1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Performance event support - powerpc architecture code 4 * 5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 6 */ 7 #include <linux/kernel.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/perf_event.h> 11 #include <linux/percpu.h> 12 #include <linux/hardirq.h> 13 #include <linux/uaccess.h> 14 #include <asm/reg.h> 15 #include <asm/pmc.h> 16 #include <asm/machdep.h> 17 #include <asm/firmware.h> 18 #include <asm/ptrace.h> 19 #include <asm/code-patching.h> 20 21 #ifdef CONFIG_PPC64 22 #include "internal.h" 23 #endif 24 25 #define BHRB_MAX_ENTRIES 32 26 #define BHRB_TARGET 0x0000000000000002 27 #define BHRB_PREDICTION 0x0000000000000001 28 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 29 30 struct cpu_hw_events { 31 int n_events; 32 int n_percpu; 33 int disabled; 34 int n_added; 35 int n_limited; 36 u8 pmcs_enabled; 37 struct perf_event *event[MAX_HWEVENTS]; 38 u64 events[MAX_HWEVENTS]; 39 unsigned int flags[MAX_HWEVENTS]; 40 struct mmcr_regs mmcr; 41 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 42 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 43 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 44 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 45 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 46 47 unsigned int txn_flags; 48 int n_txn_start; 49 50 /* BHRB bits */ 51 u64 bhrb_filter; /* BHRB HW branch filter */ 52 unsigned int bhrb_users; 53 void *bhrb_context; 54 struct perf_branch_stack bhrb_stack; 55 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 56 u64 ic_init; 57 }; 58 59 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 60 61 static struct power_pmu *ppmu; 62 63 /* 64 * Normally, to ignore kernel events we set the FCS (freeze counters 65 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 66 * hypervisor bit set in the MSR, or if we are running on a processor 67 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 68 * then we need to use the FCHV bit to ignore kernel events. 69 */ 70 static unsigned int freeze_events_kernel = MMCR0_FCS; 71 72 /* 73 * 32-bit doesn't have MMCRA but does have an MMCR2, 74 * and a few other names are different. 75 * Also 32-bit doesn't have MMCR3, SIER2 and SIER3. 76 * Define them as zero knowing that any code path accessing 77 * these registers (via mtspr/mfspr) are done under ppmu flag 78 * check for PPMU_ARCH_31 and we will not enter that code path 79 * for 32-bit. 80 */ 81 #ifdef CONFIG_PPC32 82 83 #define MMCR0_FCHV 0 84 #define MMCR0_PMCjCE MMCR0_PMCnCE 85 #define MMCR0_FC56 0 86 #define MMCR0_PMAO 0 87 #define MMCR0_EBE 0 88 #define MMCR0_BHRBA 0 89 #define MMCR0_PMCC 0 90 #define MMCR0_PMCC_U6 0 91 92 #define SPRN_MMCRA SPRN_MMCR2 93 #define SPRN_MMCR3 0 94 #define SPRN_SIER2 0 95 #define SPRN_SIER3 0 96 #define MMCRA_SAMPLE_ENABLE 0 97 #define MMCRA_BHRB_DISABLE 0 98 #define MMCR0_PMCCEXT 0 99 100 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 101 { 102 return 0; 103 } 104 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { } 105 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 106 { 107 return 0; 108 } 109 static inline void perf_read_regs(struct pt_regs *regs) 110 { 111 regs->result = 0; 112 } 113 static inline int perf_intr_is_nmi(struct pt_regs *regs) 114 { 115 return 0; 116 } 117 118 static inline int siar_valid(struct pt_regs *regs) 119 { 120 return 1; 121 } 122 123 static bool is_ebb_event(struct perf_event *event) { return false; } 124 static int ebb_event_check(struct perf_event *event) { return 0; } 125 static void ebb_event_add(struct perf_event *event) { } 126 static void ebb_switch_out(unsigned long mmcr0) { } 127 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 128 { 129 return cpuhw->mmcr.mmcr0; 130 } 131 132 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 133 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 134 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} 135 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {} 136 static void pmao_restore_workaround(bool ebb) { } 137 #endif /* CONFIG_PPC32 */ 138 139 bool is_sier_available(void) 140 { 141 if (!ppmu) 142 return false; 143 144 if (ppmu->flags & PPMU_HAS_SIER) 145 return true; 146 147 return false; 148 } 149 150 static bool regs_use_siar(struct pt_regs *regs) 151 { 152 /* 153 * When we take a performance monitor exception the regs are setup 154 * using perf_read_regs() which overloads some fields, in particular 155 * regs->result to tell us whether to use SIAR. 156 * 157 * However if the regs are from another exception, eg. a syscall, then 158 * they have not been setup using perf_read_regs() and so regs->result 159 * is something random. 160 */ 161 return ((TRAP(regs) == 0xf00) && regs->result); 162 } 163 164 /* 165 * Things that are specific to 64-bit implementations. 166 */ 167 #ifdef CONFIG_PPC64 168 169 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 170 { 171 unsigned long mmcra = regs->dsisr; 172 173 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 174 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 175 if (slot > 1) 176 return 4 * (slot - 1); 177 } 178 179 return 0; 180 } 181 182 /* 183 * The user wants a data address recorded. 184 * If we're not doing instruction sampling, give them the SDAR 185 * (sampled data address). If we are doing instruction sampling, then 186 * only give them the SDAR if it corresponds to the instruction 187 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 188 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 189 */ 190 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) 191 { 192 unsigned long mmcra = regs->dsisr; 193 bool sdar_valid; 194 195 if (ppmu->flags & PPMU_HAS_SIER) 196 sdar_valid = regs->dar & SIER_SDAR_VALID; 197 else { 198 unsigned long sdsync; 199 200 if (ppmu->flags & PPMU_SIAR_VALID) 201 sdsync = POWER7P_MMCRA_SDAR_VALID; 202 else if (ppmu->flags & PPMU_ALT_SIPR) 203 sdsync = POWER6_MMCRA_SDSYNC; 204 else if (ppmu->flags & PPMU_NO_SIAR) 205 sdsync = MMCRA_SAMPLE_ENABLE; 206 else 207 sdsync = MMCRA_SDSYNC; 208 209 sdar_valid = mmcra & sdsync; 210 } 211 212 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 213 *addrp = mfspr(SPRN_SDAR); 214 215 if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0) 216 *addrp = 0; 217 } 218 219 static bool regs_sihv(struct pt_regs *regs) 220 { 221 unsigned long sihv = MMCRA_SIHV; 222 223 if (ppmu->flags & PPMU_HAS_SIER) 224 return !!(regs->dar & SIER_SIHV); 225 226 if (ppmu->flags & PPMU_ALT_SIPR) 227 sihv = POWER6_MMCRA_SIHV; 228 229 return !!(regs->dsisr & sihv); 230 } 231 232 static bool regs_sipr(struct pt_regs *regs) 233 { 234 unsigned long sipr = MMCRA_SIPR; 235 236 if (ppmu->flags & PPMU_HAS_SIER) 237 return !!(regs->dar & SIER_SIPR); 238 239 if (ppmu->flags & PPMU_ALT_SIPR) 240 sipr = POWER6_MMCRA_SIPR; 241 242 return !!(regs->dsisr & sipr); 243 } 244 245 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 246 { 247 if (regs->msr & MSR_PR) 248 return PERF_RECORD_MISC_USER; 249 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 250 return PERF_RECORD_MISC_HYPERVISOR; 251 return PERF_RECORD_MISC_KERNEL; 252 } 253 254 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 255 { 256 bool use_siar = regs_use_siar(regs); 257 unsigned long mmcra = regs->dsisr; 258 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 259 260 if (!use_siar) 261 return perf_flags_from_msr(regs); 262 263 /* 264 * Check the address in SIAR to identify the 265 * privilege levels since the SIER[MSR_HV, MSR_PR] 266 * bits are not set for marked events in power10 267 * DD1. 268 */ 269 if (marked && (ppmu->flags & PPMU_P10_DD1)) { 270 unsigned long siar = mfspr(SPRN_SIAR); 271 if (siar) { 272 if (is_kernel_addr(siar)) 273 return PERF_RECORD_MISC_KERNEL; 274 return PERF_RECORD_MISC_USER; 275 } else { 276 if (is_kernel_addr(regs->nip)) 277 return PERF_RECORD_MISC_KERNEL; 278 return PERF_RECORD_MISC_USER; 279 } 280 } 281 282 /* 283 * If we don't have flags in MMCRA, rather than using 284 * the MSR, we intuit the flags from the address in 285 * SIAR which should give slightly more reliable 286 * results 287 */ 288 if (ppmu->flags & PPMU_NO_SIPR) { 289 unsigned long siar = mfspr(SPRN_SIAR); 290 if (is_kernel_addr(siar)) 291 return PERF_RECORD_MISC_KERNEL; 292 return PERF_RECORD_MISC_USER; 293 } 294 295 /* PR has priority over HV, so order below is important */ 296 if (regs_sipr(regs)) 297 return PERF_RECORD_MISC_USER; 298 299 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 300 return PERF_RECORD_MISC_HYPERVISOR; 301 302 return PERF_RECORD_MISC_KERNEL; 303 } 304 305 /* 306 * Overload regs->dsisr to store MMCRA so we only need to read it once 307 * on each interrupt. 