xref: /openbmc/linux/arch/powerpc/perf/core-book3s.c (revision 24b1944f)
1 /*
2  * Performance event support - powerpc architecture code
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
17 #include <asm/reg.h>
18 #include <asm/pmc.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
23 
24 #define BHRB_MAX_ENTRIES	32
25 #define BHRB_TARGET		0x0000000000000002
26 #define BHRB_PREDICTION		0x0000000000000001
27 #define BHRB_EA			0xFFFFFFFFFFFFFFFC
28 
29 struct cpu_hw_events {
30 	int n_events;
31 	int n_percpu;
32 	int disabled;
33 	int n_added;
34 	int n_limited;
35 	u8  pmcs_enabled;
36 	struct perf_event *event[MAX_HWEVENTS];
37 	u64 events[MAX_HWEVENTS];
38 	unsigned int flags[MAX_HWEVENTS];
39 	unsigned long mmcr[3];
40 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
41 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
42 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
43 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
44 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
45 
46 	unsigned int group_flag;
47 	int n_txn_start;
48 
49 	/* BHRB bits */
50 	u64				bhrb_filter;	/* BHRB HW branch filter */
51 	int				bhrb_users;
52 	void				*bhrb_context;
53 	struct	perf_branch_stack	bhrb_stack;
54 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
55 };
56 
57 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
58 
59 struct power_pmu *ppmu;
60 
61 /*
62  * Normally, to ignore kernel events we set the FCS (freeze counters
63  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
64  * hypervisor bit set in the MSR, or if we are running on a processor
65  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
66  * then we need to use the FCHV bit to ignore kernel events.
67  */
68 static unsigned int freeze_events_kernel = MMCR0_FCS;
69 
70 /*
71  * 32-bit doesn't have MMCRA but does have an MMCR2,
72  * and a few other names are different.
73  */
74 #ifdef CONFIG_PPC32
75 
76 #define MMCR0_FCHV		0
77 #define MMCR0_PMCjCE		MMCR0_PMCnCE
78 
79 #define SPRN_MMCRA		SPRN_MMCR2
80 #define MMCRA_SAMPLE_ENABLE	0
81 
82 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
83 {
84 	return 0;
85 }
86 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
87 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
88 {
89 	return 0;
90 }
91 static inline void perf_read_regs(struct pt_regs *regs)
92 {
93 	regs->result = 0;
94 }
95 static inline int perf_intr_is_nmi(struct pt_regs *regs)
96 {
97 	return 0;
98 }
99 
100 static inline int siar_valid(struct pt_regs *regs)
101 {
102 	return 1;
103 }
104 
105 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
106 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
107 void power_pmu_flush_branch_stack(void) {}
108 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
109 #endif /* CONFIG_PPC32 */
110 
111 static bool regs_use_siar(struct pt_regs *regs)
112 {
113 	return !!regs->result;
114 }
115 
116 /*
117  * Things that are specific to 64-bit implementations.
118  */
119 #ifdef CONFIG_PPC64
120 
121 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
122 {
123 	unsigned long mmcra = regs->dsisr;
124 
125 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
126 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
127 		if (slot > 1)
128 			return 4 * (slot - 1);
129 	}
130 
131 	return 0;
132 }
133 
134 /*
135  * The user wants a data address recorded.
