1 /* 2 * Performance event support - powerpc architecture code 3 * 4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/sched.h> 13 #include <linux/perf_event.h> 14 #include <linux/percpu.h> 15 #include <linux/hardirq.h> 16 #include <linux/uaccess.h> 17 #include <asm/reg.h> 18 #include <asm/pmc.h> 19 #include <asm/machdep.h> 20 #include <asm/firmware.h> 21 #include <asm/ptrace.h> 22 #include <asm/code-patching.h> 23 24 #define BHRB_MAX_ENTRIES 32 25 #define BHRB_TARGET 0x0000000000000002 26 #define BHRB_PREDICTION 0x0000000000000001 27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 28 29 struct cpu_hw_events { 30 int n_events; 31 int n_percpu; 32 int disabled; 33 int n_added; 34 int n_limited; 35 u8 pmcs_enabled; 36 struct perf_event *event[MAX_HWEVENTS]; 37 u64 events[MAX_HWEVENTS]; 38 unsigned int flags[MAX_HWEVENTS]; 39 /* 40 * The order of the MMCR array is: 41 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2 42 * - 32-bit, MMCR0, MMCR1, MMCR2 43 */ 44 unsigned long mmcr[4]; 45 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 46 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 47 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 48 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 49 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 50 51 unsigned int txn_flags; 52 int n_txn_start; 53 54 /* BHRB bits */ 55 u64 bhrb_filter; /* BHRB HW branch filter */ 56 unsigned int bhrb_users; 57 void *bhrb_context; 58 struct perf_branch_stack bhrb_stack; 59 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 60 }; 61 62 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 63 64 static struct power_pmu *ppmu; 65 66 /* 67 * Normally, to ignore kernel events we set the FCS (freeze counters 68 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 69 * hypervisor bit set in the MSR, or if we are running on a processor 70 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 71 * then we need to use the FCHV bit to ignore kernel events. 72 */ 73 static unsigned int freeze_events_kernel = MMCR0_FCS; 74 75 /* 76 * 32-bit doesn't have MMCRA but does have an MMCR2, 77 * and a few other names are different. 78 */ 79 #ifdef CONFIG_PPC32 80 81 #define MMCR0_FCHV 0 82 #define MMCR0_PMCjCE MMCR0_PMCnCE 83 #define MMCR0_FC56 0 84 #define MMCR0_PMAO 0 85 #define MMCR0_EBE 0 86 #define MMCR0_BHRBA 0 87 #define MMCR0_PMCC 0 88 #define MMCR0_PMCC_U6 0 89 90 #define SPRN_MMCRA SPRN_MMCR2 91 #define MMCRA_SAMPLE_ENABLE 0 92 93 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 94 { 95 return 0; 96 } 97 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { } 98 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 99 { 100 return 0; 101 } 102 static inline void perf_read_regs(struct pt_regs *regs) 103 { 104 regs->result = 0; 105 } 106 static inline int perf_intr_is_nmi(struct pt_regs *regs) 107 { 108 return 0; 109 } 110 111 static inline int siar_valid(struct pt_regs *regs) 112 { 113 return 1; 114 } 115 116 static bool is_ebb_event(struct perf_event *event) { return false; } 117 static int ebb_event_check(struct perf_event *event) { return 0; } 118 static void ebb_event_add(struct perf_event *event) { } 119 static void ebb_switch_out(unsigned long mmcr0) { } 120 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 121 { 122 return cpuhw->mmcr[0]; 123 } 124 125 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 126 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 127 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} 128 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {} 129 static void pmao_restore_workaround(bool ebb) { } 130 #endif /* CONFIG_PPC32 */ 131 132 static bool regs_use_siar(struct pt_regs *regs) 133 { 134 /* 135 * When we take a performance monitor exception the regs are setup 136 * using perf_read_regs() which overloads some fields, in particular 137 * regs->result to tell us whether to use SIAR. 138 * 139 * However if the regs are from another exception, eg. a syscall, then 140 * they have not been setup using perf_read_regs() and so regs->result 141 * is something random. 142 */ 143 return ((TRAP(regs) == 0xf00) && regs->result); 144 } 145 146 /* 147 * Things that are specific to 64-bit implementations. 148 */ 149 #ifdef CONFIG_PPC64 150 151 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 152 { 153 unsigned long mmcra = regs->dsisr; 154 155 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 156 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 157 if (slot > 1) 158 return 4 * (slot - 1); 159 } 160 161 return 0; 162 } 163 164 /* 165 * The user wants a data address recorded. 166 * If we're not doing instruction sampling, give them the SDAR 167 * (sampled data address). If we are doing instruction sampling, then 168 * only give them the SDAR if it corresponds to the instruction 169 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 170 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 171 */ 172 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) 173 { 174 unsigned long mmcra = regs->dsisr; 175 bool sdar_valid; 176 177 if (ppmu->flags & PPMU_HAS_SIER) 178 sdar_valid = regs->dar & SIER_SDAR_VALID; 179 else { 180 unsigned long sdsync; 181 182 if (ppmu->flags & PPMU_SIAR_VALID) 183 sdsync = POWER7P_MMCRA_SDAR_VALID; 184 else if (ppmu->flags & PPMU_ALT_SIPR) 185 sdsync = POWER6_MMCRA_SDSYNC; 186 else 187 sdsync = MMCRA_SDSYNC; 188 189 sdar_valid = mmcra & sdsync; 190 } 191 192 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 193 *addrp = mfspr(SPRN_SDAR); 194 } 195 196 static bool regs_sihv(struct pt_regs *regs) 197 { 198 unsigned long sihv = MMCRA_SIHV; 199 200 if (ppmu->flags & PPMU_HAS_SIER) 201 return !!(regs->dar & SIER_SIHV); 202 203 if (ppmu->flags & PPMU_ALT_SIPR) 204 sihv = POWER6_MMCRA_SIHV; 205 206 return !!(regs->dsisr & sihv); 207 } 208 209 static bool regs_sipr(struct pt_regs *regs) 210 { 211 unsigned long sipr = MMCRA_SIPR; 212 213 if (ppmu->flags & PPMU_HAS_SIER) 214 return !!(regs->dar & SIER_SIPR); 215 216 if (ppmu->flags & PPMU_ALT_SIPR) 217 sipr = POWER6_MMCRA_SIPR; 218 219 return !!(regs->dsisr & sipr); 220 } 221 222 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 223 { 224 if (regs->msr & MSR_PR) 225 return PERF_RECORD_MISC_USER; 226 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 227 return PERF_RECORD_MISC_HYPERVISOR; 228 return PERF_RECORD_MISC_KERNEL; 229 } 230 231 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 232 { 233 bool use_siar = regs_use_siar(regs); 234 235 if (!use_siar) 236 return perf_flags_from_msr(regs); 237 238 /* 239 * If we don't have flags in MMCRA, rather than using 240 * the MSR, we intuit the flags from the address in 241 * SIAR which should give slightly more reliable 242 * results 243 */ 244 if (ppmu->flags & PPMU_NO_SIPR) { 245 unsigned long siar = mfspr(SPRN_SIAR); 246 if (siar >= PAGE_OFFSET) 247 return PERF_RECORD_MISC_KERNEL; 248 return PERF_RECORD_MISC_USER; 249 } 250 251 /* PR has priority over HV, so order below is important */ 252 if (regs_sipr(regs)) 253 return PERF_RECORD_MISC_USER; 254 255 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 256 return PERF_RECORD_MISC_HYPERVISOR; 257 258 return PERF_RECORD_MISC_KERNEL; 259 } 260 261 /* 262 * Overload regs->dsisr to store MMCRA so we only need to read it once 263 * on each interrupt. 264 * Overload regs->dar to store SIER if we have it. 265 * Overload regs->result to specify whether we should use the MSR (result 266 * is zero) or the SIAR (result is non zero). 