308 * Overload regs->dar to store SIER if we have it. 309 * Overload regs->result to specify whether we should use the MSR (result 310 * is zero) or the SIAR (result is non zero). 311 */ 312 static inline void perf_read_regs(struct pt_regs *regs) 313 { 314 unsigned long mmcra = mfspr(SPRN_MMCRA); 315 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 316 int use_siar; 317 318 regs->dsisr = mmcra; 319 320 if (ppmu->flags & PPMU_HAS_SIER) 321 regs->dar = mfspr(SPRN_SIER); 322 323 /* 324 * If this isn't a PMU exception (eg a software event) the SIAR is 325 * not valid. Use pt_regs. 326 * 327 * If it is a marked event use the SIAR. 328 * 329 * If the PMU doesn't update the SIAR for non marked events use 330 * pt_regs. 331 * 332 * If the PMU has HV/PR flags then check to see if they 333 * place the exception in userspace. If so, use pt_regs. In 334 * continuous sampling mode the SIAR and the PMU exception are 335 * not synchronised, so they may be many instructions apart. 336 * This can result in confusing backtraces. We still want 337 * hypervisor samples as well as samples in the kernel with 338 * interrupts off hence the userspace check. 339 */ 340 if (TRAP(regs) != 0xf00) 341 use_siar = 0; 342 else if ((ppmu->flags & PPMU_NO_SIAR)) 343 use_siar = 0; 344 else if (marked) 345 use_siar = 1; 346 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 347 use_siar = 0; 348 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 349 use_siar = 0; 350 else 351 use_siar = 1; 352 353 regs->result = use_siar; 354 } 355 356 /* 357 * If interrupts were soft-disabled when a PMU interrupt occurs, treat 358 * it as an NMI. 359 */ 360 static inline int perf_intr_is_nmi(struct pt_regs *regs) 361 { 362 return (regs->softe & IRQS_DISABLED); 363 } 364 365 /* 366 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 367 * must be sampled only if the SIAR-valid bit is set. 368 * 369 * For unmarked instructions and for processors that don't have the SIAR-Valid 370 * bit, assume that SIAR is valid. 371 */ 372 static inline int siar_valid(struct pt_regs *regs) 373 { 374 unsigned long mmcra = regs->dsisr; 375 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 376 377 if (marked) { 378 /* 379 * SIER[SIAR_VALID] is not set for some 380 * marked events on power10 DD1, so drop 381 * the check for SIER[SIAR_VALID] and return true. 382 */ 383 if (ppmu->flags & PPMU_P10_DD1) 384 return 0x1; 385 else if (ppmu->flags & PPMU_HAS_SIER) 386 return regs->dar & SIER_SIAR_VALID; 387 388 if (ppmu->flags & PPMU_SIAR_VALID) 389 return mmcra & POWER7P_MMCRA_SIAR_VALID; 390 } 391 392 return 1; 393 } 394 395 396 /* Reset all possible BHRB entries */ 397 static void power_pmu_bhrb_reset(void) 398 { 399 asm volatile(PPC_CLRBHRB); 400 } 401 402 static void power_pmu_bhrb_enable(struct perf_event *event) 403 { 404 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 405 406 if (!ppmu->bhrb_nr) 407 return; 408 409 /* Clear BHRB if we changed task context to avoid data leaks */ 410 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 411 power_pmu_bhrb_reset(); 412 cpuhw->bhrb_context = event->ctx; 413 } 414 cpuhw->bhrb_users++; 415 perf_sched_cb_inc(event->ctx->pmu); 416 } 417 418 static void power_pmu_bhrb_disable(struct perf_event *event) 419 { 420 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 421 422 if (!ppmu->bhrb_nr) 423 return; 424 425 WARN_ON_ONCE(!cpuhw->bhrb_users); 426 cpuhw->bhrb_users--; 427 perf_sched_cb_dec(event->ctx->pmu); 428 429 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 430 /* BHRB cannot be turned off when other 431 * events are active on the PMU. 432 */ 433 434 /* avoid stale pointer */ 435 cpuhw->bhrb_context = NULL; 436 } 437 } 438 439 /* Called from ctxsw to prevent one process's branch entries to 440 * mingle with the other process's entries during context switch. 441 */ 442 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 443 { 444 if (!ppmu->bhrb_nr) 445 return; 446 447 if (sched_in) 448 power_pmu_bhrb_reset(); 449 } 450 /* Calculate the to address for a branch */ 451 static __u64 power_pmu_bhrb_to(u64 addr) 452 { 453 unsigned int instr; 454 __u64 target; 455 456 if (is_kernel_addr(addr)) { 457 if (copy_from_kernel_nofault(&instr, (void *)addr, 458 sizeof(instr))) 459 return 0; 460 461 return branch_target((struct ppc_inst *)&instr); 462 } 463 464 /* Userspace: need copy instruction here then translate it */ 465 if (copy_from_user_nofault(&instr, (unsigned int __user *)addr, 466 sizeof(instr))) 467 return 0; 468 469 target = branch_target((struct ppc_inst *)&instr); 470 if ((!target) || (instr & BRANCH_ABSOLUTE)) 471 return target; 472 473 /* Translate relative branch target from kernel to user address */ 474 return target - (unsigned long)&instr + addr; 475 } 476 477 /* Processing BHRB entries */ 478 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) 479 { 480 u64 val; 481 u64 addr; 482 int r_index, u_index, pred; 483 484 r_index = 0; 485 u_index = 0; 486 while (r_index < ppmu->bhrb_nr) { 487 /* Assembly read function */ 488 val = read_bhrb(r_index++); 489 if (!val) 490 /* Terminal marker: End of valid BHRB entries */ 491 break; 492 else { 493 addr = val & BHRB_EA; 494 pred = val & BHRB_PREDICTION; 495 496 if (!addr) 497 /* invalid entry */ 498 continue; 499 500 /* 501 * BHRB rolling buffer could very much contain the kernel 502 * addresses at this point. Check the privileges before 503 * exporting it to userspace (avoid exposure of regions 504 * where we could have speculative execution) 505 * Incase of ISA v3.1, BHRB will capture only user-space 506 * addresses, hence include a check before filtering code 507 */ 508 if (!(ppmu->flags & PPMU_ARCH_31) && 509 is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0) 510 continue; 511 512 /* Branches are read most recent first (ie. mfbhrb 0 is 513 * the most recent branch). 514 * There are two types of valid entries: 515 * 1) a target entry which is the to address of a 516 * computed goto like a blr,bctr,btar. The next 517 * entry read from the bhrb will be branch 518 * corresponding to this target (ie. the actual 519 * blr/bctr/btar instruction). 520 * 2) a from address which is an actual branch. If a 521 * target entry proceeds this, then this is the 522 * matching branch for that target. If this is not 523 * following a target entry, then this is a branch 524 * where the target is given as an immediate field 525 * in the instruction (ie. an i or b form branch). 526 * In this case we need to read the instruction from 527 * memory to determine the target/to address. 528 */ 529 530 if (val & BHRB_TARGET) { 531 /* Target branches use two entries 532 * (ie. computed gotos/XL form) 533 */ 534 cpuhw->bhrb_entries[u_index].to = addr; 535 cpuhw->bhrb_entries[u_index].mispred = pred; 536 cpuhw->bhrb_entries[u_index].predicted = ~pred; 537 538 /* Get from address in next entry */ 539 val = read_bhrb(r_index++); 540 addr = val & BHRB_EA; 541 if (val & BHRB_TARGET) { 542 /* Shouldn't have two targets in a 543 row.. Reset index and try again */ 544 r_index--; 545 addr = 0; 546 } 547 cpuhw->bhrb_entries[u_index].from = addr; 548 } else { 549 /* Branches to immediate field 550 (ie I or B form) */ 551 cpuhw->bhrb_entries[u_index].from = addr; 552 cpuhw->bhrb_entries[u_index].to = 553 power_pmu_bhrb_to(addr); 554 cpuhw->bhrb_entries[u_index].mispred = pred; 555 cpuhw->bhrb_entries[u_index].predicted = ~pred; 556 } 557 u_index++; 558 559 } 560 } 561 cpuhw->bhrb_stack.nr = u_index; 562 cpuhw->bhrb_stack.hw_idx = -1ULL; 563 return; 564 } 565 566 static bool is_ebb_event(struct perf_event *event) 567 { 568 /* 569 * This could be a per-PMU callback, but we'd rather avoid the cost. We 570 * check that the PMU supports EBB, meaning those that don't can still 571 * use bit 63 of the event code for something else if they wish. 572 */ 573 return (ppmu->flags & PPMU_ARCH_207S) && 574 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 575 } 576 577 static int ebb_event_check(struct perf_event *event) 578 { 579 struct perf_event *leader = event->group_leader; 580 581 /* Event and group leader must agree on EBB */ 582 if (is_ebb_event(leader) != is_ebb_event(event)) 583 return -EINVAL; 584 585 if (is_ebb_event(event)) { 586 if (!(event->attach_state & PERF_ATTACH_TASK)) 587 return -EINVAL; 588 589 if (!leader->attr.pinned || !leader->attr.exclusive) 590 return -EINVAL; 591 592 if (event->attr.freq || 593 event->attr.inherit || 594 event->attr.sample_type || 595 event->attr.sample_period || 596 event->attr.enable_on_exec) 597 return -EINVAL; 598 } 599 600 return 0; 601 } 602 603 static void ebb_event_add(struct perf_event *event) 604 { 605 if (!is_ebb_event(event) || current->thread.used_ebb) 606 return; 607 608 /* 609 * IFF this is the first time we've added an EBB event, set 610 * PMXE in the user MMCR0 so we can detect when it's cleared by 611 * userspace. We need this so that we can context switch while 612 * userspace is in the EBB handler (where PMXE is 0). 