xref: /openbmc/linux/arch/powerpc/perf/core-book3s.c (revision 3a35093a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance event support - powerpc architecture code
4  *
5  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6  */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <asm/reg.h>
15 #include <asm/pmc.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
20 
21 #ifdef CONFIG_PPC64
22 #include "internal.h"
23 #endif
24 
25 #define BHRB_MAX_ENTRIES	32
26 #define BHRB_TARGET		0x0000000000000002
27 #define BHRB_PREDICTION		0x0000000000000001
28 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
29 
30 struct cpu_hw_events {
31 	int n_events;
32 	int n_percpu;
33 	int disabled;
34 	int n_added;
35 	int n_limited;
36 	u8  pmcs_enabled;
37 	struct perf_event *event[MAX_HWEVENTS];
38 	u64 events[MAX_HWEVENTS];
39 	unsigned int flags[MAX_HWEVENTS];
40 	struct mmcr_regs mmcr;
41 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
42 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
43 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
44 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
45 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
46 
47 	unsigned int txn_flags;
48 	int n_txn_start;
49 
50 	/* BHRB bits */
51 	u64				bhrb_filter;	/* BHRB HW branch filter */
52 	unsigned int			bhrb_users;
53 	void				*bhrb_context;
54 	struct	perf_branch_stack	bhrb_stack;
55 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
56 	u64				ic_init;
57 };
58 
59 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
60 
61 static struct power_pmu *ppmu;
62 
63 /*
64  * Normally, to ignore kernel events we set the FCS (freeze counters
65  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
66  * hypervisor bit set in the MSR, or if we are running on a processor
67  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
68  * then we need to use the FCHV bit to ignore kernel events.
69  */
70 static unsigned int freeze_events_kernel = MMCR0_FCS;
71 
72 /*
73  * 32-bit doesn't have MMCRA but does have an MMCR2,
74  * and a few other names are different.
75  * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
76  * Define them as zero knowing that any code path accessing
77  * these registers (via mtspr/mfspr) are done under ppmu flag
78  * check for PPMU_ARCH_31 and we will not enter that code path
79  * for 32-bit.
80  */
81 #ifdef CONFIG_PPC32
82 
83 #define MMCR0_FCHV		0
84 #define MMCR0_PMCjCE		MMCR0_PMCnCE
85 #define MMCR0_FC56		0
86 #define MMCR0_PMAO		0
87 #define MMCR0_EBE		0
88 #define MMCR0_BHRBA		0
89 #define MMCR0_PMCC		0
90 #define MMCR0_PMCC_U6		0
91 
92 #define SPRN_MMCRA		SPRN_MMCR2
93 #define SPRN_MMCR3		0
94 #define SPRN_SIER2		0
95 #define SPRN_SIER3		0
96 #define MMCRA_SAMPLE_ENABLE	0
97 #define MMCRA_BHRB_DISABLE     0
98 #define MMCR0_PMCCEXT		0
99 
100 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
101 {
102 	return 0;
103 }
104 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
105 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
106 {
107 	return 0;
108 }
109 static inline void perf_read_regs(struct pt_regs *regs)
110 {
111 	regs->result = 0;
112 }
113 static inline int perf_intr_is_nmi(struct pt_regs *regs)
114 {
115 	return 0;
116 }
117 
118 static inline int siar_valid(struct pt_regs *regs)
119 {
120 	return 1;
121 }
122 
123 static bool is_ebb_event(struct perf_event *event) { return false; }
124 static int ebb_event_check(struct perf_event *event) { return 0; }
125 static void ebb_event_add(struct perf_event *event) { }
126 static void ebb_switch_out(unsigned long mmcr0) { }
127 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
128 {
129 	return cpuhw->mmcr.mmcr0;
130 }
131 
132 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
133 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
134 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
135 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
136 static void pmao_restore_workaround(bool ebb) { }
137 #endif /* CONFIG_PPC32 */
138 
139 bool is_sier_available(void)
140 {
141 	if (!ppmu)
142 		return false;
143 
144 	if (ppmu->flags & PPMU_HAS_SIER)
145 		return true;
146 
147 	return false;
148 }
149 
150 static bool regs_use_siar(struct pt_regs *regs)
151 {
152 	/*
153 	 * When we take a performance monitor exception the regs are setup
154 	 * using perf_read_regs() which overloads some fields, in particular
155 	 * regs->result to tell us whether to use SIAR.
156 	 *
157 	 * However if the regs are from another exception, eg. a syscall, then
158 	 * they have not been setup using perf_read_regs() and so regs->result
159 	 * is something random.
160 	 */
161 	return ((TRAP(regs) == 0xf00) && regs->result);
162 }
163 
164 /*
165  * Things that are specific to 64-bit implementations.
166  */
167 #ifdef CONFIG_PPC64
168 
169 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
170 {
171 	unsigned long mmcra = regs->dsisr;
172 
173 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
174 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
175 		if (slot > 1)
176 			return 4 * (slot - 1);
177 	}
178 
179 	return 0;
180 }
181 
182 /*
183  * The user wants a data address recorded.
184  * If we're not doing instruction sampling, give them the SDAR
185  * (sampled data address).  If we are doing instruction sampling, then
186  * only give them the SDAR if it corresponds to the instruction
187  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
188  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
189  */
190 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
191 {
192 	unsigned long mmcra = regs->dsisr;
193 	bool sdar_valid;
194 
195 	if (ppmu->flags & PPMU_HAS_SIER)
196 		sdar_valid = regs->dar & SIER_SDAR_VALID;
197 	else {
198 		unsigned long sdsync;
199 
200 		if (ppmu->flags & PPMU_SIAR_VALID)
201 			sdsync = POWER7P_MMCRA_SDAR_VALID;
202 		else if (ppmu->flags & PPMU_ALT_SIPR)
203 			sdsync = POWER6_MMCRA_SDSYNC;
204 		else if (ppmu->flags & PPMU_NO_SIAR)
205 			sdsync = MMCRA_SAMPLE_ENABLE;
206 		else
207 			sdsync = MMCRA_SDSYNC;
208 
209 		sdar_valid = mmcra & sdsync;
210 	}
211 
212 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
213 		*addrp = mfspr(SPRN_SDAR);
214 
215 	if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0)
216 		*addrp = 0;
217 }
218 
219 static bool regs_sihv(struct pt_regs *regs)
220 {
221 	unsigned long sihv = MMCRA_SIHV;
222 
223 	if (ppmu->flags & PPMU_HAS_SIER)
224 		return !!(regs->dar & SIER_SIHV);
225 
226 	if (ppmu->flags & PPMU_ALT_SIPR)
227 		sihv = POWER6_MMCRA_SIHV;
228 
229 	return !!(regs->dsisr & sihv);
230 }
231 
232 static bool regs_sipr(struct pt_regs *regs)
233 {
234 	unsigned long sipr = MMCRA_SIPR;
235 
236 	if (ppmu->flags & PPMU_HAS_SIER)
237 		return !!(regs->dar & SIER_SIPR);
238 
239 	if (ppmu->flags & PPMU_ALT_SIPR)
240 		sipr = POWER6_MMCRA_SIPR;
241 
242 	return !!(regs->dsisr & sipr);
243 }
244 
245 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
246 {
247 	if (regs->msr & MSR_PR)
248 		return PERF_RECORD_MISC_USER;
249 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
250 		return PERF_RECORD_MISC_HYPERVISOR;
251 	return PERF_RECORD_MISC_KERNEL;
252 }
253 
254 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
255 {
256 	bool use_siar = regs_use_siar(regs);
257 	unsigned long mmcra = regs->dsisr;
258 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
259 
260 	if (!use_siar)
261 		return perf_flags_from_msr(regs);
262 
263 	/*
264 	 * Check the address in SIAR to identify the
265 	 * privilege levels since the SIER[MSR_HV, MSR_PR]
266 	 * bits are not set for marked events in power10
267 	 * DD1.
268 	 */
269 	if (marked && (ppmu->flags & PPMU_P10_DD1)) {
270 		unsigned long siar = mfspr(SPRN_SIAR);
271 		if (siar) {
272 			if (is_kernel_addr(siar))
273 				return PERF_RECORD_MISC_KERNEL;
274 			return PERF_RECORD_MISC_USER;
275 		} else {
276 			if (is_kernel_addr(regs->nip))
277 				return PERF_RECORD_MISC_KERNEL;
278 			return PERF_RECORD_MISC_USER;
279 		}
280 	}
281 
282 	/*
283 	 * If we don't have flags in MMCRA, rather than using
284 	 * the MSR, we intuit the flags from the address in
285 	 * SIAR which should give slightly more reliable
286 	 * results
287 	 */
288 	if (ppmu->flags & PPMU_NO_SIPR) {
289 		unsigned long siar = mfspr(SPRN_SIAR);
290 		if (is_kernel_addr(siar))
291 			return PERF_RECORD_MISC_KERNEL;
292 		return PERF_RECORD_MISC_USER;
293 	}
294 
295 	/* PR has priority over HV, so order below is important */
296 	if (regs_sipr(regs))
297 		return PERF_RECORD_MISC_USER;
298 
299 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
300 		return PERF_RECORD_MISC_HYPERVISOR;
301 
302 	return PERF_RECORD_MISC_KERNEL;
303 }
304 
305 /*
306  * Overload regs->dsisr to store MMCRA so we only need to read it once
307  * on each interrupt.
308  * Overload regs->dar to store SIER if we have it.
309  * Overload regs->result to specify whether we should use the MSR (result
310  * is zero) or the SIAR (result is non zero).
311  */
312 static inline void perf_read_regs(struct pt_regs *regs)
313 {
314 	unsigned long mmcra = mfspr(SPRN_MMCRA);
315 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
316 	int use_siar;
317 
318 	regs->dsisr = mmcra;
319 
320 	if (ppmu->flags & PPMU_HAS_SIER)
321 		regs->dar = mfspr(SPRN_SIER);
322 
323 	/*
324 	 * If this isn't a PMU exception (eg a software event) the SIAR is
325 	 * not valid. Use pt_regs.
