xref: /openbmc/linux/arch/powerpc/perf/core-book3s.c (revision 4e1a33b1)
1 /*
2  * Performance event support - powerpc architecture code
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
17 #include <asm/reg.h>
18 #include <asm/pmc.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
23 
24 #define BHRB_MAX_ENTRIES	32
25 #define BHRB_TARGET		0x0000000000000002
26 #define BHRB_PREDICTION		0x0000000000000001
27 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28 
29 struct cpu_hw_events {
30 	int n_events;
31 	int n_percpu;
32 	int disabled;
33 	int n_added;
34 	int n_limited;
35 	u8  pmcs_enabled;
36 	struct perf_event *event[MAX_HWEVENTS];
37 	u64 events[MAX_HWEVENTS];
38 	unsigned int flags[MAX_HWEVENTS];
39 	/*
40 	 * The order of the MMCR array is:
41 	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42 	 *  - 32-bit, MMCR0, MMCR1, MMCR2
43 	 */
44 	unsigned long mmcr[4];
45 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
46 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50 
51 	unsigned int txn_flags;
52 	int n_txn_start;
53 
54 	/* BHRB bits */
55 	u64				bhrb_filter;	/* BHRB HW branch filter */
56 	unsigned int			bhrb_users;
57 	void				*bhrb_context;
58 	struct	perf_branch_stack	bhrb_stack;
59 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
60 };
61 
62 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
63 
64 static struct power_pmu *ppmu;
65 
66 /*
67  * Normally, to ignore kernel events we set the FCS (freeze counters
68  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
69  * hypervisor bit set in the MSR, or if we are running on a processor
70  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
71  * then we need to use the FCHV bit to ignore kernel events.
72  */
73 static unsigned int freeze_events_kernel = MMCR0_FCS;
74 
75 /*
76  * 32-bit doesn't have MMCRA but does have an MMCR2,
77  * and a few other names are different.
78  */
79 #ifdef CONFIG_PPC32
80 
81 #define MMCR0_FCHV		0
82 #define MMCR0_PMCjCE		MMCR0_PMCnCE
83 #define MMCR0_FC56		0
84 #define MMCR0_PMAO		0
85 #define MMCR0_EBE		0
86 #define MMCR0_BHRBA		0
87 #define MMCR0_PMCC		0
88 #define MMCR0_PMCC_U6		0
89 
90 #define SPRN_MMCRA		SPRN_MMCR2
91 #define MMCRA_SAMPLE_ENABLE	0
92 
93 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
94 {
95 	return 0;
96 }
97 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
98 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
99 {
100 	return 0;
101 }
102 static inline void perf_read_regs(struct pt_regs *regs)
103 {
104 	regs->result = 0;
105 }
106 static inline int perf_intr_is_nmi(struct pt_regs *regs)
107 {
108 	return 0;
109 }
110 
111 static inline int siar_valid(struct pt_regs *regs)
112 {
113 	return 1;
114 }
115 
116 static bool is_ebb_event(struct perf_event *event) { return false; }
117 static int ebb_event_check(struct perf_event *event) { return 0; }
118 static void ebb_event_add(struct perf_event *event) { }
119 static void ebb_switch_out(unsigned long mmcr0) { }
120 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
121 {
122 	return cpuhw->mmcr[0];
123 }
124 
125 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
126 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
127 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
128 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
129 static void pmao_restore_workaround(bool ebb) { }
130 #endif /* CONFIG_PPC32 */
131 
132 static bool regs_use_siar(struct pt_regs *regs)
133 {
134 	/*
135 	 * When we take a performance monitor exception the regs are setup
136 	 * using perf_read_regs() which overloads some fields, in particular
137 	 * regs->result to tell us whether to use SIAR.
138 	 *
139 	 * However if the regs are from another exception, eg. a syscall, then
140 	 * they have not been setup using perf_read_regs() and so regs->result
141 	 * is something random.
142 	 */
143 	return ((TRAP(regs) == 0xf00) && regs->result);
144 }
145 
146 /*
147  * Things that are specific to 64-bit implementations.
148  */
149 #ifdef CONFIG_PPC64
150 
151 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
152 {
153 	unsigned long mmcra = regs->dsisr;
154 
155 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
156 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
157 		if (slot > 1)
158 			return 4 * (slot - 1);
159 	}
160 
161 	return 0;
162 }
163 
164 /*
165  * The user wants a data address recorded.
166  * If we're not doing instruction sampling, give them the SDAR
167  * (sampled data address).  If we are doing instruction sampling, then
168  * only give them the SDAR if it corresponds to the instruction
169  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
170  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
171  */
172 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
173 {
174 	unsigned long mmcra = regs->dsisr;
175 	bool sdar_valid;
176 
177 	if (ppmu->flags & PPMU_HAS_SIER)
178 		sdar_valid = regs->dar & SIER_SDAR_VALID;
179 	else {
180 		unsigned long sdsync;
181 
182 		if (ppmu->flags & PPMU_SIAR_VALID)
183 			sdsync = POWER7P_MMCRA_SDAR_VALID;
184 		else if (ppmu->flags & PPMU_ALT_SIPR)
185 			sdsync = POWER6_MMCRA_SDSYNC;
186 		else
187 			sdsync = MMCRA_SDSYNC;
188 
189 		sdar_valid = mmcra & sdsync;
190 	}
191 
192 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
193 		*addrp = mfspr(SPRN_SDAR);
194 }
195 
196 static bool regs_sihv(struct pt_regs *regs)
197 {
198 	unsigned long sihv = MMCRA_SIHV;
199 
200 	if (ppmu->flags & PPMU_HAS_SIER)
201 		return !!(regs->dar & SIER_SIHV);
202 
203 	if (ppmu->flags & PPMU_ALT_SIPR)
204 		sihv = POWER6_MMCRA_SIHV;
205 
206 	return !!(regs->dsisr & sihv);
207 }
208 
209 static bool regs_sipr(struct pt_regs *regs)
210 {
211 	unsigned long sipr = MMCRA_SIPR;
212 
213 	if (ppmu->flags & PPMU_HAS_SIER)
214 		return !!(regs->dar & SIER_SIPR);
215 
216 	if (ppmu->flags & PPMU_ALT_SIPR)
217 		sipr = POWER6_MMCRA_SIPR;
218 
219 	return !!(regs->dsisr & sipr);
220 }
221 
222 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
223 {
224 	if (regs->msr & MSR_PR)
225 		return PERF_RECORD_MISC_USER;
226 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
227 		return PERF_RECORD_MISC_HYPERVISOR;
228 	return PERF_RECORD_MISC_KERNEL;
229 }
230 
231 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
232 {
233 	bool use_siar = regs_use_siar(regs);
234 
235 	if (!use_siar)
236 		return perf_flags_from_msr(regs);
237 
238 	/*
239 	 * If we don't have flags in MMCRA, rather than using
240 	 * the MSR, we intuit the flags from the address in
241 	 * SIAR which should give slightly more reliable
242 	 * results
243 	 */
244 	if (ppmu->flags & PPMU_NO_SIPR) {
245 		unsigned long siar = mfspr(SPRN_SIAR);
246 		if (siar >= PAGE_OFFSET)
247 			return PERF_RECORD_MISC_KERNEL;
248 		return PERF_RECORD_MISC_USER;
249 	}
250 
251 	/* PR has priority over HV, so order below is important */
252 	if (regs_sipr(regs))
253 		return PERF_RECORD_MISC_USER;
254 
255 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
256 		return PERF_RECORD_MISC_HYPERVISOR;
257 
258 	return PERF_RECORD_MISC_KERNEL;
259 }
260 
261 /*
262  * Overload regs->dsisr to store MMCRA so we only need to read it once
263  * on each interrupt.
264  * Overload regs->dar to store SIER if we have it.
265  * Overload regs->result to specify whether we should use the MSR (result
266  * is zero) or the SIAR (result is non zero).
267  */
268 static inline void perf_read_regs(struct pt_regs *regs)
269 {
270 	unsigned long mmcra = mfspr(SPRN_MMCRA);
271 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
272 	int use_siar;
273 
274 	regs->dsisr = mmcra;
275 
276 	if (ppmu->flags & PPMU_HAS_SIER)
277 		regs->dar = mfspr(SPRN_SIER);
278 
279 	/*
280 	 * If this isn't a PMU exception (eg a software event) the SIAR is
281 	 * not valid. Use pt_regs.
282 	 *
283 	 * If it is a marked event use the SIAR.
284 	 *
285 	 * If the PMU doesn't update the SIAR for non marked events use
286 	 * pt_regs.
287 	 *
288 	 * If the PMU has HV/PR flags then check to see if they
289 	 * place the exception in userspace. If so, use pt_regs. In
290 	 * continuous sampling mode the SIAR and the PMU exception are
291 	 * not synchronised, so they may be many instructions apart.