613 */ 614 current->thread.used_ebb = 1; 615 current->thread.mmcr0 |= MMCR0_PMXE; 616 } 617 618 static void ebb_switch_out(unsigned long mmcr0) 619 { 620 if (!(mmcr0 & MMCR0_EBE)) 621 return; 622 623 current->thread.siar = mfspr(SPRN_SIAR); 624 current->thread.sier = mfspr(SPRN_SIER); 625 current->thread.sdar = mfspr(SPRN_SDAR); 626 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 627 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 628 if (ppmu->flags & PPMU_ARCH_31) { 629 current->thread.mmcr3 = mfspr(SPRN_MMCR3); 630 current->thread.sier2 = mfspr(SPRN_SIER2); 631 current->thread.sier3 = mfspr(SPRN_SIER3); 632 } 633 } 634 635 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 636 { 637 unsigned long mmcr0 = cpuhw->mmcr.mmcr0; 638 639 if (!ebb) 640 goto out; 641 642 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 643 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 644 645 /* 646 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 647 * with pmao_restore_workaround() because we may add PMAO but we never 648 * clear it here. 649 */ 650 mmcr0 |= current->thread.mmcr0; 651 652 /* 653 * Be careful not to set PMXE if userspace had it cleared. This is also 654 * compatible with pmao_restore_workaround() because it has already 655 * cleared PMXE and we leave PMAO alone. 656 */ 657 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 658 mmcr0 &= ~MMCR0_PMXE; 659 660 mtspr(SPRN_SIAR, current->thread.siar); 661 mtspr(SPRN_SIER, current->thread.sier); 662 mtspr(SPRN_SDAR, current->thread.sdar); 663 664 /* 665 * Merge the kernel & user values of MMCR2. The semantics we implement 666 * are that the user MMCR2 can set bits, ie. cause counters to freeze, 667 * but not clear bits. If a task wants to be able to clear bits, ie. 668 * unfreeze counters, it should not set exclude_xxx in its events and 669 * instead manage the MMCR2 entirely by itself. 670 */ 671 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2); 672 673 if (ppmu->flags & PPMU_ARCH_31) { 674 mtspr(SPRN_MMCR3, current->thread.mmcr3); 675 mtspr(SPRN_SIER2, current->thread.sier2); 676 mtspr(SPRN_SIER3, current->thread.sier3); 677 } 678 out: 679 return mmcr0; 680 } 681 682 static void pmao_restore_workaround(bool ebb) 683 { 684 unsigned pmcs[6]; 685 686 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 687 return; 688 689 /* 690 * On POWER8E there is a hardware defect which affects the PMU context 691 * switch logic, ie. power_pmu_disable/enable(). 692 * 693 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 694 * by the hardware. Sometime later the actual PMU exception is 695 * delivered. 696 * 697 * If we context switch, or simply disable/enable, the PMU prior to the 698 * exception arriving, the exception will be lost when we clear PMAO. 699 * 700 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 701 * set, and this _should_ generate an exception. However because of the 702 * defect no exception is generated when we write PMAO, and we get 703 * stuck with no counters counting but no exception delivered. 704 * 705 * The workaround is to detect this case and tweak the hardware to 706 * create another pending PMU exception. 707 * 708 * We do that by setting up PMC6 (cycles) for an imminent overflow and 709 * enabling the PMU. That causes a new exception to be generated in the 710 * chip, but we don't take it yet because we have interrupts hard 711 * disabled. We then write back the PMU state as we want it to be seen 712 * by the exception handler. When we reenable interrupts the exception 713 * handler will be called and see the correct state. 714 * 715 * The logic is the same for EBB, except that the exception is gated by 716 * us having interrupts hard disabled as well as the fact that we are 717 * not in userspace. The exception is finally delivered when we return 718 * to userspace. 719 */ 720 721 /* Only if PMAO is set and PMAO_SYNC is clear */ 722 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 723 return; 724 725 /* If we're doing EBB, only if BESCR[GE] is set */ 726 if (ebb && !(current->thread.bescr & BESCR_GE)) 727 return; 728 729 /* 730 * We are already soft-disabled in power_pmu_enable(). We need to hard 731 * disable to actually prevent the PMU exception from firing. 732 */ 733 hard_irq_disable(); 734 735 /* 736 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 737 * Using read/write_pmc() in a for loop adds 12 function calls and 738 * almost doubles our code size. 739 */ 740 pmcs[0] = mfspr(SPRN_PMC1); 741 pmcs[1] = mfspr(SPRN_PMC2); 742 pmcs[2] = mfspr(SPRN_PMC3); 743 pmcs[3] = mfspr(SPRN_PMC4); 744 pmcs[4] = mfspr(SPRN_PMC5); 745 pmcs[5] = mfspr(SPRN_PMC6); 746 747 /* Ensure all freeze bits are unset */ 748 mtspr(SPRN_MMCR2, 0); 749 750 /* Set up PMC6 to overflow in one cycle */ 751 mtspr(SPRN_PMC6, 0x7FFFFFFE); 752 753 /* Enable exceptions and unfreeze PMC6 */ 754 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 755 756 /* Now we need to refreeze and restore the PMCs */ 757 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 758 759 mtspr(SPRN_PMC1, pmcs[0]); 760 mtspr(SPRN_PMC2, pmcs[1]); 761 mtspr(SPRN_PMC3, pmcs[2]); 762 mtspr(SPRN_PMC4, pmcs[3]); 763 mtspr(SPRN_PMC5, pmcs[4]); 764 mtspr(SPRN_PMC6, pmcs[5]); 765 } 766 767 #endif /* CONFIG_PPC64 */ 768 769 static void perf_event_interrupt(struct pt_regs *regs); 770 771 /* 772 * Read one performance monitor counter (PMC). 773 */ 774 static unsigned long read_pmc(int idx) 775 { 776 unsigned long val; 777 778 switch (idx) { 779 case 1: 780 val = mfspr(SPRN_PMC1); 781 break; 782 case 2: 783 val = mfspr(SPRN_PMC2); 784 break; 785 case 3: 786 val = mfspr(SPRN_PMC3); 787 break; 788 case 4: 789 val = mfspr(SPRN_PMC4); 790 break; 791 case 5: 792 val = mfspr(SPRN_PMC5); 793 break; 794 case 6: 795 val = mfspr(SPRN_PMC6); 796 break; 797 #ifdef CONFIG_PPC64 798 case 7: 799 val = mfspr(SPRN_PMC7); 800 break; 801 case 8: 802 val = mfspr(SPRN_PMC8); 803 break; 804 #endif /* CONFIG_PPC64 */ 805 default: 806 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 807 val = 0; 808 } 809 return val; 810 } 811 812 /* 813 * Write one PMC. 814 */ 815 static void write_pmc(int idx, unsigned long val) 816 { 817 switch (idx) { 818 case 1: 819 mtspr(SPRN_PMC1, val); 820 break; 821 case 2: 822 mtspr(SPRN_PMC2, val); 823 break; 824 case 3: 825 mtspr(SPRN_PMC3, val); 826 break; 827 case 4: 828 mtspr(SPRN_PMC4, val); 829 break; 830 case 5: 831 mtspr(SPRN_PMC5, val); 832 break; 833 case 6: 834 mtspr(SPRN_PMC6, val); 835 break; 836 #ifdef CONFIG_PPC64 837 case 7: 838 mtspr(SPRN_PMC7, val); 839 break; 840 case 8: 841 mtspr(SPRN_PMC8, val); 842 break; 843 #endif /* CONFIG_PPC64 */ 844 default: 845 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 846 } 847 } 848 849 /* Called from sysrq_handle_showregs() */ 850 void perf_event_print_debug(void) 851 { 852 unsigned long sdar, sier, flags; 853 u32 pmcs[MAX_HWEVENTS]; 854 int i; 855 856 if (!ppmu) { 857 pr_info("Performance monitor hardware not registered.\n"); 858 return; 859 } 860 861 if (!ppmu->n_counter) 862 return; 863 864 local_irq_save(flags); 865 866 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 867 smp_processor_id(), ppmu->name, ppmu->n_counter); 868 869 for (i = 0; i < ppmu->n_counter; i++) 870 pmcs[i] = read_pmc(i + 1); 871 872 for (; i < MAX_HWEVENTS; i++) 873 pmcs[i] = 0xdeadbeef; 874 875 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 876 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 877 878 if (ppmu->n_counter > 4) 879 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 880 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 881 882 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 883 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 884 885 sdar = sier = 0; 886 #ifdef CONFIG_PPC64 887 sdar = mfspr(SPRN_SDAR); 888 889 if (ppmu->flags & PPMU_HAS_SIER) 890 sier = mfspr(SPRN_SIER); 891 892 if (ppmu->flags & PPMU_ARCH_207S) { 893 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 894 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 895 pr_info("EBBRR: %016lx BESCR: %016lx\n", 896 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 897 } 898 899 if (ppmu->flags & PPMU_ARCH_31) { 900 pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n", 901 mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3)); 902 } 903 #endif 904 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 905 mfspr(SPRN_SIAR), sdar, sier); 906 907 local_irq_restore(flags); 908 } 909 910 /* 911 * Check if a set of events can all go on the PMU at once. 912 * If they can't, this will look at alternative codes for the events 913 * and see if any combination of alternative codes is feasible. 