267 */ 268 static inline void perf_read_regs(struct pt_regs *regs) 269 { 270 unsigned long mmcra = mfspr(SPRN_MMCRA); 271 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 272 int use_siar; 273 274 regs->dsisr = mmcra; 275 276 if (ppmu->flags & PPMU_HAS_SIER) 277 regs->dar = mfspr(SPRN_SIER); 278 279 /* 280 * If this isn't a PMU exception (eg a software event) the SIAR is 281 * not valid. Use pt_regs. 282 * 283 * If it is a marked event use the SIAR. 284 * 285 * If the PMU doesn't update the SIAR for non marked events use 286 * pt_regs. 287 * 288 * If the PMU has HV/PR flags then check to see if they 289 * place the exception in userspace. If so, use pt_regs. In 290 * continuous sampling mode the SIAR and the PMU exception are 291 * not synchronised, so they may be many instructions apart. 292 * This can result in confusing backtraces. We still want 293 * hypervisor samples as well as samples in the kernel with 294 * interrupts off hence the userspace check. 295 */ 296 if (TRAP(regs) != 0xf00) 297 use_siar = 0; 298 else if ((ppmu->flags & PPMU_NO_SIAR)) 299 use_siar = 0; 300 else if (marked) 301 use_siar = 1; 302 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 303 use_siar = 0; 304 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 305 use_siar = 0; 306 else 307 use_siar = 1; 308 309 regs->result = use_siar; 310 } 311 312 /* 313 * If interrupts were soft-disabled when a PMU interrupt occurs, treat 314 * it as an NMI. 315 */ 316 static inline int perf_intr_is_nmi(struct pt_regs *regs) 317 { 318 return !regs->softe; 319 } 320 321 /* 322 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 323 * must be sampled only if the SIAR-valid bit is set. 324 * 325 * For unmarked instructions and for processors that don't have the SIAR-Valid 326 * bit, assume that SIAR is valid. 327 */ 328 static inline int siar_valid(struct pt_regs *regs) 329 { 330 unsigned long mmcra = regs->dsisr; 331 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 332 333 if (marked) { 334 if (ppmu->flags & PPMU_HAS_SIER) 335 return regs->dar & SIER_SIAR_VALID; 336 337 if (ppmu->flags & PPMU_SIAR_VALID) 338 return mmcra & POWER7P_MMCRA_SIAR_VALID; 339 } 340 341 return 1; 342 } 343 344 345 /* Reset all possible BHRB entries */ 346 static void power_pmu_bhrb_reset(void) 347 { 348 asm volatile(PPC_CLRBHRB); 349 } 350 351 static void power_pmu_bhrb_enable(struct perf_event *event) 352 { 353 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 354 355 if (!ppmu->bhrb_nr) 356 return; 357 358 /* Clear BHRB if we changed task context to avoid data leaks */ 359 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 360 power_pmu_bhrb_reset(); 361 cpuhw->bhrb_context = event->ctx; 362 } 363 cpuhw->bhrb_users++; 364 perf_sched_cb_inc(event->ctx->pmu); 365 } 366 367 static void power_pmu_bhrb_disable(struct perf_event *event) 368 { 369 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 370 371 if (!ppmu->bhrb_nr) 372 return; 373 374 WARN_ON_ONCE(!cpuhw->bhrb_users); 375 cpuhw->bhrb_users--; 376 perf_sched_cb_dec(event->ctx->pmu); 377 378 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 379 /* BHRB cannot be turned off when other 380 * events are active on the PMU. 381 */ 382 383 /* avoid stale pointer */ 384 cpuhw->bhrb_context = NULL; 385 } 386 } 387 388 /* Called from ctxsw to prevent one process's branch entries to 389 * mingle with the other process's entries during context switch. 390 */ 391 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 392 { 393 if (!ppmu->bhrb_nr) 394 return; 395 396 if (sched_in) 397 power_pmu_bhrb_reset(); 398 } 399 /* Calculate the to address for a branch */ 400 static __u64 power_pmu_bhrb_to(u64 addr) 401 { 402 unsigned int instr; 403 int ret; 404 __u64 target; 405 406 if (is_kernel_addr(addr)) 407 return branch_target((unsigned int *)addr); 408 409 /* Userspace: need copy instruction here then translate it */ 410 pagefault_disable(); 411 ret = __get_user_inatomic(instr, (unsigned int __user *)addr); 412 if (ret) { 413 pagefault_enable(); 414 return 0; 415 } 416 pagefault_enable(); 417 418 target = branch_target(&instr); 419 if ((!target) || (instr & BRANCH_ABSOLUTE)) 420 return target; 421 422 /* Translate relative branch target from kernel to user address */ 423 return target - (unsigned long)&instr + addr; 424 } 425 426 /* Processing BHRB entries */ 427 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) 428 { 429 u64 val; 430 u64 addr; 431 int r_index, u_index, pred; 432 433 r_index = 0; 434 u_index = 0; 435 while (r_index < ppmu->bhrb_nr) { 436 /* Assembly read function */ 437 val = read_bhrb(r_index++); 438 if (!val) 439 /* Terminal marker: End of valid BHRB entries */ 440 break; 441 else { 442 addr = val & BHRB_EA; 443 pred = val & BHRB_PREDICTION; 444 445 if (!addr) 446 /* invalid entry */ 447 continue; 448 449 /* Branches are read most recent first (ie. mfbhrb 0 is 450 * the most recent branch). 451 * There are two types of valid entries: 452 * 1) a target entry which is the to address of a 453 * computed goto like a blr,bctr,btar. The next 454 * entry read from the bhrb will be branch 455 * corresponding to this target (ie. the actual 456 * blr/bctr/btar instruction). 457 * 2) a from address which is an actual branch. If a 458 * target entry proceeds this, then this is the 459 * matching branch for that target. If this is not 460 * following a target entry, then this is a branch 461 * where the target is given as an immediate field 462 * in the instruction (ie. an i or b form branch). 463 * In this case we need to read the instruction from 464 * memory to determine the target/to address. 465 */ 466 467 if (val & BHRB_TARGET) { 468 /* Target branches use two entries 469 * (ie. computed gotos/XL form) 470 */ 471 cpuhw->bhrb_entries[u_index].to = addr; 472 cpuhw->bhrb_entries[u_index].mispred = pred; 473 cpuhw->bhrb_entries[u_index].predicted = ~pred; 474 475 /* Get from address in next entry */ 476 val = read_bhrb(r_index++); 477 addr = val & BHRB_EA; 478 if (val & BHRB_TARGET) { 479 /* Shouldn't have two targets in a 480 row.. Reset index and try again */ 481 r_index--; 482 addr = 0; 483 } 484 cpuhw->bhrb_entries[u_index].from = addr; 485 } else { 486 /* Branches to immediate field 487 (ie I or B form) */ 488 cpuhw->bhrb_entries[u_index].from = addr; 489 cpuhw->bhrb_entries[u_index].to = 490 power_pmu_bhrb_to(addr); 491 cpuhw->bhrb_entries[u_index].mispred = pred; 492 cpuhw->bhrb_entries[u_index].predicted = ~pred; 493 } 494 u_index++; 495 496 } 497 } 498 cpuhw->bhrb_stack.nr = u_index; 499 return; 500 } 501 502 static bool is_ebb_event(struct perf_event *event) 503 { 504 /* 505 * This could be a per-PMU callback, but we'd rather avoid the cost. We 506 * check that the PMU supports EBB, meaning those that don't can still 507 * use bit 63 of the event code for something else if they wish. 508 */ 509 return (ppmu->flags & PPMU_ARCH_207S) && 510 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 511 } 512 513 static int ebb_event_check(struct perf_event *event) 514 { 515 struct perf_event *leader = event->group_leader; 516 517 /* Event and group leader must agree on EBB */ 518 if (is_ebb_event(leader) != is_ebb_event(event)) 519 return -EINVAL; 520 521 if (is_ebb_event(event)) { 522 if (!(event->attach_state & PERF_ATTACH_TASK)) 523 return -EINVAL; 524 525 if (!leader->attr.pinned || !leader->attr.exclusive) 526 return -EINVAL; 527 528 if (event->attr.freq || 529 event->attr.inherit || 530 event->attr.sample_type || 531 event->attr.sample_period || 532 event->attr.enable_on_exec) 533 return -EINVAL; 534 } 535 536 return 0; 537 } 538 539 static void ebb_event_add(struct perf_event *event) 540 { 541 if (!is_ebb_event(event) || current->thread.used_ebb) 542 return; 543 544 /* 545 * IFF this is the first time we've added an EBB event, set 546 * PMXE in the user MMCR0 so we can detect when it's cleared by 547 * userspace. We need this so that we can context switch while 548 * userspace is in the EBB handler (where PMXE is 0). 