292 	 * This can result in confusing backtraces. We still want
293 	 * hypervisor samples as well as samples in the kernel with
294 	 * interrupts off hence the userspace check.
295 	 */
296 	if (TRAP(regs) != 0xf00)
297 		use_siar = 0;
298 	else if ((ppmu->flags & PPMU_NO_SIAR))
299 		use_siar = 0;
300 	else if (marked)
301 		use_siar = 1;
302 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
303 		use_siar = 0;
304 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
305 		use_siar = 0;
306 	else
307 		use_siar = 1;
308 
309 	regs->result = use_siar;
310 }
311 
312 /*
313  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
314  * it as an NMI.
315  */
316 static inline int perf_intr_is_nmi(struct pt_regs *regs)
317 {
318 	return !regs->softe;
319 }
320 
321 /*
322  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
323  * must be sampled only if the SIAR-valid bit is set.
324  *
325  * For unmarked instructions and for processors that don't have the SIAR-Valid
326  * bit, assume that SIAR is valid.
327  */
328 static inline int siar_valid(struct pt_regs *regs)
329 {
330 	unsigned long mmcra = regs->dsisr;
331 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
332 
333 	if (marked) {
334 		if (ppmu->flags & PPMU_HAS_SIER)
335 			return regs->dar & SIER_SIAR_VALID;
336 
337 		if (ppmu->flags & PPMU_SIAR_VALID)
338 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
339 	}
340 
341 	return 1;
342 }
343 
344 
345 /* Reset all possible BHRB entries */
346 static void power_pmu_bhrb_reset(void)
347 {
348 	asm volatile(PPC_CLRBHRB);
349 }
350 
351 static void power_pmu_bhrb_enable(struct perf_event *event)
352 {
353 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
354 
355 	if (!ppmu->bhrb_nr)
356 		return;
357 
358 	/* Clear BHRB if we changed task context to avoid data leaks */
359 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
360 		power_pmu_bhrb_reset();
361 		cpuhw->bhrb_context = event->ctx;
362 	}
363 	cpuhw->bhrb_users++;
364 	perf_sched_cb_inc(event->ctx->pmu);
365 }
366 
367 static void power_pmu_bhrb_disable(struct perf_event *event)
368 {
369 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
370 
371 	if (!ppmu->bhrb_nr)
372 		return;
373 
374 	WARN_ON_ONCE(!cpuhw->bhrb_users);
375 	cpuhw->bhrb_users--;
376 	perf_sched_cb_dec(event->ctx->pmu);
377 
378 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
379 		/* BHRB cannot be turned off when other
380 		 * events are active on the PMU.
381 		 */
382 
383 		/* avoid stale pointer */
384 		cpuhw->bhrb_context = NULL;
385 	}
386 }
387 
388 /* Called from ctxsw to prevent one process's branch entries to
389  * mingle with the other process's entries during context switch.
390  */
391 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
392 {
393 	if (!ppmu->bhrb_nr)
394 		return;
395 
396 	if (sched_in)
397 		power_pmu_bhrb_reset();
398 }
399 /* Calculate the to address for a branch */
400 static __u64 power_pmu_bhrb_to(u64 addr)
401 {
402 	unsigned int instr;
403 	int ret;
404 	__u64 target;
405 
406 	if (is_kernel_addr(addr))
407 		return branch_target((unsigned int *)addr);
408 
409 	/* Userspace: need copy instruction here then translate it */
410 	pagefault_disable();
411 	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
412 	if (ret) {
413 		pagefault_enable();
414 		return 0;
415 	}
416 	pagefault_enable();
417 
418 	target = branch_target(&instr);
419 	if ((!target) || (instr & BRANCH_ABSOLUTE))
420 		return target;
421 
422 	/* Translate relative branch target from kernel to user address */
423 	return target - (unsigned long)&instr + addr;
424 }
425 
426 /* Processing BHRB entries */
427 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
428 {
429 	u64 val;
430 	u64 addr;
431 	int r_index, u_index, pred;
432 
433 	r_index = 0;
434 	u_index = 0;
435 	while (r_index < ppmu->bhrb_nr) {
436 		/* Assembly read function */
437 		val = read_bhrb(r_index++);
438 		if (!val)
439 			/* Terminal marker: End of valid BHRB entries */
440 			break;
441 		else {
442 			addr = val & BHRB_EA;
443 			pred = val & BHRB_PREDICTION;
444 
445 			if (!addr)
446 				/* invalid entry */
447 				continue;
448 
449 			/* Branches are read most recent first (ie. mfbhrb 0 is
450 			 * the most recent branch).
451 			 * There are two types of valid entries:
452 			 * 1) a target entry which is the to address of a
453 			 *    computed goto like a blr,bctr,btar.  The next
454 			 *    entry read from the bhrb will be branch
455 			 *    corresponding to this target (ie. the actual
456 			 *    blr/bctr/btar instruction).
457 			 * 2) a from address which is an actual branch.  If a
458 			 *    target entry proceeds this, then this is the
459 			 *    matching branch for that target.  If this is not
460 			 *    following a target entry, then this is a branch
461 			 *    where the target is given as an immediate field
462 			 *    in the instruction (ie. an i or b form branch).
463 			 *    In this case we need to read the instruction from
464 			 *    memory to determine the target/to address.
465 			 */
466 
467 			if (val & BHRB_TARGET) {
468 				/* Target branches use two entries
469 				 * (ie. computed gotos/XL form)
470 				 */
471 				cpuhw->bhrb_entries[u_index].to = addr;
472 				cpuhw->bhrb_entries[u_index].mispred = pred;
473 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
474 
475 				/* Get from address in next entry */
476 				val = read_bhrb(r_index++);
477 				addr = val & BHRB_EA;
478 				if (val & BHRB_TARGET) {
479 					/* Shouldn't have two targets in a
480 					   row.. Reset index and try again */
481 					r_index--;
482 					addr = 0;
483 				}
484 				cpuhw->bhrb_entries[u_index].from = addr;
485 			} else {
486 				/* Branches to immediate field
487 				   (ie I or B form) */
488 				cpuhw->bhrb_entries[u_index].from = addr;
489 				cpuhw->bhrb_entries[u_index].to =
490 					power_pmu_bhrb_to(addr);
491 				cpuhw->bhrb_entries[u_index].mispred = pred;
492 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
493 			}
494 			u_index++;
495 
496 		}
497 	}
498 	cpuhw->bhrb_stack.nr = u_index;
499 	return;
500 }
501 
502 static bool is_ebb_event(struct perf_event *event)
503 {
504 	/*
505 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
506 	 * check that the PMU supports EBB, meaning those that don't can still
507 	 * use bit 63 of the event code for something else if they wish.
508 	 */
509 	return (ppmu->flags & PPMU_ARCH_207S) &&
510 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
511 }
512 
513 static int ebb_event_check(struct perf_event *event)
514 {
515 	struct perf_event *leader = event->group_leader;
516 
517 	/* Event and group leader must agree on EBB */
518 	if (is_ebb_event(leader) != is_ebb_event(event))
519 		return -EINVAL;
520 
521 	if (is_ebb_event(event)) {
522 		if (!(event->attach_state & PERF_ATTACH_TASK))
523 			return -EINVAL;
524 
525 		if (!leader->attr.pinned || !leader->attr.exclusive)
526 			return -EINVAL;
527 
528 		if (event->attr.freq ||
529 		    event->attr.inherit ||
530 		    event->attr.sample_type ||
531 		    event->attr.sample_period ||
532 		    event->attr.enable_on_exec)
533 			return -EINVAL;
534 	}
535 
536 	return 0;
537 }
538 
539 static void ebb_event_add(struct perf_event *event)
540 {
541 	if (!is_ebb_event(event) || current->thread.used_ebb)
542 		return;
543 
544 	/*
545 	 * IFF this is the first time we've added an EBB event, set
546 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
547 	 * userspace. We need this so that we can context switch while
548 	 * userspace is in the EBB handler (where PMXE is 0).
549 	 */
550 	current->thread.used_ebb = 1;
551 	current->thread.mmcr0 |= MMCR0_PMXE;
552 }
553 
554 static void ebb_switch_out(unsigned long mmcr0)
555 {
556 	if (!(mmcr0 & MMCR0_EBE))
557 		return;
558 
559 	current->thread.siar  = mfspr(SPRN_SIAR);
560 	current->thread.sier  = mfspr(SPRN_SIER);
561 	current->thread.sdar  = mfspr(SPRN_SDAR);
562 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
563 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
564 }
565 
566 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
567 {
568 	unsigned long mmcr0 = cpuhw->mmcr[0];
569 
570 	if (!ebb)
571 		goto out;
572 
573 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
574 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
575 
576 	/*
577 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
578 	 * with pmao_restore_workaround() because we may add PMAO but we never
579 	 * clear it here.
