xref: /openbmc/linux/arch/powerpc/perf/core-book3s.c (revision 62e7ca52)
1 /*
2  * Performance event support - powerpc architecture code
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
17 #include <asm/reg.h>
18 #include <asm/pmc.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
23 
24 #define BHRB_MAX_ENTRIES	32
25 #define BHRB_TARGET		0x0000000000000002
26 #define BHRB_PREDICTION		0x0000000000000001
27 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28 
29 struct cpu_hw_events {
30 	int n_events;
31 	int n_percpu;
32 	int disabled;
33 	int n_added;
34 	int n_limited;
35 	u8  pmcs_enabled;
36 	struct perf_event *event[MAX_HWEVENTS];
37 	u64 events[MAX_HWEVENTS];
38 	unsigned int flags[MAX_HWEVENTS];
39 	unsigned long mmcr[3];
40 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
41 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
42 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
43 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
44 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
45 
46 	unsigned int group_flag;
47 	int n_txn_start;
48 
49 	/* BHRB bits */
50 	u64				bhrb_filter;	/* BHRB HW branch filter */
51 	int				bhrb_users;
52 	void				*bhrb_context;
53 	struct	perf_branch_stack	bhrb_stack;
54 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
55 };
56 
57 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
58 
59 struct power_pmu *ppmu;
60 
61 /*
62  * Normally, to ignore kernel events we set the FCS (freeze counters
63  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
64  * hypervisor bit set in the MSR, or if we are running on a processor
65  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
66  * then we need to use the FCHV bit to ignore kernel events.
67  */
68 static unsigned int freeze_events_kernel = MMCR0_FCS;
69 
70 /*
71  * 32-bit doesn't have MMCRA but does have an MMCR2,
72  * and a few other names are different.
73  */
74 #ifdef CONFIG_PPC32
75 
76 #define MMCR0_FCHV		0
77 #define MMCR0_PMCjCE		MMCR0_PMCnCE
78 #define MMCR0_FC56		0
79 #define MMCR0_PMAO		0
80 #define MMCR0_EBE		0
81 #define MMCR0_BHRBA		0
82 #define MMCR0_PMCC		0
83 #define MMCR0_PMCC_U6		0
84 
85 #define SPRN_MMCRA		SPRN_MMCR2
86 #define MMCRA_SAMPLE_ENABLE	0
87 
88 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
89 {
90 	return 0;
91 }
92 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
93 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
94 {
95 	return 0;
96 }
97 static inline void perf_read_regs(struct pt_regs *regs)
98 {
99 	regs->result = 0;
100 }
101 static inline int perf_intr_is_nmi(struct pt_regs *regs)
102 {
103 	return 0;
104 }
105 
106 static inline int siar_valid(struct pt_regs *regs)
107 {
108 	return 1;
109 }
110 
111 static bool is_ebb_event(struct perf_event *event) { return false; }
112 static int ebb_event_check(struct perf_event *event) { return 0; }
113 static void ebb_event_add(struct perf_event *event) { }
114 static void ebb_switch_out(unsigned long mmcr0) { }
115 static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
116 {
117 	return mmcr0;
118 }
119 
120 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
121 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
122 void power_pmu_flush_branch_stack(void) {}
123 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
124 static void pmao_restore_workaround(bool ebb) { }
125 #endif /* CONFIG_PPC32 */
126 
127 static bool regs_use_siar(struct pt_regs *regs)
128 {
129 	return !!regs->result;
130 }
131 
132 /*
133  * Things that are specific to 64-bit implementations.
134  */
135 #ifdef CONFIG_PPC64
136 
137 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
138 {
139 	unsigned long mmcra = regs->dsisr;
140 
141 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
142 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
143 		if (slot > 1)
144 			return 4 * (slot - 1);
145 	}
146 
147 	return 0;
148 }
149 
150 /*
151  * The user wants a data address recorded.
152  * If we're not doing instruction sampling, give them the SDAR
153  * (sampled data address).  If we are doing instruction sampling, then
154  * only give them the SDAR if it corresponds to the instruction
155  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
156  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
157  */
158 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
159 {
160 	unsigned long mmcra = regs->dsisr;
161 	bool sdar_valid;
162 
163 	if (ppmu->flags & PPMU_HAS_SIER)
164 		sdar_valid = regs->dar & SIER_SDAR_VALID;
165 	else {
166 		unsigned long sdsync;
167 
168 		if (ppmu->flags & PPMU_SIAR_VALID)
169 			sdsync = POWER7P_MMCRA_SDAR_VALID;
170 		else if (ppmu->flags & PPMU_ALT_SIPR)
171 			sdsync = POWER6_MMCRA_SDSYNC;
172 		else
173 			sdsync = MMCRA_SDSYNC;
174 
175 		sdar_valid = mmcra & sdsync;
176 	}
177 
178 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
179 		*addrp = mfspr(SPRN_SDAR);
180 }
181 
182 static bool regs_sihv(struct pt_regs *regs)
183 {
184 	unsigned long sihv = MMCRA_SIHV;
185 
186 	if (ppmu->flags & PPMU_HAS_SIER)
187 		return !!(regs->dar & SIER_SIHV);
188 
189 	if (ppmu->flags & PPMU_ALT_SIPR)
190 		sihv = POWER6_MMCRA_SIHV;
191 
192 	return !!(regs->dsisr & sihv);
193 }
194 
195 static bool regs_sipr(struct pt_regs *regs)
196 {
197 	unsigned long sipr = MMCRA_SIPR;
198 
199 	if (ppmu->flags & PPMU_HAS_SIER)
200 		return !!(regs->dar & SIER_SIPR);
201 
202 	if (ppmu->flags & PPMU_ALT_SIPR)
203 		sipr = POWER6_MMCRA_SIPR;
204 
205 	return !!(regs->dsisr & sipr);
206 }
207 
208 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
209 {
210 	if (regs->msr & MSR_PR)
211 		return PERF_RECORD_MISC_USER;
212 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
213 		return PERF_RECORD_MISC_HYPERVISOR;
214 	return PERF_RECORD_MISC_KERNEL;
215 }
216 
217 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
218 {
219 	bool use_siar = regs_use_siar(regs);
220 
221 	if (!use_siar)
222 		return perf_flags_from_msr(regs);
223 
224 	/*
225 	 * If we don't have flags in MMCRA, rather than using
226 	 * the MSR, we intuit the flags from the address in
227 	 * SIAR which should give slightly more reliable
228 	 * results
229 	 */
230 	if (ppmu->flags & PPMU_NO_SIPR) {
231 		unsigned long siar = mfspr(SPRN_SIAR);
232 		if (siar >= PAGE_OFFSET)
233 			return PERF_RECORD_MISC_KERNEL;
234 		return PERF_RECORD_MISC_USER;
235 	}
236 
237 	/* PR has priority over HV, so order below is important */
238 	if (regs_sipr(regs))
239 		return PERF_RECORD_MISC_USER;
240 
241 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
242 		return PERF_RECORD_MISC_HYPERVISOR;
243 
244 	return PERF_RECORD_MISC_KERNEL;
245 }
246 
247 /*
248  * Overload regs->dsisr to store MMCRA so we only need to read it once
249  * on each interrupt.
250  * Overload regs->dar to store SIER if we have it.
251  * Overload regs->result to specify whether we should use the MSR (result
252  * is zero) or the SIAR (result is non zero).
253  */
254 static inline void perf_read_regs(struct pt_regs *regs)
255 {
256 	unsigned long mmcra = mfspr(SPRN_MMCRA);
257 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
258 	int use_siar;
259 
260 	regs->dsisr = mmcra;
261 
262 	if (ppmu->flags & PPMU_HAS_SIER)
263 		regs->dar = mfspr(SPRN_SIER);
264 
265 	/*
266 	 * If this isn't a PMU exception (eg a software event) the SIAR is
267 	 * not valid. Use pt_regs.
268 	 *
269 	 * If it is a marked event use the SIAR.
270 	 *
271 	 * If the PMU doesn't update the SIAR for non marked events use
272 	 * pt_regs.
273 	 *
274 	 * If the PMU has HV/PR flags then check to see if they
275 	 * place the exception in userspace. If so, use pt_regs. In
276 	 * continuous sampling mode the SIAR and the PMU exception are
277 	 * not synchronised, so they may be many instructions apart.
278 	 * This can result in confusing backtraces. We still want
279 	 * hypervisor samples as well as samples in the kernel with
280 	 * interrupts off hence the userspace check.
