1 /* 2 * Performance event support - powerpc architecture code 3 * 4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/sched.h> 13 #include <linux/perf_event.h> 14 #include <linux/percpu.h> 15 #include <linux/hardirq.h> 16 #include <linux/uaccess.h> 17 #include <asm/reg.h> 18 #include <asm/pmc.h> 19 #include <asm/machdep.h> 20 #include <asm/firmware.h> 21 #include <asm/ptrace.h> 22 #include <asm/code-patching.h> 23 24 #define BHRB_MAX_ENTRIES 32 25 #define BHRB_TARGET 0x0000000000000002 26 #define BHRB_PREDICTION 0x0000000000000001 27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 28 29 struct cpu_hw_events { 30 int n_events; 31 int n_percpu; 32 int disabled; 33 int n_added; 34 int n_limited; 35 u8 pmcs_enabled; 36 struct perf_event *event[MAX_HWEVENTS]; 37 u64 events[MAX_HWEVENTS]; 38 unsigned int flags[MAX_HWEVENTS]; 39 unsigned long mmcr[3]; 40 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 41 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 42 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 43 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 44 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 45 46 unsigned int group_flag; 47 int n_txn_start; 48 49 /* BHRB bits */ 50 u64 bhrb_filter; /* BHRB HW branch filter */ 51 int bhrb_users; 52 void *bhrb_context; 53 struct perf_branch_stack bhrb_stack; 54 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 55 }; 56 57 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 58 59 struct power_pmu *ppmu; 60 61 /* 62 * Normally, to ignore kernel events we set the FCS (freeze counters 63 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 64 * hypervisor bit set in the MSR, or if we are running on a processor 65 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 66 * then we need to use the FCHV bit to ignore kernel events. 67 */ 68 static unsigned int freeze_events_kernel = MMCR0_FCS; 69 70 /* 71 * 32-bit doesn't have MMCRA but does have an MMCR2, 72 * and a few other names are different. 73 */ 74 #ifdef CONFIG_PPC32 75 76 #define MMCR0_FCHV 0 77 #define MMCR0_PMCjCE MMCR0_PMCnCE 78 #define MMCR0_FC56 0 79 #define MMCR0_PMAO 0 80 #define MMCR0_EBE 0 81 #define MMCR0_BHRBA 0 82 #define MMCR0_PMCC 0 83 #define MMCR0_PMCC_U6 0 84 85 #define SPRN_MMCRA SPRN_MMCR2 86 #define MMCRA_SAMPLE_ENABLE 0 87 88 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 89 { 90 return 0; 91 } 92 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { } 93 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 94 { 95 return 0; 96 } 97 static inline void perf_read_regs(struct pt_regs *regs) 98 { 99 regs->result = 0; 100 } 101 static inline int perf_intr_is_nmi(struct pt_regs *regs) 102 { 103 return 0; 104 } 105 106 static inline int siar_valid(struct pt_regs *regs) 107 { 108 return 1; 109 } 110 111 static bool is_ebb_event(struct perf_event *event) { return false; } 112 static int ebb_event_check(struct perf_event *event) { return 0; } 113 static void ebb_event_add(struct perf_event *event) { } 114 static void ebb_switch_out(unsigned long mmcr0) { } 115 static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0) 116 { 117 return mmcr0; 118 } 119 120 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 121 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 122 void power_pmu_flush_branch_stack(void) {} 123 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {} 124 static void pmao_restore_workaround(bool ebb) { } 125 #endif /* CONFIG_PPC32 */ 126 127 static bool regs_use_siar(struct pt_regs *regs) 128 { 129 return !!regs->result; 130 } 131 132 /* 133 * Things that are specific to 64-bit implementations. 134 */ 135 #ifdef CONFIG_PPC64 136 137 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 138 { 139 unsigned long mmcra = regs->dsisr; 140 141 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 142 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 143 if (slot > 1) 144 return 4 * (slot - 1); 145 } 146 147 return 0; 148 } 149 150 /* 151 * The user wants a data address recorded. 152 * If we're not doing instruction sampling, give them the SDAR 153 * (sampled data address). If we are doing instruction sampling, then 154 * only give them the SDAR if it corresponds to the instruction 155 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 156 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 157 */ 158 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) 159 { 160 unsigned long mmcra = regs->dsisr; 161 bool sdar_valid; 162 163 if (ppmu->flags & PPMU_HAS_SIER) 164 sdar_valid = regs->dar & SIER_SDAR_VALID; 165 else { 166 unsigned long sdsync; 167 168 if (ppmu->flags & PPMU_SIAR_VALID) 169 sdsync = POWER7P_MMCRA_SDAR_VALID; 170 else if (ppmu->flags & PPMU_ALT_SIPR) 171 sdsync = POWER6_MMCRA_SDSYNC; 172 else 173 sdsync = MMCRA_SDSYNC; 174 175 sdar_valid = mmcra & sdsync; 176 } 177 178 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 179 *addrp = mfspr(SPRN_SDAR); 180 } 181 182 static bool regs_sihv(struct pt_regs *regs) 183 { 184 unsigned long sihv = MMCRA_SIHV; 185 186 if (ppmu->flags & PPMU_HAS_SIER) 187 return !!(regs->dar & SIER_SIHV); 188 189 if (ppmu->flags & PPMU_ALT_SIPR) 190 sihv = POWER6_MMCRA_SIHV; 191 192 return !!(regs->dsisr & sihv); 193 } 194 195 static bool regs_sipr(struct pt_regs *regs) 196 { 197 unsigned long sipr = MMCRA_SIPR; 198 199 if (ppmu->flags & PPMU_HAS_SIER) 200 return !!(regs->dar & SIER_SIPR); 201 202 if (ppmu->flags & PPMU_ALT_SIPR) 203 sipr = POWER6_MMCRA_SIPR; 204 205 return !!(regs->dsisr & sipr); 206 } 207 208 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 209 { 210 if (regs->msr & MSR_PR) 211 return PERF_RECORD_MISC_USER; 212 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 213 return PERF_RECORD_MISC_HYPERVISOR; 214 return PERF_RECORD_MISC_KERNEL; 215 } 216 217 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 218 { 219 bool use_siar = regs_use_siar(regs); 220 221 if (!use_siar) 222 return perf_flags_from_msr(regs); 223 224 /* 225 * If we don't have flags in MMCRA, rather than using 226 * the MSR, we intuit the flags from the address in 227 * SIAR which should give slightly more reliable 228 * results 229 */ 230 if (ppmu->flags & PPMU_NO_SIPR) { 231 unsigned long siar = mfspr(SPRN_SIAR); 232 if (siar >= PAGE_OFFSET) 233 return PERF_RECORD_MISC_KERNEL; 234 return PERF_RECORD_MISC_USER; 235 } 236 237 /* PR has priority over HV, so order below is important */ 238 if (regs_sipr(regs)) 239 return PERF_RECORD_MISC_USER; 240 241 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 242 return PERF_RECORD_MISC_HYPERVISOR; 243 244 return PERF_RECORD_MISC_KERNEL; 245 } 246 247 /* 248 * Overload regs->dsisr to store MMCRA so we only need to read it once 249 * on each interrupt. 250 * Overload regs->dar to store SIER if we have it. 251 * Overload regs->result to specify whether we should use the MSR (result 252 * is zero) or the SIAR (result is non zero). 253 */ 254 static inline void perf_read_regs(struct pt_regs *regs) 255 { 256 unsigned long mmcra = mfspr(SPRN_MMCRA); 257 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 258 int use_siar; 259 260 regs->dsisr = mmcra; 261 262 if (ppmu->flags & PPMU_HAS_SIER) 263 regs->dar = mfspr(SPRN_SIER); 264 265 /* 266 * If this isn't a PMU exception (eg a software event) the SIAR is 267 * not valid. Use pt_regs. 268 * 269 * If it is a marked event use the SIAR. 270 * 271 * If the PMU doesn't update the SIAR for non marked events use 272 * pt_regs. 273 * 274 * If the PMU has HV/PR flags then check to see if they 275 * place the exception in userspace. If so, use pt_regs. In 276 * continuous sampling mode the SIAR and the PMU exception are 277 * not synchronised, so they may be many instructions apart. 