580 	 */
581 	mmcr0 |= current->thread.mmcr0;
582 
583 	/*
584 	 * Be careful not to set PMXE if userspace had it cleared. This is also
585 	 * compatible with pmao_restore_workaround() because it has already
586 	 * cleared PMXE and we leave PMAO alone.
587 	 */
588 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
589 		mmcr0 &= ~MMCR0_PMXE;
590 
591 	mtspr(SPRN_SIAR, current->thread.siar);
592 	mtspr(SPRN_SIER, current->thread.sier);
593 	mtspr(SPRN_SDAR, current->thread.sdar);
594 
595 	/*
596 	 * Merge the kernel & user values of MMCR2. The semantics we implement
597 	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
598 	 * but not clear bits. If a task wants to be able to clear bits, ie.
599 	 * unfreeze counters, it should not set exclude_xxx in its events and
600 	 * instead manage the MMCR2 entirely by itself.
601 	 */
602 	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
603 out:
604 	return mmcr0;
605 }
606 
607 static void pmao_restore_workaround(bool ebb)
608 {
609 	unsigned pmcs[6];
610 
611 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
612 		return;
613 
614 	/*
615 	 * On POWER8E there is a hardware defect which affects the PMU context
616 	 * switch logic, ie. power_pmu_disable/enable().
617 	 *
618 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
619 	 * by the hardware. Sometime later the actual PMU exception is
620 	 * delivered.
621 	 *
622 	 * If we context switch, or simply disable/enable, the PMU prior to the
623 	 * exception arriving, the exception will be lost when we clear PMAO.
624 	 *
625 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
626 	 * set, and this _should_ generate an exception. However because of the
627 	 * defect no exception is generated when we write PMAO, and we get
628 	 * stuck with no counters counting but no exception delivered.
629 	 *
630 	 * The workaround is to detect this case and tweak the hardware to
631 	 * create another pending PMU exception.
632 	 *
633 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
634 	 * enabling the PMU. That causes a new exception to be generated in the
635 	 * chip, but we don't take it yet because we have interrupts hard
636 	 * disabled. We then write back the PMU state as we want it to be seen
637 	 * by the exception handler. When we reenable interrupts the exception
638 	 * handler will be called and see the correct state.
639 	 *
640 	 * The logic is the same for EBB, except that the exception is gated by
641 	 * us having interrupts hard disabled as well as the fact that we are
642 	 * not in userspace. The exception is finally delivered when we return
643 	 * to userspace.
644 	 */
645 
646 	/* Only if PMAO is set and PMAO_SYNC is clear */
647 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
648 		return;
649 
650 	/* If we're doing EBB, only if BESCR[GE] is set */
651 	if (ebb && !(current->thread.bescr & BESCR_GE))
652 		return;
653 
654 	/*
655 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
656 	 * disable to actually prevent the PMU exception from firing.
657 	 */
658 	hard_irq_disable();
659 
660 	/*
661 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
662 	 * Using read/write_pmc() in a for loop adds 12 function calls and
663 	 * almost doubles our code size.
664 	 */
665 	pmcs[0] = mfspr(SPRN_PMC1);
666 	pmcs[1] = mfspr(SPRN_PMC2);
667 	pmcs[2] = mfspr(SPRN_PMC3);
668 	pmcs[3] = mfspr(SPRN_PMC4);
669 	pmcs[4] = mfspr(SPRN_PMC5);
670 	pmcs[5] = mfspr(SPRN_PMC6);
671 
672 	/* Ensure all freeze bits are unset */
673 	mtspr(SPRN_MMCR2, 0);
674 
675 	/* Set up PMC6 to overflow in one cycle */
676 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
677 
678 	/* Enable exceptions and unfreeze PMC6 */
679 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
680 
681 	/* Now we need to refreeze and restore the PMCs */
682 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
683 
684 	mtspr(SPRN_PMC1, pmcs[0]);
685 	mtspr(SPRN_PMC2, pmcs[1]);
686 	mtspr(SPRN_PMC3, pmcs[2]);
687 	mtspr(SPRN_PMC4, pmcs[3]);
688 	mtspr(SPRN_PMC5, pmcs[4]);
689 	mtspr(SPRN_PMC6, pmcs[5]);
690 }
691 #endif /* CONFIG_PPC64 */
692 
693 static void perf_event_interrupt(struct pt_regs *regs);
694 
695 /*
696  * Read one performance monitor counter (PMC).
697  */
698 static unsigned long read_pmc(int idx)
699 {
700 	unsigned long val;
701 
702 	switch (idx) {
703 	case 1:
704 		val = mfspr(SPRN_PMC1);
705 		break;
706 	case 2:
707 		val = mfspr(SPRN_PMC2);
708 		break;
709 	case 3:
710 		val = mfspr(SPRN_PMC3);
711 		break;
712 	case 4:
713 		val = mfspr(SPRN_PMC4);
714 		break;
715 	case 5:
716 		val = mfspr(SPRN_PMC5);
717 		break;
718 	case 6:
719 		val = mfspr(SPRN_PMC6);
720 		break;
721 #ifdef CONFIG_PPC64
722 	case 7:
723 		val = mfspr(SPRN_PMC7);
724 		break;
725 	case 8:
726 		val = mfspr(SPRN_PMC8);
727 		break;
728 #endif /* CONFIG_PPC64 */
729 	default:
730 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
731 		val = 0;
732 	}
733 	return val;
734 }
735 
736 /*
737  * Write one PMC.
738  */
739 static void write_pmc(int idx, unsigned long val)
740 {
741 	switch (idx) {
742 	case 1:
743 		mtspr(SPRN_PMC1, val);
744 		break;
745 	case 2:
746 		mtspr(SPRN_PMC2, val);
747 		break;
748 	case 3:
749 		mtspr(SPRN_PMC3, val);
750 		break;
751 	case 4:
752 		mtspr(SPRN_PMC4, val);
753 		break;
754 	case 5:
755 		mtspr(SPRN_PMC5, val);
756 		break;
757 	case 6:
758 		mtspr(SPRN_PMC6, val);
759 		break;
760 #ifdef CONFIG_PPC64
761 	case 7:
762 		mtspr(SPRN_PMC7, val);
763 		break;
764 	case 8:
765 		mtspr(SPRN_PMC8, val);
766 		break;
767 #endif /* CONFIG_PPC64 */
768 	default:
769 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
770 	}
771 }
772 
773 /* Called from sysrq_handle_showregs() */
774 void perf_event_print_debug(void)
775 {
776 	unsigned long sdar, sier, flags;
777 	u32 pmcs[MAX_HWEVENTS];
778 	int i;
779 
780 	if (!ppmu->n_counter)
781 		return;
782 
783 	local_irq_save(flags);
784 
785 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
786 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
787 
788 	for (i = 0; i < ppmu->n_counter; i++)
789 		pmcs[i] = read_pmc(i + 1);
790 
791 	for (; i < MAX_HWEVENTS; i++)
792 		pmcs[i] = 0xdeadbeef;
793 
794 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
795 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
796 
797 	if (ppmu->n_counter > 4)
798 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
799 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
800 
801 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
802 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
803 
804 	sdar = sier = 0;
805 #ifdef CONFIG_PPC64
806 	sdar = mfspr(SPRN_SDAR);
807 
808 	if (ppmu->flags & PPMU_HAS_SIER)
809 		sier = mfspr(SPRN_SIER);
810 
811 	if (ppmu->flags & PPMU_ARCH_207S) {
812 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
813 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
814 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
815 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
816 	}
817 #endif
818 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
819 		mfspr(SPRN_SIAR), sdar, sier);
820 
821 	local_irq_restore(flags);
822 }
823 
824 /*
825  * Check if a set of events can all go on the PMU at once.
826  * If they can't, this will look at alternative codes for the events
827  * and see if any combination of alternative codes is feasible.
828  * The feasible set is returned in event_id[].