281 	 */
282 	if (TRAP(regs) != 0xf00)
283 		use_siar = 0;
284 	else if (marked)
285 		use_siar = 1;
286 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
287 		use_siar = 0;
288 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
289 		use_siar = 0;
290 	else
291 		use_siar = 1;
292 
293 	regs->result = use_siar;
294 }
295 
296 /*
297  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
298  * it as an NMI.
299  */
300 static inline int perf_intr_is_nmi(struct pt_regs *regs)
301 {
302 	return !regs->softe;
303 }
304 
305 /*
306  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
307  * must be sampled only if the SIAR-valid bit is set.
308  *
309  * For unmarked instructions and for processors that don't have the SIAR-Valid
310  * bit, assume that SIAR is valid.
311  */
312 static inline int siar_valid(struct pt_regs *regs)
313 {
314 	unsigned long mmcra = regs->dsisr;
315 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
316 
317 	if (marked) {
318 		if (ppmu->flags & PPMU_HAS_SIER)
319 			return regs->dar & SIER_SIAR_VALID;
320 
321 		if (ppmu->flags & PPMU_SIAR_VALID)
322 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
323 	}
324 
325 	return 1;
326 }
327 
328 
329 /* Reset all possible BHRB entries */
330 static void power_pmu_bhrb_reset(void)
331 {
332 	asm volatile(PPC_CLRBHRB);
333 }
334 
335 static void power_pmu_bhrb_enable(struct perf_event *event)
336 {
337 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
338 
339 	if (!ppmu->bhrb_nr)
340 		return;
341 
342 	/* Clear BHRB if we changed task context to avoid data leaks */
343 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
344 		power_pmu_bhrb_reset();
345 		cpuhw->bhrb_context = event->ctx;
346 	}
347 	cpuhw->bhrb_users++;
348 }
349 
350 static void power_pmu_bhrb_disable(struct perf_event *event)
351 {
352 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
353 
354 	if (!ppmu->bhrb_nr)
355 		return;
356 
357 	cpuhw->bhrb_users--;
358 	WARN_ON_ONCE(cpuhw->bhrb_users < 0);
359 
360 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
361 		/* BHRB cannot be turned off when other
362 		 * events are active on the PMU.
363 		 */
364 
365 		/* avoid stale pointer */
366 		cpuhw->bhrb_context = NULL;
367 	}
368 }
369 
370 /* Called from ctxsw to prevent one process's branch entries to
371  * mingle with the other process's entries during context switch.
372  */
373 void power_pmu_flush_branch_stack(void)
374 {
375 	if (ppmu->bhrb_nr)
376 		power_pmu_bhrb_reset();
377 }
378 /* Calculate the to address for a branch */
379 static __u64 power_pmu_bhrb_to(u64 addr)
380 {
381 	unsigned int instr;
382 	int ret;
383 	__u64 target;
384 
385 	if (is_kernel_addr(addr))
386 		return branch_target((unsigned int *)addr);
387 
388 	/* Userspace: need copy instruction here then translate it */
389 	pagefault_disable();
390 	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
391 	if (ret) {
392 		pagefault_enable();
393 		return 0;
394 	}
395 	pagefault_enable();
396 
397 	target = branch_target(&instr);
398 	if ((!target) || (instr & BRANCH_ABSOLUTE))
399 		return target;
400 
401 	/* Translate relative branch target from kernel to user address */
402 	return target - (unsigned long)&instr + addr;
403 }
404 
405 /* Processing BHRB entries */
406 void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
407 {
408 	u64 val;
409 	u64 addr;
410 	int r_index, u_index, pred;
411 
412 	r_index = 0;
413 	u_index = 0;
414 	while (r_index < ppmu->bhrb_nr) {
415 		/* Assembly read function */
416 		val = read_bhrb(r_index++);
417 		if (!val)
418 			/* Terminal marker: End of valid BHRB entries */
419 			break;
420 		else {
421 			addr = val & BHRB_EA;
422 			pred = val & BHRB_PREDICTION;
423 
424 			if (!addr)
425 				/* invalid entry */
426 				continue;
427 
428 			/* Branches are read most recent first (ie. mfbhrb 0 is
429 			 * the most recent branch).
430 			 * There are two types of valid entries:
431 			 * 1) a target entry which is the to address of a
432 			 *    computed goto like a blr,bctr,btar.  The next
433 			 *    entry read from the bhrb will be branch
434 			 *    corresponding to this target (ie. the actual
435 			 *    blr/bctr/btar instruction).
436 			 * 2) a from address which is an actual branch.  If a
437 			 *    target entry proceeds this, then this is the
438 			 *    matching branch for that target.  If this is not
439 			 *    following a target entry, then this is a branch
440 			 *    where the target is given as an immediate field
441 			 *    in the instruction (ie. an i or b form branch).
442 			 *    In this case we need to read the instruction from
443 			 *    memory to determine the target/to address.
444 			 */
445 
446 			if (val & BHRB_TARGET) {
447 				/* Target branches use two entries
448 				 * (ie. computed gotos/XL form)
449 				 */
450 				cpuhw->bhrb_entries[u_index].to = addr;
451 				cpuhw->bhrb_entries[u_index].mispred = pred;
452 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
453 
454 				/* Get from address in next entry */
455 				val = read_bhrb(r_index++);
456 				addr = val & BHRB_EA;
457 				if (val & BHRB_TARGET) {
458 					/* Shouldn't have two targets in a
459 					   row.. Reset index and try again */
460 					r_index--;
461 					addr = 0;
462 				}
463 				cpuhw->bhrb_entries[u_index].from = addr;
464 			} else {
465 				/* Branches to immediate field
466 				   (ie I or B form) */
467 				cpuhw->bhrb_entries[u_index].from = addr;
468 				cpuhw->bhrb_entries[u_index].to =
469 					power_pmu_bhrb_to(addr);
470 				cpuhw->bhrb_entries[u_index].mispred = pred;
471 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
472 			}
473 			u_index++;
474 
475 		}
476 	}
477 	cpuhw->bhrb_stack.nr = u_index;
478 	return;
479 }
480 
481 static bool is_ebb_event(struct perf_event *event)
482 {
483 	/*
484 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
485 	 * check that the PMU supports EBB, meaning those that don't can still
486 	 * use bit 63 of the event code for something else if they wish.
487 	 */
488 	return (ppmu->flags & PPMU_ARCH_207S) &&
489 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
490 }
491 
492 static int ebb_event_check(struct perf_event *event)
493 {
494 	struct perf_event *leader = event->group_leader;
495 
496 	/* Event and group leader must agree on EBB */
497 	if (is_ebb_event(leader) != is_ebb_event(event))
498 		return -EINVAL;
499 
500 	if (is_ebb_event(event)) {
501 		if (!(event->attach_state & PERF_ATTACH_TASK))
502 			return -EINVAL;
503 
504 		if (!leader->attr.pinned || !leader->attr.exclusive)
505 			return -EINVAL;
506 
507 		if (event->attr.freq ||
508 		    event->attr.inherit ||
509 		    event->attr.sample_type ||
510 		    event->attr.sample_period ||
511 		    event->attr.enable_on_exec)
512 			return -EINVAL;
513 	}
514 
515 	return 0;
516 }
517 
518 static void ebb_event_add(struct perf_event *event)
519 {
520 	if (!is_ebb_event(event) || current->thread.used_ebb)
521 		return;
522 
523 	/*
524 	 * IFF this is the first time we've added an EBB event, set
525 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
526 	 * userspace. We need this so that we can context switch while
527 	 * userspace is in the EBB handler (where PMXE is 0).
528 	 */
529 	current->thread.used_ebb = 1;
530 	current->thread.mmcr0 |= MMCR0_PMXE;
531 }
532 
533 static void ebb_switch_out(unsigned long mmcr0)
534 {
535 	if (!(mmcr0 & MMCR0_EBE))
536 		return;
537 
538 	current->thread.siar  = mfspr(SPRN_SIAR);
539 	current->thread.sier  = mfspr(SPRN_SIER);
540 	current->thread.sdar  = mfspr(SPRN_SDAR);
541 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
542 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
543 }
544 
545 static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
546 {
547 	if (!ebb)
548 		goto out;
549 
550 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
551 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
552 
553 	/*
554 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
555 	 * with pmao_restore_workaround() because we may add PMAO but we never
556 	 * clear it here.
557 	 */
558 	mmcr0 |= current->thread.mmcr0;
559 
560 	/*
561 	 * Be careful not to set PMXE if userspace had it cleared. This is also
562 	 * compatible with pmao_restore_workaround() because it has already
563 	 * cleared PMXE and we leave PMAO alone.