549 */ 550 current->thread.used_ebb = 1; 551 current->thread.mmcr0 |= MMCR0_PMXE; 552 } 553 554 static void ebb_switch_out(unsigned long mmcr0) 555 { 556 if (!(mmcr0 & MMCR0_EBE)) 557 return; 558 559 current->thread.siar = mfspr(SPRN_SIAR); 560 current->thread.sier = mfspr(SPRN_SIER); 561 current->thread.sdar = mfspr(SPRN_SDAR); 562 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 563 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 564 } 565 566 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 567 { 568 unsigned long mmcr0 = cpuhw->mmcr[0]; 569 570 if (!ebb) 571 goto out; 572 573 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 574 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 575 576 /* 577 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 578 * with pmao_restore_workaround() because we may add PMAO but we never 579 * clear it here. 580 */ 581 mmcr0 |= current->thread.mmcr0; 582 583 /* 584 * Be careful not to set PMXE if userspace had it cleared. This is also 585 * compatible with pmao_restore_workaround() because it has already 586 * cleared PMXE and we leave PMAO alone. 587 */ 588 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 589 mmcr0 &= ~MMCR0_PMXE; 590 591 mtspr(SPRN_SIAR, current->thread.siar); 592 mtspr(SPRN_SIER, current->thread.sier); 593 mtspr(SPRN_SDAR, current->thread.sdar); 594 595 /* 596 * Merge the kernel & user values of MMCR2. The semantics we implement 597 * are that the user MMCR2 can set bits, ie. cause counters to freeze, 598 * but not clear bits. If a task wants to be able to clear bits, ie. 599 * unfreeze counters, it should not set exclude_xxx in its events and 600 * instead manage the MMCR2 entirely by itself. 601 */ 602 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2); 603 out: 604 return mmcr0; 605 } 606 607 static void pmao_restore_workaround(bool ebb) 608 { 609 unsigned pmcs[6]; 610 611 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 612 return; 613 614 /* 615 * On POWER8E there is a hardware defect which affects the PMU context 616 * switch logic, ie. power_pmu_disable/enable(). 617 * 618 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 619 * by the hardware. Sometime later the actual PMU exception is 620 * delivered. 621 * 622 * If we context switch, or simply disable/enable, the PMU prior to the 623 * exception arriving, the exception will be lost when we clear PMAO. 624 * 625 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 626 * set, and this _should_ generate an exception. However because of the 627 * defect no exception is generated when we write PMAO, and we get 628 * stuck with no counters counting but no exception delivered. 629 * 630 * The workaround is to detect this case and tweak the hardware to 631 * create another pending PMU exception. 632 * 633 * We do that by setting up PMC6 (cycles) for an imminent overflow and 634 * enabling the PMU. That causes a new exception to be generated in the 635 * chip, but we don't take it yet because we have interrupts hard 636 * disabled. We then write back the PMU state as we want it to be seen 637 * by the exception handler. When we reenable interrupts the exception 638 * handler will be called and see the correct state. 639 * 640 * The logic is the same for EBB, except that the exception is gated by 641 * us having interrupts hard disabled as well as the fact that we are 642 * not in userspace. The exception is finally delivered when we return 643 * to userspace. 644 */ 645 646 /* Only if PMAO is set and PMAO_SYNC is clear */ 647 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 648 return; 649 650 /* If we're doing EBB, only if BESCR[GE] is set */ 651 if (ebb && !(current->thread.bescr & BESCR_GE)) 652 return; 653 654 /* 655 * We are already soft-disabled in power_pmu_enable(). We need to hard 656 * disable to actually prevent the PMU exception from firing. 657 */ 658 hard_irq_disable(); 659 660 /* 661 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 662 * Using read/write_pmc() in a for loop adds 12 function calls and 663 * almost doubles our code size. 664 */ 665 pmcs[0] = mfspr(SPRN_PMC1); 666 pmcs[1] = mfspr(SPRN_PMC2); 667 pmcs[2] = mfspr(SPRN_PMC3); 668 pmcs[3] = mfspr(SPRN_PMC4); 669 pmcs[4] = mfspr(SPRN_PMC5); 670 pmcs[5] = mfspr(SPRN_PMC6); 671 672 /* Ensure all freeze bits are unset */ 673 mtspr(SPRN_MMCR2, 0); 674 675 /* Set up PMC6 to overflow in one cycle */ 676 mtspr(SPRN_PMC6, 0x7FFFFFFE); 677 678 /* Enable exceptions and unfreeze PMC6 */ 679 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 680 681 /* Now we need to refreeze and restore the PMCs */ 682 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 683 684 mtspr(SPRN_PMC1, pmcs[0]); 685 mtspr(SPRN_PMC2, pmcs[1]); 686 mtspr(SPRN_PMC3, pmcs[2]); 687 mtspr(SPRN_PMC4, pmcs[3]); 688 mtspr(SPRN_PMC5, pmcs[4]); 689 mtspr(SPRN_PMC6, pmcs[5]); 690 } 691 #endif /* CONFIG_PPC64 */ 692 693 static void perf_event_interrupt(struct pt_regs *regs); 694 695 /* 696 * Read one performance monitor counter (PMC). 697 */ 698 static unsigned long read_pmc(int idx) 699 { 700 unsigned long val; 701 702 switch (idx) { 703 case 1: 704 val = mfspr(SPRN_PMC1); 705 break; 706 case 2: 707 val = mfspr(SPRN_PMC2); 708 break; 709 case 3: 710 val = mfspr(SPRN_PMC3); 711 break; 712 case 4: 713 val = mfspr(SPRN_PMC4); 714 break; 715 case 5: 716 val = mfspr(SPRN_PMC5); 717 break; 718 case 6: 719 val = mfspr(SPRN_PMC6); 720 break; 721 #ifdef CONFIG_PPC64 722 case 7: 723 val = mfspr(SPRN_PMC7); 724 break; 725 case 8: 726 val = mfspr(SPRN_PMC8); 727 break; 728 #endif /* CONFIG_PPC64 */ 729 default: 730 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 731 val = 0; 732 } 733 return val; 734 } 735 736 /* 737 * Write one PMC. 738 */ 739 static void write_pmc(int idx, unsigned long val) 740 { 741 switch (idx) { 742 case 1: 743 mtspr(SPRN_PMC1, val); 744 break; 745 case 2: 746 mtspr(SPRN_PMC2, val); 747 break; 748 case 3: 749 mtspr(SPRN_PMC3, val); 750 break; 751 case 4: 752 mtspr(SPRN_PMC4, val); 753 break; 754 case 5: 755 mtspr(SPRN_PMC5, val); 756 break; 757 case 6: 758 mtspr(SPRN_PMC6, val); 759 break; 760 #ifdef CONFIG_PPC64 761 case 7: 762 mtspr(SPRN_PMC7, val); 763 break; 764 case 8: 765 mtspr(SPRN_PMC8, val); 766 break; 767 #endif /* CONFIG_PPC64 */ 768 default: 769 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 770 } 771 } 772 773 /* Called from sysrq_handle_showregs() */ 774 void perf_event_print_debug(void) 775 { 776 unsigned long sdar, sier, flags; 777 u32 pmcs[MAX_HWEVENTS]; 778 int i; 779 780 if (!ppmu->n_counter) 781 return; 782 783 local_irq_save(flags); 784 785 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 786 smp_processor_id(), ppmu->name, ppmu->n_counter); 787 788 for (i = 0; i < ppmu->n_counter; i++) 789 pmcs[i] = read_pmc(i + 1); 790 791 for (; i < MAX_HWEVENTS; i++) 792 pmcs[i] = 0xdeadbeef; 793 794 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 795 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 796 797 if (ppmu->n_counter > 4) 798 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 799 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 800 801 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 802 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 803 804 sdar = sier = 0; 805 #ifdef CONFIG_PPC64 806 sdar = mfspr(SPRN_SDAR); 807 808 if (ppmu->flags & PPMU_HAS_SIER) 809 sier = mfspr(SPRN_SIER); 810 811 if (ppmu->flags & PPMU_ARCH_207S) { 812 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 813 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 814 pr_info("EBBRR: %016lx BESCR: %016lx\n", 815 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 816 } 817 #endif 818 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 819 mfspr(SPRN_SIAR), sdar, sier); 820 821 local_irq_restore(flags); 822 } 823 824 /* 825 * Check if a set of events can all go on the PMU at once. 826 * If they can't, this will look at alternative codes for the events 827 * and see if any combination of alternative codes is feasible. 