278 * This can result in confusing backtraces. We still want 279 * hypervisor samples as well as samples in the kernel with 280 * interrupts off hence the userspace check. 281 */ 282 if (TRAP(regs) != 0xf00) 283 use_siar = 0; 284 else if (marked) 285 use_siar = 1; 286 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 287 use_siar = 0; 288 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 289 use_siar = 0; 290 else 291 use_siar = 1; 292 293 regs->result = use_siar; 294 } 295 296 /* 297 * If interrupts were soft-disabled when a PMU interrupt occurs, treat 298 * it as an NMI. 299 */ 300 static inline int perf_intr_is_nmi(struct pt_regs *regs) 301 { 302 return !regs->softe; 303 } 304 305 /* 306 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 307 * must be sampled only if the SIAR-valid bit is set. 308 * 309 * For unmarked instructions and for processors that don't have the SIAR-Valid 310 * bit, assume that SIAR is valid. 311 */ 312 static inline int siar_valid(struct pt_regs *regs) 313 { 314 unsigned long mmcra = regs->dsisr; 315 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 316 317 if (marked) { 318 if (ppmu->flags & PPMU_HAS_SIER) 319 return regs->dar & SIER_SIAR_VALID; 320 321 if (ppmu->flags & PPMU_SIAR_VALID) 322 return mmcra & POWER7P_MMCRA_SIAR_VALID; 323 } 324 325 return 1; 326 } 327 328 329 /* Reset all possible BHRB entries */ 330 static void power_pmu_bhrb_reset(void) 331 { 332 asm volatile(PPC_CLRBHRB); 333 } 334 335 static void power_pmu_bhrb_enable(struct perf_event *event) 336 { 337 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 338 339 if (!ppmu->bhrb_nr) 340 return; 341 342 /* Clear BHRB if we changed task context to avoid data leaks */ 343 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 344 power_pmu_bhrb_reset(); 345 cpuhw->bhrb_context = event->ctx; 346 } 347 cpuhw->bhrb_users++; 348 } 349 350 static void power_pmu_bhrb_disable(struct perf_event *event) 351 { 352 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 353 354 if (!ppmu->bhrb_nr) 355 return; 356 357 cpuhw->bhrb_users--; 358 WARN_ON_ONCE(cpuhw->bhrb_users < 0); 359 360 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 361 /* BHRB cannot be turned off when other 362 * events are active on the PMU. 363 */ 364 365 /* avoid stale pointer */ 366 cpuhw->bhrb_context = NULL; 367 } 368 } 369 370 /* Called from ctxsw to prevent one process's branch entries to 371 * mingle with the other process's entries during context switch. 372 */ 373 void power_pmu_flush_branch_stack(void) 374 { 375 if (ppmu->bhrb_nr) 376 power_pmu_bhrb_reset(); 377 } 378 /* Calculate the to address for a branch */ 379 static __u64 power_pmu_bhrb_to(u64 addr) 380 { 381 unsigned int instr; 382 int ret; 383 __u64 target; 384 385 if (is_kernel_addr(addr)) 386 return branch_target((unsigned int *)addr); 387 388 /* Userspace: need copy instruction here then translate it */ 389 pagefault_disable(); 390 ret = __get_user_inatomic(instr, (unsigned int __user *)addr); 391 if (ret) { 392 pagefault_enable(); 393 return 0; 394 } 395 pagefault_enable(); 396 397 target = branch_target(&instr); 398 if ((!target) || (instr & BRANCH_ABSOLUTE)) 399 return target; 400 401 /* Translate relative branch target from kernel to user address */ 402 return target - (unsigned long)&instr + addr; 403 } 404 405 /* Processing BHRB entries */ 406 void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) 407 { 408 u64 val; 409 u64 addr; 410 int r_index, u_index, pred; 411 412 r_index = 0; 413 u_index = 0; 414 while (r_index < ppmu->bhrb_nr) { 415 /* Assembly read function */ 416 val = read_bhrb(r_index++); 417 if (!val) 418 /* Terminal marker: End of valid BHRB entries */ 419 break; 420 else { 421 addr = val & BHRB_EA; 422 pred = val & BHRB_PREDICTION; 423 424 if (!addr) 425 /* invalid entry */ 426 continue; 427 428 /* Branches are read most recent first (ie. mfbhrb 0 is 429 * the most recent branch). 430 * There are two types of valid entries: 431 * 1) a target entry which is the to address of a 432 * computed goto like a blr,bctr,btar. The next 433 * entry read from the bhrb will be branch 434 * corresponding to this target (ie. the actual 435 * blr/bctr/btar instruction). 436 * 2) a from address which is an actual branch. If a 437 * target entry proceeds this, then this is the 438 * matching branch for that target. If this is not 439 * following a target entry, then this is a branch 440 * where the target is given as an immediate field 441 * in the instruction (ie. an i or b form branch). 442 * In this case we need to read the instruction from 443 * memory to determine the target/to address. 444 */ 445 446 if (val & BHRB_TARGET) { 447 /* Target branches use two entries 448 * (ie. computed gotos/XL form) 449 */ 450 cpuhw->bhrb_entries[u_index].to = addr; 451 cpuhw->bhrb_entries[u_index].mispred = pred; 452 cpuhw->bhrb_entries[u_index].predicted = ~pred; 453 454 /* Get from address in next entry */ 455 val = read_bhrb(r_index++); 456 addr = val & BHRB_EA; 457 if (val & BHRB_TARGET) { 458 /* Shouldn't have two targets in a 459 row.. Reset index and try again */ 460 r_index--; 461 addr = 0; 462 } 463 cpuhw->bhrb_entries[u_index].from = addr; 464 } else { 465 /* Branches to immediate field 466 (ie I or B form) */ 467 cpuhw->bhrb_entries[u_index].from = addr; 468 cpuhw->bhrb_entries[u_index].to = 469 power_pmu_bhrb_to(addr); 470 cpuhw->bhrb_entries[u_index].mispred = pred; 471 cpuhw->bhrb_entries[u_index].predicted = ~pred; 472 } 473 u_index++; 474 475 } 476 } 477 cpuhw->bhrb_stack.nr = u_index; 478 return; 479 } 480 481 static bool is_ebb_event(struct perf_event *event) 482 { 483 /* 484 * This could be a per-PMU callback, but we'd rather avoid the cost. We 485 * check that the PMU supports EBB, meaning those that don't can still 486 * use bit 63 of the event code for something else if they wish. 487 */ 488 return (ppmu->flags & PPMU_ARCH_207S) && 489 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 490 } 491 492 static int ebb_event_check(struct perf_event *event) 493 { 494 struct perf_event *leader = event->group_leader; 495 496 /* Event and group leader must agree on EBB */ 497 if (is_ebb_event(leader) != is_ebb_event(event)) 498 return -EINVAL; 499 500 if (is_ebb_event(event)) { 501 if (!(event->attach_state & PERF_ATTACH_TASK)) 502 return -EINVAL; 503 504 if (!leader->attr.pinned || !leader->attr.exclusive) 505 return -EINVAL; 506 507 if (event->attr.freq || 508 event->attr.inherit || 509 event->attr.sample_type || 510 event->attr.sample_period || 511 event->attr.enable_on_exec) 512 return -EINVAL; 513 } 514 515 return 0; 516 } 517 518 static void ebb_event_add(struct perf_event *event) 519 { 520 if (!is_ebb_event(event) || current->thread.used_ebb) 521 return; 522 523 /* 524 * IFF this is the first time we've added an EBB event, set 525 * PMXE in the user MMCR0 so we can detect when it's cleared by 526 * userspace. We need this so that we can context switch while 527 * userspace is in the EBB handler (where PMXE is 0). 528 */ 529 current->thread.used_ebb = 1; 530 current->thread.mmcr0 |= MMCR0_PMXE; 531 } 532 533 static void ebb_switch_out(unsigned long mmcr0) 534 { 535 if (!