829  */
830 static int power_check_constraints(struct cpu_hw_events *cpuhw,
831 				   u64 event_id[], unsigned int cflags[],
832 				   int n_ev)
833 {
834 	unsigned long mask, value, nv;
835 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
836 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
837 	int i, j;
838 	unsigned long addf = ppmu->add_fields;
839 	unsigned long tadd = ppmu->test_adder;
840 
841 	if (n_ev > ppmu->n_counter)
842 		return -1;
843 
844 	/* First see if the events will go on as-is */
845 	for (i = 0; i < n_ev; ++i) {
846 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
847 		    && !ppmu->limited_pmc_event(event_id[i])) {
848 			ppmu->get_alternatives(event_id[i], cflags[i],
849 					       cpuhw->alternatives[i]);
850 			event_id[i] = cpuhw->alternatives[i][0];
851 		}
852 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
853 					 &cpuhw->avalues[i][0]))
854 			return -1;
855 	}
856 	value = mask = 0;
857 	for (i = 0; i < n_ev; ++i) {
858 		nv = (value | cpuhw->avalues[i][0]) +
859 			(value & cpuhw->avalues[i][0] & addf);
860 		if ((((nv + tadd) ^ value) & mask) != 0 ||
861 		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
862 		     cpuhw->amasks[i][0]) != 0)
863 			break;
864 		value = nv;
865 		mask |= cpuhw->amasks[i][0];
866 	}
867 	if (i == n_ev)
868 		return 0;	/* all OK */
869 
870 	/* doesn't work, gather alternatives... */
871 	if (!ppmu->get_alternatives)
872 		return -1;
873 	for (i = 0; i < n_ev; ++i) {
874 		choice[i] = 0;
875 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
876 						  cpuhw->alternatives[i]);
877 		for (j = 1; j < n_alt[i]; ++j)
878 			ppmu->get_constraint(cpuhw->alternatives[i][j],
879 					     &cpuhw->amasks[i][j],
880 					     &cpuhw->avalues[i][j]);
881 	}
882 
883 	/* enumerate all possibilities and see if any will work */
884 	i = 0;
885 	j = -1;
886 	value = mask = nv = 0;
887 	while (i < n_ev) {
888 		if (j >= 0) {
889 			/* we're backtracking, restore context */
890 			value = svalues[i];
891 			mask = smasks[i];
892 			j = choice[i];
893 		}
894 		/*
895 		 * See if any alternative k for event_id i,
896 		 * where k > j, will satisfy the constraints.
897 		 */
898 		while (++j < n_alt[i]) {
899 			nv = (value | cpuhw->avalues[i][j]) +
900 				(value & cpuhw->avalues[i][j] & addf);
901 			if ((((nv + tadd) ^ value) & mask) == 0 &&
902 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
903 			     & cpuhw->amasks[i][j]) == 0)
904 				break;
905 		}
906 		if (j >= n_alt[i]) {
907 			/*
908 			 * No feasible alternative, backtrack
909 			 * to event_id i-1 and continue enumerating its
910 			 * alternatives from where we got up to.
911 			 */
912 			if (--i < 0)
913 				return -1;
914 		} else {
915 			/*
916 			 * Found a feasible alternative for event_id i,
917 			 * remember where we got up to with this event_id,
918 			 * go on to the next event_id, and start with
919 			 * the first alternative for it.
920 			 */
921 			choice[i] = j;
922 			svalues[i] = value;
923 			smasks[i] = mask;
924 			value = nv;
925 			mask |= cpuhw->amasks[i][j];
926 			++i;
927 			j = -1;
928 		}
929 	}
930 
931 	/* OK, we have a feasible combination, tell the caller the solution */
932 	for (i = 0; i < n_ev; ++i)
933 		event_id[i] = cpuhw->alternatives[i][choice[i]];
934 	return 0;
935 }
936 
937 /*
938  * Check if newly-added events have consistent settings for
939  * exclude_{user,kernel,hv} with each other and any previously
940  * added events.
941  */
942 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
943 			  int n_prev, int n_new)
944 {
945 	int eu = 0, ek = 0, eh = 0;
946 	int i, n, first;
947 	struct perf_event *event;
948 
949 	/*
950 	 * If the PMU we're on supports per event exclude settings then we
951 	 * don't need to do any of this logic. NB. This assumes no PMU has both
952 	 * per event exclude and limited PMCs.
953 	 */
954 	if (ppmu->flags & PPMU_ARCH_207S)
955 		return 0;
956 
957 	n = n_prev + n_new;
958 	if (n <= 1)
959 		return 0;
960 
961 	first = 1;
962 	for (i = 0; i < n; ++i) {
963 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
964 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
965 			continue;
966 		}
967 		event = ctrs[i];
968 		if (first) {
969 			eu = event->attr.exclude_user;
970 			ek = event->attr.exclude_kernel;
971 			eh = event->attr.exclude_hv;
972 			first = 0;
973 		} else if (event->attr.exclude_user != eu ||
974 			   event->attr.exclude_kernel != ek ||
975 			   event->attr.exclude_hv != eh) {
976 			return -EAGAIN;
977 		}
978 	}
979 
980 	if (eu || ek || eh)
981 		for (i = 0; i < n; ++i)
982 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
983 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
984 
985 	return 0;
986 }
987 
988 static u64 check_and_compute_delta(u64 prev, u64 val)
989 {
990 	u64 delta = (val - prev) & 0xfffffffful;
991 
992 	/*
993 	 * POWER7 can roll back counter values, if the new value is smaller
994 	 * than the previous value it will cause the delta and the counter to
995 	 * have bogus values unless we rolled a counter over.  If a coutner is
996 	 * rolled back, it will be smaller, but within 256, which is the maximum
997 	 * number of events to rollback at once.  If we detect a rollback
998 	 * return 0.  This can lead to a small lack of precision in the
999 	 * counters.
1000 	 */
1001 	if (prev > val && (prev - val) < 256)
1002 		delta = 0;
1003 
1004 	return delta;
1005 }
1006 
1007 static void power_pmu_read(struct perf_event *event)
1008 {
1009 	s64 val, delta, prev;
1010 
1011 	if (event->hw.state & PERF_HES_STOPPED)
1012 		return;
1013 
1014 	if (!event->hw.idx)
1015 		return;
1016 
1017 	if (is_ebb_event(event)) {
1018 		val = read_pmc(event->hw.idx);
1019 		local64_set(&event->hw.prev_count, val);
1020 		return;
1021 	}
1022 
1023 	/*
1024 	 * Performance monitor interrupts come even when interrupts
1025 	 * are soft-disabled, as long as interrupts are hard-enabled.
1026 	 * Therefore we treat them like NMIs.
1027 	 */
1028 	do {
1029 		prev = local64_read(&event->hw.prev_count);
1030 		barrier();
1031 		val = read_pmc(event->hw.idx);
1032 		delta = check_and_compute_delta(prev, val);
1033 		if (!delta)
1034 			return;
1035 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1036 
1037 	local64_add(delta, &event->count);
1038 
1039 	/*
1040 	 * A number of places program the PMC with (0x80000000 - period_left).
1041 	 * We never want period_left to be less than 1 because we will program
1042 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1043 	 * roll around to 0 before taking an exception. We have seen this
1044 	 * on POWER8.
1045 	 *
1046 	 * To fix this, clamp the minimum value of period_left to 1.
1047 	 */
1048 	do {
1049 		prev = local64_read(&event->hw.period_left);
1050 		val = prev - delta;
1051 		if (val < 1)
1052 			val = 1;
1053 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1054 }
1055 
1056 /*
1057  * On some machines, PMC5 and PMC6 can't be written, don't respect
1058  * the freeze conditions, and don't generate interrupts.  This tells
1059  * us if `event' is using such a PMC.
1060  */
1061 static int is_limited_pmc(int pmcnum)
1062 {
1063 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1064 		&& (pmcnum == 5 || pmcnum == 6);
1065 }
1066 
1067 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1068 				    unsigned long pmc5, unsigned long pmc6)
1069 {
1070 	struct perf_event *event;
1071 	u64 val, prev, delta;
1072 	int i;
1073 
1074 	for (i = 0; i < cpuhw->n_limited; ++i) {
1075 		event = cpuhw->limited_counter[i];
1076 		if (!event->hw.idx)
1077 			continue;
1078 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1079 		prev = local64_read(&event->hw.prev_count);
1080 		event->hw.idx = 0;
1081 		delta = check_and_compute_delta(prev, val);
1082 		if (delta)
1083 			local64_add(delta, &event->count);
1084 	}
1085 }
1086 
1087 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1088 				  unsigned long pmc5, unsigned long pmc6)
1089 {
1090 	struct perf_event *event;
1091 	u64 val, prev;
1092 	int i;
1093 
1094 	for (i = 0; i < cpuhw->n_limited; ++i) {
1095 		event = cpuhw->limited_counter[i];
1096 		event->hw.idx = cpuhw->limited_hwidx[i];
1097 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1098 		prev = local64_read(&event->hw.prev_count);
1099 		if (check_and_compute_delta(prev, val))
1100 			local64_set(&event->hw.prev_count, val);
1101 		perf_event_update_userpage(event);
1102 	}
1103 }
1104 
1105 /*
1106  * Since limited events don't respect the freeze conditions, we
1107  * have to read them immediately after freezing or unfreezing the
1108  * other events.  We try to keep the values from the limited
1109  * events as consistent as possible by keeping the delay (in
1110  * cycles and instructions) between freezing/unfreezing and reading
1111  * the limited events as small and consistent as possible.