326 	 *
327 	 * If it is a marked event use the SIAR.
328 	 *
329 	 * If the PMU doesn't update the SIAR for non marked events use
330 	 * pt_regs.
331 	 *
332 	 * If the PMU has HV/PR flags then check to see if they
333 	 * place the exception in userspace. If so, use pt_regs. In
334 	 * continuous sampling mode the SIAR and the PMU exception are
335 	 * not synchronised, so they may be many instructions apart.
336 	 * This can result in confusing backtraces. We still want
337 	 * hypervisor samples as well as samples in the kernel with
338 	 * interrupts off hence the userspace check.
339 	 */
340 	if (TRAP(regs) != 0xf00)
341 		use_siar = 0;
342 	else if ((ppmu->flags & PPMU_NO_SIAR))
343 		use_siar = 0;
344 	else if (marked)
345 		use_siar = 1;
346 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
347 		use_siar = 0;
348 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
349 		use_siar = 0;
350 	else
351 		use_siar = 1;
352 
353 	regs->result = use_siar;
354 }
355 
356 /*
357  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
358  * it as an NMI.
359  */
360 static inline int perf_intr_is_nmi(struct pt_regs *regs)
361 {
362 	return (regs->softe & IRQS_DISABLED);
363 }
364 
365 /*
366  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
367  * must be sampled only if the SIAR-valid bit is set.
368  *
369  * For unmarked instructions and for processors that don't have the SIAR-Valid
370  * bit, assume that SIAR is valid.
371  */
372 static inline int siar_valid(struct pt_regs *regs)
373 {
374 	unsigned long mmcra = regs->dsisr;
375 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
376 
377 	if (marked) {
378 		/*
379 		 * SIER[SIAR_VALID] is not set for some
380 		 * marked events on power10 DD1, so drop
381 		 * the check for SIER[SIAR_VALID] and return true.
382 		 */
383 		if (ppmu->flags & PPMU_P10_DD1)
384 			return 0x1;
385 		else if (ppmu->flags & PPMU_HAS_SIER)
386 			return regs->dar & SIER_SIAR_VALID;
387 
388 		if (ppmu->flags & PPMU_SIAR_VALID)
389 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
390 	}
391 
392 	return 1;
393 }
394 
395 
396 /* Reset all possible BHRB entries */
397 static void power_pmu_bhrb_reset(void)
398 {
399 	asm volatile(PPC_CLRBHRB);
400 }
401 
402 static void power_pmu_bhrb_enable(struct perf_event *event)
403 {
404 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
405 
406 	if (!ppmu->bhrb_nr)
407 		return;
408 
409 	/* Clear BHRB if we changed task context to avoid data leaks */
410 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
411 		power_pmu_bhrb_reset();
412 		cpuhw->bhrb_context = event->ctx;
413 	}
414 	cpuhw->bhrb_users++;
415 	perf_sched_cb_inc(event->ctx->pmu);
416 }
417 
418 static void power_pmu_bhrb_disable(struct perf_event *event)
419 {
420 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
421 
422 	if (!ppmu->bhrb_nr)
423 		return;
424 
425 	WARN_ON_ONCE(!cpuhw->bhrb_users);
426 	cpuhw->bhrb_users--;
427 	perf_sched_cb_dec(event->ctx->pmu);
428 
429 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
430 		/* BHRB cannot be turned off when other
431 		 * events are active on the PMU.
432 		 */
433 
434 		/* avoid stale pointer */
435 		cpuhw->bhrb_context = NULL;
436 	}
437 }
438 
439 /* Called from ctxsw to prevent one process's branch entries to
440  * mingle with the other process's entries during context switch.
441  */
442 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
443 {
444 	if (!ppmu->bhrb_nr)
445 		return;
446 
447 	if (sched_in)
448 		power_pmu_bhrb_reset();
449 }
450 /* Calculate the to address for a branch */
451 static __u64 power_pmu_bhrb_to(u64 addr)
452 {
453 	unsigned int instr;
454 	__u64 target;
455 
456 	if (is_kernel_addr(addr)) {
457 		if (copy_from_kernel_nofault(&instr, (void *)addr,
458 				sizeof(instr)))
459 			return 0;
460 
461 		return branch_target((struct ppc_inst *)&instr);
462 	}
463 
464 	/* Userspace: need copy instruction here then translate it */
465 	if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
466 			sizeof(instr)))
467 		return 0;
468 
469 	target = branch_target((struct ppc_inst *)&instr);
470 	if ((!target) || (instr & BRANCH_ABSOLUTE))
471 		return target;
472 
473 	/* Translate relative branch target from kernel to user address */
474 	return target - (unsigned long)&instr + addr;
475 }
476 
477 /* Processing BHRB entries */
478 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
479 {
480 	u64 val;
481 	u64 addr;
482 	int r_index, u_index, pred;
483 
484 	r_index = 0;
485 	u_index = 0;
486 	while (r_index < ppmu->bhrb_nr) {
487 		/* Assembly read function */
488 		val = read_bhrb(r_index++);
489 		if (!val)
490 			/* Terminal marker: End of valid BHRB entries */
491 			break;
492 		else {
493 			addr = val & BHRB_EA;
494 			pred = val & BHRB_PREDICTION;
495 
496 			if (!addr)
497 				/* invalid entry */
498 				continue;
499 
500 			/*
501 			 * BHRB rolling buffer could very much contain the kernel
502 			 * addresses at this point. Check the privileges before
503 			 * exporting it to userspace (avoid exposure of regions
504 			 * where we could have speculative execution)
505 			 * Incase of ISA v3.1, BHRB will capture only user-space
506 			 * addresses, hence include a check before filtering code
507 			 */
508 			if (!(ppmu->flags & PPMU_ARCH_31) &&
509 				is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0)
510 				continue;
511 
512 			/* Branches are read most recent first (ie. mfbhrb 0 is
513 			 * the most recent branch).
514 			 * There are two types of valid entries:
515 			 * 1) a target entry which is the to address of a
516 			 *    computed goto like a blr,bctr,btar.  The next
517 			 *    entry read from the bhrb will be branch
518 			 *    corresponding to this target (ie. the actual
519 			 *    blr/bctr/btar instruction).
520 			 * 2) a from address which is an actual branch.  If a
521 			 *    target entry proceeds this, then this is the
522 			 *    matching branch for that target.  If this is not
523 			 *    following a target entry, then this is a branch
524 			 *    where the target is given as an immediate field
525 			 *    in the instruction (ie. an i or b form branch).
526 			 *    In this case we need to read the instruction from
527 			 *    memory to determine the target/to address.
528 			 */
529 
530 			if (val & BHRB_TARGET) {
531 				/* Target branches use two entries
532 				 * (ie. computed gotos/XL form)
533 				 */
534 				cpuhw->bhrb_entries[u_index].to = addr;
535 				cpuhw->bhrb_entries[u_index].mispred = pred;
536 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
537 
538 				/* Get from address in next entry */
539 				val = read_bhrb(r_index++);
540 				addr = val & BHRB_EA;
541 				if (val & BHRB_TARGET) {
542 					/* Shouldn't have two targets in a
543 					   row.. Reset index and try again */
544 					r_index--;
545 					addr = 0;
546 				}
547 				cpuhw->bhrb_entries[u_index].from = addr;
548 			} else {
549 				/* Branches to immediate field
550 				   (ie I or B form) */
551 				cpuhw->bhrb_entries[u_index].from = addr;
552 				cpuhw->bhrb_entries[u_index].to =
553 					power_pmu_bhrb_to(addr);
554 				cpuhw->bhrb_entries[u_index].mispred = pred;
555 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
556 			}
557 			u_index++;
558 
559 		}
560 	}
561 	cpuhw->bhrb_stack.nr = u_index;
562 	cpuhw->bhrb_stack.hw_idx = -1ULL;
563 	return;
564 }
565 
566 static bool is_ebb_event(struct perf_event *event)
567 {
568 	/*
569 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
570 	 * check that the PMU supports EBB, meaning those that don't can still
571 	 * use bit 63 of the event code for something else if they wish.
572 	 */
573 	return (ppmu->flags & PPMU_ARCH_207S) &&
574 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
575 }
576 
577 static int ebb_event_check(struct perf_event *event)
578 {
579 	struct perf_event *leader = event->group_leader;
580 
581 	/* Event and group leader must agree on EBB */
582 	if (is_ebb_event(leader) != is_ebb_event(event))
583 		return -EINVAL;
584 
585 	if (is_ebb_event(event)) {
586 		if (!(event->attach_state & PERF_ATTACH_TASK))
587 			return -EINVAL;
588 
589 		if (!leader->attr.pinned || !leader->attr.exclusive)
590 			return -EINVAL;
591 
592 		if (event->attr.freq ||
593 		    event->attr.inherit ||
594 		    event->attr.sample_type ||
595 		    event->attr.sample_period ||
596 		    event->attr.enable_on_exec)
597 			return -EINVAL;
598 	}
599 
600 	return 0;
601 }
602 
603 static void ebb_event_add(struct perf_event *event)
604 {
605 	if (!is_ebb_event(event) || current->thread.used_ebb)
606 		return;
607 
608 	/*
609 	 * IFF this is the first time we've added an EBB event, set
610 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
611 	 * userspace. We need this so that we can context switch while
612 	 * userspace is in the EBB handler (where PMXE is 0).