(mmcr0 & MMCR0_EBE)) 536 return; 537 538 current->thread.siar = mfspr(SPRN_SIAR); 539 current->thread.sier = mfspr(SPRN_SIER); 540 current->thread.sdar = mfspr(SPRN_SDAR); 541 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 542 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 543 } 544 545 static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0) 546 { 547 if (!ebb) 548 goto out; 549 550 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 551 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 552 553 /* 554 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 555 * with pmao_restore_workaround() because we may add PMAO but we never 556 * clear it here. 557 */ 558 mmcr0 |= current->thread.mmcr0; 559 560 /* 561 * Be careful not to set PMXE if userspace had it cleared. This is also 562 * compatible with pmao_restore_workaround() because it has already 563 * cleared PMXE and we leave PMAO alone. 564 */ 565 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 566 mmcr0 &= ~MMCR0_PMXE; 567 568 mtspr(SPRN_SIAR, current->thread.siar); 569 mtspr(SPRN_SIER, current->thread.sier); 570 mtspr(SPRN_SDAR, current->thread.sdar); 571 mtspr(SPRN_MMCR2, current->thread.mmcr2); 572 out: 573 return mmcr0; 574 } 575 576 static void pmao_restore_workaround(bool ebb) 577 { 578 unsigned pmcs[6]; 579 580 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 581 return; 582 583 /* 584 * On POWER8E there is a hardware defect which affects the PMU context 585 * switch logic, ie. power_pmu_disable/enable(). 586 * 587 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 588 * by the hardware. Sometime later the actual PMU exception is 589 * delivered. 590 * 591 * If we context switch, or simply disable/enable, the PMU prior to the 592 * exception arriving, the exception will be lost when we clear PMAO. 593 * 594 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 595 * set, and this _should_ generate an exception. However because of the 596 * defect no exception is generated when we write PMAO, and we get 597 * stuck with no counters counting but no exception delivered. 598 * 599 * The workaround is to detect this case and tweak the hardware to 600 * create another pending PMU exception. 601 * 602 * We do that by setting up PMC6 (cycles) for an imminent overflow and 603 * enabling the PMU. That causes a new exception to be generated in the 604 * chip, but we don't take it yet because we have interrupts hard 605 * disabled. We then write back the PMU state as we want it to be seen 606 * by the exception handler. When we reenable interrupts the exception 607 * handler will be called and see the correct state. 608 * 609 * The logic is the same for EBB, except that the exception is gated by 610 * us having interrupts hard disabled as well as the fact that we are 611 * not in userspace. The exception is finally delivered when we return 612 * to userspace. 613 */ 614 615 /* Only if PMAO is set and PMAO_SYNC is clear */ 616 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 617 return; 618 619 /* If we're doing EBB, only if BESCR[GE] is set */ 620 if (ebb && !(current->thread.bescr & BESCR_GE)) 621 return; 622 623 /* 624 * We are already soft-disabled in power_pmu_enable(). We need to hard 625 * enable to actually prevent the PMU exception from firing. 626 */ 627 hard_irq_disable(); 628 629 /* 630 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 631 * Using read/write_pmc() in a for loop adds 12 function calls and 632 * almost doubles our code size. 633 */ 634 pmcs[0] = mfspr(SPRN_PMC1); 635 pmcs[1] = mfspr(SPRN_PMC2); 636 pmcs[2] = mfspr(SPRN_PMC3); 637 pmcs[3] = mfspr(SPRN_PMC4); 638 pmcs[4] = mfspr(SPRN_PMC5); 639 pmcs[5] = mfspr(SPRN_PMC6); 640 641 /* Ensure all freeze bits are unset */ 642 mtspr(SPRN_MMCR2, 0); 643 644 /* Set up PMC6 to overflow in one cycle */ 645 mtspr(SPRN_PMC6, 0x7FFFFFFE); 646 647 /* Enable exceptions and unfreeze PMC6 */ 648 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 649 650 /* Now we need to refreeze and restore the PMCs */ 651 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 652 653 mtspr(SPRN_PMC1, pmcs[0]); 654 mtspr(SPRN_PMC2, pmcs[1]); 655 mtspr(SPRN_PMC3, pmcs[2]); 656 mtspr(SPRN_PMC4, pmcs[3]); 657 mtspr(SPRN_PMC5, pmcs[4]); 658 mtspr(SPRN_PMC6, pmcs[5]); 659 } 660 #endif /* CONFIG_PPC64 */ 661 662 static void perf_event_interrupt(struct pt_regs *regs); 663 664 /* 665 * Read one performance monitor counter (PMC). 666 */ 667 static unsigned long read_pmc(int idx) 668 { 669 unsigned long val; 670 671 switch (idx) { 672 case 1: 673 val = mfspr(SPRN_PMC1); 674 break; 675 case 2: 676 val = mfspr(SPRN_PMC2); 677 break; 678 case 3: 679 val = mfspr(SPRN_PMC3); 680 break; 681 case 4: 682 val = mfspr(SPRN_PMC4); 683 break; 684 case 5: 685 val = mfspr(SPRN_PMC5); 686 break; 687 case 6: 688 val = mfspr(SPRN_PMC6); 689 break; 690 #ifdef CONFIG_PPC64 691 case 7: 692 val = mfspr(SPRN_PMC7); 693 break; 694 case 8: 695 val = mfspr(SPRN_PMC8); 696 break; 697 #endif /* CONFIG_PPC64 */ 698 default: 699 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 700 val = 0; 701 } 702 return val; 703 } 704 705 /* 706 * Write one PMC. 707 */ 708 static void write_pmc(int idx, unsigned long val) 709 { 710 switch (idx) { 711 case 1: 712 mtspr(SPRN_PMC1, val); 713 break; 714 case 2: 715 mtspr(SPRN_PMC2, val); 716 break; 717 case 3: 718 mtspr(SPRN_PMC3, val); 719 break; 720 case 4: 721 mtspr(SPRN_PMC4, val); 722 break; 723 case 5: 724 mtspr(SPRN_PMC5, val); 725 break; 726 case 6: 727 mtspr(SPRN_PMC6, val); 728 break; 729 #ifdef CONFIG_PPC64 730 case 7: 731 mtspr(SPRN_PMC7, val); 732 break; 733 case 8: 734 mtspr(SPRN_PMC8, val); 735 break; 736 #endif /* CONFIG_PPC64 */ 737 default: 738 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 739 } 740 } 741 742 /* Called from sysrq_handle_showregs() */ 743 void perf_event_print_debug(void) 744 { 745 unsigned long sdar, sier, flags; 746 u32 pmcs[MAX_HWEVENTS]; 747 int i; 748 749 if (!ppmu->n_counter) 750 return; 751 752 local_irq_save(flags); 753 754 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 755 smp_processor_id(), ppmu->name, ppmu->n_counter); 756 757 for (i = 0; i < ppmu->n_counter; i++) 758 pmcs[i] = read_pmc(i + 1); 759 760 for (; i < MAX_HWEVENTS; i++) 761 pmcs[i] = 0xdeadbeef; 762 763 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 764 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 765 766 if (ppmu->n_counter > 4) 767 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 768 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 769 770 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 771 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 772 773 sdar = sier = 0; 774 #ifdef CONFIG_PPC64 775 sdar = mfspr(SPRN_SDAR); 776 777 if (ppmu->flags & PPMU_HAS_SIER) 778 sier = mfspr(SPRN_SIER); 779 780 if (ppmu->flags & PPMU_ARCH_207S) { 781 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 782 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 783 pr_info("EBBRR: %016lx BESCR: %016lx\n", 784 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 785 } 786 #endif 787 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 788 mfspr(SPRN_SIAR), sdar, sier); 789 790 local_irq_restore(flags); 791 } 792 793 /* 794 * Check if a set of events can all go on the PMU at once. 795 * If they can't, this will look at alternative codes for the events 796 * and see if any combination of alternative codes is feasible. 797 * The feasible set is returned in event_id[]. 