1112  * Therefore, if any limited events are in use, we read them
1113  * both, and always in the same order, to minimize variability,
1114  * and do it inside the same asm that writes MMCR0.
1115  */
1116 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1117 {
1118 	unsigned long pmc5, pmc6;
1119 
1120 	if (!cpuhw->n_limited) {
1121 		mtspr(SPRN_MMCR0, mmcr0);
1122 		return;
1123 	}
1124 
1125 	/*
1126 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1127 	 * To ensure we don't get a performance monitor interrupt
1128 	 * between writing MMCR0 and freezing/thawing the limited
1129 	 * events, we first write MMCR0 with the event overflow
1130 	 * interrupt enable bits turned off.
1131 	 */
1132 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1133 		     : "=&r" (pmc5), "=&r" (pmc6)
1134 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1135 		       "i" (SPRN_MMCR0),
1136 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1137 
1138 	if (mmcr0 & MMCR0_FC)
1139 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1140 	else
1141 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1142 
1143 	/*
1144 	 * Write the full MMCR0 including the event overflow interrupt
1145 	 * enable bits, if necessary.
1146 	 */
1147 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1148 		mtspr(SPRN_MMCR0, mmcr0);
1149 }
1150 
1151 /*
1152  * Disable all events to prevent PMU interrupts and to allow
1153  * events to be added or removed.
1154  */
1155 static void power_pmu_disable(struct pmu *pmu)
1156 {
1157 	struct cpu_hw_events *cpuhw;
1158 	unsigned long flags, mmcr0, val;
1159 
1160 	if (!ppmu)
1161 		return;
1162 	local_irq_save(flags);
1163 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1164 
1165 	if (!cpuhw->disabled) {
1166 		/*
1167 		 * Check if we ever enabled the PMU on this cpu.
1168 		 */
1169 		if (!cpuhw->pmcs_enabled) {
1170 			ppc_enable_pmcs();
1171 			cpuhw->pmcs_enabled = 1;
1172 		}
1173 
1174 		/*
1175 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1176 		 */
1177 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1178 		val |= MMCR0_FC;
1179 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1180 			 MMCR0_FC56);
1181 
1182 		/*
1183 		 * The barrier is to make sure the mtspr has been
1184 		 * executed and the PMU has frozen the events etc.
1185 		 * before we return.
1186 		 */
1187 		write_mmcr0(cpuhw, val);
1188 		mb();
1189 
1190 		/*
1191 		 * Disable instruction sampling if it was enabled
1192 		 */
1193 		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1194 			mtspr(SPRN_MMCRA,
1195 			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1196 			mb();
1197 		}
1198 
1199 		cpuhw->disabled = 1;
1200 		cpuhw->n_added = 0;
1201 
1202 		ebb_switch_out(mmcr0);
1203 	}
1204 
1205 	local_irq_restore(flags);
1206 }
1207 
1208 /*
1209  * Re-enable all events if disable == 0.
1210  * If we were previously disabled and events were added, then
1211  * put the new config on the PMU.
1212  */
1213 static void power_pmu_enable(struct pmu *pmu)
1214 {
1215 	struct perf_event *event;
1216 	struct cpu_hw_events *cpuhw;
1217 	unsigned long flags;
1218 	long i;
1219 	unsigned long val, mmcr0;
1220 	s64 left;
1221 	unsigned int hwc_index[MAX_HWEVENTS];
1222 	int n_lim;
1223 	int idx;
1224 	bool ebb;
1225 
1226 	if (!ppmu)
1227 		return;
1228 	local_irq_save(flags);
1229 
1230 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1231 	if (!cpuhw->disabled)
1232 		goto out;
1233 
1234 	if (cpuhw->n_events == 0) {
1235 		ppc_set_pmu_inuse(0);
1236 		goto out;
1237 	}
1238 
1239 	cpuhw->disabled = 0;
1240 
1241 	/*
1242 	 * EBB requires an exclusive group and all events must have the EBB
1243 	 * flag set, or not set, so we can just check a single event. Also we
1244 	 * know we have at least one event.
1245 	 */
1246 	ebb = is_ebb_event(cpuhw->event[0]);
1247 
1248 	/*
1249 	 * If we didn't change anything, or only removed events,
1250 	 * no need to recalculate MMCR* settings and reset the PMCs.
1251 	 * Just reenable the PMU with the current MMCR* settings
1252 	 * (possibly updated for removal of events).
1253 	 */
1254 	if (!cpuhw->n_added) {
1255 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1256 		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1257 		goto out_enable;
1258 	}
1259 
1260 	/*
1261 	 * Clear all MMCR settings and recompute them for the new set of events.
1262 	 */
1263 	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1264 
1265 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1266 			       cpuhw->mmcr, cpuhw->event)) {
1267 		/* shouldn't ever get here */
1268 		printk(KERN_ERR "oops compute_mmcr failed\n");
1269 		goto out;
1270 	}
1271 
1272 	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1273 		/*
1274 		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1275 		 * bits for the first event. We have already checked that all
1276 		 * events have the same value for these bits as the first event.
1277 		 */
1278 		event = cpuhw->event[0];
1279 		if (event->attr.exclude_user)
1280 			cpuhw->mmcr[0] |= MMCR0_FCP;
1281 		if (event->attr.exclude_kernel)
1282 			cpuhw->mmcr[0] |= freeze_events_kernel;
1283 		if (event->attr.exclude_hv)
1284 			cpuhw->mmcr[0] |= MMCR0_FCHV;
1285 	}
1286 
1287 	/*
1288 	 * Write the new configuration to MMCR* with the freeze
1289 	 * bit set and set the hardware events to their initial values.
1290 	 * Then unfreeze the events.
1291 	 */
1292 	ppc_set_pmu_inuse(1);
1293 	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1294 	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1295 	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1296 				| MMCR0_FC);
1297 	if (ppmu->flags & PPMU_ARCH_207S)
1298 		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1299 
1300 	/*
1301 	 * Read off any pre-existing events that need to move
1302 	 * to another PMC.
1303 	 */
1304 	for (i = 0; i < cpuhw->n_events; ++i) {
1305 		event = cpuhw->event[i];
1306 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1307 			power_pmu_read(event);
1308 			write_pmc(event->hw.idx, 0);
1309 			event->hw.idx = 0;
1310 		}
1311 	}
1312 
1313 	/*
1314 	 * Initialize the PMCs for all the new and moved events.
1315 	 */
1316 	cpuhw->n_limited = n_lim = 0;
1317 	for (i = 0; i < cpuhw->n_events; ++i) {
1318 		event = cpuhw->event[i];
1319 		if (event->hw.idx)
1320 			continue;
1321 		idx = hwc_index[i] + 1;
1322 		if (is_limited_pmc(idx)) {
1323 			cpuhw->limited_counter[n_lim] = event;
1324 			cpuhw->limited_hwidx[n_lim] = idx;
1325 			++n_lim;
1326 			continue;
1327 		}
1328 
1329 		if (ebb)
1330 			val = local64_read(&event->hw.prev_count);
1331 		else {
1332 			val = 0;
1333 			if (event->hw.sample_period) {
1334 				left = local64_read(&event->hw.period_left);
1335 				if (left < 0x80000000L)
1336 					val = 0x80000000L - left;
1337 			}
1338 			local64_set(&event->hw.prev_count, val);
1339 		}
1340 
1341 		event->hw.idx = idx;
1342 		if (event->hw.state & PERF_HES_STOPPED)
1343 			val = 0;
1344 		write_pmc(idx, val);
1345 
1346 		perf_event_update_userpage(event);
1347 	}
1348 	cpuhw->n_limited = n_lim;
1349 	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1350 
1351  out_enable:
1352 	pmao_restore_workaround(ebb);
1353 
1354 	mmcr0 = ebb_switch_in(ebb, cpuhw);
1355 
1356 	mb();
1357 	if (cpuhw->bhrb_users)
1358 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1359 
1360 	write_mmcr0(cpuhw, mmcr0);
1361 
1362 	/*
1363 	 * Enable instruction sampling if necessary
1364 	 */
1365 	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1366 		mb();
1367 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1368 	}
1369 
1370  out:
1371 
1372 	local_irq_restore(flags);
1373 }
1374 
1375 static int collect_events(struct perf_event *group, int max_count,
1376 			  struct perf_event *ctrs[], u64 *events,
1377 			  unsigned int *flags)
1378 {
1379 	int n = 0;
1380 	struct perf_event *event;
1381 
1382 	if (!is_software_event(group)) {
1383 		if (n >= max_count)
1384 			return -1;
1385 		ctrs[n] = group;
1386 		flags[n] = group->hw.event_base;
1387 		events[n++] = group->hw.config;
1388 	}
1389 	list_for_each_entry(event, &group->sibling_list, group_entry) {
1390 		if (!is_software_event(event) &&
1391 		    event->state != PERF_EVENT_STATE_OFF) {
1392 			if (n >= max_count)
1393 				return -1;
1394 			ctrs[n] = event;
1395 			flags[n] = event->hw.event_base;
1396 			events[n++] = event->hw.config;
1397 		}
1398 	}
1399 	return n;
1400 }
1401 
1402 /*
1403  * Add a event to the PMU.