136  * If we're not doing instruction sampling, give them the SDAR
137  * (sampled data address).  If we are doing instruction sampling, then
138  * only give them the SDAR if it corresponds to the instruction
139  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
140  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
141  */
142 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
143 {
144 	unsigned long mmcra = regs->dsisr;
145 	bool sdar_valid;
146 
147 	if (ppmu->flags & PPMU_HAS_SIER)
148 		sdar_valid = regs->dar & SIER_SDAR_VALID;
149 	else {
150 		unsigned long sdsync;
151 
152 		if (ppmu->flags & PPMU_SIAR_VALID)
153 			sdsync = POWER7P_MMCRA_SDAR_VALID;
154 		else if (ppmu->flags & PPMU_ALT_SIPR)
155 			sdsync = POWER6_MMCRA_SDSYNC;
156 		else
157 			sdsync = MMCRA_SDSYNC;
158 
159 		sdar_valid = mmcra & sdsync;
160 	}
161 
162 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
163 		*addrp = mfspr(SPRN_SDAR);
164 }
165 
166 static bool regs_sihv(struct pt_regs *regs)
167 {
168 	unsigned long sihv = MMCRA_SIHV;
169 
170 	if (ppmu->flags & PPMU_HAS_SIER)
171 		return !!(regs->dar & SIER_SIHV);
172 
173 	if (ppmu->flags & PPMU_ALT_SIPR)
174 		sihv = POWER6_MMCRA_SIHV;
175 
176 	return !!(regs->dsisr & sihv);
177 }
178 
179 static bool regs_sipr(struct pt_regs *regs)
180 {
181 	unsigned long sipr = MMCRA_SIPR;
182 
183 	if (ppmu->flags & PPMU_HAS_SIER)
184 		return !!(regs->dar & SIER_SIPR);
185 
186 	if (ppmu->flags & PPMU_ALT_SIPR)
187 		sipr = POWER6_MMCRA_SIPR;
188 
189 	return !!(regs->dsisr & sipr);
190 }
191 
192 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
193 {
194 	if (regs->msr & MSR_PR)
195 		return PERF_RECORD_MISC_USER;
196 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
197 		return PERF_RECORD_MISC_HYPERVISOR;
198 	return PERF_RECORD_MISC_KERNEL;
199 }
200 
201 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
202 {
203 	bool use_siar = regs_use_siar(regs);
204 
205 	if (!use_siar)
206 		return perf_flags_from_msr(regs);
207 
208 	/*
209 	 * If we don't have flags in MMCRA, rather than using
210 	 * the MSR, we intuit the flags from the address in
211 	 * SIAR which should give slightly more reliable
212 	 * results
213 	 */
214 	if (ppmu->flags & PPMU_NO_SIPR) {
215 		unsigned long siar = mfspr(SPRN_SIAR);
216 		if (siar >= PAGE_OFFSET)
217 			return PERF_RECORD_MISC_KERNEL;
218 		return PERF_RECORD_MISC_USER;
219 	}
220 
221 	/* PR has priority over HV, so order below is important */
222 	if (regs_sipr(regs))
223 		return PERF_RECORD_MISC_USER;
224 
225 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
226 		return PERF_RECORD_MISC_HYPERVISOR;
227 
228 	return PERF_RECORD_MISC_KERNEL;
229 }
230 
231 /*
232  * Overload regs->dsisr to store MMCRA so we only need to read it once
233  * on each interrupt.
234  * Overload regs->dar to store SIER if we have it.
235  * Overload regs->result to specify whether we should use the MSR (result
236  * is zero) or the SIAR (result is non zero).
237  */
238 static inline void perf_read_regs(struct pt_regs *regs)
239 {
240 	unsigned long mmcra = mfspr(SPRN_MMCRA);
241 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
242 	int use_siar;
243 
244 	regs->dsisr = mmcra;
245 
246 	if (ppmu->flags & PPMU_HAS_SIER)
247 		regs->dar = mfspr(SPRN_SIER);
248 
249 	/*
250 	 * If this isn't a PMU exception (eg a software event) the SIAR is
251 	 * not valid. Use pt_regs.
252 	 *
253 	 * If it is a marked event use the SIAR.
254 	 *
255 	 * If the PMU doesn't update the SIAR for non marked events use
256 	 * pt_regs.
257 	 *
258 	 * If the PMU has HV/PR flags then check to see if they
259 	 * place the exception in userspace. If so, use pt_regs. In
260 	 * continuous sampling mode the SIAR and the PMU exception are
261 	 * not synchronised, so they may be many instructions apart.
262 	 * This can result in confusing backtraces. We still want
263 	 * hypervisor samples as well as samples in the kernel with
264 	 * interrupts off hence the userspace check.
265 	 */
266 	if (TRAP(regs) != 0xf00)
267 		use_siar = 0;
268 	else if (marked)
269 		use_siar = 1;
270 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
271 		use_siar = 0;
272 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
273 		use_siar = 0;
274 	else
275 		use_siar = 1;
276 
277 	regs->result = use_siar;
278 }
279 
280 /*
281  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
282  * it as an NMI.
283  */
284 static inline int perf_intr_is_nmi(struct pt_regs *regs)
285 {
286 	return !regs->softe;
287 }
288 
289 /*
290  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
291  * must be sampled only if the SIAR-valid bit is set.
292  *
293  * For unmarked instructions and for processors that don't have the SIAR-Valid
294  * bit, assume that SIAR is valid.