798 */ 799 static int power_check_constraints(struct cpu_hw_events *cpuhw, 800 u64 event_id[], unsigned int cflags[], 801 int n_ev) 802 { 803 unsigned long mask, value, nv; 804 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 805 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 806 int i, j; 807 unsigned long addf = ppmu->add_fields; 808 unsigned long tadd = ppmu->test_adder; 809 810 if (n_ev > ppmu->n_counter) 811 return -1; 812 813 /* First see if the events will go on as-is */ 814 for (i = 0; i < n_ev; ++i) { 815 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 816 && !ppmu->limited_pmc_event(event_id[i])) { 817 ppmu->get_alternatives(event_id[i], cflags[i], 818 cpuhw->alternatives[i]); 819 event_id[i] = cpuhw->alternatives[i][0]; 820 } 821 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 822 &cpuhw->avalues[i][0])) 823 return -1; 824 } 825 value = mask = 0; 826 for (i = 0; i < n_ev; ++i) { 827 nv = (value | cpuhw->avalues[i][0]) + 828 (value & cpuhw->avalues[i][0] & addf); 829 if ((((nv + tadd) ^ value) & mask) != 0 || 830 (((nv + tadd) ^ cpuhw->avalues[i][0]) & 831 cpuhw->amasks[i][0]) != 0) 832 break; 833 value = nv; 834 mask |= cpuhw->amasks[i][0]; 835 } 836 if (i == n_ev) 837 return 0; /* all OK */ 838 839 /* doesn't work, gather alternatives... */ 840 if (!ppmu->get_alternatives) 841 return -1; 842 for (i = 0; i < n_ev; ++i) { 843 choice[i] = 0; 844 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 845 cpuhw->alternatives[i]); 846 for (j = 1; j < n_alt[i]; ++j) 847 ppmu->get_constraint(cpuhw->alternatives[i][j], 848 &cpuhw->amasks[i][j], 849 &cpuhw->avalues[i][j]); 850 } 851 852 /* enumerate all possibilities and see if any will work */ 853 i = 0; 854 j = -1; 855 value = mask = nv = 0; 856 while (i < n_ev) { 857 if (j >= 0) { 858 /* we're backtracking, restore context */ 859 value = svalues[i]; 860 mask = smasks[i]; 861 j = choice[i]; 862 } 863 /* 864 * See if any alternative k for event_id i, 865 * where k > j, will satisfy the constraints. 866 */ 867 while (++j < n_alt[i]) { 868 nv = (value | cpuhw->avalues[i][j]) + 869 (value & cpuhw->avalues[i][j] & addf); 870 if ((((nv + tadd) ^ value) & mask) == 0 && 871 (((nv + tadd) ^ cpuhw->avalues[i][j]) 872 & cpuhw->amasks[i][j]) == 0) 873 break; 874 } 875 if (j >= n_alt[i]) { 876 /* 877 * No feasible alternative, backtrack 878 * to event_id i-1 and continue enumerating its 879 * alternatives from where we got up to. 880 */ 881 if (--i < 0) 882 return -1; 883 } else { 884 /* 885 * Found a feasible alternative for event_id i, 886 * remember where we got up to with this event_id, 887 * go on to the next event_id, and start with 888 * the first alternative for it. 889 */ 890 choice[i] = j; 891 svalues[i] = value; 892 smasks[i] = mask; 893 value = nv; 894 mask |= cpuhw->amasks[i][j]; 895 ++i; 896 j = -1; 897 } 898 } 899 900 /* OK, we have a feasible combination, tell the caller the solution */ 901 for (i = 0; i < n_ev; ++i) 902 event_id[i] = cpuhw->alternatives[i][choice[i]]; 903 return 0; 904 } 905 906 /* 907 * Check if newly-added events have consistent settings for 908 * exclude_{user,kernel,hv} with each other and any previously 909 * added events. 910 */ 911 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 912 int n_prev, int n_new) 913 { 914 int eu = 0, ek = 0, eh = 0; 915 int i, n, first; 916 struct perf_event *event; 917 918 n = n_prev + n_new; 919 if (n <= 1) 920 return 0; 921 922 first = 1; 923 for (i = 0; i < n; ++i) { 924 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 925 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 926 continue; 927 } 928 event = ctrs[i]; 929 if (first) { 930 eu = event->attr.exclude_user; 931 ek = event->attr.exclude_kernel; 932 eh = event->attr.exclude_hv; 933 first = 0; 934 } else if (event->attr.exclude_user != eu || 935 event->attr.exclude_kernel != ek || 936 event->attr.exclude_hv != eh) { 937 return -EAGAIN; 938 } 939 } 940 941 if (eu || ek || eh) 942 for (i = 0; i < n; ++i) 943 if (cflags[i] & PPMU_LIMITED_PMC_OK) 944 cflags[i] |= PPMU_LIMITED_PMC_REQD; 945 946 return 0; 947 } 948 949 static u64 check_and_compute_delta(u64 prev, u64 val) 950 { 951 u64 delta = (val - prev) & 0xfffffffful; 952 953 /* 954 * POWER7 can roll back counter values, if the new value is smaller 955 * than the previous value it will cause the delta and the counter to 956 * have bogus values unless we rolled a counter over. If a coutner is 957 * rolled back, it will be smaller, but within 256, which is the maximum 958 * number of events to rollback at once. If we dectect a rollback 959 * return 0. This can lead to a small lack of precision in the 960 * counters. 961 */ 962 if (prev > val && (prev - val) < 256) 963 delta = 0; 964 965 return delta; 966 } 967 968 static void power_pmu_read(struct perf_event *event) 969 { 970 s64 val, delta, prev; 971 972 if (event->hw.state & PERF_HES_STOPPED) 973 return; 974 975 if (!event->hw.idx) 976 return; 977 978 if (is_ebb_event(event)) { 979 val = read_pmc(event->hw.idx); 980 local64_set(&event->hw.prev_count, val); 981 return; 982 } 983 984 /* 985 * Performance monitor interrupts come even when interrupts 986 * are soft-disabled, as long as interrupts are hard-enabled. 987 * Therefore we treat them like NMIs. 988 */ 989 do { 990 prev = local64_read(&event->hw.prev_count); 991 barrier(); 992 val = read_pmc(event->hw.idx); 993 delta = check_and_compute_delta(prev, val); 994 if (!delta) 995 return; 996 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 997 998 local64_add(delta, &event->count); 999 1000 /* 1001 * A number of places program the PMC with (0x80000000 - period_left). 1002 * We never want period_left to be less than 1 because we will program 1003 * the PMC with a value >= 0x800000000 and an edge detected PMC will 1004 * roll around to 0 before taking an exception. We have seen this 1005 * on POWER8. 1006 * 1007 * To fix this, clamp the minimum value of period_left to 1. 1008 */ 1009 do { 1010 prev = local64_read(&event->hw.period_left); 1011 val = prev - delta; 1012 if (val < 1) 1013 val = 1; 1014 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); 1015 } 1016 1017 /* 1018 * On some machines, PMC5 and PMC6 can't be written, don't respect 1019 * the freeze conditions, and don't generate interrupts. This tells 1020 * us if `event' is using such a PMC. 1021 */ 1022 static int is_limited_pmc(int pmcnum) 1023 { 1024 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1025 && (pmcnum == 5 || pmcnum == 6); 1026 } 1027 1028 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1029 unsigned long pmc5, unsigned long pmc6) 1030 { 1031 struct perf_event *event; 1032 u64 val, prev, delta; 1033 int i; 1034 1035 for (i = 0; i < cpuhw->n_limited; ++i) { 1036 event = cpuhw->limited_counter[i]; 1037 if (!event->hw.idx) 1038 continue; 1039 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1040 prev = local64_read(&event->hw.prev_count); 1041 event->hw.idx = 0; 1042 delta = check_and_compute_delta(prev, val); 1043 if (delta) 1044 local64_add(delta, &event->count); 1045 } 1046 } 1047 1048 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1049 unsigned long pmc5, unsigned long pmc6) 1050 { 1051 struct perf_event *event; 1052 u64 val, prev; 1053 int i; 1054 1055 for (i = 0; i < cpuhw->n_limited; ++i) { 1056 event = cpuhw->limited_counter[i]; 1057 event->hw.idx = cpuhw->limited_hwidx[i]; 1058 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1059 prev = local64_read(&event->hw.prev_count); 1060 if (check_and_compute_delta(prev, val)) 1061 local64_set(&event->hw.prev_count, val); 1062 perf_event_update_userpage(event); 1063 } 1064 } 1065 1066 /* 1067 * Since limited events don't respect the freeze conditions, we 1068 * have to read them immediately after freezing or unfreezing the 1069 * other events. We try to keep the values from the limited 1070 * events as consistent as possible by keeping the delay (in 1071 * cycles and instructions) between freezing/unfreezing and reading 1072 * the limited events as small and consistent as possible. 