613 	 */
614 	current->thread.used_ebb = 1;
615 	current->thread.mmcr0 |= MMCR0_PMXE;
616 }
617 
618 static void ebb_switch_out(unsigned long mmcr0)
619 {
620 	if (!(mmcr0 & MMCR0_EBE))
621 		return;
622 
623 	current->thread.siar  = mfspr(SPRN_SIAR);
624 	current->thread.sier  = mfspr(SPRN_SIER);
625 	current->thread.sdar  = mfspr(SPRN_SDAR);
626 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
627 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
628 	if (ppmu->flags & PPMU_ARCH_31) {
629 		current->thread.mmcr3 = mfspr(SPRN_MMCR3);
630 		current->thread.sier2 = mfspr(SPRN_SIER2);
631 		current->thread.sier3 = mfspr(SPRN_SIER3);
632 	}
633 }
634 
635 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
636 {
637 	unsigned long mmcr0 = cpuhw->mmcr.mmcr0;
638 
639 	if (!ebb)
640 		goto out;
641 
642 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
643 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
644 
645 	/*
646 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
647 	 * with pmao_restore_workaround() because we may add PMAO but we never
648 	 * clear it here.
649 	 */
650 	mmcr0 |= current->thread.mmcr0;
651 
652 	/*
653 	 * Be careful not to set PMXE if userspace had it cleared. This is also
654 	 * compatible with pmao_restore_workaround() because it has already
655 	 * cleared PMXE and we leave PMAO alone.
656 	 */
657 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
658 		mmcr0 &= ~MMCR0_PMXE;
659 
660 	mtspr(SPRN_SIAR, current->thread.siar);
661 	mtspr(SPRN_SIER, current->thread.sier);
662 	mtspr(SPRN_SDAR, current->thread.sdar);
663 
664 	/*
665 	 * Merge the kernel & user values of MMCR2. The semantics we implement
666 	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
667 	 * but not clear bits. If a task wants to be able to clear bits, ie.
668 	 * unfreeze counters, it should not set exclude_xxx in its events and
669 	 * instead manage the MMCR2 entirely by itself.
670 	 */
671 	mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);
672 
673 	if (ppmu->flags & PPMU_ARCH_31) {
674 		mtspr(SPRN_MMCR3, current->thread.mmcr3);
675 		mtspr(SPRN_SIER2, current->thread.sier2);
676 		mtspr(SPRN_SIER3, current->thread.sier3);
677 	}
678 out:
679 	return mmcr0;
680 }
681 
682 static void pmao_restore_workaround(bool ebb)
683 {
684 	unsigned pmcs[6];
685 
686 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
687 		return;
688 
689 	/*
690 	 * On POWER8E there is a hardware defect which affects the PMU context
691 	 * switch logic, ie. power_pmu_disable/enable().
692 	 *
693 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
694 	 * by the hardware. Sometime later the actual PMU exception is
695 	 * delivered.
696 	 *
697 	 * If we context switch, or simply disable/enable, the PMU prior to the
698 	 * exception arriving, the exception will be lost when we clear PMAO.
699 	 *
700 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
701 	 * set, and this _should_ generate an exception. However because of the
702 	 * defect no exception is generated when we write PMAO, and we get
703 	 * stuck with no counters counting but no exception delivered.
704 	 *
705 	 * The workaround is to detect this case and tweak the hardware to
706 	 * create another pending PMU exception.
707 	 *
708 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
709 	 * enabling the PMU. That causes a new exception to be generated in the
710 	 * chip, but we don't take it yet because we have interrupts hard
711 	 * disabled. We then write back the PMU state as we want it to be seen
712 	 * by the exception handler. When we reenable interrupts the exception
713 	 * handler will be called and see the correct state.
714 	 *
715 	 * The logic is the same for EBB, except that the exception is gated by
716 	 * us having interrupts hard disabled as well as the fact that we are
717 	 * not in userspace. The exception is finally delivered when we return
718 	 * to userspace.
719 	 */
720 
721 	/* Only if PMAO is set and PMAO_SYNC is clear */
722 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
723 		return;
724 
725 	/* If we're doing EBB, only if BESCR[GE] is set */
726 	if (ebb && !(current->thread.bescr & BESCR_GE))
727 		return;
728 
729 	/*
730 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
731 	 * disable to actually prevent the PMU exception from firing.
732 	 */
733 	hard_irq_disable();
734 
735 	/*
736 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
737 	 * Using read/write_pmc() in a for loop adds 12 function calls and
738 	 * almost doubles our code size.
739 	 */
740 	pmcs[0] = mfspr(SPRN_PMC1);
741 	pmcs[1] = mfspr(SPRN_PMC2);
742 	pmcs[2] = mfspr(SPRN_PMC3);
743 	pmcs[3] = mfspr(SPRN_PMC4);
744 	pmcs[4] = mfspr(SPRN_PMC5);
745 	pmcs[5] = mfspr(SPRN_PMC6);
746 
747 	/* Ensure all freeze bits are unset */
748 	mtspr(SPRN_MMCR2, 0);
749 
750 	/* Set up PMC6 to overflow in one cycle */
751 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
752 
753 	/* Enable exceptions and unfreeze PMC6 */
754 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
755 
756 	/* Now we need to refreeze and restore the PMCs */
757 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
758 
759 	mtspr(SPRN_PMC1, pmcs[0]);
760 	mtspr(SPRN_PMC2, pmcs[1]);
761 	mtspr(SPRN_PMC3, pmcs[2]);
762 	mtspr(SPRN_PMC4, pmcs[3]);
763 	mtspr(SPRN_PMC5, pmcs[4]);
764 	mtspr(SPRN_PMC6, pmcs[5]);
765 }
766 
767 #endif /* CONFIG_PPC64 */
768 
769 static void perf_event_interrupt(struct pt_regs *regs);
770 
771 /*
772  * Read one performance monitor counter (PMC).
773  */
774 static unsigned long read_pmc(int idx)
775 {
776 	unsigned long val;
777 
778 	switch (idx) {
779 	case 1:
780 		val = mfspr(SPRN_PMC1);
781 		break;
782 	case 2:
783 		val = mfspr(SPRN_PMC2);
784 		break;
785 	case 3:
786 		val = mfspr(SPRN_PMC3);
787 		break;
788 	case 4:
789 		val = mfspr(SPRN_PMC4);
790 		break;
791 	case 5:
792 		val = mfspr(SPRN_PMC5);
793 		break;
794 	case 6:
795 		val = mfspr(SPRN_PMC6);
796 		break;
797 #ifdef CONFIG_PPC64
798 	case 7:
799 		val = mfspr(SPRN_PMC7);
800 		break;
801 	case 8:
802 		val = mfspr(SPRN_PMC8);
803 		break;
804 #endif /* CONFIG_PPC64 */
805 	default:
806 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
807 		val = 0;
808 	}
809 	return val;
810 }
811 
812 /*
813  * Write one PMC.
814  */
815 static void write_pmc(int idx, unsigned long val)
816 {
817 	switch (idx) {
818 	case 1:
819 		mtspr(SPRN_PMC1, val);
820 		break;
821 	case 2:
822 		mtspr(SPRN_PMC2, val);
823 		break;
824 	case 3:
825 		mtspr(SPRN_PMC3, val);
826 		break;
827 	case 4:
828 		mtspr(SPRN_PMC4, val);
829 		break;
830 	case 5:
831 		mtspr(SPRN_PMC5, val);
832 		break;
833 	case 6:
834 		mtspr(SPRN_PMC6, val);
835 		break;
836 #ifdef CONFIG_PPC64
837 	case 7:
838 		mtspr(SPRN_PMC7, val);
839 		break;
840 	case 8:
841 		mtspr(SPRN_PMC8, val);
842 		break;
843 #endif /* CONFIG_PPC64 */
844 	default:
845 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
846 	}
847 }
848 
849 /* Called from sysrq_handle_showregs() */
850 void perf_event_print_debug(void)
851 {
852 	unsigned long sdar, sier, flags;
853 	u32 pmcs[MAX_HWEVENTS];
854 	int i;
855 
856 	if (!ppmu) {
857 		pr_info("Performance monitor hardware not registered.\n");
858 		return;
859 	}
860 
861 	if (!ppmu->n_counter)
862 		return;
863 
864 	local_irq_save(flags);
865 
866 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
867 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
868 
869 	for (i = 0; i < ppmu->n_counter; i++)
870 		pmcs[i] = read_pmc(i + 1);
871 
872 	for (; i < MAX_HWEVENTS; i++)
873 		pmcs[i] = 0xdeadbeef;
874 
875 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
876 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
877 
878 	if (ppmu->n_counter > 4)
879 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
880 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
881 
882 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
883 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
884 
885 	sdar = sier = 0;
886 #ifdef CONFIG_PPC64
887 	sdar = mfspr(SPRN_SDAR);
888 
889 	if (ppmu->flags & PPMU_HAS_SIER)
890 		sier = mfspr(SPRN_SIER);
891 
892 	if (ppmu->flags & PPMU_ARCH_207S) {
893 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
894 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
895 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
896 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
897 	}
898 
899 	if (ppmu->flags & PPMU_ARCH_31) {
900 		pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
901 			mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
902 	}
903 #endif
904 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
905 		mfspr(SPRN_SIAR), sdar, sier);
906 
907 	local_irq_restore(flags);
908 }
909 
910 /*
911  * Check if a set of events can all go on the PMU at once.
912  * If they can't, this will look at alternative codes for the events
913  * and see if any combination of alternative codes is feasible.
914  * The feasible set is returned in event_id[].