295  */
296 static inline int siar_valid(struct pt_regs *regs)
297 {
298 	unsigned long mmcra = regs->dsisr;
299 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
300 
301 	if (marked) {
302 		if (ppmu->flags & PPMU_HAS_SIER)
303 			return regs->dar & SIER_SIAR_VALID;
304 
305 		if (ppmu->flags & PPMU_SIAR_VALID)
306 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
307 	}
308 
309 	return 1;
310 }
311 
312 
313 /* Reset all possible BHRB entries */
314 static void power_pmu_bhrb_reset(void)
315 {
316 	asm volatile(PPC_CLRBHRB);
317 }
318 
319 static void power_pmu_bhrb_enable(struct perf_event *event)
320 {
321 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
322 
323 	if (!ppmu->bhrb_nr)
324 		return;
325 
326 	/* Clear BHRB if we changed task context to avoid data leaks */
327 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
328 		power_pmu_bhrb_reset();
329 		cpuhw->bhrb_context = event->ctx;
330 	}
331 	cpuhw->bhrb_users++;
332 }
333 
334 static void power_pmu_bhrb_disable(struct perf_event *event)
335 {
336 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
337 
338 	if (!ppmu->bhrb_nr)
339 		return;
340 
341 	cpuhw->bhrb_users--;
342 	WARN_ON_ONCE(cpuhw->bhrb_users < 0);
343 
344 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
345 		/* BHRB cannot be turned off when other
346 		 * events are active on the PMU.
347 		 */
348 
349 		/* avoid stale pointer */
350 		cpuhw->bhrb_context = NULL;
351 	}
352 }
353 
354 /* Called from ctxsw to prevent one process's branch entries to
355  * mingle with the other process's entries during context switch.
356  */
357 void power_pmu_flush_branch_stack(void)
358 {
359 	if (ppmu->bhrb_nr)
360 		power_pmu_bhrb_reset();
361 }
362 /* Calculate the to address for a branch */
363 static __u64 power_pmu_bhrb_to(u64 addr)
364 {
365 	unsigned int instr;
366 	int ret;
367 	__u64 target;
368 
369 	if (is_kernel_addr(addr))
370 		return branch_target((unsigned int *)addr);
371 
372 	/* Userspace: need copy instruction here then translate it */
373 	pagefault_disable();
374 	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
375 	if (ret) {
376 		pagefault_enable();
377 		return 0;
378 	}
379 	pagefault_enable();
380 
381 	target = branch_target(&instr);
382 	if ((!target) || (instr & BRANCH_ABSOLUTE))
383 		return target;
384 
385 	/* Translate relative branch target from kernel to user address */
386 	return target - (unsigned long)&instr + addr;
387 }
388 
389 /* Processing BHRB entries */
390 void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
391 {
392 	u64 val;
393 	u64 addr;
394 	int r_index, u_index, pred;
395 
396 	r_index = 0;
397 	u_index = 0;
398 	while (r_index < ppmu->bhrb_nr) {
399 		/* Assembly read function */
400 		val = read_bhrb(r_index++);
401 		if (!val)
402 			/* Terminal marker: End of valid BHRB entries */
403 			break;
404 		else {
405 			addr = val & BHRB_EA;
406 			pred = val & BHRB_PREDICTION;
407 
408 			if (!addr)
409 				/* invalid entry */
410 				continue;
411 
412 			/* Branches are read most recent first (ie. mfbhrb 0 is
413 			 * the most recent branch).
414 			 * There are two types of valid entries:
415 			 * 1) a target entry which is the to address of a
416 			 *    computed goto like a blr,bctr,btar.  The next
417 			 *    entry read from the bhrb will be branch
418 			 *    corresponding to this target (ie. the actual
419 			 *    blr/bctr/btar instruction).
420 			 * 2) a from address which is an actual branch.  If a
421 			 *    target entry proceeds this, then this is the
422 			 *    matching branch for that target.  If this is not
423 			 *    following a target entry, then this is a branch
424 			 *    where the target is given as an immediate field
425 			 *    in the instruction (ie. an i or b form branch).
426 			 *    In this case we need to read the instruction from
427 			 *    memory to determine the target/to address.