1073 * Therefore, if any limited events are in use, we read them 1074 * both, and always in the same order, to minimize variability, 1075 * and do it inside the same asm that writes MMCR0. 1076 */ 1077 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1078 { 1079 unsigned long pmc5, pmc6; 1080 1081 if (!cpuhw->n_limited) { 1082 mtspr(SPRN_MMCR0, mmcr0); 1083 return; 1084 } 1085 1086 /* 1087 * Write MMCR0, then read PMC5 and PMC6 immediately. 1088 * To ensure we don't get a performance monitor interrupt 1089 * between writing MMCR0 and freezing/thawing the limited 1090 * events, we first write MMCR0 with the event overflow 1091 * interrupt enable bits turned off. 1092 */ 1093 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1094 : "=&r" (pmc5), "=&r" (pmc6) 1095 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1096 "i" (SPRN_MMCR0), 1097 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1098 1099 if (mmcr0 & MMCR0_FC) 1100 freeze_limited_counters(cpuhw, pmc5, pmc6); 1101 else 1102 thaw_limited_counters(cpuhw, pmc5, pmc6); 1103 1104 /* 1105 * Write the full MMCR0 including the event overflow interrupt 1106 * enable bits, if necessary. 1107 */ 1108 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1109 mtspr(SPRN_MMCR0, mmcr0); 1110 } 1111 1112 /* 1113 * Disable all events to prevent PMU interrupts and to allow 1114 * events to be added or removed. 1115 */ 1116 static void power_pmu_disable(struct pmu *pmu) 1117 { 1118 struct cpu_hw_events *cpuhw; 1119 unsigned long flags, mmcr0, val; 1120 1121 if (!ppmu) 1122 return; 1123 local_irq_save(flags); 1124 cpuhw = &__get_cpu_var(cpu_hw_events); 1125 1126 if (!cpuhw->disabled) { 1127 /* 1128 * Check if we ever enabled the PMU on this cpu. 1129 */ 1130 if (!cpuhw->pmcs_enabled) { 1131 ppc_enable_pmcs(); 1132 cpuhw->pmcs_enabled = 1; 1133 } 1134 1135 /* 1136 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1137 */ 1138 val = mmcr0 = mfspr(SPRN_MMCR0); 1139 val |= MMCR0_FC; 1140 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1141 MMCR0_FC56); 1142 1143 /* 1144 * The barrier is to make sure the mtspr has been 1145 * executed and the PMU has frozen the events etc. 1146 * before we return. 1147 */ 1148 write_mmcr0(cpuhw, val); 1149 mb(); 1150 1151 /* 1152 * Disable instruction sampling if it was enabled 1153 */ 1154 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1155 mtspr(SPRN_MMCRA, 1156 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1157 mb(); 1158 } 1159 1160 cpuhw->disabled = 1; 1161 cpuhw->n_added = 0; 1162 1163 ebb_switch_out(mmcr0); 1164 } 1165 1166 local_irq_restore(flags); 1167 } 1168 1169 /* 1170 * Re-enable all events if disable == 0. 1171 * If we were previously disabled and events were added, then 1172 * put the new config on the PMU. 1173 */ 1174 static void power_pmu_enable(struct pmu *pmu) 1175 { 1176 struct perf_event *event; 1177 struct cpu_hw_events *cpuhw; 1178 unsigned long flags; 1179 long i; 1180 unsigned long val, mmcr0; 1181 s64 left; 1182 unsigned int hwc_index[MAX_HWEVENTS]; 1183 int n_lim; 1184 int idx; 1185 bool ebb; 1186 1187 if (!ppmu) 1188 return; 1189 local_irq_save(flags); 1190 1191 cpuhw = &__get_cpu_var(cpu_hw_events); 1192 if (!cpuhw->disabled) 1193 goto out; 1194 1195 if (cpuhw->n_events == 0) { 1196 ppc_set_pmu_inuse(0); 1197 goto out; 1198 } 1199 1200 cpuhw->disabled = 0; 1201 1202 /* 1203 * EBB requires an exclusive group and all events must have the EBB 1204 * flag set, or not set, so we can just check a single event. Also we 1205 * know we have at least one event. 1206 */ 1207 ebb = is_ebb_event(cpuhw->event[0]); 1208 1209 /* 1210 * If we didn't change anything, or only removed events, 1211 * no need to recalculate MMCR* settings and reset the PMCs. 1212 * Just reenable the PMU with the current MMCR* settings 1213 * (possibly updated for removal of events). 1214 */ 1215 if (!cpuhw->n_added) { 1216 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1217 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1218 goto out_enable; 1219 } 1220 1221 /* 1222 * Compute MMCR* values for the new set of events 1223 */ 1224 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1225 cpuhw->mmcr)) { 1226 /* shouldn't ever get here */ 1227 printk(KERN_ERR "oops compute_mmcr failed\n"); 1228 goto out; 1229 } 1230 1231 /* 1232 * Add in MMCR0 freeze bits corresponding to the 1233 * attr.exclude_* bits for the first event. 1234 * We have already checked that all events have the 1235 * same values for these bits as the first event. 1236 */ 1237 event = cpuhw->event[0]; 1238 if (event->attr.exclude_user) 1239 cpuhw->mmcr[0] |= MMCR0_FCP; 1240 if (event->attr.exclude_kernel) 1241 cpuhw->mmcr[0] |= freeze_events_kernel; 1242 if (event->attr.exclude_hv) 1243 cpuhw->mmcr[0] |= MMCR0_FCHV; 1244 1245 /* 1246 * Write the new configuration to MMCR* with the freeze 1247 * bit set and set the hardware events to their initial values. 1248 * Then unfreeze the events. 1249 */ 1250 ppc_set_pmu_inuse(1); 1251 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1252 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1253 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1254 | MMCR0_FC); 1255 1256 /* 1257 * Read off any pre-existing events that need to move 1258 * to another PMC. 1259 */ 1260 for (i = 0; i < cpuhw->n_events; ++i) { 1261 event = cpuhw->event[i]; 1262 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1263 power_pmu_read(event); 1264 write_pmc(event->hw.idx, 0); 1265 event->hw.idx = 0; 1266 } 1267 } 1268 1269 /* 1270 * Initialize the PMCs for all the new and moved events. 1271 */ 1272 cpuhw->n_limited = n_lim = 0; 1273 for (i = 0; i < cpuhw->n_events; ++i) { 1274 event = cpuhw->event[i]; 1275 if (event->hw.idx) 1276 continue; 1277 idx = hwc_index[i] + 1; 1278 if (is_limited_pmc(idx)) { 1279 cpuhw->limited_counter[n_lim] = event; 1280 cpuhw->limited_hwidx[n_lim] = idx; 1281 ++n_lim; 1282 continue; 1283 } 1284 1285 if (ebb) 1286 val = local64_read(&event->hw.prev_count); 1287 else { 1288 val = 0; 1289 if (event->hw.sample_period) { 1290 left = local64_read(&event->hw.period_left); 1291 if (left < 0x80000000L) 1292 val = 0x80000000L - left; 1293 } 1294 local64_set(&event->hw.prev_count, val); 1295 } 1296 1297 event->hw.idx = idx; 1298 if (event->hw.state & PERF_HES_STOPPED) 1299 val = 0; 1300 write_pmc(idx, val); 1301 1302 perf_event_update_userpage(event); 1303 } 1304 cpuhw->n_limited = n_lim; 1305 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; 1306 1307 out_enable: 1308 pmao_restore_workaround(ebb); 1309 1310 if (ppmu->flags & PPMU_ARCH_207S) 1311 mtspr(SPRN_MMCR2, 0); 1312 1313 mmcr0 = ebb_switch_in(ebb, cpuhw->mmcr[0]); 1314 1315 mb(); 1316 if (cpuhw->bhrb_users) 1317 ppmu->config_bhrb(cpuhw->bhrb_filter); 1318 1319 write_mmcr0(cpuhw, mmcr0); 1320 1321 /* 1322 * Enable instruction sampling if necessary 1323 */ 1324 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1325 mb(); 1326 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); 1327 } 1328 1329 out: 1330 1331 local_irq_restore(flags); 1332 } 1333 1334 static