915  */
916 static int power_check_constraints(struct cpu_hw_events *cpuhw,
917 				   u64 event_id[], unsigned int cflags[],
918 				   int n_ev)
919 {
920 	unsigned long mask, value, nv;
921 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
922 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
923 	int i, j;
924 	unsigned long addf = ppmu->add_fields;
925 	unsigned long tadd = ppmu->test_adder;
926 	unsigned long grp_mask = ppmu->group_constraint_mask;
927 	unsigned long grp_val = ppmu->group_constraint_val;
928 
929 	if (n_ev > ppmu->n_counter)
930 		return -1;
931 
932 	/* First see if the events will go on as-is */
933 	for (i = 0; i < n_ev; ++i) {
934 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
935 		    && !ppmu->limited_pmc_event(event_id[i])) {
936 			ppmu->get_alternatives(event_id[i], cflags[i],
937 					       cpuhw->alternatives[i]);
938 			event_id[i] = cpuhw->alternatives[i][0];
939 		}
940 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
941 					 &cpuhw->avalues[i][0]))
942 			return -1;
943 	}
944 	value = mask = 0;
945 	for (i = 0; i < n_ev; ++i) {
946 		nv = (value | cpuhw->avalues[i][0]) +
947 			(value & cpuhw->avalues[i][0] & addf);
948 
949 		if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
950 			break;
951 
952 		if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
953 			& (~grp_mask)) != 0)
954 			break;
955 
956 		value = nv;
957 		mask |= cpuhw->amasks[i][0];
958 	}
959 	if (i == n_ev) {
960 		if ((value & mask & grp_mask) != (mask & grp_val))
961 			return -1;
962 		else
963 			return 0;	/* all OK */
964 	}
965 
966 	/* doesn't work, gather alternatives... */
967 	if (!ppmu->get_alternatives)
968 		return -1;
969 	for (i = 0; i < n_ev; ++i) {
970 		choice[i] = 0;
971 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
972 						  cpuhw->alternatives[i]);
973 		for (j = 1; j < n_alt[i]; ++j)
974 			ppmu->get_constraint(cpuhw->alternatives[i][j],
975 					     &cpuhw->amasks[i][j],
976 					     &cpuhw->avalues[i][j]);
977 	}
978 
979 	/* enumerate all possibilities and see if any will work */
980 	i = 0;
981 	j = -1;
982 	value = mask = nv = 0;
983 	while (i < n_ev) {
984 		if (j >= 0) {
985 			/* we're backtracking, restore context */
986 			value = svalues[i];
987 			mask = smasks[i];
988 			j = choice[i];
989 		}
990 		/*
991 		 * See if any alternative k for event_id i,
992 		 * where k > j, will satisfy the constraints.
993 		 */
994 		while (++j < n_alt[i]) {
995 			nv = (value | cpuhw->avalues[i][j]) +
996 				(value & cpuhw->avalues[i][j] & addf);
997 			if ((((nv + tadd) ^ value) & mask) == 0 &&
998 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
999 			     & cpuhw->amasks[i][j]) == 0)
1000 				break;
1001 		}
1002 		if (j >= n_alt[i]) {
1003 			/*
1004 			 * No feasible alternative, backtrack
1005 			 * to event_id i-1 and continue enumerating its
1006 			 * alternatives from where we got up to.
1007 			 */
1008 			if (--i < 0)
1009 				return -1;
1010 		} else {
1011 			/*
1012 			 * Found a feasible alternative for event_id i,
1013 			 * remember where we got up to with this event_id,
1014 			 * go on to the next event_id, and start with
1015 			 * the first alternative for it.
1016 			 */
1017 			choice[i] = j;
1018 			svalues[i] = value;
1019 			smasks[i] = mask;
1020 			value = nv;
1021 			mask |= cpuhw->amasks[i][j];
1022 			++i;
1023 			j = -1;
1024 		}
1025 	}
1026 
1027 	/* OK, we have a feasible combination, tell the caller the solution */
1028 	for (i = 0; i < n_ev; ++i)
1029 		event_id[i] = cpuhw->alternatives[i][choice[i]];
1030 	return 0;
1031 }
1032 
1033 /*
1034  * Check if newly-added events have consistent settings for
1035  * exclude_{user,kernel,hv} with each other and any previously
1036  * added events.
1037  */
1038 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
1039 			  int n_prev, int n_new)
1040 {
1041 	int eu = 0, ek = 0, eh = 0;
1042 	int i, n, first;
1043 	struct perf_event *event;
1044 
1045 	/*
1046 	 * If the PMU we're on supports per event exclude settings then we
1047 	 * don't need to do any of this logic. NB. This assumes no PMU has both
1048 	 * per event exclude and limited PMCs.
1049 	 */
1050 	if (ppmu->flags & PPMU_ARCH_207S)
1051 		return 0;
1052 
1053 	n = n_prev + n_new;
1054 	if (n <= 1)
1055 		return 0;
1056 
1057 	first = 1;
1058 	for (i = 0; i < n; ++i) {
1059 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1060 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1061 			continue;
1062 		}
1063 		event = ctrs[i];
1064 		if (first) {
1065 			eu = event->attr.exclude_user;
1066 			ek = event->attr.exclude_kernel;
1067 			eh = event->attr.exclude_hv;
1068 			first = 0;
1069 		} else if (event->attr.exclude_user != eu ||
1070 			   event->attr.exclude_kernel != ek ||
1071 			   event->attr.exclude_hv != eh) {
1072 			return -EAGAIN;
1073 		}
1074 	}
1075 
1076 	if (eu || ek || eh)
1077 		for (i = 0; i < n; ++i)
1078 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
1079 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
1080 
1081 	return 0;
1082 }
1083 
1084 static u64 check_and_compute_delta(u64 prev, u64 val)
1085 {
1086 	u64 delta = (val - prev) & 0xfffffffful;
1087 
1088 	/*
1089 	 * POWER7 can roll back counter values, if the new value is smaller
1090 	 * than the previous value it will cause the delta and the counter to
1091 	 * have bogus values unless we rolled a counter over.  If a coutner is
1092 	 * rolled back, it will be smaller, but within 256, which is the maximum
1093 	 * number of events to rollback at once.  If we detect a rollback
1094 	 * return 0.  This can lead to a small lack of precision in the
1095 	 * counters.
1096 	 */
1097 	if (prev > val && (prev - val) < 256)
1098 		delta = 0;
1099 
1100 	return delta;
1101 }
1102 
1103 static void power_pmu_read(struct perf_event *event)
1104 {
1105 	s64 val, delta, prev;
1106 
1107 	if (event->hw.state & PERF_HES_STOPPED)
1108 		return;
1109 
1110 	if (!event->hw.idx)
1111 		return;
1112 
1113 	if (is_ebb_event(event)) {
1114 		val = read_pmc(event->hw.idx);
1115 		local64_set(&event->hw.prev_count, val);
1116 		return;
1117 	}
1118 
1119 	/*
1120 	 * Performance monitor interrupts come even when interrupts
1121 	 * are soft-disabled, as long as interrupts are hard-enabled.
1122 	 * Therefore we treat them like NMIs.
1123 	 */
1124 	do {
1125 		prev = local64_read(&event->hw.prev_count);
1126 		barrier();
1127 		val = read_pmc(event->hw.idx);
1128 		delta = check_and_compute_delta(prev, val);
1129 		if (!delta)
1130 			return;
1131 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1132 
1133 	local64_add(delta, &event->count);
1134 
1135 	/*
1136 	 * A number of places program the PMC with (0x80000000 - period_left).
1137 	 * We never want period_left to be less than 1 because we will program
1138 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1139 	 * roll around to 0 before taking an exception. We have seen this
1140 	 * on POWER8.
1141 	 *
1142 	 * To fix this, clamp the minimum value of period_left to 1.
1143 	 */
1144 	do {
1145 		prev = local64_read(&event->hw.period_left);
1146 		val = prev - delta;
1147 		if (val < 1)
1148 			val = 1;
1149 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1150 }
1151 
1152 /*
1153  * On some machines, PMC5 and PMC6 can't be written, don't respect
1154  * the freeze conditions, and don't generate interrupts.  This tells
1155  * us if `event' is using such a PMC.
1156  */
1157 static int is_limited_pmc(int pmcnum)
1158 {
1159 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1160 		&& (pmcnum == 5 || pmcnum == 6);
1161 }
1162 
1163 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1164 				    unsigned long pmc5, unsigned long pmc6)
1165 {
1166 	struct perf_event *event;
1167 	u64 val, prev, delta;
1168 	int i;
1169 
1170 	for (i = 0; i < cpuhw->n_limited; ++i) {
1171 		event = cpuhw->limited_counter[i];
1172 		if (!event->hw.idx)
1173 			continue;
1174 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1175 		prev = local64_read(&event->hw.prev_count);
1176 		event->hw.idx = 0;
1177 		delta = check_and_compute_delta(prev, val);
1178 		if (delta)
1179 			local64_add(delta, &event->count);
1180 	}
1181 }
1182 
1183 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1184 				  unsigned long pmc5, unsigned long pmc6)
1185 {
1186 	struct perf_event *event;
1187 	u64 val, prev;
1188 	int i;
1189 
1190 	for (i = 0; i < cpuhw->n_limited; ++i) {
1191 		event = cpuhw->limited_counter[i];
1192 		event->hw.idx = cpuhw->limited_hwidx[i];
1193 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1194 		prev = local64_read(&event->hw.prev_count);
1195 		if (check_and_compute_delta(prev, val))
1196 			local64_set(&event->hw.prev_count, val);
1197 		perf_event_update_userpage(event);
1198 	}
1199 }
1200 
1201 /*
1202  * Since limited events don't respect the freeze conditions, we
1203  * have to read them immediately after freezing or unfreezing the
1204  * other events.  We try to keep the values from the limited
1205  * events as consistent as possible by keeping the delay (in
1206  * cycles and instructions) between freezing/unfreezing and reading
1207  * the limited events as small and consistent as possible.
1208  * Therefore, if any limited events are in use, we read them
1209  * both, and always in the same order, to minimize variability,
1210  * and do it inside the same asm that writes MMCR0.
1211  */
1212 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1213 {
1214 	unsigned long pmc5, pmc6;
1215 
1216 	if (!cpuhw->n_limited) {
1217 		mtspr(SPRN_MMCR0, mmcr0);
1218 		return;
1219 	}
1220 
1221 	/*
1222 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1223 	 * To ensure we don't get a performance monitor interrupt
1224 	 * between writing MMCR0 and freezing/thawing the limited
1225 	 * events, we first write MMCR0 with the event overflow
1226 	 * interrupt enable bits turned off.