828 * The feasible set is returned in event_id[]. 829 */ 830 static int power_check_constraints(struct cpu_hw_events *cpuhw, 831 u64 event_id[], unsigned int cflags[], 832 int n_ev) 833 { 834 unsigned long mask, value, nv; 835 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 836 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 837 int i, j; 838 unsigned long addf = ppmu->add_fields; 839 unsigned long tadd = ppmu->test_adder; 840 841 if (n_ev > ppmu->n_counter) 842 return -1; 843 844 /* First see if the events will go on as-is */ 845 for (i = 0; i < n_ev; ++i) { 846 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 847 && !ppmu->limited_pmc_event(event_id[i])) { 848 ppmu->get_alternatives(event_id[i], cflags[i], 849 cpuhw->alternatives[i]); 850 event_id[i] = cpuhw->alternatives[i][0]; 851 } 852 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 853 &cpuhw->avalues[i][0])) 854 return -1; 855 } 856 value = mask = 0; 857 for (i = 0; i < n_ev; ++i) { 858 nv = (value | cpuhw->avalues[i][0]) + 859 (value & cpuhw->avalues[i][0] & addf); 860 if ((((nv + tadd) ^ value) & mask) != 0 || 861 (((nv + tadd) ^ cpuhw->avalues[i][0]) & 862 cpuhw->amasks[i][0]) != 0) 863 break; 864 value = nv; 865 mask |= cpuhw->amasks[i][0]; 866 } 867 if (i == n_ev) 868 return 0; /* all OK */ 869 870 /* doesn't work, gather alternatives... */ 871 if (!ppmu->get_alternatives) 872 return -1; 873 for (i = 0; i < n_ev; ++i) { 874 choice[i] = 0; 875 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 876 cpuhw->alternatives[i]); 877 for (j = 1; j < n_alt[i]; ++j) 878 ppmu->get_constraint(cpuhw->alternatives[i][j], 879 &cpuhw->amasks[i][j], 880 &cpuhw->avalues[i][j]); 881 } 882 883 /* enumerate all possibilities and see if any will work */ 884 i = 0; 885 j = -1; 886 value = mask = nv = 0; 887 while (i < n_ev) { 888 if (j >= 0) { 889 /* we're backtracking, restore context */ 890 value = svalues[i]; 891 mask = smasks[i]; 892 j = choice[i]; 893 } 894 /* 895 * See if any alternative k for event_id i, 896 * where k > j, will satisfy the constraints. 897 */ 898 while (++j < n_alt[i]) { 899 nv = (value | cpuhw->avalues[i][j]) + 900 (value & cpuhw->avalues[i][j] & addf); 901 if ((((nv + tadd) ^ value) & mask) == 0 && 902 (((nv + tadd) ^ cpuhw->avalues[i][j]) 903 & cpuhw->amasks[i][j]) == 0) 904 break; 905 } 906 if (j >= n_alt[i]) { 907 /* 908 * No feasible alternative, backtrack 909 * to event_id i-1 and continue enumerating its 910 * alternatives from where we got up to. 911 */ 912 if (--i < 0) 913 return -1; 914 } else { 915 /* 916 * Found a feasible alternative for event_id i, 917 * remember where we got up to with this event_id, 918 * go on to the next event_id, and start with 919 * the first alternative for it. 920 */ 921 choice[i] = j; 922 svalues[i] = value; 923 smasks[i] = mask; 924 value = nv; 925 mask |= cpuhw->amasks[i][j]; 926 ++i; 927 j = -1; 928 } 929 } 930 931 /* OK, we have a feasible combination, tell the caller the solution */ 932 for (i = 0; i < n_ev; ++i) 933 event_id[i] = cpuhw->alternatives[i][choice[i]]; 934 return 0; 935 } 936 937 /* 938 * Check if newly-added events have consistent settings for 939 * exclude_{user,kernel,hv} with each other and any previously 940 * added events. 941 */ 942 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 943 int n_prev, int n_new) 944 { 945 int eu = 0, ek = 0, eh = 0; 946 int i, n, first; 947 struct perf_event *event; 948 949 /* 950 * If the PMU we're on supports per event exclude settings then we 951 * don't need to do any of this logic. NB. This assumes no PMU has both 952 * per event exclude and limited PMCs. 953 */ 954 if (ppmu->flags & PPMU_ARCH_207S) 955 return 0; 956 957 n = n_prev + n_new; 958 if (n <= 1) 959 return 0; 960 961 first = 1; 962 for (i = 0; i < n; ++i) { 963 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 964 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 965 continue; 966 } 967 event = ctrs[i]; 968 if (first) { 969 eu = event->attr.exclude_user; 970 ek = event->attr.exclude_kernel; 971 eh = event->attr.exclude_hv; 972 first = 0; 973 } else if (event->attr.exclude_user != eu || 974 event->attr.exclude_kernel != ek || 975 event->attr.exclude_hv != eh) { 976 return -EAGAIN; 977 } 978 } 979 980 if (eu || ek || eh) 981 for (i = 0; i < n; ++i) 982 if (cflags[i] & PPMU_LIMITED_PMC_OK) 983 cflags[i] |= PPMU_LIMITED_PMC_REQD; 984 985 return 0; 986 } 987 988 static u64 check_and_compute_delta(u64 prev, u64 val) 989 { 990 u64 delta = (val - prev) & 0xfffffffful; 991 992 /* 993 * POWER7 can roll back counter values, if the new value is smaller 994 * than the previous value it will cause the delta and the counter to 995 * have bogus values unless we rolled a counter over. If a coutner is 996 * rolled back, it will be smaller, but within 256, which is the maximum 997 * number of events to rollback at once. If we detect a rollback 998 * return 0. This can lead to a small lack of precision in the 999 * counters. 1000 */ 1001 if (prev > val && (prev - val) < 256) 1002 delta = 0; 1003 1004 return delta; 1005 } 1006 1007 static void power_pmu_read(struct perf_event *event) 1008 { 1009 s64 val, delta, prev; 1010 1011 if (event->hw.state & PERF_HES_STOPPED) 1012 return; 1013 1014 if (!event->hw.idx) 1015 return; 1016 1017 if (is_ebb_event(event)) { 1018 val = read_pmc(event->hw.idx); 1019 local64_set(&event->hw.prev_count, val); 1020 return; 1021 } 1022 1023 /* 1024 * Performance monitor interrupts come even when interrupts 1025 * are soft-disabled, as long as interrupts are hard-enabled. 1026 * Therefore we treat them like NMIs. 1027 */ 1028 do { 1029 prev = local64_read(&event->hw.prev_count); 1030 barrier(); 1031 val = read_pmc(event->hw.idx); 1032 delta = check_and_compute_delta(prev, val); 1033 if (!delta) 1034 return; 1035 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 1036 1037 local64_add(delta, &event->count); 1038 1039 /* 1040 * A number of places program the PMC with (0x80000000 - period_left). 1041 * We never want period_left to be less than 1 because we will program 1042 * the PMC with a value >= 0x800000000 and an edge detected PMC will 1043 * roll around to 0 before taking an exception. We have seen this 1044 * on POWER8. 1045 * 1046 * To fix this, clamp the minimum value of period_left to 1. 1047 */ 1048 do { 1049 prev = local64_read(&event->hw.period_left); 1050 val = prev - delta; 1051 if (val < 1) 1052 val = 1; 1053 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); 1054 } 1055 1056 /* 1057 * On some machines, PMC5 and PMC6 can't be written, don't respect 1058 * the freeze conditions, and don't generate interrupts. This tells 1059 * us if `event' is using such a PMC. 1060 */ 1061 static int is_limited_pmc(int pmcnum) 1062 { 1063 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1064 && (pmcnum == 5 || pmcnum == 6); 1065 } 1066 1067 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1068 unsigned long pmc5, unsigned long pmc6) 1069 { 1070 struct perf_event *event; 1071 u64 val, prev, delta; 1072 int i; 1073 1074 for (i = 0; i < cpuhw->n_limited; ++i) { 1075 event = cpuhw->limited_counter[i]; 1076 if (!event->hw.idx) 1077 continue; 1078 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1079 prev = local64_read(&event->hw.prev_count); 1080 event->hw.idx = 0; 1081 delta = check_and_compute_delta(prev, val); 1082 if (delta) 1083 local64_add(delta, &event->count); 1084 } 1085 } 1086 1087 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1088 unsigned long pmc5, unsigned long pmc6) 1089 { 1090 struct perf_event *event; 1091 u64 val, prev; 1092 int i; 1093 1094 for (i = 0; i < cpuhw->n_limited; ++i) { 1095 event = cpuhw->limited_counter[i]; 1096 event->hw.idx = cpuhw->limited_hwidx[i]; 1097 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1098 prev = local64_read(&event->hw.prev_count); 1099 if (check_and_compute_delta(prev, val)) 1100 local64_set(&event->hw.prev_count, val); 1101 perf_event_update_userpage(event); 1102 } 1103 } 1104 1105 /* 1106 * Since limited events don't respect the freeze conditions, we 1107 * have to read them immediately after freezing or unfreezing the 1108 * other events. We try to keep the values from the limited 1109 * events as consistent as possible by keeping the delay (in 1110 * cycles and instructions) between freezing/unfreezing and reading 1111 * the limited events as small and consistent as possible. 