int collect_events(struct perf_event *group, int max_count, 1335 struct perf_event *ctrs[], u64 *events, 1336 unsigned int *flags) 1337 { 1338 int n = 0; 1339 struct perf_event *event; 1340 1341 if (!is_software_event(group)) { 1342 if (n >= max_count) 1343 return -1; 1344 ctrs[n] = group; 1345 flags[n] = group->hw.event_base; 1346 events[n++] = group->hw.config; 1347 } 1348 list_for_each_entry(event, &group->sibling_list, group_entry) { 1349 if (!is_software_event(event) && 1350 event->state != PERF_EVENT_STATE_OFF) { 1351 if (n >= max_count) 1352 return -1; 1353 ctrs[n] = event; 1354 flags[n] = event->hw.event_base; 1355 events[n++] = event->hw.config; 1356 } 1357 } 1358 return n; 1359 } 1360 1361 /* 1362 * Add a event to the PMU. 1363 * If all events are not already frozen, then we disable and 1364 * re-enable the PMU in order to get hw_perf_enable to do the 1365 * actual work of reconfiguring the PMU. 1366 */ 1367 static int power_pmu_add(struct perf_event *event, int ef_flags) 1368 { 1369 struct cpu_hw_events *cpuhw; 1370 unsigned long flags; 1371 int n0; 1372 int ret = -EAGAIN; 1373 1374 local_irq_save(flags); 1375 perf_pmu_disable(event->pmu); 1376 1377 /* 1378 * Add the event to the list (if there is room) 1379 * and check whether the total set is still feasible. 1380 */ 1381 cpuhw = &__get_cpu_var(cpu_hw_events); 1382 n0 = cpuhw->n_events; 1383 if (n0 >= ppmu->n_counter) 1384 goto out; 1385 cpuhw->event[n0] = event; 1386 cpuhw->events[n0] = event->hw.config; 1387 cpuhw->flags[n0] = event->hw.event_base; 1388 1389 /* 1390 * This event may have been disabled/stopped in record_and_restart() 1391 * because we exceeded the ->event_limit. If re-starting the event, 1392 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1393 * notification is re-enabled. 1394 */ 1395 if (!(ef_flags & PERF_EF_START)) 1396 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1397 else 1398 event->hw.state = 0; 1399 1400 /* 1401 * If group events scheduling transaction was started, 1402 * skip the schedulability test here, it will be performed 1403 * at commit time(->commit_txn) as a whole 1404 */ 1405 if (cpuhw->group_flag & PERF_EVENT_TXN) 1406 goto nocheck; 1407 1408 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1409 goto out; 1410 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) 1411 goto out; 1412 event->hw.config = cpuhw->events[n0]; 1413 1414 nocheck: 1415 ebb_event_add(event); 1416 1417 ++cpuhw->n_events; 1418 ++cpuhw->n_added; 1419 1420 ret = 0; 1421 out: 1422 if (has_branch_stack(event)) { 1423 power_pmu_bhrb_enable(event); 1424 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1425 event->attr.branch_sample_type); 1426 } 1427 1428 perf_pmu_enable(event->pmu); 1429 local_irq_restore(flags); 1430 return ret; 1431 } 1432 1433 /* 1434 * Remove a event from the PMU. 1435 */ 1436 static void power_pmu_del(struct perf_event *event, int ef_flags) 1437 { 1438 struct cpu_hw_events *cpuhw; 1439 long i; 1440 unsigned long flags; 1441 1442 local_irq_save(flags); 1443 perf_pmu_disable(event->pmu); 1444 1445 power_pmu_read(event); 1446 1447 cpuhw = &__get_cpu_var(cpu_hw_events); 1448 for (i = 0; i < cpuhw->n_events; ++i) { 1449 if (event == cpuhw->event[i]) { 1450 while (++i < cpuhw->n_events) { 1451 cpuhw->event[i-1] = cpuhw->event[i]; 1452 cpuhw->events[i-1] = cpuhw->events[i]; 1453 cpuhw->flags[i-1] = cpuhw->flags[i]; 1454 } 1455 --cpuhw->n_events; 1456 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); 1457 if (event->hw.idx) { 1458 write_pmc(event->hw.idx, 0); 1459 event->hw.idx = 0; 1460 } 1461 perf_event_update_userpage(event); 1462 break; 1463 } 1464 } 1465 for (i = 0; i < cpuhw->n_limited; ++i) 1466 if (event == cpuhw->limited_counter[i]) 1467 break; 1468 if (i < cpuhw->n_limited) { 1469 while (++i < cpuhw->n_limited) { 1470 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1471 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1472 } 1473 --cpuhw->n_limited; 1474 } 1475 if (cpuhw->n_events == 0) { 1476 /* disable exceptions if no events are running */ 1477 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); 1478 } 1479 1480 if (has_branch_stack(event)) 1481 power_pmu_bhrb_disable(event); 1482 1483 perf_pmu_enable(event->pmu); 1484 local_irq_restore(flags); 1485 } 1486 1487 /* 1488 * POWER-PMU does not support disabling individual counters, hence 1489 * program their cycle counter to their max value and ignore the interrupts. 1490 */ 1491 1492 static void power_pmu_start(struct perf_event *event, int ef_flags) 1493 { 1494 unsigned long flags; 1495 s64 left; 1496 unsigned long val; 1497 1498 if (!event->hw.idx || !event->hw.sample_period) 1499 return; 1500 1501 if (!(event->hw.state & PERF_HES_STOPPED)) 1502 return; 1503 1504 if (ef_flags & PERF_EF_RELOAD) 1505 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1506 1507 local_irq_save(flags); 1508 perf_pmu_disable(event->pmu); 1509 1510 event->hw.state = 0; 1511 left = local64_read(&event->hw.period_left); 1512 1513 val = 0; 1514 if (left < 0x80000000L) 1515 val = 0x80000000L - left; 1516 1517 write_pmc(event->hw.idx, val); 1518 1519 perf_event_update_userpage(event); 1520 perf_pmu_enable(event->pmu); 1521 local_irq_restore(flags); 1522 } 1523 1524 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1525 { 1526 unsigned long flags; 1527 1528 if (!event->hw.idx || !event->hw.sample_period) 1529 return; 1530 1531 if (event->hw.state & PERF_HES_STOPPED) 1532 return; 1533 1534 local_irq_save(flags); 1535 perf_pmu_disable(event->pmu); 1536 1537 power_pmu_read(event); 1538 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1539 write_pmc(event->hw.idx, 0); 1540 1541 perf_event_update_userpage(event); 1542 perf_pmu_enable(event->pmu); 1543 local_irq_restore(flags); 1544 } 1545 1546 /* 1547 * Start group events scheduling transaction 1548 * Set the flag to make pmu::enable() not perform the 1549 * schedulability test, it will be performed at commit time 1550 */ 1551 void power_pmu_start_txn(struct pmu *pmu) 1552 { 1553 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 1554 1555 perf_pmu_disable(pmu); 1556 cpuhw->group_flag |= PERF_EVENT_TXN; 1557 cpuhw->n_txn_start = cpuhw->n_events; 1558 } 1559 1560 /* 1561 * Stop group events scheduling transaction 1562 * Clear the flag and pmu::enable() will perform the 1563 * schedulability test. 1564 */ 1565 void power_pmu_cancel_txn(struct pmu *pmu) 1566 { 1567 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 1568 1569 cpuhw->group_flag &= ~PERF_EVENT_TXN; 1570 perf_pmu_enable(pmu); 1571 } 1572 1573 /* 1574 * Commit group events scheduling transaction 1575 * Perform the group schedulability test as a whole 1576 * Return 0 if success 1577 */ 1578 int power_pmu_commit_txn(struct pmu *pmu) 1579 { 1580 struct cpu_hw_events *cpuhw; 1581 long i, n; 1582 1583 if (!ppmu) 1584 return -EAGAIN; 1585 cpuhw = &__get_cpu_var(cpu_hw_events); 1586 n = cpuhw->n_events; 1587 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1588 return -EAGAIN; 1589 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); 1590 if (i < 0) 1591 return -EAGAIN; 1592 1593 for (i = cpuhw->n_txn_start; i < n; ++i) 1594 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1595 1596 cpuhw->group_flag &= ~PERF_EVENT_TXN; 1597 perf_pmu_enable(pmu); 1598 return 0; 1599 } 1600 1601 /* 1602 * Return 1 if we might be able to put event on a limited PMC, 1603 * or 0 if not. 1604 * A event can only go on a limited PMC if it counts something 1605 * that a limited PMC can count, doesn't require interrupts, and 1606 * doesn't exclude any processor mode. 1607 */ 1608 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1609 unsigned int flags) 1610 { 1611 int n; 1612 u64 alt[MAX_EVENT_ALTERNATIVES]; 1613 1614 if (event->attr.exclude_user 1615 || event->attr.exclude_kernel 1616 || event->attr.exclude_hv 1617 || event->attr.sample_period) 1618 return 0; 1619 1620 if (ppmu->limited_pmc_event(ev)) 1621 return 1; 1622 1623 /* 1624 * The requested event_id isn't on a limited PMC already; 1625 * see if any alternative code goes on a limited PMC. 1626 */ 1627 if (!ppmu->get_alternatives) 1628 return 0; 1629 1630 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1631 n = ppmu->get_alternatives(ev, flags, alt); 1632 1633 return n > 0; 1634 } 1635 1636 /* 1637 * Find an alternative event_id that goes on a normal PMC, if possible, 1638 * and return the event_id code, or 0 if there is no such alternative. 