564 	 */
565 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
566 		mmcr0 &= ~MMCR0_PMXE;
567 
568 	mtspr(SPRN_SIAR, current->thread.siar);
569 	mtspr(SPRN_SIER, current->thread.sier);
570 	mtspr(SPRN_SDAR, current->thread.sdar);
571 	mtspr(SPRN_MMCR2, current->thread.mmcr2);
572 out:
573 	return mmcr0;
574 }
575 
576 static void pmao_restore_workaround(bool ebb)
577 {
578 	unsigned pmcs[6];
579 
580 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
581 		return;
582 
583 	/*
584 	 * On POWER8E there is a hardware defect which affects the PMU context
585 	 * switch logic, ie. power_pmu_disable/enable().
586 	 *
587 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
588 	 * by the hardware. Sometime later the actual PMU exception is
589 	 * delivered.
590 	 *
591 	 * If we context switch, or simply disable/enable, the PMU prior to the
592 	 * exception arriving, the exception will be lost when we clear PMAO.
593 	 *
594 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
595 	 * set, and this _should_ generate an exception. However because of the
596 	 * defect no exception is generated when we write PMAO, and we get
597 	 * stuck with no counters counting but no exception delivered.
598 	 *
599 	 * The workaround is to detect this case and tweak the hardware to
600 	 * create another pending PMU exception.
601 	 *
602 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
603 	 * enabling the PMU. That causes a new exception to be generated in the
604 	 * chip, but we don't take it yet because we have interrupts hard
605 	 * disabled. We then write back the PMU state as we want it to be seen
606 	 * by the exception handler. When we reenable interrupts the exception
607 	 * handler will be called and see the correct state.
608 	 *
609 	 * The logic is the same for EBB, except that the exception is gated by
610 	 * us having interrupts hard disabled as well as the fact that we are
611 	 * not in userspace. The exception is finally delivered when we return
612 	 * to userspace.
613 	 */
614 
615 	/* Only if PMAO is set and PMAO_SYNC is clear */
616 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
617 		return;
618 
619 	/* If we're doing EBB, only if BESCR[GE] is set */
620 	if (ebb && !(current->thread.bescr & BESCR_GE))
621 		return;
622 
623 	/*
624 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
625 	 * enable to actually prevent the PMU exception from firing.
626 	 */
627 	hard_irq_disable();
628 
629 	/*
630 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
631 	 * Using read/write_pmc() in a for loop adds 12 function calls and
632 	 * almost doubles our code size.
633 	 */
634 	pmcs[0] = mfspr(SPRN_PMC1);
635 	pmcs[1] = mfspr(SPRN_PMC2);
636 	pmcs[2] = mfspr(SPRN_PMC3);
637 	pmcs[3] = mfspr(SPRN_PMC4);
638 	pmcs[4] = mfspr(SPRN_PMC5);
639 	pmcs[5] = mfspr(SPRN_PMC6);
640 
641 	/* Ensure all freeze bits are unset */
642 	mtspr(SPRN_MMCR2, 0);
643 
644 	/* Set up PMC6 to overflow in one cycle */
645 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
646 
647 	/* Enable exceptions and unfreeze PMC6 */
648 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
649 
650 	/* Now we need to refreeze and restore the PMCs */
651 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
652 
653 	mtspr(SPRN_PMC1, pmcs[0]);
654 	mtspr(SPRN_PMC2, pmcs[1]);
655 	mtspr(SPRN_PMC3, pmcs[2]);
656 	mtspr(SPRN_PMC4, pmcs[3]);
657 	mtspr(SPRN_PMC5, pmcs[4]);
658 	mtspr(SPRN_PMC6, pmcs[5]);
659 }
660 #endif /* CONFIG_PPC64 */
661 
662 static void perf_event_interrupt(struct pt_regs *regs);
663 
664 /*
665  * Read one performance monitor counter (PMC).
666  */
667 static unsigned long read_pmc(int idx)
668 {
669 	unsigned long val;
670 
671 	switch (idx) {
672 	case 1:
673 		val = mfspr(SPRN_PMC1);
674 		break;
675 	case 2:
676 		val = mfspr(SPRN_PMC2);
677 		break;
678 	case 3:
679 		val = mfspr(SPRN_PMC3);
680 		break;
681 	case 4:
682 		val = mfspr(SPRN_PMC4);
683 		break;
684 	case 5:
685 		val = mfspr(SPRN_PMC5);
686 		break;
687 	case 6:
688 		val = mfspr(SPRN_PMC6);
689 		break;
690 #ifdef CONFIG_PPC64
691 	case 7:
692 		val = mfspr(SPRN_PMC7);
693 		break;
694 	case 8:
695 		val = mfspr(SPRN_PMC8);
696 		break;
697 #endif /* CONFIG_PPC64 */
698 	default:
699 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
700 		val = 0;
701 	}
702 	return val;
703 }
704 
705 /*
706  * Write one PMC.
707  */
708 static void write_pmc(int idx, unsigned long val)
709 {
710 	switch (idx) {
711 	case 1:
712 		mtspr(SPRN_PMC1, val);
713 		break;
714 	case 2:
715 		mtspr(SPRN_PMC2, val);
716 		break;
717 	case 3:
718 		mtspr(SPRN_PMC3, val);
719 		break;
720 	case 4:
721 		mtspr(SPRN_PMC4, val);
722 		break;
723 	case 5:
724 		mtspr(SPRN_PMC5, val);
725 		break;
726 	case 6:
727 		mtspr(SPRN_PMC6, val);
728 		break;
729 #ifdef CONFIG_PPC64
730 	case 7:
731 		mtspr(SPRN_PMC7, val);
732 		break;
733 	case 8:
734 		mtspr(SPRN_PMC8, val);
735 		break;
736 #endif /* CONFIG_PPC64 */
737 	default:
738 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
739 	}
740 }
741 
742 /* Called from sysrq_handle_showregs() */
743 void perf_event_print_debug(void)
744 {
745 	unsigned long sdar, sier, flags;
746 	u32 pmcs[MAX_HWEVENTS];
747 	int i;
748 
749 	if (!ppmu->n_counter)
750 		return;
751 
752 	local_irq_save(flags);
753 
754 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
755 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
756 
757 	for (i = 0; i < ppmu->n_counter; i++)
758 		pmcs[i] = read_pmc(i + 1);
759 
760 	for (; i < MAX_HWEVENTS; i++)
761 		pmcs[i] = 0xdeadbeef;
762 
763 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
764 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
765 
766 	if (ppmu->n_counter > 4)
767 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
768 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
769 
770 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
771 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
772 
773 	sdar = sier = 0;
774 #ifdef CONFIG_PPC64
775 	sdar = mfspr(SPRN_SDAR);
776 
777 	if (ppmu->flags & PPMU_HAS_SIER)
778 		sier = mfspr(SPRN_SIER);
779 
780 	if (ppmu->flags & PPMU_ARCH_207S) {
781 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
782 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
783 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
784 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
785 	}
786 #endif
787 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
788 		mfspr(SPRN_SIAR), sdar, sier);
789 
790 	local_irq_restore(flags);
791 }
792 
793 /*
794  * Check if a set of events can all go on the PMU at once.
795  * If they can't, this will look at alternative codes for the events
796  * and see if any combination of alternative codes is feasible.
797  * The feasible set is returned in event_id[].
798  */
799 static int power_check_constraints(struct cpu_hw_events *cpuhw,
800 				   u64 event_id[], unsigned int cflags[],
801 				   int n_ev)
802 {
803 	unsigned long mask, value, nv;
804 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
805 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
806 	int i, j;
807 	unsigned long addf = ppmu->add_fields;
808 	unsigned long tadd = ppmu->test_adder;
809 
810 	if (n_ev > ppmu->n_counter)
811 		return -1;
812 
813 	/* First see if the events will go on as-is */
814 	for (i = 0; i < n_ev; ++i) {
815 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
816 		    && !ppmu->limited_pmc_event(event_id[i])) {
817 			ppmu->get_alternatives(event_id[i], cflags[i],
818 					       cpuhw->alternatives[i]);
819 			event_id[i] = cpuhw->alternatives[i][0];
820 		}
821 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
822 					 &cpuhw->avalues[i][0]))
823 			return -1;
824 	}
825 	value = mask = 0;
826 	for (i = 0; i < n_ev; ++i) {
827 		nv = (value | cpuhw->avalues[i][0]) +
828 			(value & cpuhw->avalues[i][0] & addf);
829 		if ((((nv + tadd) ^ value) & mask) != 0 ||
830 		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
831 		     cpuhw->amasks[i][0]) != 0)
832 			break;
833 		value = nv;
834 		mask |= cpuhw->amasks[i][0];
835 	}
836 	if (i == n_ev)
837 		return 0;	/* all OK */
838 
839 	/* doesn't work, gather alternatives... */
840 	if (!ppmu->get_alternatives)
841 		return -1;
842 	for (i = 0; i < n_ev; ++i) {
843 		choice[i] = 0;
844 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
845 						  cpuhw->alternatives[i]);
846 		for (j = 1; j < n_alt[i]; ++j)
847 			ppmu->get_constraint(cpuhw->alternatives[i][j],
848 					     &cpuhw->amasks[i][j],
849 					     &cpuhw->avalues[i][j]);
850 	}
851 
852 	/* enumerate all possibilities and see if any will work */
853 	i = 0;
854 	j = -1;
855 	value = mask = nv = 0;
856 	while (i < n_ev) {
857 		if (j >= 0) {
858 			/* we're backtracking, restore context */
859 			value = svalues[i];
860 			mask = smasks[i];
861 			j = choice[i];
862 		}
863 		/*
864 		 * See if any alternative k for event_id i,
865 		 * where k > j, will satisfy the constraints.