914 * The feasible set is returned in event_id[]. 915 */ 916 static int power_check_constraints(struct cpu_hw_events *cpuhw, 917 u64 event_id[], unsigned int cflags[], 918 int n_ev) 919 { 920 unsigned long mask, value, nv; 921 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 922 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 923 int i, j; 924 unsigned long addf = ppmu->add_fields; 925 unsigned long tadd = ppmu->test_adder; 926 unsigned long grp_mask = ppmu->group_constraint_mask; 927 unsigned long grp_val = ppmu->group_constraint_val; 928 929 if (n_ev > ppmu->n_counter) 930 return -1; 931 932 /* First see if the events will go on as-is */ 933 for (i = 0; i < n_ev; ++i) { 934 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 935 && !ppmu->limited_pmc_event(event_id[i])) { 936 ppmu->get_alternatives(event_id[i], cflags[i], 937 cpuhw->alternatives[i]); 938 event_id[i] = cpuhw->alternatives[i][0]; 939 } 940 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 941 &cpuhw->avalues[i][0])) 942 return -1; 943 } 944 value = mask = 0; 945 for (i = 0; i < n_ev; ++i) { 946 nv = (value | cpuhw->avalues[i][0]) + 947 (value & cpuhw->avalues[i][0] & addf); 948 949 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0) 950 break; 951 952 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0]) 953 & (~grp_mask)) != 0) 954 break; 955 956 value = nv; 957 mask |= cpuhw->amasks[i][0]; 958 } 959 if (i == n_ev) { 960 if ((value & mask & grp_mask) != (mask & grp_val)) 961 return -1; 962 else 963 return 0; /* all OK */ 964 } 965 966 /* doesn't work, gather alternatives... */ 967 if (!ppmu->get_alternatives) 968 return -1; 969 for (i = 0; i < n_ev; ++i) { 970 choice[i] = 0; 971 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 972 cpuhw->alternatives[i]); 973 for (j = 1; j < n_alt[i]; ++j) 974 ppmu->get_constraint(cpuhw->alternatives[i][j], 975 &cpuhw->amasks[i][j], 976 &cpuhw->avalues[i][j]); 977 } 978 979 /* enumerate all possibilities and see if any will work */ 980 i = 0; 981 j = -1; 982 value = mask = nv = 0; 983 while (i < n_ev) { 984 if (j >= 0) { 985 /* we're backtracking, restore context */ 986 value = svalues[i]; 987 mask = smasks[i]; 988 j = choice[i]; 989 } 990 /* 991 * See if any alternative k for event_id i, 992 * where k > j, will satisfy the constraints. 993 */ 994 while (++j < n_alt[i]) { 995 nv = (value | cpuhw->avalues[i][j]) + 996 (value & cpuhw->avalues[i][j] & addf); 997 if ((((nv + tadd) ^ value) & mask) == 0 && 998 (((nv + tadd) ^ cpuhw->avalues[i][j]) 999 & cpuhw->amasks[i][j]) == 0) 1000 break; 1001 } 1002 if (j >= n_alt[i]) { 1003 /* 1004 * No feasible alternative, backtrack 1005 * to event_id i-1 and continue enumerating its 1006 * alternatives from where we got up to. 1007 */ 1008 if (--i < 0) 1009 return -1; 1010 } else { 1011 /* 1012 * Found a feasible alternative for event_id i, 1013 * remember where we got up to with this event_id, 1014 * go on to the next event_id, and start with 1015 * the first alternative for it. 1016 */ 1017 choice[i] = j; 1018 svalues[i] = value; 1019 smasks[i] = mask; 1020 value = nv; 1021 mask |= cpuhw->amasks[i][j]; 1022 ++i; 1023 j = -1; 1024 } 1025 } 1026 1027 /* OK, we have a feasible combination, tell the caller the solution */ 1028 for (i = 0; i < n_ev; ++i) 1029 event_id[i] = cpuhw->alternatives[i][choice[i]]; 1030 return 0; 1031 } 1032 1033 /* 1034 * Check if newly-added events have consistent settings for 1035 * exclude_{user,kernel,hv} with each other and any previously 1036 * added events. 1037 */ 1038 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 1039 int n_prev, int n_new) 1040 { 1041 int eu = 0, ek = 0, eh = 0; 1042 int i, n, first; 1043 struct perf_event *event; 1044 1045 /* 1046 * If the PMU we're on supports per event exclude settings then we 1047 * don't need to do any of this logic. NB. This assumes no PMU has both 1048 * per event exclude and limited PMCs. 1049 */ 1050 if (ppmu->flags & PPMU_ARCH_207S) 1051 return 0; 1052 1053 n = n_prev + n_new; 1054 if (n <= 1) 1055 return 0; 1056 1057 first = 1; 1058 for (i = 0; i < n; ++i) { 1059 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 1060 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 1061 continue; 1062 } 1063 event = ctrs[i]; 1064 if (first) { 1065 eu = event->attr.exclude_user; 1066 ek = event->attr.exclude_kernel; 1067 eh = event->attr.exclude_hv; 1068 first = 0; 1069 } else if (event->attr.exclude_user != eu || 1070 event->attr.exclude_kernel != ek || 1071 event->attr.exclude_hv != eh) { 1072 return -EAGAIN; 1073 } 1074 } 1075 1076 if (eu || ek || eh) 1077 for (i = 0; i < n; ++i) 1078 if (cflags[i] & PPMU_LIMITED_PMC_OK) 1079 cflags[i] |= PPMU_LIMITED_PMC_REQD; 1080 1081 return 0; 1082 } 1083 1084 static u64 check_and_compute_delta(u64 prev, u64 val) 1085 { 1086 u64 delta = (val - prev) & 0xfffffffful; 1087 1088 /* 1089 * POWER7 can roll back counter values, if the new value is smaller 1090 * than the previous value it will cause the delta and the counter to 1091 * have bogus values unless we rolled a counter over. If a coutner is 1092 * rolled back, it will be smaller, but within 256, which is the maximum 1093 * number of events to rollback at once. If we detect a rollback 1094 * return 0. This can lead to a small lack of precision in the 1095 * counters. 1096 */ 1097 if (prev > val && (prev - val) < 256) 1098 delta = 0; 1099 1100 return delta; 1101 } 1102 1103 static void power_pmu_read(struct perf_event *event) 1104 { 1105 s64 val, delta, prev; 1106 1107 if (event->hw.state & PERF_HES_STOPPED) 1108 return; 1109 1110 if (!event->hw.idx) 1111 return; 1112 1113 if (is_ebb_event(event)) { 1114 val = read_pmc(event->hw.idx); 1115 local64_set(&event->hw.prev_count, val); 1116 return; 1117 } 1118 1119 /* 1120 * Performance monitor interrupts come even when interrupts 1121 * are soft-disabled, as long as interrupts are hard-enabled. 1122 * Therefore we treat them like NMIs. 1123 */ 1124 do { 1125 prev = local64_read(&event->hw.prev_count); 1126 barrier(); 1127 val = read_pmc(event->hw.idx); 1128 delta = check_and_compute_delta(prev, val); 1129 if (!delta) 1130 return; 1131 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 1132 1133 local64_add(delta, &event->count); 1134 1135 /* 1136 * A number of places program the PMC with (0x80000000 - period_left). 1137 * We never want period_left to be less than 1 because we will program 1138 * the PMC with a value >= 0x800000000 and an edge detected PMC will 1139 * roll around to 0 before taking an exception. We have seen this 1140 * on POWER8. 1141 * 1142 * To fix this, clamp the minimum value of period_left to 1. 1143 */ 1144 do { 1145 prev = local64_read(&event->hw.period_left); 1146 val = prev - delta; 1147 if (val < 1) 1148 val = 1; 1149 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); 1150 } 1151 1152 /* 1153 * On some machines, PMC5 and PMC6 can't be written, don't respect 1154 * the freeze conditions, and don't generate interrupts. This tells 1155 * us if `event' is using such a PMC. 1156 */ 1157 static int is_limited_pmc(int pmcnum) 1158 { 1159 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1160 && (pmcnum == 5 || pmcnum == 6); 1161 } 1162 1163 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1164 unsigned long pmc5, unsigned long pmc6) 1165 { 1166 struct perf_event *event; 1167 u64 val, prev, delta; 1168 int i; 1169 1170 for (i = 0; i < cpuhw->n_limited; ++i) { 1171 event = cpuhw->limited_counter[i]; 1172 if (!event->hw.idx) 1173 continue; 1174 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1175 prev = local64_read(&event->hw.prev_count); 1176 event->hw.idx = 0; 1177 delta = check_and_compute_delta(prev, val); 1178 if (delta) 1179 local64_add(delta, &event->count); 1180 } 1181 } 1182 1183 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1184 unsigned long pmc5, unsigned long pmc6) 1185 { 1186 struct perf_event *event; 1187 u64 val, prev; 1188 int i; 1189 1190 for (i = 0; i < cpuhw->n_limited; ++i) { 1191 event = cpuhw->limited_counter[i]; 1192 event->hw.idx = cpuhw->limited_hwidx[i]; 1193 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1194 prev = local64_read(&event->hw.prev_count); 1195 if (check_and_compute_delta(prev, val)) 1196 local64_set(&event->hw.prev_count, val); 1197 perf_event_update_userpage(event); 1198 } 1199 } 1200 1201 /* 1202 * Since limited events don't respect the freeze conditions, we 1203 * have to read them immediately after freezing or unfreezing the 1204 * other events. We try to keep the values from the limited 1205 * events as consistent as possible by keeping the delay (in 1206 * cycles and instructions) between freezing/unfreezing and reading 1207 * the limited events as small and consistent as possible. 