1112 * Therefore, if any limited events are in use, we read them 1113 * both, and always in the same order, to minimize variability, 1114 * and do it inside the same asm that writes MMCR0. 1115 */ 1116 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1117 { 1118 unsigned long pmc5, pmc6; 1119 1120 if (!cpuhw->n_limited) { 1121 mtspr(SPRN_MMCR0, mmcr0); 1122 return; 1123 } 1124 1125 /* 1126 * Write MMCR0, then read PMC5 and PMC6 immediately. 1127 * To ensure we don't get a performance monitor interrupt 1128 * between writing MMCR0 and freezing/thawing the limited 1129 * events, we first write MMCR0 with the event overflow 1130 * interrupt enable bits turned off. 1131 */ 1132 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1133 : "=&r" (pmc5), "=&r" (pmc6) 1134 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1135 "i" (SPRN_MMCR0), 1136 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1137 1138 if (mmcr0 & MMCR0_FC) 1139 freeze_limited_counters(cpuhw, pmc5, pmc6); 1140 else 1141 thaw_limited_counters(cpuhw, pmc5, pmc6); 1142 1143 /* 1144 * Write the full MMCR0 including the event overflow interrupt 1145 * enable bits, if necessary. 1146 */ 1147 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1148 mtspr(SPRN_MMCR0, mmcr0); 1149 } 1150 1151 /* 1152 * Disable all events to prevent PMU interrupts and to allow 1153 * events to be added or removed. 1154 */ 1155 static void power_pmu_disable(struct pmu *pmu) 1156 { 1157 struct cpu_hw_events *cpuhw; 1158 unsigned long flags, mmcr0, val; 1159 1160 if (!ppmu) 1161 return; 1162 local_irq_save(flags); 1163 cpuhw = this_cpu_ptr(&cpu_hw_events); 1164 1165 if (!cpuhw->disabled) { 1166 /* 1167 * Check if we ever enabled the PMU on this cpu. 1168 */ 1169 if (!cpuhw->pmcs_enabled) { 1170 ppc_enable_pmcs(); 1171 cpuhw->pmcs_enabled = 1; 1172 } 1173 1174 /* 1175 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1176 */ 1177 val = mmcr0 = mfspr(SPRN_MMCR0); 1178 val |= MMCR0_FC; 1179 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1180 MMCR0_FC56); 1181 1182 /* 1183 * The barrier is to make sure the mtspr has been 1184 * executed and the PMU has frozen the events etc. 1185 * before we return. 1186 */ 1187 write_mmcr0(cpuhw, val); 1188 mb(); 1189 1190 /* 1191 * Disable instruction sampling if it was enabled 1192 */ 1193 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1194 mtspr(SPRN_MMCRA, 1195 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1196 mb(); 1197 } 1198 1199 cpuhw->disabled = 1; 1200 cpuhw->n_added = 0; 1201 1202 ebb_switch_out(mmcr0); 1203 } 1204 1205 local_irq_restore(flags); 1206 } 1207 1208 /* 1209 * Re-enable all events if disable == 0. 1210 * If we were previously disabled and events were added, then 1211 * put the new config on the PMU. 1212 */ 1213 static void power_pmu_enable(struct pmu *pmu) 1214 { 1215 struct perf_event *event; 1216 struct cpu_hw_events *cpuhw; 1217 unsigned long flags; 1218 long i; 1219 unsigned long val, mmcr0; 1220 s64 left; 1221 unsigned int hwc_index[MAX_HWEVENTS]; 1222 int n_lim; 1223 int idx; 1224 bool ebb; 1225 1226 if (!ppmu) 1227 return; 1228 local_irq_save(flags); 1229 1230 cpuhw = this_cpu_ptr(&cpu_hw_events); 1231 if (!cpuhw->disabled) 1232 goto out; 1233 1234 if (cpuhw->n_events == 0) { 1235 ppc_set_pmu_inuse(0); 1236 goto out; 1237 } 1238 1239 cpuhw->disabled = 0; 1240 1241 /* 1242 * EBB requires an exclusive group and all events must have the EBB 1243 * flag set, or not set, so we can just check a single event. Also we 1244 * know we have at least one event. 1245 */ 1246 ebb = is_ebb_event(cpuhw->event[0]); 1247 1248 /* 1249 * If we didn't change anything, or only removed events, 1250 * no need to recalculate MMCR* settings and reset the PMCs. 1251 * Just reenable the PMU with the current MMCR* settings 1252 * (possibly updated for removal of events). 1253 */ 1254 if (!cpuhw->n_added) { 1255 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1256 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1257 goto out_enable; 1258 } 1259 1260 /* 1261 * Clear all MMCR settings and recompute them for the new set of events. 1262 */ 1263 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); 1264 1265 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1266 cpuhw->mmcr, cpuhw->event)) { 1267 /* shouldn't ever get here */ 1268 printk(KERN_ERR "oops compute_mmcr failed\n"); 1269 goto out; 1270 } 1271 1272 if (!(ppmu->flags & PPMU_ARCH_207S)) { 1273 /* 1274 * Add in MMCR0 freeze bits corresponding to the attr.exclude_* 1275 * bits for the first event. We have already checked that all 1276 * events have the same value for these bits as the first event. 1277 */ 1278 event = cpuhw->event[0]; 1279 if (event->attr.exclude_user) 1280 cpuhw->mmcr[0] |= MMCR0_FCP; 1281 if (event->attr.exclude_kernel) 1282 cpuhw->mmcr[0] |= freeze_events_kernel; 1283 if (event->attr.exclude_hv) 1284 cpuhw->mmcr[0] |= MMCR0_FCHV; 1285 } 1286 1287 /* 1288 * Write the new configuration to MMCR* with the freeze 1289 * bit set and set the hardware events to their initial values. 1290 * Then unfreeze the events. 1291 */ 1292 ppc_set_pmu_inuse(1); 1293 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1294 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1295 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1296 | MMCR0_FC); 1297 if (ppmu->flags & PPMU_ARCH_207S) 1298 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]); 1299 1300 /* 1301 * Read off any pre-existing events that need to move 1302 * to another PMC. 1303 */ 1304 for (i = 0; i < cpuhw->n_events; ++i) { 1305 event = cpuhw->event[i]; 1306 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1307 power_pmu_read(event); 1308 write_pmc(event->hw.idx, 0); 1309 event->hw.idx = 0; 1310 } 1311 } 1312 1313 /* 1314 * Initialize the PMCs for all the new and moved events. 