1227 	 */
1228 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1229 		     : "=&r" (pmc5), "=&r" (pmc6)
1230 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1231 		       "i" (SPRN_MMCR0),
1232 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1233 
1234 	if (mmcr0 & MMCR0_FC)
1235 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1236 	else
1237 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1238 
1239 	/*
1240 	 * Write the full MMCR0 including the event overflow interrupt
1241 	 * enable bits, if necessary.
1242 	 */
1243 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1244 		mtspr(SPRN_MMCR0, mmcr0);
1245 }
1246 
1247 /*
1248  * Disable all events to prevent PMU interrupts and to allow
1249  * events to be added or removed.
1250  */
1251 static void power_pmu_disable(struct pmu *pmu)
1252 {
1253 	struct cpu_hw_events *cpuhw;
1254 	unsigned long flags, mmcr0, val, mmcra;
1255 
1256 	if (!ppmu)
1257 		return;
1258 	local_irq_save(flags);
1259 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1260 
1261 	if (!cpuhw->disabled) {
1262 		/*
1263 		 * Check if we ever enabled the PMU on this cpu.
1264 		 */
1265 		if (!cpuhw->pmcs_enabled) {
1266 			ppc_enable_pmcs();
1267 			cpuhw->pmcs_enabled = 1;
1268 		}
1269 
1270 		/*
1271 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1272 		 */
1273 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1274 		val |= MMCR0_FC;
1275 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1276 			 MMCR0_FC56);
1277 		/* Set mmcr0 PMCCEXT for p10 */
1278 		if (ppmu->flags & PPMU_ARCH_31)
1279 			val |= MMCR0_PMCCEXT;
1280 
1281 		/*
1282 		 * The barrier is to make sure the mtspr has been
1283 		 * executed and the PMU has frozen the events etc.
1284 		 * before we return.
1285 		 */
1286 		write_mmcr0(cpuhw, val);
1287 		mb();
1288 		isync();
1289 
1290 		val = mmcra = cpuhw->mmcr.mmcra;
1291 
1292 		/*
1293 		 * Disable instruction sampling if it was enabled
1294 		 */
1295 		if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE)
1296 			val &= ~MMCRA_SAMPLE_ENABLE;
1297 
1298 		/* Disable BHRB via mmcra (BHRBRD) for p10 */
1299 		if (ppmu->flags & PPMU_ARCH_31)
1300 			val |= MMCRA_BHRB_DISABLE;
1301 
1302 		/*
1303 		 * Write SPRN_MMCRA if mmcra has either disabled
1304 		 * instruction sampling or BHRB.
1305 		 */
1306 		if (val != mmcra) {
1307 			mtspr(SPRN_MMCRA, mmcra);
1308 			mb();
1309 			isync();
1310 		}
1311 
1312 		cpuhw->disabled = 1;
1313 		cpuhw->n_added = 0;
1314 
1315 		ebb_switch_out(mmcr0);
1316 
1317 #ifdef CONFIG_PPC64
1318 		/*
1319 		 * These are readable by userspace, may contain kernel
1320 		 * addresses and are not switched by context switch, so clear
1321 		 * them now to avoid leaking anything to userspace in general
1322 		 * including to another process.
1323 		 */
1324 		if (ppmu->flags & PPMU_ARCH_207S) {
1325 			mtspr(SPRN_SDAR, 0);
1326 			mtspr(SPRN_SIAR, 0);
1327 		}
1328 #endif
1329 	}
1330 
1331 	local_irq_restore(flags);
1332 }
1333 
1334 /*
1335  * Re-enable all events if disable == 0.
1336  * If we were previously disabled and events were added, then
1337  * put the new config on the PMU.
1338  */
1339 static void power_pmu_enable(struct pmu *pmu)
1340 {
1341 	struct perf_event *event;
1342 	struct cpu_hw_events *cpuhw;
1343 	unsigned long flags;
1344 	long i;
1345 	unsigned long val, mmcr0;
1346 	s64 left;
1347 	unsigned int hwc_index[MAX_HWEVENTS];
1348 	int n_lim;
1349 	int idx;
1350 	bool ebb;
1351 
1352 	if (!ppmu)
1353 		return;
1354 	local_irq_save(flags);
1355 
1356 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1357 	if (!cpuhw->disabled)
1358 		goto out;
1359 
1360 	if (cpuhw->n_events == 0) {
1361 		ppc_set_pmu_inuse(0);
1362 		goto out;
1363 	}
1364 
1365 	cpuhw->disabled = 0;
1366 
1367 	/*
1368 	 * EBB requires an exclusive group and all events must have the EBB
1369 	 * flag set, or not set, so we can just check a single event. Also we
1370 	 * know we have at least one event.
1371 	 */
1372 	ebb = is_ebb_event(cpuhw->event[0]);
1373 
1374 	/*
1375 	 * If we didn't change anything, or only removed events,
1376 	 * no need to recalculate MMCR* settings and reset the PMCs.
1377 	 * Just reenable the PMU with the current MMCR* settings
1378 	 * (possibly updated for removal of events).
1379 	 */
1380 	if (!cpuhw->n_added) {
1381 		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1382 		mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1383 		if (ppmu->flags & PPMU_ARCH_31)
1384 			mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1385 		goto out_enable;
1386 	}
1387 
1388 	/*
1389 	 * Clear all MMCR settings and recompute them for the new set of events.
1390 	 */
1391 	memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1392 
1393 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1394 			       &cpuhw->mmcr, cpuhw->event)) {
1395 		/* shouldn't ever get here */
1396 		printk(KERN_ERR "oops compute_mmcr failed\n");
1397 		goto out;
1398 	}
1399 
1400 	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1401 		/*
1402 		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1403 		 * bits for the first event. We have already checked that all
1404 		 * events have the same value for these bits as the first event.
1405 		 */
1406 		event = cpuhw->event[0];
1407 		if (event->attr.exclude_user)
1408 			cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
1409 		if (event->attr.exclude_kernel)
1410 			cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
1411 		if (event->attr.exclude_hv)
1412 			cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
1413 	}
1414 
1415 	/*
1416 	 * Write the new configuration to MMCR* with the freeze
1417 	 * bit set and set the hardware events to their initial values.
1418 	 * Then unfreeze the events.
1419 	 */
1420 	ppc_set_pmu_inuse(1);
1421 	mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1422 	mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1423 	mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1424 				| MMCR0_FC);
1425 	if (ppmu->flags & PPMU_ARCH_207S)
1426 		mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);
1427 
1428 	if (ppmu->flags & PPMU_ARCH_31)
1429 		mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1430 
1431 	/*
1432 	 * Read off any pre-existing events that need to move
1433 	 * to another PMC.
1434 	 */
1435 	for (i = 0; i < cpuhw->n_events; ++i) {
1436 		event = cpuhw->event[i];
1437 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1438 			power_pmu_read(event);
1439 			write_pmc(event->hw.idx, 0);
1440 			event->hw.idx = 0;
1441 		}
1442 	}
1443 
1444 	/*
1445 	 * Initialize the PMCs for all the new and moved events.
1446 	 */
1447 	cpuhw->n_limited = n_lim = 0;
1448 	for (i = 0; i < cpuhw->n_events; ++i) {
1449 		event = cpuhw->event[i];
1450 		if (event->hw.idx)
1451 			continue;
1452 		idx = hwc_index[i] + 1;
1453 		if (is_limited_pmc(idx)) {
1454 			cpuhw->limited_counter[n_lim] = event;
1455 			cpuhw->limited_hwidx[n_lim] = idx;
1456 			++n_lim;
1457 			continue;
1458 		}
1459 
1460 		if (ebb)
1461 			val = local64_read(&event->hw.prev_count);
1462 		else {
1463 			val = 0;
1464 			if (event->hw.sample_period) {
1465 				left = local64_read(&event->hw.period_left);
1466 				if (left < 0x80000000L)
1467 					val = 0x80000000L - left;
1468 			}
1469 			local64_set(&event->hw.prev_count, val);
1470 		}
1471 
1472 		event->hw.idx = idx;
1473 		if (event->hw.state & PERF_HES_STOPPED)
1474 			val = 0;
1475 		write_pmc(idx, val);
1476 
1477 		perf_event_update_userpage(event);
1478 	}
1479 	cpuhw->n_limited = n_lim;
1480 	cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;
1481 
1482  out_enable:
1483 	pmao_restore_workaround(ebb);
1484 
1485 	mmcr0 = ebb_switch_in(ebb, cpuhw);
1486 
1487 	mb();
1488 	if (cpuhw->bhrb_users)
1489 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1490 
1491 	write_mmcr0(cpuhw, mmcr0);
1492 
1493 	/*
1494 	 * Enable instruction sampling if necessary
1495 	 */
1496 	if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
1497 		mb();
1498 		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
1499 	}
1500 
1501  out:
1502 
1503 	local_irq_restore(flags);
1504 }
1505 
1506 static int collect_events(struct perf_event *group, int max_count,
1507 			  struct perf_event *ctrs[], u64 *events,
1508 			  unsigned int *flags)
1509 {
1510 	int n = 0;
1511 	struct perf_event *event;
1512 
1513 	if (group->pmu->task_ctx_nr == perf_hw_context) {
1514 		if (n >= max_count)
1515 			return -1;
1516 		ctrs[n] = group;
1517 		flags[n] = group->hw.event_base;
1518 		events[n++] = group->hw.config;
1519 	}
1520 	for_each_sibling_event(event, group) {
1521 		if (event->pmu->task_ctx_nr == perf_hw_context &&
1522 		    event->state != PERF_EVENT_STATE_OFF) {
1523 			if (n >= max_count)
1524 				return -1;
1525 			ctrs[n] = event;
1526 			flags[n] = event->hw.event_base;
1527 			events[n++] = event->hw.config;
1528 		}
1529 	}
1530 	return n;
1531 }
1532 
1533 /*
1534  * Add an event to the PMU.