1404  * If all events are not already frozen, then we disable and
1405  * re-enable the PMU in order to get hw_perf_enable to do the
1406  * actual work of reconfiguring the PMU.
1407  */
1408 static int power_pmu_add(struct perf_event *event, int ef_flags)
1409 {
1410 	struct cpu_hw_events *cpuhw;
1411 	unsigned long flags;
1412 	int n0;
1413 	int ret = -EAGAIN;
1414 
1415 	local_irq_save(flags);
1416 	perf_pmu_disable(event->pmu);
1417 
1418 	/*
1419 	 * Add the event to the list (if there is room)
1420 	 * and check whether the total set is still feasible.
1421 	 */
1422 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1423 	n0 = cpuhw->n_events;
1424 	if (n0 >= ppmu->n_counter)
1425 		goto out;
1426 	cpuhw->event[n0] = event;
1427 	cpuhw->events[n0] = event->hw.config;
1428 	cpuhw->flags[n0] = event->hw.event_base;
1429 
1430 	/*
1431 	 * This event may have been disabled/stopped in record_and_restart()
1432 	 * because we exceeded the ->event_limit. If re-starting the event,
1433 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1434 	 * notification is re-enabled.
1435 	 */
1436 	if (!(ef_flags & PERF_EF_START))
1437 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1438 	else
1439 		event->hw.state = 0;
1440 
1441 	/*
1442 	 * If group events scheduling transaction was started,
1443 	 * skip the schedulability test here, it will be performed
1444 	 * at commit time(->commit_txn) as a whole
1445 	 */
1446 	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1447 		goto nocheck;
1448 
1449 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1450 		goto out;
1451 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1452 		goto out;
1453 	event->hw.config = cpuhw->events[n0];
1454 
1455 nocheck:
1456 	ebb_event_add(event);
1457 
1458 	++cpuhw->n_events;
1459 	++cpuhw->n_added;
1460 
1461 	ret = 0;
1462  out:
1463 	if (has_branch_stack(event)) {
1464 		power_pmu_bhrb_enable(event);
1465 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1466 					event->attr.branch_sample_type);
1467 	}
1468 
1469 	perf_pmu_enable(event->pmu);
1470 	local_irq_restore(flags);
1471 	return ret;
1472 }
1473 
1474 /*
1475  * Remove a event from the PMU.
1476  */
1477 static void power_pmu_del(struct perf_event *event, int ef_flags)
1478 {
1479 	struct cpu_hw_events *cpuhw;
1480 	long i;
1481 	unsigned long flags;
1482 
1483 	local_irq_save(flags);
1484 	perf_pmu_disable(event->pmu);
1485 
1486 	power_pmu_read(event);
1487 
1488 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1489 	for (i = 0; i < cpuhw->n_events; ++i) {
1490 		if (event == cpuhw->event[i]) {
1491 			while (++i < cpuhw->n_events) {
1492 				cpuhw->event[i-1] = cpuhw->event[i];
1493 				cpuhw->events[i-1] = cpuhw->events[i];
1494 				cpuhw->flags[i-1] = cpuhw->flags[i];
1495 			}
1496 			--cpuhw->n_events;
1497 			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1498 			if (event->hw.idx) {
1499 				write_pmc(event->hw.idx, 0);
1500 				event->hw.idx = 0;
1501 			}
1502 			perf_event_update_userpage(event);
1503 			break;
1504 		}
1505 	}
1506 	for (i = 0; i < cpuhw->n_limited; ++i)
1507 		if (event == cpuhw->limited_counter[i])
1508 			break;
1509 	if (i < cpuhw->n_limited) {
1510 		while (++i < cpuhw->n_limited) {
1511 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1512 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1513 		}
1514 		--cpuhw->n_limited;
1515 	}
1516 	if (cpuhw->n_events == 0) {
1517 		/* disable exceptions if no events are running */
1518 		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1519 	}
1520 
1521 	if (has_branch_stack(event))
1522 		power_pmu_bhrb_disable(event);
1523 
1524 	perf_pmu_enable(event->pmu);
1525 	local_irq_restore(flags);
1526 }
1527 
1528 /*
1529  * POWER-PMU does not support disabling individual counters, hence
1530  * program their cycle counter to their max value and ignore the interrupts.
1531  */
1532 
1533 static void power_pmu_start(struct perf_event *event, int ef_flags)
1534 {
1535 	unsigned long flags;
1536 	s64 left;
1537 	unsigned long val;
1538 
1539 	if (!event->hw.idx || !event->hw.sample_period)
1540 		return;
1541 
1542 	if (!(event->hw.state & PERF_HES_STOPPED))
1543 		return;
1544 
1545 	if (ef_flags & PERF_EF_RELOAD)
1546 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1547 
1548 	local_irq_save(flags);
1549 	perf_pmu_disable(event->pmu);
1550 
1551 	event->hw.state = 0;
1552 	left = local64_read(&event->hw.period_left);
1553 
1554 	val = 0;
1555 	if (left < 0x80000000L)
1556 		val = 0x80000000L - left;
1557 
1558 	write_pmc(event->hw.idx, val);
1559 
1560 	perf_event_update_userpage(event);
1561 	perf_pmu_enable(event->pmu);
1562 	local_irq_restore(flags);
1563 }
1564 
1565 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1566 {
1567 	unsigned long flags;
1568 
1569 	if (!event->hw.idx || !event->hw.sample_period)
1570 		return;
1571 
1572 	if (event->hw.state & PERF_HES_STOPPED)
1573 		return;
1574 
1575 	local_irq_save(flags);
1576 	perf_pmu_disable(event->pmu);
1577 
1578 	power_pmu_read(event);
1579 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1580 	write_pmc(event->hw.idx, 0);
1581 
1582 	perf_event_update_userpage(event);
1583 	perf_pmu_enable(event->pmu);
1584 	local_irq_restore(flags);
1585 }
1586 
1587 /*
1588  * Start group events scheduling transaction
1589  * Set the flag to make pmu::enable() not perform the
1590  * schedulability test, it will be performed at commit time
1591  *
1592  * We only support PERF_PMU_TXN_ADD transactions. Save the
1593  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1594  * transactions.
1595  */
1596 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1597 {
1598 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1599 
1600 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1601 
1602 	cpuhw->txn_flags = txn_flags;
1603 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1604 		return;
1605 
1606 	perf_pmu_disable(pmu);
1607 	cpuhw->n_txn_start = cpuhw->n_events;
1608 }
1609 
1610 /*
1611  * Stop group events scheduling transaction
1612  * Clear the flag and pmu::enable() will perform the
1613  * schedulability test.
1614  */
1615 static void power_pmu_cancel_txn(struct pmu *pmu)
1616 {
1617 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1618 	unsigned int txn_flags;
1619 
1620 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1621 
1622 	txn_flags = cpuhw->txn_flags;
1623 	cpuhw->txn_flags = 0;
1624 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1625 		return;
1626 
1627 	perf_pmu_enable(pmu);
1628 }
1629 
1630 /*
1631  * Commit group events scheduling transaction
1632  * Perform the group schedulability test as a whole
1633  * Return 0 if success
1634  */
1635 static int power_pmu_commit_txn(struct pmu *pmu)
1636 {
1637 	struct cpu_hw_events *cpuhw;
1638 	long i, n;
1639 
1640 	if (!ppmu)
1641 		return -EAGAIN;
1642 
1643 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1644 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1645 
1646 	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1647 		cpuhw->txn_flags = 0;
1648 		return 0;
1649 	}
1650 
1651 	n = cpuhw->n_events;
1652 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1653 		return -EAGAIN;
1654 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1655 	if (i < 0)
1656 		return -EAGAIN;
1657 
1658 	for (i = cpuhw->n_txn_start; i < n; ++i)
1659 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1660 
1661 	cpuhw->txn_flags = 0;
1662 	perf_pmu_enable(pmu);
1663 	return 0;
1664 }
1665 
1666 /*
1667  * Return 1 if we might be able to put event on a limited PMC,
1668  * or 0 if not.
1669  * A event can only go on a limited PMC if it counts something
1670  * that a limited PMC can count, doesn't require interrupts, and
1671  * doesn't exclude any processor mode.