1315 */ 1316 cpuhw->n_limited = n_lim = 0; 1317 for (i = 0; i < cpuhw->n_events; ++i) { 1318 event = cpuhw->event[i]; 1319 if (event->hw.idx) 1320 continue; 1321 idx = hwc_index[i] + 1; 1322 if (is_limited_pmc(idx)) { 1323 cpuhw->limited_counter[n_lim] = event; 1324 cpuhw->limited_hwidx[n_lim] = idx; 1325 ++n_lim; 1326 continue; 1327 } 1328 1329 if (ebb) 1330 val = local64_read(&event->hw.prev_count); 1331 else { 1332 val = 0; 1333 if (event->hw.sample_period) { 1334 left = local64_read(&event->hw.period_left); 1335 if (left < 0x80000000L) 1336 val = 0x80000000L - left; 1337 } 1338 local64_set(&event->hw.prev_count, val); 1339 } 1340 1341 event->hw.idx = idx; 1342 if (event->hw.state & PERF_HES_STOPPED) 1343 val = 0; 1344 write_pmc(idx, val); 1345 1346 perf_event_update_userpage(event); 1347 } 1348 cpuhw->n_limited = n_lim; 1349 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; 1350 1351 out_enable: 1352 pmao_restore_workaround(ebb); 1353 1354 mmcr0 = ebb_switch_in(ebb, cpuhw); 1355 1356 mb(); 1357 if (cpuhw->bhrb_users) 1358 ppmu->config_bhrb(cpuhw->bhrb_filter); 1359 1360 write_mmcr0(cpuhw, mmcr0); 1361 1362 /* 1363 * Enable instruction sampling if necessary 1364 */ 1365 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1366 mb(); 1367 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); 1368 } 1369 1370 out: 1371 1372 local_irq_restore(flags); 1373 } 1374 1375 static int collect_events(struct perf_event *group, int max_count, 1376 struct perf_event *ctrs[], u64 *events, 1377 unsigned int *flags) 1378 { 1379 int n = 0; 1380 struct perf_event *event; 1381 1382 if (!is_software_event(group)) { 1383 if (n >= max_count) 1384 return -1; 1385 ctrs[n] = group; 1386 flags[n] = group->hw.event_base; 1387 events[n++] = group->hw.config; 1388 } 1389 list_for_each_entry(event, &group->sibling_list, group_entry) { 1390 if (!is_software_event(event) && 1391 event->state != PERF_EVENT_STATE_OFF) { 1392 if (n >= max_count) 1393 return -1; 1394 ctrs[n] = event; 1395 flags[n] = event->hw.event_base; 1396 events[n++] = event->hw.config; 1397 } 1398 } 1399 return n; 1400 } 1401 1402 /* 1403 * Add a event to the PMU. 1404 * If all events are not already frozen, then we disable and 1405 * re-enable the PMU in order to get hw_perf_enable to do the 1406 * actual work of reconfiguring the PMU. 1407 */ 1408 static int power_pmu_add(struct perf_event *event, int ef_flags) 1409 { 1410 struct cpu_hw_events *cpuhw; 1411 unsigned long flags; 1412 int n0; 1413 int ret = -EAGAIN; 1414 1415 local_irq_save(flags); 1416 perf_pmu_disable(event->pmu); 1417 1418 /* 1419 * Add the event to the list (if there is room) 1420 * and check whether the total set is still feasible. 1421 */ 1422 cpuhw = this_cpu_ptr(&cpu_hw_events); 1423 n0 = cpuhw->n_events; 1424 if (n0 >= ppmu->n_counter) 1425 goto out; 1426 cpuhw->event[n0] = event; 1427 cpuhw->events[n0] = event->hw.config; 1428 cpuhw->flags[n0] = event->hw.event_base; 1429 1430 /* 1431 * This event may have been disabled/stopped in record_and_restart() 1432 * because we exceeded the ->event_limit. If re-starting the event, 1433 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1434 * notification is re-enabled. 1435 */ 1436 if (!(ef_flags & PERF_EF_START)) 1437 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1438 else 1439 event->hw.state = 0; 1440 1441 /* 1442 * If group events scheduling transaction was started, 1443 * skip the schedulability test here, it will be performed 1444 * at commit time(->commit_txn) as a whole 1445 */ 1446 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD) 1447 goto nocheck; 1448 1449 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1450 goto out; 1451 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) 1452 goto out; 1453 event->hw.config = cpuhw->events[n0]; 1454 1455 nocheck: 1456 ebb_event_add(event); 1457 1458 ++cpuhw->n_events; 1459 ++cpuhw->n_added; 1460 1461 ret = 0; 1462 out: 1463 if (has_branch_stack(event)) { 1464 power_pmu_bhrb_enable(event); 1465 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1466 event->attr.branch_sample_type); 1467 } 1468 1469 perf_pmu_enable(event->pmu); 1470 local_irq_restore(flags); 1471 return ret; 1472 } 1473 1474 /* 1475 * Remove a event from the PMU. 1476 */ 1477 static void power_pmu_del(struct perf_event *event, int ef_flags) 1478 { 1479 struct cpu_hw_events *cpuhw; 1480 long i; 1481 unsigned long flags; 1482 1483 local_irq_save(flags); 1484 perf_pmu_disable(event->pmu); 1485 1486 power_pmu_read(event); 1487 1488 cpuhw = this_cpu_ptr(&cpu_hw_events); 1489 for (i = 0; i < cpuhw->n_events; ++i) { 1490 if (event == cpuhw->event[i]) { 1491 while (++i < cpuhw->n_events) { 1492 cpuhw->event[i-1] = cpuhw->event[i]; 1493 cpuhw->events[i-1] = cpuhw->events[i]; 1494 cpuhw->flags[i-1] = cpuhw->flags[i]; 1495 } 1496 --cpuhw->n_events; 1497 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); 1498 if (event->hw.idx) { 1499 write_pmc(event->hw.idx, 0); 1500 event->hw.idx = 0; 1501 } 1502 perf_event_update_userpage(event); 1503 break; 1504 } 1505 } 1506 for (i = 0; i < cpuhw->n_limited; ++i) 1507 if (event == cpuhw->limited_counter[i]) 1508 break; 1509 if (i < cpuhw->n_limited) { 1510 while (++i < cpuhw->n_limited) { 1511 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1512 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1513 } 1514 --cpuhw->n_limited; 1515 } 1516 if (cpuhw->n_events == 0) { 1517 /* disable exceptions if no events are running */ 1518 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); 1519 } 1520 1521 if (has_branch_stack(event)) 1522 power_pmu_bhrb_disable(event); 1523 1524 perf_pmu_enable(event->pmu); 1525 local_irq_restore(flags); 1526 } 1527 1528 /* 1529 * POWER-PMU does not support disabling individual counters, hence 1530 * program their cycle counter to their max value and ignore the interrupts. 1531 */ 1532 1533 static void power_pmu_start(struct perf_event *event, int ef_flags) 1534 { 1535 unsigned long flags; 1536 s64 left; 1537 unsigned long val; 1538 1539 if (!event->hw.idx || !event->hw.sample_period) 1540 return; 1541 1542 if (!(event->hw.state & PERF_HES_STOPPED)) 1543 return; 1544 1545 if (ef_flags & PERF_EF_RELOAD) 1546 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1547 1548 local_irq_save(flags); 1549 perf_pmu_disable(event->pmu); 1550 1551 event->hw.state = 0; 1552 left = local64_read(&event->hw.period_left); 1553 1554 val = 0; 1555 if (left < 0x80000000L) 1556 val = 0x80000000L - left; 1557 1558 write_pmc(event->hw.idx, val); 1559 1560 perf_event_update_userpage(event); 1561 perf_pmu_enable(event->pmu); 1562 local_irq_restore(flags); 1563 } 1564 1565 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1566 { 1567 unsigned long flags; 1568 1569 if (!event->hw.idx || !event->hw.sample_period) 1570 return; 1571 1572 if (event->hw.state & PERF_HES_STOPPED) 1573 return; 1574 1575 local_irq_save(flags); 1576 perf_pmu_disable(event->pmu); 1577 1578 power_pmu_read(event); 1579 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1580 write_pmc(event->hw.idx, 0); 1581 1582 perf_event_update_userpage(event); 1583 perf_pmu_enable(event->pmu); 1584 local_irq_restore(flags); 1585 } 1586 1587 /* 1588 * Start group events scheduling transaction 1589 * Set the flag to make pmu::enable() not perform the 1590 * schedulability test, it will be performed at commit time 1591 * 1592 * We only support PERF_PMU_TXN_ADD transactions. Save the 1593 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1594 * transactions. 1595 */ 1596 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1597 { 1598 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1599 1600 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ 1601 1602 cpuhw->txn_flags = txn_flags; 1603 if (txn_flags & ~PERF_PMU_TXN_ADD) 1604 return; 1605 1606 perf_pmu_disable(pmu); 1607 cpuhw->n_txn_start = cpuhw->n_events; 1608 } 1609 1610 /* 1611 * Stop group events scheduling transaction 1612 * Clear the flag and pmu::enable() will perform the 1613 * schedulability test. 1614 */ 1615 static void power_pmu_cancel_txn(struct pmu *pmu) 1616 { 1617 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1618 unsigned int txn_flags; 1619 1620 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1621 1622 txn_flags = cpuhw->txn_flags; 1623 cpuhw->txn_flags = 0; 1624 if (txn_flags & ~PERF_PMU_TXN_ADD) 1625 return; 1626 1627 perf_pmu_enable(pmu); 1628 } 1629 1630 /* 1631 * Commit group events scheduling transaction 1632 * Perform the group schedulability test as a whole 1633 * Return 0 if success 1634 */ 1635 static int power_pmu_commit_txn(struct pmu *pmu) 1636 { 1637 struct cpu_hw_events *cpuhw; 1638 long i, n; 1639 1640 if (!ppmu) 1641 return -EAGAIN; 1642 1643 cpuhw = this_cpu_ptr(&cpu_hw_events); 1644 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1645 