866 		 */
867 		while (++j < n_alt[i]) {
868 			nv = (value | cpuhw->avalues[i][j]) +
869 				(value & cpuhw->avalues[i][j] & addf);
870 			if ((((nv + tadd) ^ value) & mask) == 0 &&
871 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
872 			     & cpuhw->amasks[i][j]) == 0)
873 				break;
874 		}
875 		if (j >= n_alt[i]) {
876 			/*
877 			 * No feasible alternative, backtrack
878 			 * to event_id i-1 and continue enumerating its
879 			 * alternatives from where we got up to.
880 			 */
881 			if (--i < 0)
882 				return -1;
883 		} else {
884 			/*
885 			 * Found a feasible alternative for event_id i,
886 			 * remember where we got up to with this event_id,
887 			 * go on to the next event_id, and start with
888 			 * the first alternative for it.
889 			 */
890 			choice[i] = j;
891 			svalues[i] = value;
892 			smasks[i] = mask;
893 			value = nv;
894 			mask |= cpuhw->amasks[i][j];
895 			++i;
896 			j = -1;
897 		}
898 	}
899 
900 	/* OK, we have a feasible combination, tell the caller the solution */
901 	for (i = 0; i < n_ev; ++i)
902 		event_id[i] = cpuhw->alternatives[i][choice[i]];
903 	return 0;
904 }
905 
906 /*
907  * Check if newly-added events have consistent settings for
908  * exclude_{user,kernel,hv} with each other and any previously
909  * added events.
910  */
911 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
912 			  int n_prev, int n_new)
913 {
914 	int eu = 0, ek = 0, eh = 0;
915 	int i, n, first;
916 	struct perf_event *event;
917 
918 	n = n_prev + n_new;
919 	if (n <= 1)
920 		return 0;
921 
922 	first = 1;
923 	for (i = 0; i < n; ++i) {
924 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
925 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
926 			continue;
927 		}
928 		event = ctrs[i];
929 		if (first) {
930 			eu = event->attr.exclude_user;
931 			ek = event->attr.exclude_kernel;
932 			eh = event->attr.exclude_hv;
933 			first = 0;
934 		} else if (event->attr.exclude_user != eu ||
935 			   event->attr.exclude_kernel != ek ||
936 			   event->attr.exclude_hv != eh) {
937 			return -EAGAIN;
938 		}
939 	}
940 
941 	if (eu || ek || eh)
942 		for (i = 0; i < n; ++i)
943 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
944 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
945 
946 	return 0;
947 }
948 
949 static u64 check_and_compute_delta(u64 prev, u64 val)
950 {
951 	u64 delta = (val - prev) & 0xfffffffful;
952 
953 	/*
954 	 * POWER7 can roll back counter values, if the new value is smaller
955 	 * than the previous value it will cause the delta and the counter to
956 	 * have bogus values unless we rolled a counter over.  If a coutner is
957 	 * rolled back, it will be smaller, but within 256, which is the maximum
958 	 * number of events to rollback at once.  If we dectect a rollback
959 	 * return 0.  This can lead to a small lack of precision in the
960 	 * counters.
961 	 */
962 	if (prev > val && (prev - val) < 256)
963 		delta = 0;
964 
965 	return delta;
966 }
967 
968 static void power_pmu_read(struct perf_event *event)
969 {
970 	s64 val, delta, prev;
971 
972 	if (event->hw.state & PERF_HES_STOPPED)
973 		return;
974 
975 	if (!event->hw.idx)
976 		return;
977 
978 	if (is_ebb_event(event)) {
979 		val = read_pmc(event->hw.idx);
980 		local64_set(&event->hw.prev_count, val);
981 		return;
982 	}
983 
984 	/*
985 	 * Performance monitor interrupts come even when interrupts
986 	 * are soft-disabled, as long as interrupts are hard-enabled.
987 	 * Therefore we treat them like NMIs.
988 	 */
989 	do {
990 		prev = local64_read(&event->hw.prev_count);
991 		barrier();
992 		val = read_pmc(event->hw.idx);
993 		delta = check_and_compute_delta(prev, val);
994 		if (!delta)
995 			return;
996 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
997 
998 	local64_add(delta, &event->count);
999 
1000 	/*
1001 	 * A number of places program the PMC with (0x80000000 - period_left).
1002 	 * We never want period_left to be less than 1 because we will program
1003 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1004 	 * roll around to 0 before taking an exception. We have seen this
1005 	 * on POWER8.
1006 	 *
1007 	 * To fix this, clamp the minimum value of period_left to 1.
1008 	 */
1009 	do {
1010 		prev = local64_read(&event->hw.period_left);
1011 		val = prev - delta;
1012 		if (val < 1)
1013 			val = 1;
1014 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1015 }
1016 
1017 /*
1018  * On some machines, PMC5 and PMC6 can't be written, don't respect
1019  * the freeze conditions, and don't generate interrupts.  This tells
1020  * us if `event' is using such a PMC.
1021  */
1022 static int is_limited_pmc(int pmcnum)
1023 {
1024 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1025 		&& (pmcnum == 5 || pmcnum == 6);
1026 }
1027 
1028 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1029 				    unsigned long pmc5, unsigned long pmc6)
1030 {
1031 	struct perf_event *event;
1032 	u64 val, prev, delta;
1033 	int i;
1034 
1035 	for (i = 0; i < cpuhw->n_limited; ++i) {
1036 		event = cpuhw->limited_counter[i];
1037 		if (!event->hw.idx)
1038 			continue;
1039 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1040 		prev = local64_read(&event->hw.prev_count);
1041 		event->hw.idx = 0;
1042 		delta = check_and_compute_delta(prev, val);
1043 		if (delta)
1044 			local64_add(delta, &event->count);
1045 	}
1046 }
1047 
1048 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1049 				  unsigned long pmc5, unsigned long pmc6)
1050 {
1051 	struct perf_event *event;
1052 	u64 val, prev;
1053 	int i;
1054 
1055 	for (i = 0; i < cpuhw->n_limited; ++i) {
1056 		event = cpuhw->limited_counter[i];
1057 		event->hw.idx = cpuhw->limited_hwidx[i];
1058 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1059 		prev = local64_read(&event->hw.prev_count);
1060 		if (check_and_compute_delta(prev, val))
1061 			local64_set(&event->hw.prev_count, val);
1062 		perf_event_update_userpage(event);
1063 	}
1064 }
1065 
1066 /*
1067  * Since limited events don't respect the freeze conditions, we
1068  * have to read them immediately after freezing or unfreezing the
1069  * other events.  We try to keep the values from the limited
1070  * events as consistent as possible by keeping the delay (in
1071  * cycles and instructions) between freezing/unfreezing and reading
1072  * the limited events as small and consistent as possible.
1073  * Therefore, if any limited events are in use, we read them
1074  * both, and always in the same order, to minimize variability,
1075  * and do it inside the same asm that writes MMCR0.
1076  */
1077 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1078 {
1079 	unsigned long pmc5, pmc6;
1080 
1081 	if (!cpuhw->n_limited) {
1082 		mtspr(SPRN_MMCR0, mmcr0);
1083 		return;
1084 	}
1085 
1086 	/*
1087 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1088 	 * To ensure we don't get a performance monitor interrupt
1089 	 * between writing MMCR0 and freezing/thawing the limited
1090 	 * events, we first write MMCR0 with the event overflow
1091 	 * interrupt enable bits turned off.