1672  */
1673 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1674 				 unsigned int flags)
1675 {
1676 	int n;
1677 	u64 alt[MAX_EVENT_ALTERNATIVES];
1678 
1679 	if (event->attr.exclude_user
1680 	    || event->attr.exclude_kernel
1681 	    || event->attr.exclude_hv
1682 	    || event->attr.sample_period)
1683 		return 0;
1684 
1685 	if (ppmu->limited_pmc_event(ev))
1686 		return 1;
1687 
1688 	/*
1689 	 * The requested event_id isn't on a limited PMC already;
1690 	 * see if any alternative code goes on a limited PMC.
1691 	 */
1692 	if (!ppmu->get_alternatives)
1693 		return 0;
1694 
1695 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1696 	n = ppmu->get_alternatives(ev, flags, alt);
1697 
1698 	return n > 0;
1699 }
1700 
1701 /*
1702  * Find an alternative event_id that goes on a normal PMC, if possible,
1703  * and return the event_id code, or 0 if there is no such alternative.
1704  * (Note: event_id code 0 is "don't count" on all machines.)
1705  */
1706 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1707 {
1708 	u64 alt[MAX_EVENT_ALTERNATIVES];
1709 	int n;
1710 
1711 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1712 	n = ppmu->get_alternatives(ev, flags, alt);
1713 	if (!n)
1714 		return 0;
1715 	return alt[0];
1716 }
1717 
1718 /* Number of perf_events counting hardware events */
1719 static atomic_t num_events;
1720 /* Used to avoid races in calling reserve/release_pmc_hardware */
1721 static DEFINE_MUTEX(pmc_reserve_mutex);
1722 
1723 /*
1724  * Release the PMU if this is the last perf_event.
1725  */
1726 static void hw_perf_event_destroy(struct perf_event *event)
1727 {
1728 	if (!atomic_add_unless(&num_events, -1, 1)) {
1729 		mutex_lock(&pmc_reserve_mutex);
1730 		if (atomic_dec_return(&num_events) == 0)
1731 			release_pmc_hardware();
1732 		mutex_unlock(&pmc_reserve_mutex);
1733 	}
1734 }
1735 
1736 /*
1737  * Translate a generic cache event_id config to a raw event_id code.
1738  */
1739 static int hw_perf_cache_event(u64 config, u64 *eventp)
1740 {
1741 	unsigned long type, op, result;
1742 	int ev;
1743 
1744 	if (!ppmu->cache_events)
1745 		return -EINVAL;
1746 
1747 	/* unpack config */
1748 	type = config & 0xff;
1749 	op = (config >> 8) & 0xff;
1750 	result = (config >> 16) & 0xff;
1751 
1752 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1753 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1754 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1755 		return -EINVAL;
1756 
1757 	ev = (*ppmu->cache_events)[type][op][result];
1758 	if (ev == 0)
1759 		return -EOPNOTSUPP;
1760 	if (ev == -1)
1761 		return -EINVAL;
1762 	*eventp = ev;
1763 	return 0;
1764 }
1765 
1766 static int power_pmu_event_init(struct perf_event *event)
1767 {
1768 	u64 ev;
1769 	unsigned long flags;
1770 	struct perf_event *ctrs[MAX_HWEVENTS];
1771 	u64 events[MAX_HWEVENTS];
1772 	unsigned int cflags[MAX_HWEVENTS];
1773 	int n;
1774 	int err;
1775 	struct cpu_hw_events *cpuhw;
1776 
1777 	if (!ppmu)
1778 		return -ENOENT;
1779 
1780 	if (has_branch_stack(event)) {
1781 	        /* PMU has BHRB enabled */
1782 		if (!(ppmu->flags & PPMU_ARCH_207S))
1783 			return -EOPNOTSUPP;
1784 	}
1785 
1786 	switch (event->attr.type) {
1787 	case PERF_TYPE_HARDWARE:
1788 		ev = event->attr.config;
1789 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1790 			return -EOPNOTSUPP;
1791 		ev = ppmu->generic_events[ev];
1792 		break;
1793 	case PERF_TYPE_HW_CACHE:
1794 		err = hw_perf_cache_event(event->attr.config, &ev);
1795 		if (err)
1796 			return err;
1797 		break;
1798 	case PERF_TYPE_RAW:
1799 		ev = event->attr.config;
1800 		break;
1801 	default:
1802 		return -ENOENT;
1803 	}
1804 
1805 	event->hw.config_base = ev;
1806 	event->hw.idx = 0;
1807 
1808 	/*
1809 	 * If we are not running on a hypervisor, force the
1810 	 * exclude_hv bit to 0 so that we don't care what
1811 	 * the user set it to.
1812 	 */
1813 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1814 		event->attr.exclude_hv = 0;
1815 
1816 	/*
1817 	 * If this is a per-task event, then we can use
1818 	 * PM_RUN_* events interchangeably with their non RUN_*
1819 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1820 	 * XXX we should check if the task is an idle task.
1821 	 */
1822 	flags = 0;
1823 	if (event->attach_state & PERF_ATTACH_TASK)
1824 		flags |= PPMU_ONLY_COUNT_RUN;
1825 
1826 	/*
1827 	 * If this machine has limited events, check whether this
1828 	 * event_id could go on a limited event.
1829 	 */
1830 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1831 		if (can_go_on_limited_pmc(event, ev, flags)) {
1832 			flags |= PPMU_LIMITED_PMC_OK;
1833 		} else if (ppmu->limited_pmc_event(ev)) {
1834 			/*
1835 			 * The requested event_id is on a limited PMC,
1836 			 * but we can't use a limited PMC; see if any
1837 			 * alternative goes on a normal PMC.
1838 			 */
1839 			ev = normal_pmc_alternative(ev, flags);
1840 			if (!ev)
1841 				return -EINVAL;
1842 		}
1843 	}
1844 
1845 	/* Extra checks for EBB */
1846 	err = ebb_event_check(event);
1847 	if (err)
1848 		return err;
1849 
1850 	/*
1851 	 * If this is in a group, check if it can go on with all the
1852 	 * other hardware events in the group.  We assume the event
1853 	 * hasn't been linked into its leader's sibling list at this point.
1854 	 */
1855 	n = 0;
1856 	if (event->group_leader != event) {
1857 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1858 				   ctrs, events, cflags);
1859 		if (n < 0)
1860 			return -EINVAL;
1861 	}
1862 	events[n] = ev;
1863 	ctrs[n] = event;
1864 	cflags[n] = flags;
1865 	if (check_excludes(ctrs, cflags, n, 1))
1866 		return -EINVAL;
1867 
1868 	cpuhw = &get_cpu_var(cpu_hw_events);
1869 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1870 
1871 	if (has_branch_stack(event)) {
1872 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1873 					event->attr.branch_sample_type);
1874 
1875 		if (cpuhw->bhrb_filter == -1) {
1876 			put_cpu_var(cpu_hw_events);
1877 			return -EOPNOTSUPP;
1878 		}
1879 	}
1880 
1881 	put_cpu_var(cpu_hw_events);
1882 	if (err)
1883 		return -EINVAL;
1884 
1885 	event->hw.config = events[n];
1886 	event->hw.event_base = cflags[n];
1887 	event->hw.last_period = event->hw.sample_period;
1888 	local64_set(&event->hw.period_left, event->hw.last_period);
1889 
1890 	/*
1891 	 * For EBB events we just context switch the PMC value, we don't do any
1892 	 * of the sample_period logic. We use hw.prev_count for this.
1893 	 */
1894 	if (is_ebb_event(event))
1895 		local64_set(&event->hw.prev_count, 0);
1896 
1897 	/*
1898 	 * See if we need to reserve the PMU.
1899 	 * If no events are currently in use, then we have to take a
1900 	 * mutex to ensure that we don't race with another task doing
1901 	 * reserve_pmc_hardware or release_pmc_hardware.