1535  * If all events are not already frozen, then we disable and
1536  * re-enable the PMU in order to get hw_perf_enable to do the
1537  * actual work of reconfiguring the PMU.
1538  */
1539 static int power_pmu_add(struct perf_event *event, int ef_flags)
1540 {
1541 	struct cpu_hw_events *cpuhw;
1542 	unsigned long flags;
1543 	int n0;
1544 	int ret = -EAGAIN;
1545 
1546 	local_irq_save(flags);
1547 	perf_pmu_disable(event->pmu);
1548 
1549 	/*
1550 	 * Add the event to the list (if there is room)
1551 	 * and check whether the total set is still feasible.
1552 	 */
1553 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1554 	n0 = cpuhw->n_events;
1555 	if (n0 >= ppmu->n_counter)
1556 		goto out;
1557 	cpuhw->event[n0] = event;
1558 	cpuhw->events[n0] = event->hw.config;
1559 	cpuhw->flags[n0] = event->hw.event_base;
1560 
1561 	/*
1562 	 * This event may have been disabled/stopped in record_and_restart()
1563 	 * because we exceeded the ->event_limit. If re-starting the event,
1564 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1565 	 * notification is re-enabled.
1566 	 */
1567 	if (!(ef_flags & PERF_EF_START))
1568 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1569 	else
1570 		event->hw.state = 0;
1571 
1572 	/*
1573 	 * If group events scheduling transaction was started,
1574 	 * skip the schedulability test here, it will be performed
1575 	 * at commit time(->commit_txn) as a whole
1576 	 */
1577 	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1578 		goto nocheck;
1579 
1580 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1581 		goto out;
1582 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1583 		goto out;
1584 	event->hw.config = cpuhw->events[n0];
1585 
1586 nocheck:
1587 	ebb_event_add(event);
1588 
1589 	++cpuhw->n_events;
1590 	++cpuhw->n_added;
1591 
1592 	ret = 0;
1593  out:
1594 	if (has_branch_stack(event)) {
1595 		u64 bhrb_filter = -1;
1596 
1597 		if (ppmu->bhrb_filter_map)
1598 			bhrb_filter = ppmu->bhrb_filter_map(
1599 				event->attr.branch_sample_type);
1600 
1601 		if (bhrb_filter != -1) {
1602 			cpuhw->bhrb_filter = bhrb_filter;
1603 			power_pmu_bhrb_enable(event);
1604 		}
1605 	}
1606 
1607 	perf_pmu_enable(event->pmu);
1608 	local_irq_restore(flags);
1609 	return ret;
1610 }
1611 
1612 /*
1613  * Remove an event from the PMU.
1614  */
1615 static void power_pmu_del(struct perf_event *event, int ef_flags)
1616 {
1617 	struct cpu_hw_events *cpuhw;
1618 	long i;
1619 	unsigned long flags;
1620 
1621 	local_irq_save(flags);
1622 	perf_pmu_disable(event->pmu);
1623 
1624 	power_pmu_read(event);
1625 
1626 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1627 	for (i = 0; i < cpuhw->n_events; ++i) {
1628 		if (event == cpuhw->event[i]) {
1629 			while (++i < cpuhw->n_events) {
1630 				cpuhw->event[i-1] = cpuhw->event[i];
1631 				cpuhw->events[i-1] = cpuhw->events[i];
1632 				cpuhw->flags[i-1] = cpuhw->flags[i];
1633 			}
1634 			--cpuhw->n_events;
1635 			ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
1636 			if (event->hw.idx) {
1637 				write_pmc(event->hw.idx, 0);
1638 				event->hw.idx = 0;
1639 			}
1640 			perf_event_update_userpage(event);
1641 			break;
1642 		}
1643 	}
1644 	for (i = 0; i < cpuhw->n_limited; ++i)
1645 		if (event == cpuhw->limited_counter[i])
1646 			break;
1647 	if (i < cpuhw->n_limited) {
1648 		while (++i < cpuhw->n_limited) {
1649 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1650 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1651 		}
1652 		--cpuhw->n_limited;
1653 	}
1654 	if (cpuhw->n_events == 0) {
1655 		/* disable exceptions if no events are running */
1656 		cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
1657 	}
1658 
1659 	if (has_branch_stack(event))
1660 		power_pmu_bhrb_disable(event);
1661 
1662 	perf_pmu_enable(event->pmu);
1663 	local_irq_restore(flags);
1664 }
1665 
1666 /*
1667  * POWER-PMU does not support disabling individual counters, hence
1668  * program their cycle counter to their max value and ignore the interrupts.
1669  */
1670 
1671 static void power_pmu_start(struct perf_event *event, int ef_flags)
1672 {
1673 	unsigned long flags;
1674 	s64 left;
1675 	unsigned long val;
1676 
1677 	if (!event->hw.idx || !event->hw.sample_period)
1678 		return;
1679 
1680 	if (!(event->hw.state & PERF_HES_STOPPED))
1681 		return;
1682 
1683 	if (ef_flags & PERF_EF_RELOAD)
1684 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1685 
1686 	local_irq_save(flags);
1687 	perf_pmu_disable(event->pmu);
1688 
1689 	event->hw.state = 0;
1690 	left = local64_read(&event->hw.period_left);
1691 
1692 	val = 0;
1693 	if (left < 0x80000000L)
1694 		val = 0x80000000L - left;
1695 
1696 	write_pmc(event->hw.idx, val);
1697 
1698 	perf_event_update_userpage(event);
1699 	perf_pmu_enable(event->pmu);
1700 	local_irq_restore(flags);
1701 }
1702 
1703 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1704 {
1705 	unsigned long flags;
1706 
1707 	if (!event->hw.idx || !event->hw.sample_period)
1708 		return;
1709 
1710 	if (event->hw.state & PERF_HES_STOPPED)
1711 		return;
1712 
1713 	local_irq_save(flags);
1714 	perf_pmu_disable(event->pmu);
1715 
1716 	power_pmu_read(event);
1717 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1718 	write_pmc(event->hw.idx, 0);
1719 
1720 	perf_event_update_userpage(event);
1721 	perf_pmu_enable(event->pmu);
1722 	local_irq_restore(flags);
1723 }
1724 
1725 /*
1726  * Start group events scheduling transaction
1727  * Set the flag to make pmu::enable() not perform the
1728  * schedulability test, it will be performed at commit time
1729  *
1730  * We only support PERF_PMU_TXN_ADD transactions. Save the
1731  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1732  * transactions.
1733  */
1734 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1735 {
1736 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1737 
1738 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1739 
1740 	cpuhw->txn_flags = txn_flags;
1741 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1742 		return;
1743 
1744 	perf_pmu_disable(pmu);
1745 	cpuhw->n_txn_start = cpuhw->n_events;
1746 }
1747 
1748 /*
1749  * Stop group events scheduling transaction
1750  * Clear the flag and pmu::enable() will perform the
1751  * schedulability test.
1752  */
1753 static void power_pmu_cancel_txn(struct pmu *pmu)
1754 {
1755 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1756 	unsigned int txn_flags;
1757 
1758 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1759 
1760 	txn_flags = cpuhw->txn_flags;
1761 	cpuhw->txn_flags = 0;
1762 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1763 		return;
1764 
1765 	perf_pmu_enable(pmu);
1766 }
1767 
1768 /*
1769  * Commit group events scheduling transaction
1770  * Perform the group schedulability test as a whole
1771  * Return 0 if success
1772  */
1773 static int power_pmu_commit_txn(struct pmu *pmu)
1774 {
1775 	struct cpu_hw_events *cpuhw;
1776 	long i, n;
1777 
1778 	if (!ppmu)
1779 		return -EAGAIN;
1780 
1781 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1782 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1783 
1784 	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1785 		cpuhw->txn_flags = 0;
1786 		return 0;
1787 	}
1788 
1789 	n = cpuhw->n_events;
1790 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1791 		return -EAGAIN;
1792 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1793 	if (i < 0)
1794 		return -EAGAIN;
1795 
1796 	for (i = cpuhw->n_txn_start; i < n; ++i)
1797 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1798 
1799 	cpuhw->txn_flags = 0;
1800 	perf_pmu_enable(pmu);
1801 	return 0;
1802 }
1803 
1804 /*
1805  * Return 1 if we might be able to put event on a limited PMC,
1806  * or 0 if not.
1807  * An event can only go on a limited PMC if it counts something
1808  * that a limited PMC can count, doesn't require interrupts, and
1809  * doesn't exclude any processor mode.
1810  */
1811 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1812 				 unsigned int flags)
1813 {
1814 	int n;
1815 	u64 alt[MAX_EVENT_ALTERNATIVES];
1816 
1817 	if (event->attr.exclude_user
1818 	    || event->attr.exclude_kernel
1819 	    || event->attr.exclude_hv
1820 	    || event->attr.sample_period)
1821 		return 0;
1822 
1823 	if (ppmu->limited_pmc_event(ev))
1824 		return 1;
1825 
1826 	/*
1827 	 * The requested event_id isn't on a limited PMC already;
1828 	 * see if any alternative code goes on a limited PMC.
1829 	 */
1830 	if (!ppmu->get_alternatives)
1831 		return 0;
1832 
1833 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1834 	n = ppmu->get_alternatives(ev, flags, alt);
1835 
1836 	return n > 0;
1837 }
1838 
1839 /*
1840  * Find an alternative event_id that goes on a normal PMC, if possible,
1841  * and return the event_id code, or 0 if there is no such alternative.
1842  * (Note: event_id code 0 is "don't count" on all machines.)