1639 * (Note: event_id code 0 is "don't count" on all machines.) 1640 */ 1641 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1642 { 1643 u64 alt[MAX_EVENT_ALTERNATIVES]; 1644 int n; 1645 1646 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1647 n = ppmu->get_alternatives(ev, flags, alt); 1648 if (!n) 1649 return 0; 1650 return alt[0]; 1651 } 1652 1653 /* Number of perf_events counting hardware events */ 1654 static atomic_t num_events; 1655 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1656 static DEFINE_MUTEX(pmc_reserve_mutex); 1657 1658 /* 1659 * Release the PMU if this is the last perf_event. 1660 */ 1661 static void hw_perf_event_destroy(struct perf_event *event) 1662 { 1663 if (!atomic_add_unless(&num_events, -1, 1)) { 1664 mutex_lock(&pmc_reserve_mutex); 1665 if (atomic_dec_return(&num_events) == 0) 1666 release_pmc_hardware(); 1667 mutex_unlock(&pmc_reserve_mutex); 1668 } 1669 } 1670 1671 /* 1672 * Translate a generic cache event_id config to a raw event_id code. 1673 */ 1674 static int hw_perf_cache_event(u64 config, u64 *eventp) 1675 { 1676 unsigned long type, op, result; 1677 int ev; 1678 1679 if (!ppmu->cache_events) 1680 return -EINVAL; 1681 1682 /* unpack config */ 1683 type = config & 0xff; 1684 op = (config >> 8) & 0xff; 1685 result = (config >> 16) & 0xff; 1686 1687 if (type >= PERF_COUNT_HW_CACHE_MAX || 1688 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1689 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1690 return -EINVAL; 1691 1692 ev = (*ppmu->cache_events)[type][op][result]; 1693 if (ev == 0) 1694 return -EOPNOTSUPP; 1695 if (ev == -1) 1696 return -EINVAL; 1697 *eventp = ev; 1698 return 0; 1699 } 1700 1701 static int power_pmu_event_init(struct perf_event *event) 1702 { 1703 u64 ev; 1704 unsigned long flags; 1705 struct perf_event *ctrs[MAX_HWEVENTS]; 1706 u64 events[MAX_HWEVENTS]; 1707 unsigned int cflags[MAX_HWEVENTS]; 1708 int n; 1709 int err; 1710 struct cpu_hw_events *cpuhw; 1711 1712 if (!ppmu) 1713 return -ENOENT; 1714 1715 if (has_branch_stack(event)) { 1716 /* PMU has BHRB enabled */ 1717 if (!(ppmu->flags & PPMU_ARCH_207S)) 1718 return -EOPNOTSUPP; 1719 } 1720 1721 switch (event->attr.type) { 1722 case PERF_TYPE_HARDWARE: 1723 ev = event->attr.config; 1724 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1725 return -EOPNOTSUPP; 1726 ev = ppmu->generic_events[ev]; 1727 break; 1728 case PERF_TYPE_HW_CACHE: 1729 err = hw_perf_cache_event(event->attr.config, &ev); 1730 if (err) 1731 return err; 1732 break; 1733 case PERF_TYPE_RAW: 1734 ev = event->attr.config; 1735 break; 1736 default: 1737 return -ENOENT; 1738 } 1739 1740 event->hw.config_base = ev; 1741 event->hw.idx = 0; 1742 1743 /* 1744 * If we are not running on a hypervisor, force the 1745 * exclude_hv bit to 0 so that we don't care what 1746 * the user set it to. 1747 */ 1748 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1749 event->attr.exclude_hv = 0; 1750 1751 /* 1752 * If this is a per-task event, then we can use 1753 * PM_RUN_* events interchangeably with their non RUN_* 1754 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1755 * XXX we should check if the task is an idle task. 1756 */ 1757 flags = 0; 1758 if (event->attach_state & PERF_ATTACH_TASK) 1759 flags |= PPMU_ONLY_COUNT_RUN; 1760 1761 /* 1762 * If this machine has limited events, check whether this 1763 * event_id could go on a limited event. 1764 */ 1765 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1766 if (can_go_on_limited_pmc(event, ev, flags)) { 1767 flags |= PPMU_LIMITED_PMC_OK; 1768 } else if (ppmu->limited_pmc_event(ev)) { 1769 /* 1770 * The requested event_id is on a limited PMC, 1771 * but we can't use a limited PMC; see if any 1772 * alternative goes on a normal PMC. 1773 */ 1774 ev = normal_pmc_alternative(ev, flags); 1775 if (!ev) 1776 return -EINVAL; 1777 } 1778 } 1779 1780 /* Extra checks for EBB */ 1781 err = ebb_event_check(event); 1782 if (err) 1783 return err; 1784 1785 /* 1786 * If this is in a group, check if it can go on with all the 1787 * other hardware events in the group. We assume the event 1788 * hasn't been linked into its leader's sibling list at this point. 1789 */ 1790 n = 0; 1791 if (event->group_leader != event) { 1792 n = collect_events(event->group_leader, ppmu->n_counter - 1, 1793 ctrs, events, cflags); 1794 if (n < 0) 1795 return -EINVAL; 1796 } 1797 events[n] = ev; 1798 ctrs[n] = event; 1799 cflags[n] = flags; 1800 if (check_excludes(ctrs, cflags, n, 1)) 1801 return -EINVAL; 1802 1803 cpuhw = &get_cpu_var(cpu_hw_events); 1804 err = power_check_constraints(cpuhw, events, cflags, n + 1); 1805 1806 if (has_branch_stack(event)) { 1807 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1808 event->attr.branch_sample_type); 1809 1810 if(cpuhw->bhrb_filter == -1) 1811 return -EOPNOTSUPP; 1812 } 1813 1814 put_cpu_var(cpu_hw_events); 1815 if (err) 1816 return -EINVAL; 1817 1818 event->hw.config = events[n]; 1819 event->hw.event_base = cflags[n]; 1820 event->hw.last_period = event->hw.sample_period; 1821 local64_set(&event->hw.period_left, event->hw.last_period); 1822 1823 /* 1824 * For EBB events we just context switch the PMC value, we don't do any 1825 * of the sample_period logic. We use hw.prev_count for this. 1826 */ 1827 if (is_ebb_event(event)) 1828 local64_set(&event->hw.prev_count, 0); 1829 1830 /* 1831 * See if we need to reserve the PMU. 1832 * If no events are currently in use, then we have to take a 1833 * mutex to ensure that we don't race with another task doing 1834 * reserve_pmc_hardware or release_pmc_hardware. 1835 */ 1836 err = 0; 1837 if (!atomic_inc_not_zero(&num_events)) { 1838 mutex_lock(&pmc_reserve_mutex); 1839 if (atomic_read(&num_events) == 0 && 1840 reserve_pmc_hardware(perf_event_interrupt)) 1841 err = -EBUSY; 1842 else 1843 atomic_inc(&num_events); 1844 mutex_unlock(&pmc_reserve_mutex); 1845 } 1846 event->destroy = hw_perf_event_destroy; 1847 1848 return err; 1849 } 1850 1851 static int power_pmu_event_idx(struct perf_event *event) 1852 { 1853 return event->hw.idx; 1854 } 1855 1856 ssize_t power_events_sysfs_show(struct device *dev, 1857 struct device_attribute *attr, char *page) 1858 { 1859 struct perf_pmu_events_attr *pmu_attr; 1860 1861 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 1862 1863 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 1864 } 1865 1866 struct pmu power_pmu = { 1867 .pmu_enable = power_pmu_enable, 1868 .pmu_disable = power_pmu_disable, 1869 .event_init = power_pmu_event_init, 1870 .add = power_pmu_add, 1871 .del = power_pmu_del, 1872 .start = power_pmu_start, 1873 .stop = power_pmu_stop, 1874 .read = power_pmu_read, 1875 .start_txn = power_pmu_start_txn, 1876 .cancel_txn = power_pmu_cancel_txn, 1877 .commit_txn = power_pmu_commit_txn, 1878 .event_idx = power_pmu_event_idx, 1879 .flush_branch_stack = power_pmu_flush_branch_stack, 1880 }; 1881 1882 /* 1883 * A counter has overflowed; update its count and record 1884 * things if requested. Note that interrupts are hard-disabled 1885 * here so there is no possibility of being interrupted. 