1092 	 */
1093 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1094 		     : "=&r" (pmc5), "=&r" (pmc6)
1095 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1096 		       "i" (SPRN_MMCR0),
1097 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1098 
1099 	if (mmcr0 & MMCR0_FC)
1100 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1101 	else
1102 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1103 
1104 	/*
1105 	 * Write the full MMCR0 including the event overflow interrupt
1106 	 * enable bits, if necessary.
1107 	 */
1108 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1109 		mtspr(SPRN_MMCR0, mmcr0);
1110 }
1111 
1112 /*
1113  * Disable all events to prevent PMU interrupts and to allow
1114  * events to be added or removed.
1115  */
1116 static void power_pmu_disable(struct pmu *pmu)
1117 {
1118 	struct cpu_hw_events *cpuhw;
1119 	unsigned long flags, mmcr0, val;
1120 
1121 	if (!ppmu)
1122 		return;
1123 	local_irq_save(flags);
1124 	cpuhw = &__get_cpu_var(cpu_hw_events);
1125 
1126 	if (!cpuhw->disabled) {
1127 		/*
1128 		 * Check if we ever enabled the PMU on this cpu.
1129 		 */
1130 		if (!cpuhw->pmcs_enabled) {
1131 			ppc_enable_pmcs();
1132 			cpuhw->pmcs_enabled = 1;
1133 		}
1134 
1135 		/*
1136 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1137 		 */
1138 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1139 		val |= MMCR0_FC;
1140 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1141 			 MMCR0_FC56);
1142 
1143 		/*
1144 		 * The barrier is to make sure the mtspr has been
1145 		 * executed and the PMU has frozen the events etc.
1146 		 * before we return.
1147 		 */
1148 		write_mmcr0(cpuhw, val);
1149 		mb();
1150 
1151 		/*
1152 		 * Disable instruction sampling if it was enabled
1153 		 */
1154 		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1155 			mtspr(SPRN_MMCRA,
1156 			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1157 			mb();
1158 		}
1159 
1160 		cpuhw->disabled = 1;
1161 		cpuhw->n_added = 0;
1162 
1163 		ebb_switch_out(mmcr0);
1164 	}
1165 
1166 	local_irq_restore(flags);
1167 }
1168 
1169 /*
1170  * Re-enable all events if disable == 0.
1171  * If we were previously disabled and events were added, then
1172  * put the new config on the PMU.
1173  */
1174 static void power_pmu_enable(struct pmu *pmu)
1175 {
1176 	struct perf_event *event;
1177 	struct cpu_hw_events *cpuhw;
1178 	unsigned long flags;
1179 	long i;
1180 	unsigned long val, mmcr0;
1181 	s64 left;
1182 	unsigned int hwc_index[MAX_HWEVENTS];
1183 	int n_lim;
1184 	int idx;
1185 	bool ebb;
1186 
1187 	if (!ppmu)
1188 		return;
1189 	local_irq_save(flags);
1190 
1191 	cpuhw = &__get_cpu_var(cpu_hw_events);
1192 	if (!cpuhw->disabled)
1193 		goto out;
1194 
1195 	if (cpuhw->n_events == 0) {
1196 		ppc_set_pmu_inuse(0);
1197 		goto out;
1198 	}
1199 
1200 	cpuhw->disabled = 0;
1201 
1202 	/*
1203 	 * EBB requires an exclusive group and all events must have the EBB
1204 	 * flag set, or not set, so we can just check a single event. Also we
1205 	 * know we have at least one event.
1206 	 */
1207 	ebb = is_ebb_event(cpuhw->event[0]);
1208 
1209 	/*
1210 	 * If we didn't change anything, or only removed events,
1211 	 * no need to recalculate MMCR* settings and reset the PMCs.
1212 	 * Just reenable the PMU with the current MMCR* settings
1213 	 * (possibly updated for removal of events).
1214 	 */
1215 	if (!cpuhw->n_added) {
1216 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1217 		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1218 		goto out_enable;
1219 	}
1220 
1221 	/*
1222 	 * Compute MMCR* values for the new set of events
1223 	 */
1224 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1225 			       cpuhw->mmcr)) {
1226 		/* shouldn't ever get here */
1227 		printk(KERN_ERR "oops compute_mmcr failed\n");
1228 		goto out;
1229 	}
1230 
1231 	/*
1232 	 * Add in MMCR0 freeze bits corresponding to the
1233 	 * attr.exclude_* bits for the first event.
1234 	 * We have already checked that all events have the
1235 	 * same values for these bits as the first event.
1236 	 */
1237 	event = cpuhw->event[0];
1238 	if (event->attr.exclude_user)
1239 		cpuhw->mmcr[0] |= MMCR0_FCP;
1240 	if (event->attr.exclude_kernel)
1241 		cpuhw->mmcr[0] |= freeze_events_kernel;
1242 	if (event->attr.exclude_hv)
1243 		cpuhw->mmcr[0] |= MMCR0_FCHV;
1244 
1245 	/*
1246 	 * Write the new configuration to MMCR* with the freeze
1247 	 * bit set and set the hardware events to their initial values.
1248 	 * Then unfreeze the events.
1249 	 */
1250 	ppc_set_pmu_inuse(1);
1251 	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1252 	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1253 	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1254 				| MMCR0_FC);
1255 
1256 	/*
1257 	 * Read off any pre-existing events that need to move
1258 	 * to another PMC.
1259 	 */
1260 	for (i = 0; i < cpuhw->n_events; ++i) {
1261 		event = cpuhw->event[i];
1262 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1263 			power_pmu_read(event);
1264 			write_pmc(event->hw.idx, 0);
1265 			event->hw.idx = 0;
1266 		}
1267 	}
1268 
1269 	/*
1270 	 * Initialize the PMCs for all the new and moved events.
1271 	 */
1272 	cpuhw->n_limited = n_lim = 0;
1273 	for (i = 0; i < cpuhw->n_events; ++i) {
1274 		event = cpuhw->event[i];
1275 		if (event->hw.idx)
1276 			continue;
1277 		idx = hwc_index[i] + 1;
1278 		if (is_limited_pmc(idx)) {
1279 			cpuhw->limited_counter[n_lim] = event;
1280 			cpuhw->limited_hwidx[n_lim] = idx;
1281 			++n_lim;
1282 			continue;
1283 		}
1284 
1285 		if (ebb)
1286 			val = local64_read(&event->hw.prev_count);
1287 		else {
1288 			val = 0;
1289 			if (event->hw.sample_period) {
1290 				left = local64_read(&event->hw.period_left);
1291 				if (left < 0x80000000L)
1292 					val = 0x80000000L - left;
1293 			}
1294 			local64_set(&event->hw.prev_count, val);
1295 		}
1296 
1297 		event->hw.idx = idx;
1298 		if (event->hw.state & PERF_HES_STOPPED)
1299 			val = 0;
1300 		write_pmc(idx, val);
1301 
1302 		perf_event_update_userpage(event);
1303 	}
1304 	cpuhw->n_limited = n_lim;
1305 	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1306 
1307  out_enable:
1308 	pmao_restore_workaround(ebb);
1309 
1310 	if (ppmu->flags & PPMU_ARCH_207S)
1311 		mtspr(SPRN_MMCR2, 0);
1312 
1313 	mmcr0 = ebb_switch_in(ebb, cpuhw->mmcr[0]);
1314 
1315 	mb();
1316 	if (cpuhw->bhrb_users)
1317 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1318 
1319 	write_mmcr0(cpuhw, mmcr0);
1320 
1321 	/*
1322 	 * Enable instruction sampling if necessary
1323 	 */
1324 	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1325 		mb();
1326 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1327 	}
1328 
1329  out:
1330 
1331 	local_irq_restore(flags);
1332 }
1333 
1334 static int collect_events(struct perf_event *group, int max_count,
1335 			  struct perf_event *ctrs[], u64 *events,
1336 			  unsigned int *flags)
1337 {
1338 	int n = 0;
1339 	struct perf_event *event;
1340 
1341 	if (!is_software_event(group)) {
1342 		if (n >= max_count)
1343 			return -1;
1344 		ctrs[n] = group;
1345 		flags[n] = group->hw.event_base;
1346 		events[n++] = group->hw.config;
1347 	}
1348 	list_for_each_entry(event, &group->sibling_list, group_entry) {
1349 		if (!is_software_event(event) &&
1350 		    event->state != PERF_EVENT_STATE_OFF) {
1351 			if (n >= max_count)
1352 				return -1;
1353 			ctrs[n] = event;
1354 			flags[n] = event->hw.event_base;
1355 			events[n++] = event->hw.config;
1356 		}
1357 	}
1358 	return n;
1359 }
1360 
1361 /*
1362  * Add a event to the PMU.