1843  */
1844 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1845 {
1846 	u64 alt[MAX_EVENT_ALTERNATIVES];
1847 	int n;
1848 
1849 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1850 	n = ppmu->get_alternatives(ev, flags, alt);
1851 	if (!n)
1852 		return 0;
1853 	return alt[0];
1854 }
1855 
1856 /* Number of perf_events counting hardware events */
1857 static atomic_t num_events;
1858 /* Used to avoid races in calling reserve/release_pmc_hardware */
1859 static DEFINE_MUTEX(pmc_reserve_mutex);
1860 
1861 /*
1862  * Release the PMU if this is the last perf_event.
1863  */
1864 static void hw_perf_event_destroy(struct perf_event *event)
1865 {
1866 	if (!atomic_add_unless(&num_events, -1, 1)) {
1867 		mutex_lock(&pmc_reserve_mutex);
1868 		if (atomic_dec_return(&num_events) == 0)
1869 			release_pmc_hardware();
1870 		mutex_unlock(&pmc_reserve_mutex);
1871 	}
1872 }
1873 
1874 /*
1875  * Translate a generic cache event_id config to a raw event_id code.
1876  */
1877 static int hw_perf_cache_event(u64 config, u64 *eventp)
1878 {
1879 	unsigned long type, op, result;
1880 	u64 ev;
1881 
1882 	if (!ppmu->cache_events)
1883 		return -EINVAL;
1884 
1885 	/* unpack config */
1886 	type = config & 0xff;
1887 	op = (config >> 8) & 0xff;
1888 	result = (config >> 16) & 0xff;
1889 
1890 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1891 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1892 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1893 		return -EINVAL;
1894 
1895 	ev = (*ppmu->cache_events)[type][op][result];
1896 	if (ev == 0)
1897 		return -EOPNOTSUPP;
1898 	if (ev == -1)
1899 		return -EINVAL;
1900 	*eventp = ev;
1901 	return 0;
1902 }
1903 
1904 static bool is_event_blacklisted(u64 ev)
1905 {
1906 	int i;
1907 
1908 	for (i=0; i < ppmu->n_blacklist_ev; i++) {
1909 		if (ppmu->blacklist_ev[i] == ev)
1910 			return true;
1911 	}
1912 
1913 	return false;
1914 }
1915 
1916 static int power_pmu_event_init(struct perf_event *event)
1917 {
1918 	u64 ev;
1919 	unsigned long flags, irq_flags;
1920 	struct perf_event *ctrs[MAX_HWEVENTS];
1921 	u64 events[MAX_HWEVENTS];
1922 	unsigned int cflags[MAX_HWEVENTS];
1923 	int n;
1924 	int err;
1925 	struct cpu_hw_events *cpuhw;
1926 
1927 	if (!ppmu)
1928 		return -ENOENT;
1929 
1930 	if (has_branch_stack(event)) {
1931 	        /* PMU has BHRB enabled */
1932 		if (!(ppmu->flags & PPMU_ARCH_207S))
1933 			return -EOPNOTSUPP;
1934 	}
1935 
1936 	switch (event->attr.type) {
1937 	case PERF_TYPE_HARDWARE:
1938 		ev = event->attr.config;
1939 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1940 			return -EOPNOTSUPP;
1941 
1942 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1943 			return -EINVAL;
1944 		ev = ppmu->generic_events[ev];
1945 		break;
1946 	case PERF_TYPE_HW_CACHE:
1947 		err = hw_perf_cache_event(event->attr.config, &ev);
1948 		if (err)
1949 			return err;
1950 
1951 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1952 			return -EINVAL;
1953 		break;
1954 	case PERF_TYPE_RAW:
1955 		ev = event->attr.config;
1956 
1957 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1958 			return -EINVAL;
1959 		break;
1960 	default:
1961 		return -ENOENT;
1962 	}
1963 
1964 	event->hw.config_base = ev;
1965 	event->hw.idx = 0;
1966 
1967 	/*
1968 	 * If we are not running on a hypervisor, force the
1969 	 * exclude_hv bit to 0 so that we don't care what
1970 	 * the user set it to.
1971 	 */
1972 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1973 		event->attr.exclude_hv = 0;
1974 
1975 	/*
1976 	 * If this is a per-task event, then we can use
1977 	 * PM_RUN_* events interchangeably with their non RUN_*
1978 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1979 	 * XXX we should check if the task is an idle task.
1980 	 */
1981 	flags = 0;
1982 	if (event->attach_state & PERF_ATTACH_TASK)
1983 		flags |= PPMU_ONLY_COUNT_RUN;
1984 
1985 	/*
1986 	 * If this machine has limited events, check whether this
1987 	 * event_id could go on a limited event.
1988 	 */
1989 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1990 		if (can_go_on_limited_pmc(event, ev, flags)) {
1991 			flags |= PPMU_LIMITED_PMC_OK;
1992 		} else if (ppmu->limited_pmc_event(ev)) {
1993 			/*
1994 			 * The requested event_id is on a limited PMC,
1995 			 * but we can't use a limited PMC; see if any
1996 			 * alternative goes on a normal PMC.
1997 			 */
1998 			ev = normal_pmc_alternative(ev, flags);
1999 			if (!ev)
2000 				return -EINVAL;
2001 		}
2002 	}
2003 
2004 	/* Extra checks for EBB */
2005 	err = ebb_event_check(event);
2006 	if (err)
2007 		return err;
2008 
2009 	/*
2010 	 * If this is in a group, check if it can go on with all the
2011 	 * other hardware events in the group.  We assume the event
2012 	 * hasn't been linked into its leader's sibling list at this point.
2013 	 */
2014 	n = 0;
2015 	if (event->group_leader != event) {
2016 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
2017 				   ctrs, events, cflags);
2018 		if (n < 0)
2019 			return -EINVAL;
2020 	}
2021 	events[n] = ev;
2022 	ctrs[n] = event;
2023 	cflags[n] = flags;
2024 	if (check_excludes(ctrs, cflags, n, 1))
2025 		return -EINVAL;
2026 
2027 	local_irq_save(irq_flags);
2028 	cpuhw = this_cpu_ptr(&cpu_hw_events);
2029 
2030 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
2031 
2032 	if (has_branch_stack(event)) {
2033 		u64 bhrb_filter = -1;
2034 
2035 		if (ppmu->bhrb_filter_map)
2036 			bhrb_filter = ppmu->bhrb_filter_map(
2037 					event->attr.branch_sample_type);
2038 
2039 		if (bhrb_filter == -1) {
2040 			local_irq_restore(irq_flags);
2041 			return -EOPNOTSUPP;
2042 		}
2043 		cpuhw->bhrb_filter = bhrb_filter;
2044 	}
2045 
2046 	local_irq_restore(irq_flags);
2047 	if (err)
2048 		return -EINVAL;
2049 
2050 	event->hw.config = events[n];
2051 	event->hw.event_base = cflags[n];
2052 	event->hw.last_period = event->hw.sample_period;
2053 	local64_set(&event->hw.period_left, event->hw.last_period);
2054 
2055 	/*
2056 	 * For EBB events we just context switch the PMC value, we don't do any
2057 	 * of the sample_period logic. We use hw.prev_count for this.
2058 	 */
2059 	if (is_ebb_event(event))
2060 		local64_set(&event->hw.prev_count, 0);
2061 
2062 	/*
2063 	 * See if we need to reserve the PMU.
2064 	 * If no events are currently in use, then we have to take a
2065 	 * mutex to ensure that we don't race with another task doing
2066 	 * reserve_pmc_hardware or release_pmc_hardware.
2067 	 */
2068 	err = 0;
2069 	if (!atomic_inc_not_zero(&num_events)) {
2070 		mutex_lock(&pmc_reserve_mutex);
2071 		if (atomic_read(&num_events) == 0 &&
2072 		    reserve_pmc_hardware(perf_event_interrupt))
2073 			err = -EBUSY;
2074 		else
2075 			atomic_inc(&num_events);
2076 		mutex_unlock(&pmc_reserve_mutex);
2077 	}
2078 	event->destroy = hw_perf_event_destroy;
2079 
2080 	return err;
2081 }
2082 
2083 static int power_pmu_event_idx(struct perf_event *event)
2084 {
2085 	return event->hw.idx;
2086 }
2087 
2088 ssize_t power_events_sysfs_show(struct device *dev,
2089 				struct device_attribute *attr, char *page)
2090 {
2091 	struct perf_pmu_events_attr *pmu_attr;
2092 
2093 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2094 
2095 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2096 }
2097 
2098 static struct pmu power_pmu = {
2099 	.pmu_enable	= power_pmu_enable,
2100 	.pmu_disable	= power_pmu_disable,
2101 	.event_init	= power_pmu_event_init,
2102 	.add		= power_pmu_add,
2103 	.del		= power_pmu_del,
2104 	.start		= power_pmu_start,
2105 	.stop		= power_pmu_stop,
2106 	.read		= power_pmu_read,
2107 	.start_txn	= power_pmu_start_txn,
2108 	.cancel_txn	= power_pmu_cancel_txn,
2109 	.commit_txn	= power_pmu_commit_txn,
2110 	.event_idx	= power_pmu_event_idx,
2111 	.sched_task	= power_pmu_sched_task,
2112 };
2113 
2114 #define PERF_SAMPLE_ADDR_TYPE  (PERF_SAMPLE_ADDR |		\
2115 				PERF_SAMPLE_PHYS_ADDR |		\
2116 				PERF_SAMPLE_DATA_PAGE_SIZE)
2117 /*
2118  * A counter has overflowed; update its count and record
2119  * things if requested.  Note that interrupts are hard-disabled
2120  * here so there is no possibility of being interrupted.
2121  */
2122 static void record_and_restart(struct perf_event *event, unsigned long val,
2123 			       struct pt_regs *regs)
2124 {
2125 	u64 period = event->hw.sample_period;
2126 	s64 prev, delta, left;
2127 	int record = 0;
2128 
2129 	if (event->hw.state & PERF_HES_STOPPED) {
2130 		write_pmc(event->hw.idx, 0);
2131 		return;
2132 	}
2133 
2134 	/* we don't have to worry about interrupts here */
2135 	prev = local64_read(&event->hw.prev_count);
2136 	delta = check_and_compute_delta(prev, val);
2137 	local64_add(delta, &event->count);
2138 
2139 	/*
2140 	 * See if the total period for this event has expired,
2141 	 * and update for the next period.