1646 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) { 1647 cpuhw->txn_flags = 0; 1648 return 0; 1649 } 1650 1651 n = cpuhw->n_events; 1652 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1653 return -EAGAIN; 1654 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); 1655 if (i < 0) 1656 return -EAGAIN; 1657 1658 for (i = cpuhw->n_txn_start; i < n; ++i) 1659 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1660 1661 cpuhw->txn_flags = 0; 1662 perf_pmu_enable(pmu); 1663 return 0; 1664 } 1665 1666 /* 1667 * Return 1 if we might be able to put event on a limited PMC, 1668 * or 0 if not. 1669 * A event can only go on a limited PMC if it counts something 1670 * that a limited PMC can count, doesn't require interrupts, and 1671 * doesn't exclude any processor mode. 1672 */ 1673 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1674 unsigned int flags) 1675 { 1676 int n; 1677 u64 alt[MAX_EVENT_ALTERNATIVES]; 1678 1679 if (event->attr.exclude_user 1680 || event->attr.exclude_kernel 1681 || event->attr.exclude_hv 1682 || event->attr.sample_period) 1683 return 0; 1684 1685 if (ppmu->limited_pmc_event(ev)) 1686 return 1; 1687 1688 /* 1689 * The requested event_id isn't on a limited PMC already; 1690 * see if any alternative code goes on a limited PMC. 1691 */ 1692 if (!ppmu->get_alternatives) 1693 return 0; 1694 1695 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1696 n = ppmu->get_alternatives(ev, flags, alt); 1697 1698 return n > 0; 1699 } 1700 1701 /* 1702 * Find an alternative event_id that goes on a normal PMC, if possible, 1703 * and return the event_id code, or 0 if there is no such alternative. 1704 * (Note: event_id code 0 is "don't count" on all machines.) 1705 */ 1706 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1707 { 1708 u64 alt[MAX_EVENT_ALTERNATIVES]; 1709 int n; 1710 1711 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1712 n = ppmu->get_alternatives(ev, flags, alt); 1713 if (!n) 1714 return 0; 1715 return alt[0]; 1716 } 1717 1718 /* Number of perf_events counting hardware events */ 1719 static atomic_t num_events; 1720 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1721 static DEFINE_MUTEX(pmc_reserve_mutex); 1722 1723 /* 1724 * Release the PMU if this is the last perf_event. 1725 */ 1726 static void hw_perf_event_destroy(struct perf_event *event) 1727 { 1728 if (!atomic_add_unless(&num_events, -1, 1)) { 1729 mutex_lock(&pmc_reserve_mutex); 1730 if (atomic_dec_return(&num_events) == 0) 1731 release_pmc_hardware(); 1732 mutex_unlock(&pmc_reserve_mutex); 1733 } 1734 } 1735 1736 /* 1737 * Translate a generic cache event_id config to a raw event_id code. 1738 */ 1739 static int hw_perf_cache_event(u64 config, u64 *eventp) 1740 { 1741 unsigned long type, op, result; 1742 int ev; 1743 1744 if (!ppmu->cache_events) 1745 return -EINVAL; 1746 1747 /* unpack config */ 1748 type = config & 0xff; 1749 op = (config >> 8) & 0xff; 1750 result = (config >> 16) & 0xff; 1751 1752 if (type >= PERF_COUNT_HW_CACHE_MAX || 1753 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1754 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1755 return -EINVAL; 1756 1757 ev = (*ppmu->cache_events)[type][op][result]; 1758 if (ev == 0) 1759 return -EOPNOTSUPP; 1760 if (ev == -1) 1761 return -EINVAL; 1762 *eventp = ev; 1763 return 0; 1764 } 1765 1766 static int power_pmu_event_init(struct perf_event *event) 1767 { 1768 u64 ev; 1769 unsigned long flags; 1770 struct perf_event *ctrs[MAX_HWEVENTS]; 1771 u64 events[MAX_HWEVENTS]; 1772 unsigned int cflags[MAX_HWEVENTS]; 1773 int n; 1774 int err; 1775 struct cpu_hw_events *cpuhw; 1776 1777 if (!ppmu) 1778 return -ENOENT; 1779 1780 if (has_branch_stack(event)) { 1781 /* PMU has BHRB enabled */ 1782 if (!(ppmu->flags & PPMU_ARCH_207S)) 1783 return -EOPNOTSUPP; 1784 } 1785 1786 switch (event->attr.type) { 1787 case PERF_TYPE_HARDWARE: 1788 ev = event->attr.config; 1789 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1790 return -EOPNOTSUPP; 1791 ev = ppmu->generic_events[ev]; 1792 break; 1793 case PERF_TYPE_HW_CACHE: 1794 err = hw_perf_cache_event(event->attr.config, &ev); 1795 if (err) 1796 return err; 1797 break; 1798 case PERF_TYPE_RAW: 1799 ev = event->attr.config; 1800 break; 1801 default: 1802 return -ENOENT; 1803 } 1804 1805 event->hw.config_base = ev; 1806 event->hw.idx = 0; 1807 1808 /* 1809 * If we are not running on a hypervisor, force the 1810 * exclude_hv bit to 0 so that we don't care what 1811 * the user set it to. 1812 */ 1813 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1814 event->attr.exclude_hv = 0; 1815 1816 /* 1817 * If this is a per-task event, then we can use 1818 * PM_RUN_* events interchangeably with their non RUN_* 1819 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1820 * XXX we should check if the task is an idle task. 1821 */ 1822 flags = 0; 1823 if (event->attach_state & PERF_ATTACH_TASK) 1824 flags |= PPMU_ONLY_COUNT_RUN; 1825 1826 /* 1827 * If this machine has limited events, check whether this 1828 * event_id could go on a limited event. 1829 */ 1830 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1831 if (can_go_on_limited_pmc(event, ev, flags)) { 1832 flags |= PPMU_LIMITED_PMC_OK; 1833 } else if (ppmu->limited_pmc_event(ev)) { 1834 /* 1835 * The requested event_id is on a limited PMC, 1836 * but we can't use a limited PMC; see if any 1837 * alternative goes on a normal PMC. 1838 */ 1839 ev = normal_pmc_alternative(ev, flags); 1840 if (!ev) 1841 return -EINVAL; 1842 } 1843 } 1844 1845 /* Extra checks for EBB */ 1846 err = ebb_event_check(event); 1847 if (err) 1848 return err; 1849 1850 /* 1851 * If this is in a group, check if it can go on with all the 1852 * other hardware events in the group. We assume the event 1853 * hasn't been linked into its leader's sibling list at this point. 1854 */ 1855 n = 0; 1856 if (event->group_leader != event) { 1857 n = collect_events(event->group_leader, ppmu->n_counter - 1, 1858 ctrs, events, cflags); 1859 if (n < 0) 1860 return -EINVAL; 1861 } 1862 events[n] = ev; 1863 ctrs[n] = event; 1864 cflags[n] = flags; 1865 if (check_excludes(ctrs, cflags, n, 1)) 1866 return -EINVAL; 1867 1868 cpuhw = &get_cpu_var(cpu_hw_events); 1869 err = power_check_constraints(cpuhw, events, cflags, n + 1); 1870 1871 if (has_branch_stack(event)) { 1872 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1873 event->attr.branch_sample_type); 1874 1875 if (cpuhw->bhrb_filter == -1) { 1876 put_cpu_var(cpu_hw_events); 1877 return -EOPNOTSUPP; 1878 } 1879 } 1880 1881 put_cpu_var(cpu_hw_events); 1882 if (err) 1883 return -EINVAL; 1884 1885 event->hw.config = events[n]; 1886 event->hw.event_base = cflags[n]; 1887 event->hw.last_period = event->hw.sample_period; 1888 local64_set(&event->hw.period_left, event->hw.last_period); 1889 1890 /* 1891 * For EBB events we just context switch the PMC value, we don't do any 1892 * of the sample_period logic. We use hw.prev_count for this. 1893 */ 1894 if (is_ebb_event(event)) 1895 local64_set(&event->hw.prev_count, 0); 1896 1897 /* 1898 * See if we need to reserve the PMU. 1899 * If no events are currently in use, then we have to take a 1900 * mutex to ensure that we don't race with another task doing 1901 * reserve_pmc_hardware or release_pmc_hardware. 