1363  * If all events are not already frozen, then we disable and
1364  * re-enable the PMU in order to get hw_perf_enable to do the
1365  * actual work of reconfiguring the PMU.
1366  */
1367 static int power_pmu_add(struct perf_event *event, int ef_flags)
1368 {
1369 	struct cpu_hw_events *cpuhw;
1370 	unsigned long flags;
1371 	int n0;
1372 	int ret = -EAGAIN;
1373 
1374 	local_irq_save(flags);
1375 	perf_pmu_disable(event->pmu);
1376 
1377 	/*
1378 	 * Add the event to the list (if there is room)
1379 	 * and check whether the total set is still feasible.
1380 	 */
1381 	cpuhw = &__get_cpu_var(cpu_hw_events);
1382 	n0 = cpuhw->n_events;
1383 	if (n0 >= ppmu->n_counter)
1384 		goto out;
1385 	cpuhw->event[n0] = event;
1386 	cpuhw->events[n0] = event->hw.config;
1387 	cpuhw->flags[n0] = event->hw.event_base;
1388 
1389 	/*
1390 	 * This event may have been disabled/stopped in record_and_restart()
1391 	 * because we exceeded the ->event_limit. If re-starting the event,
1392 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1393 	 * notification is re-enabled.
1394 	 */
1395 	if (!(ef_flags & PERF_EF_START))
1396 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1397 	else
1398 		event->hw.state = 0;
1399 
1400 	/*
1401 	 * If group events scheduling transaction was started,
1402 	 * skip the schedulability test here, it will be performed
1403 	 * at commit time(->commit_txn) as a whole
1404 	 */
1405 	if (cpuhw->group_flag & PERF_EVENT_TXN)
1406 		goto nocheck;
1407 
1408 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1409 		goto out;
1410 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1411 		goto out;
1412 	event->hw.config = cpuhw->events[n0];
1413 
1414 nocheck:
1415 	ebb_event_add(event);
1416 
1417 	++cpuhw->n_events;
1418 	++cpuhw->n_added;
1419 
1420 	ret = 0;
1421  out:
1422 	if (has_branch_stack(event)) {
1423 		power_pmu_bhrb_enable(event);
1424 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1425 					event->attr.branch_sample_type);
1426 	}
1427 
1428 	perf_pmu_enable(event->pmu);
1429 	local_irq_restore(flags);
1430 	return ret;
1431 }
1432 
1433 /*
1434  * Remove a event from the PMU.
1435  */
1436 static void power_pmu_del(struct perf_event *event, int ef_flags)
1437 {
1438 	struct cpu_hw_events *cpuhw;
1439 	long i;
1440 	unsigned long flags;
1441 
1442 	local_irq_save(flags);
1443 	perf_pmu_disable(event->pmu);
1444 
1445 	power_pmu_read(event);
1446 
1447 	cpuhw = &__get_cpu_var(cpu_hw_events);
1448 	for (i = 0; i < cpuhw->n_events; ++i) {
1449 		if (event == cpuhw->event[i]) {
1450 			while (++i < cpuhw->n_events) {
1451 				cpuhw->event[i-1] = cpuhw->event[i];
1452 				cpuhw->events[i-1] = cpuhw->events[i];
1453 				cpuhw->flags[i-1] = cpuhw->flags[i];
1454 			}
1455 			--cpuhw->n_events;
1456 			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1457 			if (event->hw.idx) {
1458 				write_pmc(event->hw.idx, 0);
1459 				event->hw.idx = 0;
1460 			}
1461 			perf_event_update_userpage(event);
1462 			break;
1463 		}
1464 	}
1465 	for (i = 0; i < cpuhw->n_limited; ++i)
1466 		if (event == cpuhw->limited_counter[i])
1467 			break;
1468 	if (i < cpuhw->n_limited) {
1469 		while (++i < cpuhw->n_limited) {
1470 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1471 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1472 		}
1473 		--cpuhw->n_limited;
1474 	}
1475 	if (cpuhw->n_events == 0) {
1476 		/* disable exceptions if no events are running */
1477 		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1478 	}
1479 
1480 	if (has_branch_stack(event))
1481 		power_pmu_bhrb_disable(event);
1482 
1483 	perf_pmu_enable(event->pmu);
1484 	local_irq_restore(flags);
1485 }
1486 
1487 /*
1488  * POWER-PMU does not support disabling individual counters, hence
1489  * program their cycle counter to their max value and ignore the interrupts.
1490  */
1491 
1492 static void power_pmu_start(struct perf_event *event, int ef_flags)
1493 {
1494 	unsigned long flags;
1495 	s64 left;
1496 	unsigned long val;
1497 
1498 	if (!event->hw.idx || !event->hw.sample_period)
1499 		return;
1500 
1501 	if (!(event->hw.state & PERF_HES_STOPPED))
1502 		return;
1503 
1504 	if (ef_flags & PERF_EF_RELOAD)
1505 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1506 
1507 	local_irq_save(flags);
1508 	perf_pmu_disable(event->pmu);
1509 
1510 	event->hw.state = 0;
1511 	left = local64_read(&event->hw.period_left);
1512 
1513 	val = 0;
1514 	if (left < 0x80000000L)
1515 		val = 0x80000000L - left;
1516 
1517 	write_pmc(event->hw.idx, val);
1518 
1519 	perf_event_update_userpage(event);
1520 	perf_pmu_enable(event->pmu);
1521 	local_irq_restore(flags);
1522 }
1523 
1524 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1525 {
1526 	unsigned long flags;
1527 
1528 	if (!event->hw.idx || !event->hw.sample_period)
1529 		return;
1530 
1531 	if (event->hw.state & PERF_HES_STOPPED)
1532 		return;
1533 
1534 	local_irq_save(flags);
1535 	perf_pmu_disable(event->pmu);
1536 
1537 	power_pmu_read(event);
1538 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1539 	write_pmc(event->hw.idx, 0);
1540 
1541 	perf_event_update_userpage(event);
1542 	perf_pmu_enable(event->pmu);
1543 	local_irq_restore(flags);
1544 }
1545 
1546 /*
1547  * Start group events scheduling transaction
1548  * Set the flag to make pmu::enable() not perform the
1549  * schedulability test, it will be performed at commit time
1550  */
1551 void power_pmu_start_txn(struct pmu *pmu)
1552 {
1553 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1554 
1555 	perf_pmu_disable(pmu);
1556 	cpuhw->group_flag |= PERF_EVENT_TXN;
1557 	cpuhw->n_txn_start = cpuhw->n_events;
1558 }
1559 
1560 /*
1561  * Stop group events scheduling transaction
1562  * Clear the flag and pmu::enable() will perform the
1563  * schedulability test.
1564  */
1565 void power_pmu_cancel_txn(struct pmu *pmu)
1566 {
1567 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1568 
1569 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1570 	perf_pmu_enable(pmu);
1571 }
1572 
1573 /*
1574  * Commit group events scheduling transaction
1575  * Perform the group schedulability test as a whole
1576  * Return 0 if success
1577  */
1578 int power_pmu_commit_txn(struct pmu *pmu)
1579 {
1580 	struct cpu_hw_events *cpuhw;
1581 	long i, n;
1582 
1583 	if (!ppmu)
1584 		return -EAGAIN;
1585 	cpuhw = &__get_cpu_var(cpu_hw_events);
1586 	n = cpuhw->n_events;
1587 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1588 		return -EAGAIN;
1589 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1590 	if (i < 0)
1591 		return -EAGAIN;
1592 
1593 	for (i = cpuhw->n_txn_start; i < n; ++i)
1594 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1595 
1596 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1597 	perf_pmu_enable(pmu);
1598 	return 0;
1599 }
1600 
1601 /*
1602  * Return 1 if we might be able to put event on a limited PMC,
1603  * or 0 if not.
1604  * A event can only go on a limited PMC if it counts something
1605  * that a limited PMC can count, doesn't require interrupts, and
1606  * doesn't exclude any processor mode.
1607  */
1608 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1609 				 unsigned int flags)
1610 {
1611 	int n;
1612 	u64 alt[MAX_EVENT_ALTERNATIVES];
1613 
1614 	if (event->attr.exclude_user
1615 	    || event->attr.exclude_kernel
1616 	    || event->attr.exclude_hv
1617 	    || event->attr.sample_period)
1618 		return 0;
1619 
1620 	if (ppmu->limited_pmc_event(ev))
1621 		return 1;
1622 
1623 	/*
1624 	 * The requested event_id isn't on a limited PMC already;
1625 	 * see if any alternative code goes on a limited PMC.