2142 	 */
2143 	val = 0;
2144 	left = local64_read(&event->hw.period_left) - delta;
2145 	if (delta == 0)
2146 		left++;
2147 	if (period) {
2148 		if (left <= 0) {
2149 			left += period;
2150 			if (left <= 0)
2151 				left = period;
2152 			record = siar_valid(regs);
2153 			event->hw.last_period = event->hw.sample_period;
2154 		}
2155 		if (left < 0x80000000LL)
2156 			val = 0x80000000LL - left;
2157 	}
2158 
2159 	write_pmc(event->hw.idx, val);
2160 	local64_set(&event->hw.prev_count, val);
2161 	local64_set(&event->hw.period_left, left);
2162 	perf_event_update_userpage(event);
2163 
2164 	/*
2165 	 * Due to hardware limitation, sometimes SIAR could sample a kernel
2166 	 * address even when freeze on supervisor state (kernel) is set in
2167 	 * MMCR2. Check attr.exclude_kernel and address to drop the sample in
2168 	 * these cases.
2169 	 */
2170 	if (event->attr.exclude_kernel && record)
2171 		if (is_kernel_addr(mfspr(SPRN_SIAR)))
2172 			record = 0;
2173 
2174 	/*
2175 	 * Finally record data if requested.
2176 	 */
2177 	if (record) {
2178 		struct perf_sample_data data;
2179 
2180 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2181 
2182 		if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE)
2183 			perf_get_data_addr(event, regs, &data.addr);
2184 
2185 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2186 			struct cpu_hw_events *cpuhw;
2187 			cpuhw = this_cpu_ptr(&cpu_hw_events);
2188 			power_pmu_bhrb_read(event, cpuhw);
2189 			data.br_stack = &cpuhw->bhrb_stack;
2190 		}
2191 
2192 		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2193 						ppmu->get_mem_data_src)
2194 			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2195 
2196 		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2197 						ppmu->get_mem_weight)
2198 			ppmu->get_mem_weight(&data.weight);
2199 
2200 		if (perf_event_overflow(event, &data, regs))
2201 			power_pmu_stop(event, 0);
2202 	} else if (period) {
2203 		/* Account for interrupt in case of invalid SIAR */
2204 		if (perf_event_account_interrupt(event))
2205 			power_pmu_stop(event, 0);
2206 	}
2207 }
2208 
2209 /*
2210  * Called from generic code to get the misc flags (i.e. processor mode)
2211  * for an event_id.
2212  */
2213 unsigned long perf_misc_flags(struct pt_regs *regs)
2214 {
2215 	u32 flags = perf_get_misc_flags(regs);
2216 
2217 	if (flags)
2218 		return flags;
2219 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2220 		PERF_RECORD_MISC_KERNEL;
2221 }
2222 
2223 /*
2224  * Called from generic code to get the instruction pointer
2225  * for an event_id.
2226  */
2227 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2228 {
2229 	bool use_siar = regs_use_siar(regs);
2230 	unsigned long siar = mfspr(SPRN_SIAR);
2231 
2232 	if (ppmu->flags & PPMU_P10_DD1) {
2233 		if (siar)
2234 			return siar;
2235 		else
2236 			return regs->nip;
2237 	} else if (use_siar && siar_valid(regs))
2238 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2239 	else if (use_siar)
2240 		return 0;		// no valid instruction pointer
2241 	else
2242 		return regs->nip;
2243 }
2244 
2245 static bool pmc_overflow_power7(unsigned long val)
2246 {
2247 	/*
2248 	 * Events on POWER7 can roll back if a speculative event doesn't
2249 	 * eventually complete. Unfortunately in some rare cases they will
2250 	 * raise a performance monitor exception. We need to catch this to
2251 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2252 	 * cycles from overflow.
2253 	 *
2254 	 * We only do this if the first pass fails to find any overflowing
2255 	 * PMCs because a user might set a period of less than 256 and we
2256 	 * don't want to mistakenly reset them.
2257 	 */
2258 	if ((0x80000000 - val) <= 256)
2259 		return true;
2260 
2261 	return false;
2262 }
2263 
2264 static bool pmc_overflow(unsigned long val)
2265 {
2266 	if ((int)val < 0)
2267 		return true;
2268 
2269 	return false;
2270 }
2271 
2272 /*
2273  * Performance monitor interrupt stuff
2274  */
2275 static void __perf_event_interrupt(struct pt_regs *regs)
2276 {
2277 	int i, j;
2278 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2279 	struct perf_event *event;
2280 	unsigned long val[8];
2281 	int found, active;
2282 	int nmi;
2283 
2284 	if (cpuhw->n_limited)
2285 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2286 					mfspr(SPRN_PMC6));
2287 
2288 	perf_read_regs(regs);
2289 
2290 	/*
2291 	 * If perf interrupts hit in a local_irq_disable (soft-masked) region,
2292 	 * we consider them as NMIs. This is required to prevent hash faults on
2293 	 * user addresses when reading callchains. See the NMI test in
2294 	 * do_hash_page.
2295 	 */
2296 	nmi = perf_intr_is_nmi(regs);
2297 	if (nmi)
2298 		nmi_enter();
2299 	else
2300 		irq_enter();
2301 
2302 	/* Read all the PMCs since we'll need them a bunch of times */
2303 	for (i = 0; i < ppmu->n_counter; ++i)
2304 		val[i] = read_pmc(i + 1);
2305 
2306 	/* Try to find what caused the IRQ */
2307 	found = 0;
2308 	for (i = 0; i < ppmu->n_counter; ++i) {
2309 		if (!pmc_overflow(val[i]))
2310 			continue;
2311 		if (is_limited_pmc(i + 1))
2312 			continue; /* these won't generate IRQs */
2313 		/*
2314 		 * We've found one that's overflowed.  For active
2315 		 * counters we need to log this.  For inactive
2316 		 * counters, we need to reset it anyway
2317 		 */
2318 		found = 1;
2319 		active = 0;
2320 		for (j = 0; j < cpuhw->n_events; ++j) {
2321 			event = cpuhw->event[j];
2322 			if (event->hw.idx == (i + 1)) {
2323 				active = 1;
2324 				record_and_restart(event, val[i], regs);
2325 				break;
2326 			}
2327 		}
2328 		if (!active)
2329 			/* reset non active counters that have overflowed */
2330 			write_pmc(i + 1, 0);
2331 	}
2332 	if (!found && pvr_version_is(PVR_POWER7)) {
2333 		/* check active counters for special buggy p7 overflow */
2334 		for (i = 0; i < cpuhw->n_events; ++i) {
2335 			event = cpuhw->event[i];
2336 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2337 				continue;
2338 			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2339 				/* event has overflowed in a buggy way*/
2340 				found = 1;
2341 				record_and_restart(event,
2342 						   val[event->hw.idx - 1],
2343 						   regs);
2344 			}
2345 		}
2346 	}
2347 	if (!found && !nmi && printk_ratelimit())
2348 		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2349 
2350 	/*
2351 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2352 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2353 	 * and thus allow interrupts to occur again.
2354 	 * XXX might want to use MSR.PM to keep the events frozen until
2355 	 * we get back out of this interrupt.
2356 	 */
2357 	write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0);
2358 
2359 	if (nmi)
2360 		nmi_exit();
2361 	else
2362 		irq_exit();
2363 }
2364 
2365 static void perf_event_interrupt(struct pt_regs *regs)
2366 {
2367 	u64 start_clock = sched_clock();
2368 
2369 	__perf_event_interrupt(regs);
2370 	perf_sample_event_took(sched_clock() - start_clock);
2371 }
2372 
2373 static int power_pmu_prepare_cpu(unsigned int cpu)
2374 {
2375 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2376 
2377 	if (ppmu) {
2378 		memset(cpuhw, 0, sizeof(*cpuhw));
2379 		cpuhw->mmcr.mmcr0 = MMCR0_FC;
2380 	}
2381 	return 0;
2382 }
2383 
2384 int register_power_pmu(struct power_pmu *pmu)
2385 {
2386 	if (ppmu)
2387 		return -EBUSY;		/* something's already registered */
2388 
2389 	ppmu = pmu;
2390 	pr_info("%s performance monitor hardware support registered\n",
2391 		pmu->name);
2392 
2393 	power_pmu.attr_groups = ppmu->attr_groups;
2394 	power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);
2395 
2396 #ifdef MSR_HV
2397 	/*
2398 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2399 	 */
2400 	if (mfmsr() & MSR_HV)
2401 		freeze_events_kernel = MMCR0_FCHV;
2402 #endif /* CONFIG_PPC64 */
2403 
2404 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2405 	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2406 			  power_pmu_prepare_cpu, NULL);
2407 	return 0;
2408 }
2409 
2410 #ifdef CONFIG_PPC64
2411 static int __init init_ppc64_pmu(void)
2412 {
2413 	/* run through all the pmu drivers one at a time */
2414 	if (!init_power5_pmu())
2415 		return 0;
2416 	else if (!init_power5p_pmu())
2417 		return 0;
2418 	else if (!init_power6_pmu())
2419 		return 0;
2420 	else if (!init_power7_pmu())
2421 		return 0;
2422 	else if (!init_power8_pmu())
2423 		return 0;
2424 	else if (!init_power9_pmu())
2425 		return 0;
2426 	else if (!init_power10_pmu())
2427 		return 0;
2428 	else if (!init_ppc970_pmu())
2429 		return 0;
2430 	else
2431 		return init_generic_compat_pmu();
2432 }
2433 early_initcall(init_ppc64_pmu);
2434 #endif
2435