1208 * Therefore, if any limited events are in use, we read them 1209 * both, and always in the same order, to minimize variability, 1210 * and do it inside the same asm that writes MMCR0. 1211 */ 1212 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1213 { 1214 unsigned long pmc5, pmc6; 1215 1216 if (!cpuhw->n_limited) { 1217 mtspr(SPRN_MMCR0, mmcr0); 1218 return; 1219 } 1220 1221 /* 1222 * Write MMCR0, then read PMC5 and PMC6 immediately. 1223 * To ensure we don't get a performance monitor interrupt 1224 * between writing MMCR0 and freezing/thawing the limited 1225 * events, we first write MMCR0 with the event overflow 1226 * interrupt enable bits turned off. 1227 */ 1228 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1229 : "=&r" (pmc5), "=&r" (pmc6) 1230 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1231 "i" (SPRN_MMCR0), 1232 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1233 1234 if (mmcr0 & MMCR0_FC) 1235 freeze_limited_counters(cpuhw, pmc5, pmc6); 1236 else 1237 thaw_limited_counters(cpuhw, pmc5, pmc6); 1238 1239 /* 1240 * Write the full MMCR0 including the event overflow interrupt 1241 * enable bits, if necessary. 1242 */ 1243 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1244 mtspr(SPRN_MMCR0, mmcr0); 1245 } 1246 1247 /* 1248 * Disable all events to prevent PMU interrupts and to allow 1249 * events to be added or removed. 1250 */ 1251 static void power_pmu_disable(struct pmu *pmu) 1252 { 1253 struct cpu_hw_events *cpuhw; 1254 unsigned long flags, mmcr0, val, mmcra; 1255 1256 if (!ppmu) 1257 return; 1258 local_irq_save(flags); 1259 cpuhw = this_cpu_ptr(&cpu_hw_events); 1260 1261 if (!cpuhw->disabled) { 1262 /* 1263 * Check if we ever enabled the PMU on this cpu. 1264 */ 1265 if (!cpuhw->pmcs_enabled) { 1266 ppc_enable_pmcs(); 1267 cpuhw->pmcs_enabled = 1; 1268 } 1269 1270 /* 1271 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1272 */ 1273 val = mmcr0 = mfspr(SPRN_MMCR0); 1274 val |= MMCR0_FC; 1275 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1276 MMCR0_FC56); 1277 /* Set mmcr0 PMCCEXT for p10 */ 1278 if (ppmu->flags & PPMU_ARCH_31) 1279 val |= MMCR0_PMCCEXT; 1280 1281 /* 1282 * The barrier is to make sure the mtspr has been 1283 * executed and the PMU has frozen the events etc. 1284 * before we return. 1285 */ 1286 write_mmcr0(cpuhw, val); 1287 mb(); 1288 isync(); 1289 1290 val = mmcra = cpuhw->mmcr.mmcra; 1291 1292 /* 1293 * Disable instruction sampling if it was enabled 1294 */ 1295 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) 1296 val &= ~MMCRA_SAMPLE_ENABLE; 1297 1298 /* Disable BHRB via mmcra (BHRBRD) for p10 */ 1299 if (ppmu->flags & PPMU_ARCH_31) 1300 val |= MMCRA_BHRB_DISABLE; 1301 1302 /* 1303 * Write SPRN_MMCRA if mmcra has either disabled 1304 * instruction sampling or BHRB. 1305 */ 1306 if (val != mmcra) { 1307 mtspr(SPRN_MMCRA, mmcra); 1308 mb(); 1309 isync(); 1310 } 1311 1312 cpuhw->disabled = 1; 1313 cpuhw->n_added = 0; 1314 1315 ebb_switch_out(mmcr0); 1316 1317 #ifdef CONFIG_PPC64 1318 /* 1319 * These are readable by userspace, may contain kernel 1320 * addresses and are not switched by context switch, so clear 1321 * them now to avoid leaking anything to userspace in general 1322 * including to another process. 1323 */ 1324 if (ppmu->flags & PPMU_ARCH_207S) { 1325 mtspr(SPRN_SDAR, 0); 1326 mtspr(SPRN_SIAR, 0); 1327 } 1328 #endif 1329 } 1330 1331 local_irq_restore(flags); 1332 } 1333 1334 /* 1335 * Re-enable all events if disable == 0. 1336 * If we were previously disabled and events were added, then 1337 * put the new config on the PMU. 1338 */ 1339 static void power_pmu_enable(struct pmu *pmu) 1340 { 1341 struct perf_event *event; 1342 struct cpu_hw_events *cpuhw; 1343 unsigned long flags; 1344 long i; 1345 unsigned long val, mmcr0; 1346 s64 left; 1347 unsigned int hwc_index[MAX_HWEVENTS]; 1348 int n_lim; 1349 int idx; 1350 bool ebb; 1351 1352 if (!ppmu) 1353 return; 1354 local_irq_save(flags); 1355 1356 cpuhw = this_cpu_ptr(&cpu_hw_events); 1357 if (!cpuhw->disabled) 1358 goto out; 1359 1360 if (cpuhw->n_events == 0) { 1361 ppc_set_pmu_inuse(0); 1362 goto out; 1363 } 1364 1365 cpuhw->disabled = 0; 1366 1367 /* 1368 * EBB requires an exclusive group and all events must have the EBB 1369 * flag set, or not set, so we can just check a single event. Also we 1370 * know we have at least one event. 1371 */ 1372 ebb = is_ebb_event(cpuhw->event[0]); 1373 1374 /* 1375 * If we didn't change anything, or only removed events, 1376 * no need to recalculate MMCR* settings and reset the PMCs. 1377 * Just reenable the PMU with the current MMCR* settings 1378 * (possibly updated for removal of events). 1379 */ 1380 if (!cpuhw->n_added) { 1381 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE); 1382 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1); 1383 if (ppmu->flags & PPMU_ARCH_31) 1384 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3); 1385 goto out_enable; 1386 } 1387 1388 /* 1389 * Clear all MMCR settings and recompute them for the new set of events. 1390 */ 1391 memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); 1392 1393 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1394 &cpuhw->mmcr, cpuhw->event)) { 1395 /* shouldn't ever get here */ 1396 printk(KERN_ERR "oops compute_mmcr failed\n"); 1397 goto out; 1398 } 1399 1400 if (!(ppmu->flags & PPMU_ARCH_207S)) { 1401 /* 1402 * Add in MMCR0 freeze bits corresponding to the attr.exclude_* 1403 * bits for the first event. We have already checked that all 1404 * events have the same value for these bits as the first event. 1405 */ 1406 event = cpuhw->event[0]; 1407 if (event->attr.exclude_user) 1408 cpuhw->mmcr.mmcr0 |= MMCR0_FCP; 1409 if (event->attr.exclude_kernel) 1410 cpuhw->mmcr.mmcr0 |= freeze_events_kernel; 1411 if (event->attr.exclude_hv) 1412 cpuhw->mmcr.mmcr0 |= MMCR0_FCHV; 1413 } 1414 1415 /* 1416 * Write the new configuration to MMCR* with the freeze 1417 * bit set and set the hardware events to their initial values. 1418 * Then unfreeze the events. 1419 */ 1420 ppc_set_pmu_inuse(1); 1421 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE); 1422 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1); 1423 mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1424 | MMCR0_FC); 1425 if (ppmu->flags & PPMU_ARCH_207S) 1426 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2); 1427 1428 if (ppmu->flags & PPMU_ARCH_31) 1429 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3); 1430 1431 /* 1432 * Read off any pre-existing events that need to move 1433 * to another PMC. 1434 */ 1435 for (i = 0; i < cpuhw->n_events; ++i) { 1436 event = cpuhw->event[i]; 1437 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1438 power_pmu_read(event); 1439 write_pmc(event->hw.idx, 0); 1440 event->hw.idx = 0; 1441 } 1442 } 1443 1444 /* 1445 * Initialize the PMCs for all the new and moved events. 1446 */ 1447 cpuhw->n_limited = n_lim = 0; 1448 for (i = 0; i < cpuhw->n_events; ++i) { 1449 event = cpuhw->event[i]; 1450 if (event->hw.idx) 1451 continue; 1452 idx = hwc_index[i] + 1; 1453 if (is_limited_pmc(idx)) { 1454 cpuhw->limited_counter[n_lim] = event; 1455 cpuhw->limited_hwidx[n_lim] = idx; 1456 ++n_lim; 1457 continue; 1458 } 1459 1460 if (ebb) 1461 val = local64_read(&event->hw.prev_count); 1462 else { 1463 val = 0; 1464 if (event->hw.sample_period) { 1465 left = local64_read(&event->hw.period_left); 1466 if (left < 0x80000000L) 1467 val = 0x80000000L - left; 1468 } 1469 local64_set(&event->hw.prev_count, val); 1470 } 1471 1472 event->hw.idx = idx; 1473 if (event->hw.state & PERF_HES_STOPPED) 1474 val = 0; 1475 write_pmc(idx, val); 1476 1477 perf_event_update_userpage(event); 1478 } 1479 cpuhw->n_limited = n_lim; 1480 cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE; 1481 1482 out_enable: 1483 pmao_restore_workaround(ebb); 1484 1485 mmcr0 = ebb_switch_in(ebb, cpuhw); 1486 1487 mb(); 1488 if (cpuhw->bhrb_users) 1489 ppmu->config_bhrb(cpuhw->bhrb_filter); 1490 1491 write_mmcr0(cpuhw, mmcr0); 1492 1493 /* 1494 * Enable instruction sampling if necessary 1495 */ 1496 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) { 1497 mb(); 1498 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra); 1499 } 1500 1501 out: 1502 1503 local_irq_restore(flags); 1504 } 