1626 	 */
1627 	if (!ppmu->get_alternatives)
1628 		return 0;
1629 
1630 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1631 	n = ppmu->get_alternatives(ev, flags, alt);
1632 
1633 	return n > 0;
1634 }
1635 
1636 /*
1637  * Find an alternative event_id that goes on a normal PMC, if possible,
1638  * and return the event_id code, or 0 if there is no such alternative.
1639  * (Note: event_id code 0 is "don't count" on all machines.)
1640  */
1641 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1642 {
1643 	u64 alt[MAX_EVENT_ALTERNATIVES];
1644 	int n;
1645 
1646 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1647 	n = ppmu->get_alternatives(ev, flags, alt);
1648 	if (!n)
1649 		return 0;
1650 	return alt[0];
1651 }
1652 
1653 /* Number of perf_events counting hardware events */
1654 static atomic_t num_events;
1655 /* Used to avoid races in calling reserve/release_pmc_hardware */
1656 static DEFINE_MUTEX(pmc_reserve_mutex);
1657 
1658 /*
1659  * Release the PMU if this is the last perf_event.
1660  */
1661 static void hw_perf_event_destroy(struct perf_event *event)
1662 {
1663 	if (!atomic_add_unless(&num_events, -1, 1)) {
1664 		mutex_lock(&pmc_reserve_mutex);
1665 		if (atomic_dec_return(&num_events) == 0)
1666 			release_pmc_hardware();
1667 		mutex_unlock(&pmc_reserve_mutex);
1668 	}
1669 }
1670 
1671 /*
1672  * Translate a generic cache event_id config to a raw event_id code.
1673  */
1674 static int hw_perf_cache_event(u64 config, u64 *eventp)
1675 {
1676 	unsigned long type, op, result;
1677 	int ev;
1678 
1679 	if (!ppmu->cache_events)
1680 		return -EINVAL;
1681 
1682 	/* unpack config */
1683 	type = config & 0xff;
1684 	op = (config >> 8) & 0xff;
1685 	result = (config >> 16) & 0xff;
1686 
1687 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1688 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1689 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1690 		return -EINVAL;
1691 
1692 	ev = (*ppmu->cache_events)[type][op][result];
1693 	if (ev == 0)
1694 		return -EOPNOTSUPP;
1695 	if (ev == -1)
1696 		return -EINVAL;
1697 	*eventp = ev;
1698 	return 0;
1699 }
1700 
1701 static int power_pmu_event_init(struct perf_event *event)
1702 {
1703 	u64 ev;
1704 	unsigned long flags;
1705 	struct perf_event *ctrs[MAX_HWEVENTS];
1706 	u64 events[MAX_HWEVENTS];
1707 	unsigned int cflags[MAX_HWEVENTS];
1708 	int n;
1709 	int err;
1710 	struct cpu_hw_events *cpuhw;
1711 
1712 	if (!ppmu)
1713 		return -ENOENT;
1714 
1715 	if (has_branch_stack(event)) {
1716 	        /* PMU has BHRB enabled */
1717 		if (!(ppmu->flags & PPMU_ARCH_207S))
1718 			return -EOPNOTSUPP;
1719 	}
1720 
1721 	switch (event->attr.type) {
1722 	case PERF_TYPE_HARDWARE:
1723 		ev = event->attr.config;
1724 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1725 			return -EOPNOTSUPP;
1726 		ev = ppmu->generic_events[ev];
1727 		break;
1728 	case PERF_TYPE_HW_CACHE:
1729 		err = hw_perf_cache_event(event->attr.config, &ev);
1730 		if (err)
1731 			return err;
1732 		break;
1733 	case PERF_TYPE_RAW:
1734 		ev = event->attr.config;
1735 		break;
1736 	default:
1737 		return -ENOENT;
1738 	}
1739 
1740 	event->hw.config_base = ev;
1741 	event->hw.idx = 0;
1742 
1743 	/*
1744 	 * If we are not running on a hypervisor, force the
1745 	 * exclude_hv bit to 0 so that we don't care what
1746 	 * the user set it to.
1747 	 */
1748 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1749 		event->attr.exclude_hv = 0;
1750 
1751 	/*
1752 	 * If this is a per-task event, then we can use
1753 	 * PM_RUN_* events interchangeably with their non RUN_*
1754 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1755 	 * XXX we should check if the task is an idle task.
1756 	 */
1757 	flags = 0;
1758 	if (event->attach_state & PERF_ATTACH_TASK)
1759 		flags |= PPMU_ONLY_COUNT_RUN;
1760 
1761 	/*
1762 	 * If this machine has limited events, check whether this
1763 	 * event_id could go on a limited event.
1764 	 */
1765 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1766 		if (can_go_on_limited_pmc(event, ev, flags)) {
1767 			flags |= PPMU_LIMITED_PMC_OK;
1768 		} else if (ppmu->limited_pmc_event(ev)) {
1769 			/*
1770 			 * The requested event_id is on a limited PMC,
1771 			 * but we can't use a limited PMC; see if any
1772 			 * alternative goes on a normal PMC.
1773 			 */
1774 			ev = normal_pmc_alternative(ev, flags);
1775 			if (!ev)
1776 				return -EINVAL;
1777 		}
1778 	}
1779 
1780 	/* Extra checks for EBB */
1781 	err = ebb_event_check(event);
1782 	if (err)
1783 		return err;
1784 
1785 	/*
1786 	 * If this is in a group, check if it can go on with all the
1787 	 * other hardware events in the group.  We assume the event
1788 	 * hasn't been linked into its leader's sibling list at this point.
1789 	 */
1790 	n = 0;
1791 	if (event->group_leader != event) {
1792 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1793 				   ctrs, events, cflags);
1794 		if (n < 0)
1795 			return -EINVAL;
1796 	}
1797 	events[n] = ev;
1798 	ctrs[n] = event;
1799 	cflags[n] = flags;
1800 	if (check_excludes(ctrs, cflags, n, 1))
1801 		return -EINVAL;
1802 
1803 	cpuhw = &get_cpu_var(cpu_hw_events);
1804 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1805 
1806 	if (has_branch_stack(event)) {
1807 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1808 					event->attr.branch_sample_type);
1809 
1810 		if(cpuhw->bhrb_filter == -1)
1811 			return -EOPNOTSUPP;
1812 	}
1813 
1814 	put_cpu_var(cpu_hw_events);
1815 	if (err)
1816 		return -EINVAL;
1817 
1818 	event->hw.config = events[n];
1819 	event->hw.event_base = cflags[n];
1820 	event->hw.last_period = event->hw.sample_period;
1821 	local64_set(&event->hw.period_left, event->hw.last_period);
1822 
1823 	/*
1824 	 * For EBB events we just context switch the PMC value, we don't do any
1825 	 * of the sample_period logic. We use hw.prev_count for this.
1826 	 */
1827 	if (is_ebb_event(event))
1828 		local64_set(&event->hw.prev_count, 0);
1829 
1830 	/*
1831 	 * See if we need to reserve the PMU.
1832 	 * If no events are currently in use, then we have to take a
1833 	 * mutex to ensure that we don't race with another task doing
1834 	 * reserve_pmc_hardware or release_pmc_hardware.
1835 	 */
1836 	err = 0;
1837 	if (!atomic_inc_not_zero(&num_events)) {
1838 		mutex_lock(&pmc_reserve_mutex);
1839 		if (atomic_read(&num_events) == 0 &&
1840 		    reserve_pmc_hardware(perf_event_interrupt))
1841 			err = -EBUSY;
1842 		else
1843 			atomic_inc(&num_events);
1844 		mutex_unlock(&pmc_reserve_mutex);
1845 	}
1846 	event->destroy = hw_perf_event_destroy;
1847 
1848 	return err;
1849 }
1850 
1851 static int power_pmu_event_idx(struct perf_event *event)
1852 {
1853 	return event->hw.idx;
1854 }
1855 
1856 ssize_t power_events_sysfs_show(struct device *dev,
1857 				struct device_attribute *attr, char *page)
1858 {
1859 	struct perf_pmu_events_attr *pmu_attr;
1860 
1861 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1862 
1863 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1864 }
1865 
1866 struct pmu power_pmu = {
1867 	.pmu_enable	= power_pmu_enable,
1868 	.pmu_disable	= power_pmu_disable,
1869 	.event_init	= power_pmu_event_init,
1870 	.add		= power_pmu_add,
1871 	.del		= power_pmu_del,
1872 	.start		= power_pmu_start,
1873 	.stop		= power_pmu_stop,
1874 	.read		= power_pmu_read,
1875 	.start_txn	= power_pmu_start_txn,
1876 	.cancel_txn	= power_pmu_cancel_txn,
1877 	.commit_txn	= power_pmu_commit_txn,
1878 	.event_idx	= power_pmu_event_idx,
1879 	.flush_branch_stack = power_pmu_flush_branch_stack,
1880 };
1881 
1882 /*
1883  * A counter has overflowed; update its count and record
1884  * things if requested.  Note that interrupts are hard-disabled
1885  * here so there is no possibility of being interrupted.