1902 	 */
1903 	err = 0;
1904 	if (!atomic_inc_not_zero(&num_events)) {
1905 		mutex_lock(&pmc_reserve_mutex);
1906 		if (atomic_read(&num_events) == 0 &&
1907 		    reserve_pmc_hardware(perf_event_interrupt))
1908 			err = -EBUSY;
1909 		else
1910 			atomic_inc(&num_events);
1911 		mutex_unlock(&pmc_reserve_mutex);
1912 	}
1913 	event->destroy = hw_perf_event_destroy;
1914 
1915 	return err;
1916 }
1917 
1918 static int power_pmu_event_idx(struct perf_event *event)
1919 {
1920 	return event->hw.idx;
1921 }
1922 
1923 ssize_t power_events_sysfs_show(struct device *dev,
1924 				struct device_attribute *attr, char *page)
1925 {
1926 	struct perf_pmu_events_attr *pmu_attr;
1927 
1928 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1929 
1930 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1931 }
1932 
1933 static struct pmu power_pmu = {
1934 	.pmu_enable	= power_pmu_enable,
1935 	.pmu_disable	= power_pmu_disable,
1936 	.event_init	= power_pmu_event_init,
1937 	.add		= power_pmu_add,
1938 	.del		= power_pmu_del,
1939 	.start		= power_pmu_start,
1940 	.stop		= power_pmu_stop,
1941 	.read		= power_pmu_read,
1942 	.start_txn	= power_pmu_start_txn,
1943 	.cancel_txn	= power_pmu_cancel_txn,
1944 	.commit_txn	= power_pmu_commit_txn,
1945 	.event_idx	= power_pmu_event_idx,
1946 	.sched_task	= power_pmu_sched_task,
1947 };
1948 
1949 /*
1950  * A counter has overflowed; update its count and record
1951  * things if requested.  Note that interrupts are hard-disabled
1952  * here so there is no possibility of being interrupted.
1953  */
1954 static void record_and_restart(struct perf_event *event, unsigned long val,
1955 			       struct pt_regs *regs)
1956 {
1957 	u64 period = event->hw.sample_period;
1958 	s64 prev, delta, left;
1959 	int record = 0;
1960 
1961 	if (event->hw.state & PERF_HES_STOPPED) {
1962 		write_pmc(event->hw.idx, 0);
1963 		return;
1964 	}
1965 
1966 	/* we don't have to worry about interrupts here */
1967 	prev = local64_read(&event->hw.prev_count);
1968 	delta = check_and_compute_delta(prev, val);
1969 	local64_add(delta, &event->count);
1970 
1971 	/*
1972 	 * See if the total period for this event has expired,
1973 	 * and update for the next period.
1974 	 */
1975 	val = 0;
1976 	left = local64_read(&event->hw.period_left) - delta;
1977 	if (delta == 0)
1978 		left++;
1979 	if (period) {
1980 		if (left <= 0) {
1981 			left += period;
1982 			if (left <= 0)
1983 				left = period;
1984 			record = siar_valid(regs);
1985 			event->hw.last_period = event->hw.sample_period;
1986 		}
1987 		if (left < 0x80000000LL)
1988 			val = 0x80000000LL - left;
1989 	}
1990 
1991 	write_pmc(event->hw.idx, val);
1992 	local64_set(&event->hw.prev_count, val);
1993 	local64_set(&event->hw.period_left, left);
1994 	perf_event_update_userpage(event);
1995 
1996 	/*
1997 	 * Finally record data if requested.
1998 	 */
1999 	if (record) {
2000 		struct perf_sample_data data;
2001 
2002 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2003 
2004 		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
2005 			perf_get_data_addr(regs, &data.addr);
2006 
2007 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2008 			struct cpu_hw_events *cpuhw;
2009 			cpuhw = this_cpu_ptr(&cpu_hw_events);
2010 			power_pmu_bhrb_read(cpuhw);
2011 			data.br_stack = &cpuhw->bhrb_stack;
2012 		}
2013 
2014 		if (perf_event_overflow(event, &data, regs))
2015 			power_pmu_stop(event, 0);
2016 	}
2017 }
2018 
2019 /*
2020  * Called from generic code to get the misc flags (i.e. processor mode)
2021  * for an event_id.
2022  */
2023 unsigned long perf_misc_flags(struct pt_regs *regs)
2024 {
2025 	u32 flags = perf_get_misc_flags(regs);
2026 
2027 	if (flags)
2028 		return flags;
2029 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2030 		PERF_RECORD_MISC_KERNEL;
2031 }
2032 
2033 /*
2034  * Called from generic code to get the instruction pointer
2035  * for an event_id.
2036  */
2037 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2038 {
2039 	bool use_siar = regs_use_siar(regs);
2040 
2041 	if (use_siar && siar_valid(regs))
2042 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2043 	else if (use_siar)
2044 		return 0;		// no valid instruction pointer
2045 	else
2046 		return regs->nip;
2047 }
2048 
2049 static bool pmc_overflow_power7(unsigned long val)
2050 {
2051 	/*
2052 	 * Events on POWER7 can roll back if a speculative event doesn't
2053 	 * eventually complete. Unfortunately in some rare cases they will
2054 	 * raise a performance monitor exception. We need to catch this to
2055 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2056 	 * cycles from overflow.
2057 	 *
2058 	 * We only do this if the first pass fails to find any overflowing
2059 	 * PMCs because a user might set a period of less than 256 and we
2060 	 * don't want to mistakenly reset them.
2061 	 */
2062 	if ((0x80000000 - val) <= 256)
2063 		return true;
2064 
2065 	return false;
2066 }
2067 
2068 static bool pmc_overflow(unsigned long val)
2069 {
2070 	if ((int)val < 0)
2071 		return true;
2072 
2073 	return false;
2074 }
2075 
2076 /*
2077  * Performance monitor interrupt stuff
2078  */
2079 static void perf_event_interrupt(struct pt_regs *regs)
2080 {
2081 	int i, j;
2082 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2083 	struct perf_event *event;
2084 	unsigned long val[8];
2085 	int found, active;
2086 	int nmi;
2087 
2088 	if (cpuhw->n_limited)
2089 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2090 					mfspr(SPRN_PMC6));
2091 
2092 	perf_read_regs(regs);
2093 
2094 	nmi = perf_intr_is_nmi(regs);
2095 	if (nmi)
2096 		nmi_enter();
2097 	else
2098 		irq_enter();
2099 
2100 	/* Read all the PMCs since we'll need them a bunch of times */
2101 	for (i = 0; i < ppmu->n_counter; ++i)
2102 		val[i] = read_pmc(i + 1);
2103 
2104 	/* Try to find what caused the IRQ */
2105 	found = 0;
2106 	for (i = 0; i < ppmu->n_counter; ++i) {
2107 		if (!pmc_overflow(val[i]))
2108 			continue;
2109 		if (is_limited_pmc(i + 1))
2110 			continue; /* these won't generate IRQs */
2111 		/*
2112 		 * We've found one that's overflowed.  For active
2113 		 * counters we need to log this.  For inactive
2114 		 * counters, we need to reset it anyway
2115 		 */
2116 		found = 1;
2117 		active = 0;
2118 		for (j = 0; j < cpuhw->n_events; ++j) {
2119 			event = cpuhw->event[j];
2120 			if (event->hw.idx == (i + 1)) {
2121 				active = 1;
2122 				record_and_restart(event, val[i], regs);
2123 				break;
2124 			}
2125 		}
2126 		if (!active)
2127 			/* reset non active counters that have overflowed */
2128 			write_pmc(i + 1, 0);
2129 	}
2130 	if (!found && pvr_version_is(PVR_POWER7)) {
2131 		/* check active counters for special buggy p7 overflow */
2132 		for (i = 0; i < cpuhw->n_events; ++i) {
2133 			event = cpuhw->event[i];
2134 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2135 				continue;
2136 			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2137 				/* event has overflowed in a buggy way*/
2138 				found = 1;
2139 				record_and_restart(event,
2140 						   val[event->hw.idx - 1],
2141 						   regs);
2142 			}
2143 		}
2144 	}
2145 	if (!found && !nmi && printk_ratelimit())
2146 		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2147 
2148 	/*
2149 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2150 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2151 	 * and thus allow interrupts to occur again.
2152 	 * XXX might want to use MSR.PM to keep the events frozen until
2153 	 * we get back out of this interrupt.
2154 	 */
2155 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2156 
2157 	if (nmi)
2158 		nmi_exit();
2159 	else
2160 		irq_exit();
2161 }
2162 
2163 static int power_pmu_prepare_cpu(unsigned int cpu)
2164 {
2165 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2166 
2167 	if (ppmu) {
2168 		memset(cpuhw, 0, sizeof(*cpuhw));
2169 		cpuhw->mmcr[0] = MMCR0_FC;
2170 	}
2171 	return 0;
2172 }
2173 
2174 int register_power_pmu(struct power_pmu *pmu)
2175 {
2176 	if (ppmu)
2177 		return -EBUSY;		/* something's already registered */
2178 
2179 	ppmu = pmu;
2180 	pr_info("%s performance monitor hardware support registered\n",
2181 		pmu->name);
2182 
2183 	power_pmu.attr_groups = ppmu->attr_groups;
2184 
2185 #ifdef MSR_HV
2186 	/*
2187 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2188 	 */
2189 	if (mfmsr() & MSR_HV)
2190 		freeze_events_kernel = MMCR0_FCHV;
2191 #endif /* CONFIG_PPC64 */
2192 
2193 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2194 	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2195 			  power_pmu_prepare_cpu, NULL);
2196 	return 0;
2197 }
2198