1886 */ 1887 static void record_and_restart(struct perf_event *event, unsigned long val, 1888 struct pt_regs *regs) 1889 { 1890 u64 period = event->hw.sample_period; 1891 s64 prev, delta, left; 1892 int record = 0; 1893 1894 if (event->hw.state & PERF_HES_STOPPED) { 1895 write_pmc(event->hw.idx, 0); 1896 return; 1897 } 1898 1899 /* we don't have to worry about interrupts here */ 1900 prev = local64_read(&event->hw.prev_count); 1901 delta = check_and_compute_delta(prev, val); 1902 local64_add(delta, &event->count); 1903 1904 /* 1905 * See if the total period for this event has expired, 1906 * and update for the next period. 1907 */ 1908 val = 0; 1909 left = local64_read(&event->hw.period_left) - delta; 1910 if (delta == 0) 1911 left++; 1912 if (period) { 1913 if (left <= 0) { 1914 left += period; 1915 if (left <= 0) 1916 left = period; 1917 record = siar_valid(regs); 1918 event->hw.last_period = event->hw.sample_period; 1919 } 1920 if (left < 0x80000000LL) 1921 val = 0x80000000LL - left; 1922 } 1923 1924 write_pmc(event->hw.idx, val); 1925 local64_set(&event->hw.prev_count, val); 1926 local64_set(&event->hw.period_left, left); 1927 perf_event_update_userpage(event); 1928 1929 /* 1930 * Finally record data if requested. 1931 */ 1932 if (record) { 1933 struct perf_sample_data data; 1934 1935 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 1936 1937 if (event->attr.sample_type & PERF_SAMPLE_ADDR) 1938 perf_get_data_addr(regs, &data.addr); 1939 1940 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 1941 struct cpu_hw_events *cpuhw; 1942 cpuhw = &__get_cpu_var(cpu_hw_events); 1943 power_pmu_bhrb_read(cpuhw); 1944 data.br_stack = &cpuhw->bhrb_stack; 1945 } 1946 1947 if (perf_event_overflow(event, &data, regs)) 1948 power_pmu_stop(event, 0); 1949 } 1950 } 1951 1952 /* 1953 * Called from generic code to get the misc flags (i.e. processor mode) 1954 * for an event_id. 1955 */ 1956 unsigned long perf_misc_flags(struct pt_regs *regs) 1957 { 1958 u32 flags = perf_get_misc_flags(regs); 1959 1960 if (flags) 1961 return flags; 1962 return user_mode(regs) ? PERF_RECORD_MISC_USER : 1963 PERF_RECORD_MISC_KERNEL; 1964 } 1965 1966 /* 1967 * Called from generic code to get the instruction pointer 1968 * for an event_id. 1969 */ 1970 unsigned long perf_instruction_pointer(struct pt_regs *regs) 1971 { 1972 bool use_siar = regs_use_siar(regs); 1973 1974 if (use_siar && siar_valid(regs)) 1975 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 1976 else if (use_siar) 1977 return 0; // no valid instruction pointer 1978 else 1979 return regs->nip; 1980 } 1981 1982 static bool pmc_overflow_power7(unsigned long val) 1983 { 1984 /* 1985 * Events on POWER7 can roll back if a speculative event doesn't 1986 * eventually complete. Unfortunately in some rare cases they will 1987 * raise a performance monitor exception. We need to catch this to 1988 * ensure we reset the PMC. In all cases the PMC will be 256 or less 1989 * cycles from overflow. 1990 * 1991 * We only do this if the first pass fails to find any overflowing 1992 * PMCs because a user might set a period of less than 256 and we 1993 * don't want to mistakenly reset them. 1994 */ 1995 if ((0x80000000 - val) <= 256) 1996 return true; 1997 1998 return false; 1999 } 2000 2001 static bool pmc_overflow(unsigned long val) 2002 { 2003 if ((int)val < 0) 2004 return true; 2005 2006 return false; 2007 } 2008 2009 /* 2010 * Performance monitor interrupt stuff 2011 */ 2012 static void perf_event_interrupt(struct pt_regs *regs) 2013 { 2014 int i, j; 2015 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 2016 struct perf_event *event; 2017 unsigned long val[8]; 2018 int found, active; 2019 int nmi; 2020 2021 if (cpuhw->n_limited) 2022 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2023 mfspr(SPRN_PMC6)); 2024 2025 perf_read_regs(regs); 2026 2027 nmi = perf_intr_is_nmi(regs); 2028 if (nmi) 2029 nmi_enter(); 2030 else 2031 irq_enter(); 2032 2033 /* Read all the PMCs since we'll need them a bunch of times */ 2034 for (i = 0; i < ppmu->n_counter; ++i) 2035 val[i] = read_pmc(i + 1); 2036 2037 /* Try to find what caused the IRQ */ 2038 found = 0; 2039 for (i = 0; i < ppmu->n_counter; ++i) { 2040 if (!pmc_overflow(val[i])) 2041 continue; 2042 if (is_limited_pmc(i + 1)) 2043 continue; /* these won't generate IRQs */ 2044 /* 2045 * We've found one that's overflowed. For active 2046 * counters we need to log this. For inactive 2047 * counters, we need to reset it anyway 2048 */ 2049 found = 1; 2050 active = 0; 2051 for (j = 0; j < cpuhw->n_events; ++j) { 2052 event = cpuhw->event[j]; 2053 if (event->hw.idx == (i + 1)) { 2054 active = 1; 2055 record_and_restart(event, val[i], regs); 2056 break; 2057 } 2058 } 2059 if (!active) 2060 /* reset non active counters that have overflowed */ 2061 write_pmc(i + 1, 0); 2062 } 2063 if (!found && pvr_version_is(PVR_POWER7)) { 2064 /* check active counters for special buggy p7 overflow */ 2065 for (i = 0; i < cpuhw->n_events; ++i) { 2066 event = cpuhw->event[i]; 2067 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2068 continue; 2069 if (pmc_overflow_power7(val[event->hw.idx - 1])) { 2070 /* event has overflowed in a buggy way*/ 2071 found = 1; 2072 record_and_restart(event, 2073 val[event->hw.idx - 1], 2074 regs); 2075 } 2076 } 2077 } 2078 if (!found && !nmi && printk_ratelimit()) 2079 printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2080 2081 /* 2082 * Reset MMCR0 to its normal value. This will set PMXE and 2083 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2084 * and thus allow interrupts to occur again. 2085 * XXX might want to use MSR.PM to keep the events frozen until 2086 * we get back out of this interrupt. 2087 */ 2088 write_mmcr0(cpuhw, cpuhw->mmcr[0]); 2089 2090 if (nmi) 2091 nmi_exit(); 2092 else 2093 irq_exit(); 2094 } 2095 2096 static void power_pmu_setup(int cpu) 2097 { 2098 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2099 2100 if (!ppmu) 2101 return; 2102 memset(cpuhw, 0, sizeof(*cpuhw)); 2103 cpuhw->mmcr[0] = MMCR0_FC; 2104 } 2105 2106 static int 2107 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) 2108 { 2109 unsigned int cpu = (long)hcpu; 2110 2111 switch (action & ~CPU_TASKS_FROZEN) { 2112 case CPU_UP_PREPARE: 2113 power_pmu_setup(cpu); 2114 break; 2115 2116 default: 2117 break; 2118 } 2119 2120 return NOTIFY_OK; 2121 } 2122 2123 int register_power_pmu(struct power_pmu *pmu) 2124 { 2125 if (ppmu) 2126 return -EBUSY; /* something's already registered */ 2127 2128 ppmu = pmu; 2129 pr_info("%s performance monitor hardware support registered\n", 2130 pmu->name); 2131 2132 power_pmu.attr_groups = ppmu->attr_groups; 2133 2134 #ifdef MSR_HV 2135 /* 2136 * Use FCHV to ignore kernel events if MSR.HV is set. 2137 */ 2138 if (mfmsr() & MSR_HV) 2139 freeze_events_kernel = MMCR0_FCHV; 2140 #endif /* CONFIG_PPC64 */ 2141 2142 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2143 perf_cpu_notifier(power_pmu_notifier); 2144 2145 return 0; 2146 } 2147