1886  */
1887 static void record_and_restart(struct perf_event *event, unsigned long val,
1888 			       struct pt_regs *regs)
1889 {
1890 	u64 period = event->hw.sample_period;
1891 	s64 prev, delta, left;
1892 	int record = 0;
1893 
1894 	if (event->hw.state & PERF_HES_STOPPED) {
1895 		write_pmc(event->hw.idx, 0);
1896 		return;
1897 	}
1898 
1899 	/* we don't have to worry about interrupts here */
1900 	prev = local64_read(&event->hw.prev_count);
1901 	delta = check_and_compute_delta(prev, val);
1902 	local64_add(delta, &event->count);
1903 
1904 	/*
1905 	 * See if the total period for this event has expired,
1906 	 * and update for the next period.
1907 	 */
1908 	val = 0;
1909 	left = local64_read(&event->hw.period_left) - delta;
1910 	if (delta == 0)
1911 		left++;
1912 	if (period) {
1913 		if (left <= 0) {
1914 			left += period;
1915 			if (left <= 0)
1916 				left = period;
1917 			record = siar_valid(regs);
1918 			event->hw.last_period = event->hw.sample_period;
1919 		}
1920 		if (left < 0x80000000LL)
1921 			val = 0x80000000LL - left;
1922 	}
1923 
1924 	write_pmc(event->hw.idx, val);
1925 	local64_set(&event->hw.prev_count, val);
1926 	local64_set(&event->hw.period_left, left);
1927 	perf_event_update_userpage(event);
1928 
1929 	/*
1930 	 * Finally record data if requested.
1931 	 */
1932 	if (record) {
1933 		struct perf_sample_data data;
1934 
1935 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1936 
1937 		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1938 			perf_get_data_addr(regs, &data.addr);
1939 
1940 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
1941 			struct cpu_hw_events *cpuhw;
1942 			cpuhw = &__get_cpu_var(cpu_hw_events);
1943 			power_pmu_bhrb_read(cpuhw);
1944 			data.br_stack = &cpuhw->bhrb_stack;
1945 		}
1946 
1947 		if (perf_event_overflow(event, &data, regs))
1948 			power_pmu_stop(event, 0);
1949 	}
1950 }
1951 
1952 /*
1953  * Called from generic code to get the misc flags (i.e. processor mode)
1954  * for an event_id.
1955  */
1956 unsigned long perf_misc_flags(struct pt_regs *regs)
1957 {
1958 	u32 flags = perf_get_misc_flags(regs);
1959 
1960 	if (flags)
1961 		return flags;
1962 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
1963 		PERF_RECORD_MISC_KERNEL;
1964 }
1965 
1966 /*
1967  * Called from generic code to get the instruction pointer
1968  * for an event_id.
1969  */
1970 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1971 {
1972 	bool use_siar = regs_use_siar(regs);
1973 
1974 	if (use_siar && siar_valid(regs))
1975 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1976 	else if (use_siar)
1977 		return 0;		// no valid instruction pointer
1978 	else
1979 		return regs->nip;
1980 }
1981 
1982 static bool pmc_overflow_power7(unsigned long val)
1983 {
1984 	/*
1985 	 * Events on POWER7 can roll back if a speculative event doesn't
1986 	 * eventually complete. Unfortunately in some rare cases they will
1987 	 * raise a performance monitor exception. We need to catch this to
1988 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1989 	 * cycles from overflow.
1990 	 *
1991 	 * We only do this if the first pass fails to find any overflowing
1992 	 * PMCs because a user might set a period of less than 256 and we
1993 	 * don't want to mistakenly reset them.
1994 	 */
1995 	if ((0x80000000 - val) <= 256)
1996 		return true;
1997 
1998 	return false;
1999 }
2000 
2001 static bool pmc_overflow(unsigned long val)
2002 {
2003 	if ((int)val < 0)
2004 		return true;
2005 
2006 	return false;
2007 }
2008 
2009 /*
2010  * Performance monitor interrupt stuff
2011  */
2012 static void perf_event_interrupt(struct pt_regs *regs)
2013 {
2014 	int i, j;
2015 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
2016 	struct perf_event *event;
2017 	unsigned long val[8];
2018 	int found, active;
2019 	int nmi;
2020 
2021 	if (cpuhw->n_limited)
2022 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2023 					mfspr(SPRN_PMC6));
2024 
2025 	perf_read_regs(regs);
2026 
2027 	nmi = perf_intr_is_nmi(regs);
2028 	if (nmi)
2029 		nmi_enter();
2030 	else
2031 		irq_enter();
2032 
2033 	/* Read all the PMCs since we'll need them a bunch of times */
2034 	for (i = 0; i < ppmu->n_counter; ++i)
2035 		val[i] = read_pmc(i + 1);
2036 
2037 	/* Try to find what caused the IRQ */
2038 	found = 0;
2039 	for (i = 0; i < ppmu->n_counter; ++i) {
2040 		if (!pmc_overflow(val[i]))
2041 			continue;
2042 		if (is_limited_pmc(i + 1))
2043 			continue; /* these won't generate IRQs */
2044 		/*
2045 		 * We've found one that's overflowed.  For active
2046 		 * counters we need to log this.  For inactive
2047 		 * counters, we need to reset it anyway
2048 		 */
2049 		found = 1;
2050 		active = 0;
2051 		for (j = 0; j < cpuhw->n_events; ++j) {
2052 			event = cpuhw->event[j];
2053 			if (event->hw.idx == (i + 1)) {
2054 				active = 1;
2055 				record_and_restart(event, val[i], regs);
2056 				break;
2057 			}
2058 		}
2059 		if (!active)
2060 			/* reset non active counters that have overflowed */
2061 			write_pmc(i + 1, 0);
2062 	}
2063 	if (!found && pvr_version_is(PVR_POWER7)) {
2064 		/* check active counters for special buggy p7 overflow */
2065 		for (i = 0; i < cpuhw->n_events; ++i) {
2066 			event = cpuhw->event[i];
2067 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2068 				continue;
2069 			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2070 				/* event has overflowed in a buggy way*/
2071 				found = 1;
2072 				record_and_restart(event,
2073 						   val[event->hw.idx - 1],
2074 						   regs);
2075 			}
2076 		}
2077 	}
2078 	if (!found && !nmi && printk_ratelimit())
2079 		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2080 
2081 	/*
2082 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2083 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2084 	 * and thus allow interrupts to occur again.
2085 	 * XXX might want to use MSR.PM to keep the events frozen until
2086 	 * we get back out of this interrupt.
2087 	 */
2088 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2089 
2090 	if (nmi)
2091 		nmi_exit();
2092 	else
2093 		irq_exit();
2094 }
2095 
2096 static void power_pmu_setup(int cpu)
2097 {
2098 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2099 
2100 	if (!ppmu)
2101 		return;
2102 	memset(cpuhw, 0, sizeof(*cpuhw));
2103 	cpuhw->mmcr[0] = MMCR0_FC;
2104 }
2105 
2106 static int
2107 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
2108 {
2109 	unsigned int cpu = (long)hcpu;
2110 
2111 	switch (action & ~CPU_TASKS_FROZEN) {
2112 	case CPU_UP_PREPARE:
2113 		power_pmu_setup(cpu);
2114 		break;
2115 
2116 	default:
2117 		break;
2118 	}
2119 
2120 	return NOTIFY_OK;
2121 }
2122 
2123 int register_power_pmu(struct power_pmu *pmu)
2124 {
2125 	if (ppmu)
2126 		return -EBUSY;		/* something's already registered */
2127 
2128 	ppmu = pmu;
2129 	pr_info("%s performance monitor hardware support registered\n",
2130 		pmu->name);
2131 
2132 	power_pmu.attr_groups = ppmu->attr_groups;
2133 
2134 #ifdef MSR_HV
2135 	/*
2136 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2137 	 */
2138 	if (mfmsr() & MSR_HV)
2139 		freeze_events_kernel = MMCR0_FCHV;
2140 #endif /* CONFIG_PPC64 */
2141 
2142 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2143 	perf_cpu_notifier(power_pmu_notifier);
2144 
2145 	return 0;
2146 }
2147