1505 1506 static int collect_events(struct perf_event *group, int max_count, 1507 struct perf_event *ctrs[], u64 *events, 1508 unsigned int *flags) 1509 { 1510 int n = 0; 1511 struct perf_event *event; 1512 1513 if (group->pmu->task_ctx_nr == perf_hw_context) { 1514 if (n >= max_count) 1515 return -1; 1516 ctrs[n] = group; 1517 flags[n] = group->hw.event_base; 1518 events[n++] = group->hw.config; 1519 } 1520 for_each_sibling_event(event, group) { 1521 if (event->pmu->task_ctx_nr == perf_hw_context && 1522 event->state != PERF_EVENT_STATE_OFF) { 1523 if (n >= max_count) 1524 return -1; 1525 ctrs[n] = event; 1526 flags[n] = event->hw.event_base; 1527 events[n++] = event->hw.config; 1528 } 1529 } 1530 return n; 1531 } 1532 1533 /* 1534 * Add an event to the PMU. 1535 * If all events are not already frozen, then we disable and 1536 * re-enable the PMU in order to get hw_perf_enable to do the 1537 * actual work of reconfiguring the PMU. 1538 */ 1539 static int power_pmu_add(struct perf_event *event, int ef_flags) 1540 { 1541 struct cpu_hw_events *cpuhw; 1542 unsigned long flags; 1543 int n0; 1544 int ret = -EAGAIN; 1545 1546 local_irq_save(flags); 1547 perf_pmu_disable(event->pmu); 1548 1549 /* 1550 * Add the event to the list (if there is room) 1551 * and check whether the total set is still feasible. 1552 */ 1553 cpuhw = this_cpu_ptr(&cpu_hw_events); 1554 n0 = cpuhw->n_events; 1555 if (n0 >= ppmu->n_counter) 1556 goto out; 1557 cpuhw->event[n0] = event; 1558 cpuhw->events[n0] = event->hw.config; 1559 cpuhw->flags[n0] = event->hw.event_base; 1560 1561 /* 1562 * This event may have been disabled/stopped in record_and_restart() 1563 * because we exceeded the ->event_limit. If re-starting the event, 1564 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1565 * notification is re-enabled. 1566 */ 1567 if (!(ef_flags & PERF_EF_START)) 1568 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1569 else 1570 event->hw.state = 0; 1571 1572 /* 1573 * If group events scheduling transaction was started, 1574 * skip the schedulability test here, it will be performed 1575 * at commit time(->commit_txn) as a whole 1576 */ 1577 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD) 1578 goto nocheck; 1579 1580 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1581 goto out; 1582 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) 1583 goto out; 1584 event->hw.config = cpuhw->events[n0]; 1585 1586 nocheck: 1587 ebb_event_add(event); 1588 1589 ++cpuhw->n_events; 1590 ++cpuhw->n_added; 1591 1592 ret = 0; 1593 out: 1594 if (has_branch_stack(event)) { 1595 u64 bhrb_filter = -1; 1596 1597 if (ppmu->bhrb_filter_map) 1598 bhrb_filter = ppmu->bhrb_filter_map( 1599 event->attr.branch_sample_type); 1600 1601 if (bhrb_filter != -1) { 1602 cpuhw->bhrb_filter = bhrb_filter; 1603 power_pmu_bhrb_enable(event); 1604 } 1605 } 1606 1607 perf_pmu_enable(event->pmu); 1608 local_irq_restore(flags); 1609 return ret; 1610 } 1611 1612 /* 1613 * Remove an event from the PMU. 1614 */ 1615 static void power_pmu_del(struct perf_event *event, int ef_flags) 1616 { 1617 struct cpu_hw_events *cpuhw; 1618 long i; 1619 unsigned long flags; 1620 1621 local_irq_save(flags); 1622 perf_pmu_disable(event->pmu); 1623 1624 power_pmu_read(event); 1625 1626 cpuhw = this_cpu_ptr(&cpu_hw_events); 1627 for (i = 0; i < cpuhw->n_events; ++i) { 1628 if (event == cpuhw->event[i]) { 1629 while (++i < cpuhw->n_events) { 1630 cpuhw->event[i-1] = cpuhw->event[i]; 1631 cpuhw->events[i-1] = cpuhw->events[i]; 1632 cpuhw->flags[i-1] = cpuhw->flags[i]; 1633 } 1634 --cpuhw->n_events; 1635 ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr); 1636 if (event->hw.idx) { 1637 write_pmc(event->hw.idx, 0); 1638 event->hw.idx = 0; 1639 } 1640 perf_event_update_userpage(event); 1641 break; 1642 } 1643 } 1644 for (i = 0; i < cpuhw->n_limited; ++i) 1645 if (event == cpuhw->limited_counter[i]) 1646 break; 1647 if (i < cpuhw->n_limited) { 1648 while (++i < cpuhw->n_limited) { 1649 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1650 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1651 } 1652 --cpuhw->n_limited; 1653 } 1654 if (cpuhw->n_events == 0) { 1655 /* disable exceptions if no events are running */ 1656 cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE); 1657 } 1658 1659 if (has_branch_stack(event)) 1660 power_pmu_bhrb_disable(event); 1661 1662 perf_pmu_enable(event->pmu); 1663 local_irq_restore(flags); 1664 } 1665 1666 /* 1667 * POWER-PMU does not support disabling individual counters, hence 1668 * program their cycle counter to their max value and ignore the interrupts. 1669 */ 1670 1671 static void power_pmu_start(struct perf_event *event, int ef_flags) 1672 { 1673 unsigned long flags; 1674 s64 left; 1675 unsigned long val; 1676 1677 if (!event->hw.idx || !event->hw.sample_period) 1678 return; 1679 1680 if (!(event->hw.state & PERF_HES_STOPPED)) 1681 return; 1682 1683 if (ef_flags & PERF_EF_RELOAD) 1684 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1685 1686 local_irq_save(flags); 1687 perf_pmu_disable(event->pmu); 1688 1689 event->hw.state = 0; 1690 left = local64_read(&event->hw.period_left); 1691 1692 val = 0; 1693 if (left < 0x80000000L) 1694 val = 0x80000000L - left; 1695 1696 write_pmc(event->hw.idx, val); 1697 1698 perf_event_update_userpage(event); 1699 perf_pmu_enable(event->pmu); 1700 local_irq_restore(flags); 1701 } 1702 1703 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1704 { 1705 unsigned long flags; 1706 1707 if (!event->hw.idx || !event->hw.sample_period) 1708 return; 1709 1710 if (event->hw.state & PERF_HES_STOPPED) 1711 return; 1712 1713 local_irq_save(flags); 1714 perf_pmu_disable(event->pmu); 1715 1716 power_pmu_read(event); 1717 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1718 write_pmc(event->hw.idx, 0); 1719 1720 perf_event_update_userpage(event); 1721 perf_pmu_enable(event->pmu); 1722 local_irq_restore(flags); 1723 } 1724 1725 /* 1726 * Start group events scheduling transaction 1727 * Set the flag to make pmu::enable() not perform the 1728 * schedulability test, it will be performed at commit time 1729 * 1730 * We only support PERF_PMU_TXN_ADD transactions. Save the 1731 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1732 * transactions. 1733 */ 1734 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1735 { 1736 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1737 1738 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ 1739 1740 cpuhw->txn_flags = txn_flags; 1741 if (txn_flags & ~PERF_PMU_TXN_ADD) 1742 return; 1743 1744 perf_pmu_disable(pmu); 1745 cpuhw->n_txn_start = cpuhw->n_events; 1746 } 1747 1748 /* 1749 * Stop group events scheduling transaction 1750 * Clear the flag and pmu::enable() will perform the 1751 * schedulability test. 1752 */ 1753 static void power_pmu_cancel_txn(struct pmu *pmu) 1754 { 1755 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1756 unsigned int txn_flags; 1757 1758 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1759 1760 txn_flags = cpuhw->txn_flags; 1761 cpuhw->txn_flags = 0; 1762 if (txn_flags & ~PERF_PMU_TXN_ADD) 1763 return; 1764 1765 perf_pmu_enable(pmu); 1766 } 1767 1768 /* 1769 * Commit group events scheduling transaction 1770 * Perform the group schedulability test as a whole 1771 * Return 0 if success 1772 */ 1773 static int power_pmu_commit_txn(struct pmu *pmu) 1774 { 1775 struct cpu_hw_events *cpuhw; 1776 long i, n; 1777 1778 if (!ppmu) 1779 return -EAGAIN; 1780 1781 cpuhw = this_cpu_ptr(&cpu_hw_events); 1782 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1783 1784 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) { 1785 cpuhw->txn_flags = 0; 1786 return 0; 1787 } 1788 1789 n = cpuhw->n_events; 1790 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1791 return -EAGAIN; 1792 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); 1793 if (i < 0) 1794 return -EAGAIN; 1795 1796 for (i = cpuhw->n_txn_start; i < n; ++i) 1797 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1798 1799 cpuhw->txn_flags = 0; 1800 perf_pmu_enable(pmu); 1801 return 0; 1802 } 1803 1804 /* 1805 * Return 1 if we might be able to put event on a limited PMC, 1806 * or 0 if not. 1807 * An event can only go on a limited PMC if it counts something 1808 * that a limited PMC can count, doesn't require interrupts, and 1809 * doesn't exclude any processor mode. 1810 */ 1811 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1812 unsigned int flags) 1813 { 1814 int n; 1815 u64 alt[MAX_EVENT_ALTERNATIVES]; 1816 1817 if (event->attr.exclude_user 1818 || event->attr.exclude_kernel 1819 || event->attr.exclude_hv 1820 || event->attr.sample_period) 1821 return 0; 1822 1823 if (ppmu->limited_pmc_event(ev)) 1824 return 1; 1825 1826 /* 1827 * The requested event_id isn't on a limited PMC already; 1828 * see if any alternative code goes on a limited PMC. 1829 */ 1830 if (!ppmu->get_alternatives) 1831 return 0; 1832 1833 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1834 n = ppmu->get_alternatives(ev, flags, alt); 1835 1836 return n > 0; 1837 } 1838 1839 /* 1840 * Find an alternative event_id that goes on a normal PMC, if possible, 1841 * and return the event_id code, or 0 if there is no such alternative. 