and we 1361 * don't want to mistakenly reset them. 1362 */ 1363 if (__is_processor(PV_POWER7) && ((0x80000000 - val) <= 256)) 1364 return true; 1365 1366 return false; 1367 } 1368 1369 /* 1370 * Performance monitor interrupt stuff 1371 */ 1372 static void perf_event_interrupt(struct pt_regs *regs) 1373 { 1374 int i; 1375 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 1376 struct perf_event *event; 1377 unsigned long val; 1378 int found = 0; 1379 int nmi; 1380 1381 if (cpuhw->n_limited) 1382 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 1383 mfspr(SPRN_PMC6)); 1384 1385 perf_read_regs(regs); 1386 1387 nmi = perf_intr_is_nmi(regs); 1388 if (nmi) 1389 nmi_enter(); 1390 else 1391 irq_enter(); 1392 1393 for (i = 0; i < cpuhw->n_events; ++i) { 1394 event = cpuhw->event[i]; 1395 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 1396 continue; 1397 val = read_pmc(event->hw.idx); 1398 if ((int)val < 0) { 1399 /* event has overflowed */ 1400 found = 1; 1401 record_and_restart(event, val, regs); 1402 } 1403 } 1404 1405 /* 1406 * In case we didn't find and reset the event that caused 1407 * the interrupt, scan all events and reset any that are 1408 * negative, to avoid getting continual interrupts. 1409 * Any that we processed in the previous loop will not be negative. 1410 */ 1411 if (!found) { 1412 for (i = 0; i < ppmu->n_counter; ++i) { 1413 if (is_limited_pmc(i + 1)) 1414 continue; 1415 val = read_pmc(i + 1); 1416 if (pmc_overflow(val)) 1417 write_pmc(i + 1, 0); 1418 } 1419 } 1420 1421 /* 1422 * Reset MMCR0 to its normal value. This will set PMXE and 1423 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 1424 * and thus allow interrupts to occur again. 1425 * XXX might want to use MSR.PM to keep the events frozen until 1426 * we get back out of this interrupt. 1427 */ 1428 write_mmcr0(cpuhw, cpuhw->mmcr[0]); 1429 1430 if (nmi) 1431 nmi_exit(); 1432 else 1433 irq_exit(); 1434 } 1435 1436 static void power_pmu_setup(int cpu) 1437 { 1438 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 1439 1440 if (!ppmu) 1441 return; 1442 memset(cpuhw, 0, sizeof(*cpuhw)); 1443 cpuhw->mmcr[0] = MMCR0_FC; 1444 } 1445 1446 static int __cpuinit 1447 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) 1448 { 1449 unsigned int cpu = (long)hcpu; 1450 1451 switch (action & ~CPU_TASKS_FROZEN) { 1452 case CPU_UP_PREPARE: 1453 power_pmu_setup(cpu); 1454 break; 1455 1456 default: 1457 break; 1458 } 1459 1460 return NOTIFY_OK; 1461 } 1462 1463 int __cpuinit register_power_pmu(struct power_pmu *pmu) 1464 { 1465 if (ppmu) 1466 return -EBUSY; /* something's already registered */ 1467 1468 ppmu = pmu; 1469 pr_info("%s performance monitor hardware support registered\n", 1470 pmu->name); 1471 1472 #ifdef MSR_HV 1473 /* 1474 * Use FCHV to ignore kernel events if MSR.HV is set. 1475 */ 1476 if (mfmsr() & MSR_HV) 1477 freeze_events_kernel = MMCR0_FCHV; 1478 #endif /* CONFIG_PPC64 */ 1479 1480 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 1481 perf_cpu_notifier(power_pmu_notifier); 1482 1483 return 0; 1484 } 1485