1902 */ 1903 err = 0; 1904 if (!atomic_inc_not_zero(&num_events)) { 1905 mutex_lock(&pmc_reserve_mutex); 1906 if (atomic_read(&num_events) == 0 && 1907 reserve_pmc_hardware(perf_event_interrupt)) 1908 err = -EBUSY; 1909 else 1910 atomic_inc(&num_events); 1911 mutex_unlock(&pmc_reserve_mutex); 1912 } 1913 event->destroy = hw_perf_event_destroy; 1914 1915 return err; 1916 } 1917 1918 static int power_pmu_event_idx(struct perf_event *event) 1919 { 1920 return event->hw.idx; 1921 } 1922 1923 ssize_t power_events_sysfs_show(struct device *dev, 1924 struct device_attribute *attr, char *page) 1925 { 1926 struct perf_pmu_events_attr *pmu_attr; 1927 1928 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 1929 1930 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 1931 } 1932 1933 static struct pmu power_pmu = { 1934 .pmu_enable = power_pmu_enable, 1935 .pmu_disable = power_pmu_disable, 1936 .event_init = power_pmu_event_init, 1937 .add = power_pmu_add, 1938 .del = power_pmu_del, 1939 .start = power_pmu_start, 1940 .stop = power_pmu_stop, 1941 .read = power_pmu_read, 1942 .start_txn = power_pmu_start_txn, 1943 .cancel_txn = power_pmu_cancel_txn, 1944 .commit_txn = power_pmu_commit_txn, 1945 .event_idx = power_pmu_event_idx, 1946 .sched_task = power_pmu_sched_task, 1947 }; 1948 1949 /* 1950 * A counter has overflowed; update its count and record 1951 * things if requested. Note that interrupts are hard-disabled 1952 * here so there is no possibility of being interrupted. 1953 */ 1954 static void record_and_restart(struct perf_event *event, unsigned long val, 1955 struct pt_regs *regs) 1956 { 1957 u64 period = event->hw.sample_period; 1958 s64 prev, delta, left; 1959 int record = 0; 1960 1961 if (event->hw.state & PERF_HES_STOPPED) { 1962 write_pmc(event->hw.idx, 0); 1963 return; 1964 } 1965 1966 /* we don't have to worry about interrupts here */ 1967 prev = local64_read(&event->hw.prev_count); 1968 delta = check_and_compute_delta(prev, val); 1969 local64_add(delta, &event->count); 1970 1971 /* 1972 * See if the total period for this event has expired, 1973 * and update for the next period. 1974 */ 1975 val = 0; 1976 left = local64_read(&event->hw.period_left) - delta; 1977 if (delta == 0) 1978 left++; 1979 if (period) { 1980 if (left <= 0) { 1981 left += period; 1982 if (left <= 0) 1983 left = period; 1984 record = siar_valid(regs); 1985 event->hw.last_period = event->hw.sample_period; 1986 } 1987 if (left < 0x80000000LL) 1988 val = 0x80000000LL - left; 1989 } 1990 1991 write_pmc(event->hw.idx, val); 1992 local64_set(&event->hw.prev_count, val); 1993 local64_set(&event->hw.period_left, left); 1994 perf_event_update_userpage(event); 1995 1996 /* 1997 * Finally record data if requested. 1998 */ 1999 if (record) { 2000 struct perf_sample_data data; 2001 2002 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 2003 2004 if (event->attr.sample_type & PERF_SAMPLE_ADDR) 2005 perf_get_data_addr(regs, &data.addr); 2006 2007 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 2008 struct cpu_hw_events *cpuhw; 2009 cpuhw = this_cpu_ptr(&cpu_hw_events); 2010 power_pmu_bhrb_read(cpuhw); 2011 data.br_stack = &cpuhw->bhrb_stack; 2012 } 2013 2014 if (perf_event_overflow(event, &data, regs)) 2015 power_pmu_stop(event, 0); 2016 } 2017 } 2018 2019 /* 2020 * Called from generic code to get the misc flags (i.e. processor mode) 2021 * for an event_id. 2022 */ 2023 unsigned long perf_misc_flags(struct pt_regs *regs) 2024 { 2025 u32 flags = perf_get_misc_flags(regs); 2026 2027 if (flags) 2028 return flags; 2029 return user_mode(regs) ? PERF_RECORD_MISC_USER : 2030 PERF_RECORD_MISC_KERNEL; 2031 } 2032 2033 /* 2034 * Called from generic code to get the instruction pointer 2035 * for an event_id. 2036 */ 2037 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2038 { 2039 bool use_siar = regs_use_siar(regs); 2040 2041 if (use_siar && siar_valid(regs)) 2042 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 2043 else if (use_siar) 2044 return 0; // no valid instruction pointer 2045 else 2046 return regs->nip; 2047 } 2048 2049 static bool pmc_overflow_power7(unsigned long val) 2050 { 2051 /* 2052 * Events on POWER7 can roll back if a speculative event doesn't 2053 * eventually complete. Unfortunately in some rare cases they will 2054 * raise a performance monitor exception. We need to catch this to 2055 * ensure we reset the PMC. In all cases the PMC will be 256 or less 2056 * cycles from overflow. 2057 * 2058 * We only do this if the first pass fails to find any overflowing 2059 * PMCs because a user might set a period of less than 256 and we 2060 * don't want to mistakenly reset them. 2061 */ 2062 if ((0x80000000 - val) <= 256) 2063 return true; 2064 2065 return false; 2066 } 2067 2068 static bool pmc_overflow(unsigned long val) 2069 { 2070 if ((int)val < 0) 2071 return true; 2072 2073 return false; 2074 } 2075 2076 /* 2077 * Performance monitor interrupt stuff 2078 */ 2079 static void perf_event_interrupt(struct pt_regs *regs) 2080 { 2081 int i, j; 2082 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 2083 struct perf_event *event; 2084 unsigned long val[8]; 2085 int found, active; 2086 int nmi; 2087 2088 if (cpuhw->n_limited) 2089 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2090 mfspr(SPRN_PMC6)); 2091 2092 perf_read_regs(regs); 2093 2094 nmi = perf_intr_is_nmi(regs); 2095 if (nmi) 2096 nmi_enter(); 2097 else 2098 irq_enter(); 2099 2100 /* Read all the PMCs since we'll need them a bunch of times */ 2101 for (i = 0; i < ppmu->n_counter; ++i) 2102 val[i] = read_pmc(i + 1); 2103 2104 /* Try to find what caused the IRQ */ 2105 found = 0; 2106 for (i = 0; i < ppmu->n_counter; ++i) { 2107 if (!pmc_overflow(val[i])) 2108 continue; 2109 if (is_limited_pmc(i + 1)) 2110 continue; /* these won't generate IRQs */ 2111 /* 2112 * We've found one that's overflowed. For active 2113 * counters we need to log this. For inactive 2114 * counters, we need to reset it anyway 2115 */ 2116 found = 1; 2117 active = 0; 2118 for (j = 0; j < cpuhw->n_events; ++j) { 2119 event = cpuhw->event[j]; 2120 if (event->hw.idx == (i + 1)) { 2121 active = 1; 2122 record_and_restart(event, val[i], regs); 2123 break; 2124 } 2125 } 2126 if (!active) 2127 /* reset non active counters that have overflowed */ 2128 write_pmc(i + 1, 0); 2129 } 2130 if (!found && pvr_version_is(PVR_POWER7)) { 2131 /* check active counters for special buggy p7 overflow */ 2132 for (i = 0; i < cpuhw->n_events; ++i) { 2133 event = cpuhw->event[i]; 2134 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2135 continue; 2136 if (pmc_overflow_power7(val[event->hw.idx - 1])) { 2137 /* event has overflowed in a buggy way*/ 2138 found = 1; 2139 record_and_restart(event, 2140 val[event->hw.idx - 1], 2141 regs); 2142 } 2143 } 2144 } 2145 if (!found && !nmi && printk_ratelimit()) 2146 printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2147 2148 /* 2149 * Reset MMCR0 to its normal value. This will set PMXE and 2150 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2151 * and thus allow interrupts to occur again. 2152 * XXX might want to use MSR.PM to keep the events frozen until 2153 * we get back out of this interrupt. 2154 */ 2155 write_mmcr0(cpuhw, cpuhw->mmcr[0]); 2156 2157 if (nmi) 2158 nmi_exit(); 2159 else 2160 irq_exit(); 2161 } 2162 2163 static int power_pmu_prepare_cpu(unsigned int cpu) 2164 { 2165 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2166 2167 if (ppmu) { 2168 memset(cpuhw, 0, sizeof(*cpuhw)); 2169 cpuhw->mmcr[0] = MMCR0_FC; 2170 } 2171 return 0; 2172 } 2173 2174 int register_power_pmu(struct power_pmu *pmu) 2175 { 2176 if (ppmu) 2177 return -EBUSY; /* something's already registered */ 2178 2179 ppmu = pmu; 2180 pr_info("%s performance monitor hardware support registered\n", 2181 pmu->name); 2182 2183 power_pmu.attr_groups = ppmu->attr_groups; 2184 2185 #ifdef MSR_HV 2186 /* 2187 * Use FCHV to ignore kernel events if MSR.HV is set. 2188 */ 2189 if (mfmsr() & MSR_HV) 2190 freeze_events_kernel = MMCR0_FCHV; 2191 #endif /* CONFIG_PPC64 */ 2192 2193 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2194 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", 2195 power_pmu_prepare_cpu, NULL); 2196 return 0; 2197 } 2198