1842 * (Note: event_id code 0 is "don't count" on all machines.) 1843 */ 1844 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1845 { 1846 u64 alt[MAX_EVENT_ALTERNATIVES]; 1847 int n; 1848 1849 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1850 n = ppmu->get_alternatives(ev, flags, alt); 1851 if (!n) 1852 return 0; 1853 return alt[0]; 1854 } 1855 1856 /* Number of perf_events counting hardware events */ 1857 static atomic_t num_events; 1858 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1859 static DEFINE_MUTEX(pmc_reserve_mutex); 1860 1861 /* 1862 * Release the PMU if this is the last perf_event. 1863 */ 1864 static void hw_perf_event_destroy(struct perf_event *event) 1865 { 1866 if (!atomic_add_unless(&num_events, -1, 1)) { 1867 mutex_lock(&pmc_reserve_mutex); 1868 if (atomic_dec_return(&num_events) == 0) 1869 release_pmc_hardware(); 1870 mutex_unlock(&pmc_reserve_mutex); 1871 } 1872 } 1873 1874 /* 1875 * Translate a generic cache event_id config to a raw event_id code. 1876 */ 1877 static int hw_perf_cache_event(u64 config, u64 *eventp) 1878 { 1879 unsigned long type, op, result; 1880 u64 ev; 1881 1882 if (!ppmu->cache_events) 1883 return -EINVAL; 1884 1885 /* unpack config */ 1886 type = config & 0xff; 1887 op = (config >> 8) & 0xff; 1888 result = (config >> 16) & 0xff; 1889 1890 if (type >= PERF_COUNT_HW_CACHE_MAX || 1891 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1892 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1893 return -EINVAL; 1894 1895 ev = (*ppmu->cache_events)[type][op][result]; 1896 if (ev == 0) 1897 return -EOPNOTSUPP; 1898 if (ev == -1) 1899 return -EINVAL; 1900 *eventp = ev; 1901 return 0; 1902 } 1903 1904 static bool is_event_blacklisted(u64 ev) 1905 { 1906 int i; 1907 1908 for (i=0; i < ppmu->n_blacklist_ev; i++) { 1909 if (ppmu->blacklist_ev[i] == ev) 1910 return true; 1911 } 1912 1913 return false; 1914 } 1915 1916 static int power_pmu_event_init(struct perf_event *event) 1917 { 1918 u64 ev; 1919 unsigned long flags, irq_flags; 1920 struct perf_event *ctrs[MAX_HWEVENTS]; 1921 u64 events[MAX_HWEVENTS]; 1922 unsigned int cflags[MAX_HWEVENTS]; 1923 int n; 1924 int err; 1925 struct cpu_hw_events *cpuhw; 1926 1927 if (!ppmu) 1928 return -ENOENT; 1929 1930 if (has_branch_stack(event)) { 1931 /* PMU has BHRB enabled */ 1932 if (!(ppmu->flags & PPMU_ARCH_207S)) 1933 return -EOPNOTSUPP; 1934 } 1935 1936 switch (event->attr.type) { 1937 case PERF_TYPE_HARDWARE: 1938 ev = event->attr.config; 1939 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1940 return -EOPNOTSUPP; 1941 1942 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1943 return -EINVAL; 1944 ev = ppmu->generic_events[ev]; 1945 break; 1946 case PERF_TYPE_HW_CACHE: 1947 err = hw_perf_cache_event(event->attr.config, &ev); 1948 if (err) 1949 return err; 1950 1951 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1952 return -EINVAL; 1953 break; 1954 case PERF_TYPE_RAW: 1955 ev = event->attr.config; 1956 1957 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1958 return -EINVAL; 1959 break; 1960 default: 1961 return -ENOENT; 1962 } 1963 1964 event->hw.config_base = ev; 1965 event->hw.idx = 0; 1966 1967 /* 1968 * If we are not running on a hypervisor, force the 1969 * exclude_hv bit to 0 so that we don't care what 1970 * the user set it to. 1971 */ 1972 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1973 event->attr.exclude_hv = 0; 1974 1975 /* 1976 * If this is a per-task event, then we can use 1977 * PM_RUN_* events interchangeably with their non RUN_* 1978 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1979 * XXX we should check if the task is an idle task. 1980 */ 1981 flags = 0; 1982 if (event->attach_state & PERF_ATTACH_TASK) 1983 flags |= PPMU_ONLY_COUNT_RUN; 1984 1985 /* 1986 * If this machine has limited events, check whether this 1987 * event_id could go on a limited event. 1988 */ 1989 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1990 if (can_go_on_limited_pmc(event, ev, flags)) { 1991 flags |= PPMU_LIMITED_PMC_OK; 1992 } else if (ppmu->limited_pmc_event(ev)) { 1993 /* 1994 * The requested event_id is on a limited PMC, 1995 * but we can't use a limited PMC; see if any 1996 * alternative goes on a normal PMC. 1997 */ 1998 ev = normal_pmc_alternative(ev, flags); 1999 if (!ev) 2000 return -EINVAL; 2001 } 2002 } 2003 2004 /* Extra checks for EBB */ 2005 err = ebb_event_check(event); 2006 if (err) 2007 return err; 2008 2009 /* 2010 * If this is in a group, check if it can go on with all the 2011 * other hardware events in the group. We assume the event 2012 * hasn't been linked into its leader's sibling list at this point. 2013 */ 2014 n = 0; 2015 if (event->group_leader != event) { 2016 n = collect_events(event->group_leader, ppmu->n_counter - 1, 2017 ctrs, events, cflags); 2018 if (n < 0) 2019 return -EINVAL; 2020 } 2021 events[n] = ev; 2022 ctrs[n] = event; 2023 cflags[n] = flags; 2024 if (check_excludes(ctrs, cflags, n, 1)) 2025 return -EINVAL; 2026 2027 local_irq_save(irq_flags); 2028 cpuhw = this_cpu_ptr(&cpu_hw_events); 2029 2030 err = power_check_constraints(cpuhw, events, cflags, n + 1); 2031 2032 if (has_branch_stack(event)) { 2033 u64 bhrb_filter = -1; 2034 2035 if (ppmu->bhrb_filter_map) 2036 bhrb_filter = ppmu->bhrb_filter_map( 2037 event->attr.branch_sample_type); 2038 2039 if (bhrb_filter == -1) { 2040 local_irq_restore(irq_flags); 2041 return -EOPNOTSUPP; 2042 } 2043 cpuhw->bhrb_filter = bhrb_filter; 2044 } 2045 2046 local_irq_restore(irq_flags); 2047 if (err) 2048 return -EINVAL; 2049 2050 event->hw.config = events[n]; 2051 event->hw.event_base = cflags[n]; 2052 event->hw.last_period = event->hw.sample_period; 2053 local64_set(&event->hw.period_left, event->hw.last_period); 2054 2055 /* 2056 * For EBB events we just context switch the PMC value, we don't do any 2057 * of the sample_period logic. We use hw.prev_count for this. 2058 */ 2059 if (is_ebb_event(event)) 2060 local64_set(&event->hw.prev_count, 0); 2061 2062 /* 2063 * See if we need to reserve the PMU. 2064 * If no events are currently in use, then we have to take a 2065 * mutex to ensure that we don't race with another task doing 2066 * reserve_pmc_hardware or release_pmc_hardware. 2067 */ 2068 err = 0; 2069 if (!atomic_inc_not_zero(&num_events)) { 2070 mutex_lock(&pmc_reserve_mutex); 2071 if (atomic_read(&num_events) == 0 && 2072 reserve_pmc_hardware(perf_event_interrupt)) 2073 err = -EBUSY; 2074 else 2075 atomic_inc(&num_events); 2076 mutex_unlock(&pmc_reserve_mutex); 2077 } 2078 event->destroy = hw_perf_event_destroy; 2079 2080 return err; 2081 } 2082 2083 static int power_pmu_event_idx(struct perf_event *event) 2084 { 2085 return event->hw.idx; 2086 } 2087 2088 ssize_t power_events_sysfs_show(struct device *dev, 2089 struct device_attribute *attr, char *page) 2090 { 2091 struct perf_pmu_events_attr *pmu_attr; 2092 2093 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 2094 2095 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 2096 } 2097 2098 static struct pmu power_pmu = { 2099 .pmu_enable = power_pmu_enable, 2100 .pmu_disable = power_pmu_disable, 2101 .event_init = power_pmu_event_init, 2102 .add = power_pmu_add, 2103 .del = power_pmu_del, 2104 .start = power_pmu_start, 2105 .stop = power_pmu_stop, 2106 .read = power_pmu_read, 2107 .start_txn = power_pmu_start_txn, 2108 .cancel_txn = power_pmu_cancel_txn, 2109 .commit_txn = power_pmu_commit_txn, 2110 .event_idx = power_pmu_event_idx, 2111 .sched_task = power_pmu_sched_task, 2112 }; 2113 2114 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \ 2115 PERF_SAMPLE_PHYS_ADDR | \ 2116 PERF_SAMPLE_DATA_PAGE_SIZE) 2117 /* 2118 * A counter has overflowed; update its count and record 2119 * things if requested. Note that interrupts are hard-disabled 2120 * here so there is no possibility of being interrupted. 2121 */ 2122 static void record_and_restart(struct perf_event *event, unsigned long val, 2123 struct pt_regs *regs) 2124 { 2125 u64 period = event->hw.sample_period; 2126 s64 prev, delta, left; 2127 int record = 0; 2128 2129 if (event->hw.state & PERF_HES_STOPPED) { 2130 write_pmc(event->hw.idx, 0); 2131 return; 2132 } 2133 2134 /* we don't have to worry about interrupts here */ 2135 prev = local64_read(&event->hw.prev_count); 2136 delta = check_and_compute_delta(prev, val); 2137 local64_add(delta, &event->count); 2138 2139 /* 2140 * See if the total period for this event has expired, 2141 * and update for the next period. 2142 */ 2143 val = 0; 2144 left = local64_read(&event->hw.period_left) - delta; 2145 if (delta == 0) 2146 left++; 2147 if (period) { 2148 if (left <= 0) { 2149 left += period; 2150 if (left <= 0) 2151 left = period; 2152 record = siar_valid(regs); 2153 event->hw.last_period = event->hw.sample_period; 2154 } 2155 if (left < 0x80000000LL) 2156 val = 0x80000000LL - left; 2157 } 2158 2159 write_pmc(event->hw.idx, val); 2160 local64_set(&event->hw.prev_count, val); 2161 local64_set(&event->hw.period_left, left); 2162 perf_event_update_userpage(event); 2163 2164 /* 2165 * Due to hardware limitation, sometimes SIAR could sample a kernel 2166 * address even when freeze on supervisor state (kernel) is set in 2167 * MMCR2. Check attr.exclude_kernel and address to drop the sample in 2168 * these cases. 2169 */ 2170 if (event->attr.exclude_kernel && record) 2171 if (is_kernel_addr(mfspr(SPRN_SIAR))) 2172 record = 0; 2173 2174 /* 2175 * Finally record data if requested. 2176 */ 2177 if (record) { 2178 struct perf_sample_data data; 2179 2180 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 2181 2182 if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE) 2183 perf_get_data_addr(event, regs, &data.addr); 2184 2185 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 2186 struct cpu_hw_events *cpuhw; 2187 cpuhw = this_cpu_ptr(&cpu_hw_events); 2188 power_pmu_bhrb_read(event, cpuhw); 2189 data.br_stack = &cpuhw->bhrb_stack; 2190 } 2191 2192 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC && 2193 ppmu->get_mem_data_src) 2194 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs); 2195 2196 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT && 2197 ppmu->get_mem_weight) 2198 ppmu->get_mem_weight(&data.weight); 2199 2200 if (perf_event_overflow(event, &data, regs)) 2201 power_pmu_stop(event, 0); 2202 } else if (period) { 2203 /* Account for interrupt in case of invalid SIAR */ 2204 if (perf_event_account_interrupt(event)) 2205 power_pmu_stop(event, 0); 2206 } 2207 } 2208 2209 /* 2210 * Called from generic code to get the misc flags (i.e. processor mode) 2211 * for an event_id. 2212 */ 2213 unsigned long perf_misc_flags(struct pt_regs *regs) 2214 { 2215 u32 flags = perf_get_misc_flags(regs); 2216 2217 if (flags) 2218 return flags; 2219 return user_mode(regs) ? PERF_RECORD_MISC_USER : 2220 PERF_RECORD_MISC_KERNEL; 2221 } 2222 2223 /* 2224 * Called from generic code to get the instruction pointer 2225 * for an event_id. 2226 */ 2227 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2228 { 2229 bool use_siar = regs_use_siar(regs); 2230 unsigned long siar = mfspr(SPRN_SIAR); 2231 2232 if (ppmu->flags & PPMU_P10_DD1) { 2233 if (siar) 2234 return siar; 2235 else 2236 return regs->nip; 2237 } else if (use_siar && siar_valid(regs)) 2238 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 2239 else if (use_siar) 2240 return 0; // no valid instruction pointer 2241 else 2242 return regs->nip; 2243 } 2244 2245 static bool pmc_overflow_power7(unsigned long val) 2246 { 2247 /* 2248 * Events on POWER7 can roll back if a speculative event doesn't 2249 * eventually complete. Unfortunately in some rare cases they will 2250 * raise a performance monitor exception. We need to catch this to 2251 * ensure we reset the PMC. In all cases the PMC will be 256 or less 2252 * cycles from overflow. 2253 * 2254 * We only do this if the first pass fails to find any overflowing 2255 * PMCs because a user might set a period of less than 256 and we 2256 * don't want to mistakenly reset them. 2257 */ 2258 if ((0x80000000 - val) <= 256) 2259 return true; 2260 2261 return false; 2262 } 2263 2264 static bool pmc_overflow(unsigned long val) 2265 { 2266 if ((int)val < 0) 2267 return true; 2268 2269 return false; 2270 } 2271 2272 /* 2273 * Performance monitor interrupt stuff 2274 */ 2275 static void __perf_event_interrupt(struct pt_regs *regs) 2276 { 2277 int i, j; 2278 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 2279 struct perf_event *event; 2280 unsigned long val[8]; 2281 int found, active; 2282 int nmi; 2283 2284 if (cpuhw->n_limited) 2285 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2286 mfspr(SPRN_PMC6)); 2287 2288 perf_read_regs(regs); 2289 2290 /* 2291 * If perf interrupts hit in a local_irq_disable (soft-masked) region, 2292 * we consider them as NMIs. This is required to prevent hash faults on 2293 * user addresses when reading callchains. See the NMI test in 2294 * do_hash_page. 2295 */ 2296 nmi = perf_intr_is_nmi(regs); 2297 if (nmi) 2298 nmi_enter(); 2299 else 2300 irq_enter(); 2301 2302 /* Read all the PMCs since we'll need them a bunch of times */ 2303 for (i = 0; i < ppmu->n_counter; ++i) 2304 val[i] = read_pmc(i + 1); 2305 2306 /* Try to find what caused the IRQ */ 2307 found = 0; 2308 for (i = 0; i < ppmu->n_counter; ++i) { 2309 if (!pmc_overflow(val[i])) 2310 continue; 2311 if (is_limited_pmc(i + 1)) 2312 continue; /* these won't generate IRQs */ 2313 /* 2314 * We've found one that's overflowed. For active 2315 * counters we need to log this. For inactive 2316 * counters, we need to reset it anyway 2317 */ 2318 found = 1; 2319 active = 0; 2320 for (j = 0; j < cpuhw->n_events; ++j) { 2321 event = cpuhw->event[j]; 2322 if (event->hw.idx == (i + 1)) { 2323 active = 1; 2324 record_and_restart(event, val[i], regs); 2325 break; 2326 } 2327 } 2328 if (!active) 2329 /* reset non active counters that have overflowed */ 2330 write_pmc(i + 1, 0); 2331 } 2332 if (!found && pvr_version_is(PVR_POWER7)) { 2333 /* check active counters for special buggy p7 overflow */ 2334 for (i = 0; i < cpuhw->n_events; ++i) { 2335 event = cpuhw->event[i]; 2336 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2337 continue; 2338 if (pmc_overflow_power7(val[event->hw.idx - 1])) { 2339 /* event has overflowed in a buggy way*/ 2340 found = 1; 2341 record_and_restart(event, 2342 val[event->hw.idx - 1], 2343 regs); 2344 } 2345 } 2346 } 2347 if (!found && !nmi && printk_ratelimit()) 2348 printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2349 2350 /* 2351 * Reset MMCR0 to its normal value. This will set PMXE and 2352 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2353 * and thus allow interrupts to occur again. 2354 * XXX might want to use MSR.PM to keep the events frozen until 2355 * we get back out of this interrupt. 2356 */ 2357 write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0); 2358 2359 if (nmi) 2360 nmi_exit(); 2361 else 2362 irq_exit(); 2363 } 2364 2365 static void perf_event_interrupt(struct pt_regs *regs) 2366 { 2367 u64 start_clock = sched_clock(); 2368 2369 __perf_event_interrupt(regs); 2370 perf_sample_event_took(sched_clock() - start_clock); 2371 } 2372 2373 static int power_pmu_prepare_cpu(unsigned int cpu) 2374 { 2375 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2376 2377 if (ppmu) { 2378 memset(cpuhw, 0, sizeof(*cpuhw)); 2379 cpuhw->mmcr.mmcr0 = MMCR0_FC; 2380 } 2381 return 0; 2382 } 2383 2384 int register_power_pmu(struct power_pmu *pmu) 2385 { 2386 if (ppmu) 2387 return -EBUSY; /* something's already registered */ 2388 2389 ppmu = pmu; 2390 pr_info("%s performance monitor hardware support registered\n", 2391 pmu->name); 2392 2393 power_pmu.attr_groups = ppmu->attr_groups; 2394 power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS); 2395 2396 #ifdef MSR_HV 2397 /* 2398 * Use FCHV to ignore kernel events if MSR.HV is set. 2399 */ 2400 if (mfmsr() & MSR_HV) 2401 freeze_events_kernel = MMCR0_FCHV; 2402 #endif /* CONFIG_PPC64 */ 2403 2404 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2405 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", 2406 power_pmu_prepare_cpu, NULL); 2407 return 0; 2408 } 2409 2410 #ifdef CONFIG_PPC64 2411 static int __init init_ppc64_pmu(void) 2412 { 2413 /* run through all the pmu drivers one at a time */ 2414 if (!init_power5_pmu()) 2415 return 0; 2416 else if (!init_power5p_pmu()) 2417 return 0; 2418 else if (!init_power6_pmu()) 2419 return 0; 2420 else if (!init_power7_pmu()) 2421 return 0; 2422 else if (!init_power8_pmu()) 2423 return 0; 2424 else if (!init_power9_pmu()) 2425 return 0; 2426 else if (!init_power10_pmu()) 2427 return 0; 2428 else if (!init_ppc970_pmu()) 2429 return 0; 2430 else 2431 return init_generic_compat_pmu(); 2432 } 2433 early_initcall(init_ppc64_pmu); 2434 #endif 2435