428 			 */
429 
430 			if (val & BHRB_TARGET) {
431 				/* Target branches use two entries
432 				 * (ie. computed gotos/XL form)
433 				 */
434 				cpuhw->bhrb_entries[u_index].to = addr;
435 				cpuhw->bhrb_entries[u_index].mispred = pred;
436 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
437 
438 				/* Get from address in next entry */
439 				val = read_bhrb(r_index++);
440 				addr = val & BHRB_EA;
441 				if (val & BHRB_TARGET) {
442 					/* Shouldn't have two targets in a
443 					   row.. Reset index and try again */
444 					r_index--;
445 					addr = 0;
446 				}
447 				cpuhw->bhrb_entries[u_index].from = addr;
448 			} else {
449 				/* Branches to immediate field
450 				   (ie I or B form) */
451 				cpuhw->bhrb_entries[u_index].from = addr;
452 				cpuhw->bhrb_entries[u_index].to =
453 					power_pmu_bhrb_to(addr);
454 				cpuhw->bhrb_entries[u_index].mispred = pred;
455 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
456 			}
457 			u_index++;
458 
459 		}
460 	}
461 	cpuhw->bhrb_stack.nr = u_index;
462 	return;
463 }
464 
465 #endif /* CONFIG_PPC64 */
466 
467 static void perf_event_interrupt(struct pt_regs *regs);
468 
469 void perf_event_print_debug(void)
470 {
471 }
472 
473 /*
474  * Read one performance monitor counter (PMC).
475  */
476 static unsigned long read_pmc(int idx)
477 {
478 	unsigned long val;
479 
480 	switch (idx) {
481 	case 1:
482 		val = mfspr(SPRN_PMC1);
483 		break;
484 	case 2:
485 		val = mfspr(SPRN_PMC2);
486 		break;
487 	case 3:
488 		val = mfspr(SPRN_PMC3);
489 		break;
490 	case 4:
491 		val = mfspr(SPRN_PMC4);
492 		break;
493 	case 5:
494 		val = mfspr(SPRN_PMC5);
495 		break;
496 	case 6:
497 		val = mfspr(SPRN_PMC6);
498 		break;
499 #ifdef CONFIG_PPC64
500 	case 7:
501 		val = mfspr(SPRN_PMC7);
502 		break;
503 	case 8:
504 		val = mfspr(SPRN_PMC8);
505 		break;
506 #endif /* CONFIG_PPC64 */
507 	default:
508 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
509 		val = 0;
510 	}
511 	return val;
512 }
513 
514 /*
515  * Write one PMC.
516  */
517 static void write_pmc(int idx, unsigned long val)
518 {
519 	switch (idx) {
520 	case 1:
521 		mtspr(SPRN_PMC1, val);
522 		break;
523 	case 2:
524 		mtspr(SPRN_PMC2, val);
525 		break;
526 	case 3:
527 		mtspr(SPRN_PMC3, val);
528 		break;
529 	case 4:
530 		mtspr(SPRN_PMC4, val);
531 		break;
532 	case 5:
533 		mtspr(SPRN_PMC5, val);
534 		break;
535 	case 6:
536 		mtspr(SPRN_PMC6, val);
537 		break;
538 #ifdef CONFIG_PPC64
539 	case 7:
540 		mtspr(SPRN_PMC7, val);
541 		break;
542 	case 8:
543 		mtspr(SPRN_PMC8, val);
544 		break;
545 #endif /* CONFIG_PPC64 */
546 	default:
547 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
548 	}
549 }
550 
551 /*
552  * Check if a set of events can all go on the PMU at once.
553  * If they can't, this will look at alternative codes for the events
554  * and see if any combination of alternative codes is feasible.
555  * The feasible set is returned in event_id[].
556  */
557 static int power_check_constraints(struct cpu_hw_events *cpuhw,
558 				   u64 event_id[], unsigned int cflags[],
559 				   int n_ev)
560 {
561 	unsigned long mask, value, nv;
562 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
563 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
564 	int i, j;
565 	unsigned long addf = ppmu->add_fields;
566 	unsigned long tadd = ppmu->test_adder;
567 
568 	if (n_ev > ppmu->n_counter)
569 		return -1;
570 
571 	/* First see if the events will go on as-is */
572 	for (i = 0; i < n_ev; ++i) {
573 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
574 		    && !ppmu->limited_pmc_event(event_id[i])) {
575 			ppmu->get_alternatives(event_id[i], cflags[i],
576 					       cpuhw->alternatives[i]);
577 			event_id[i] = cpuhw->alternatives[i][0];
578 		}
579 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
580 					 &cpuhw->avalues[i][0]))
581 			return -1;
582 	}
583 	value = mask = 0;
584 	for (i = 0; i < n_ev; ++i) {
585 		nv = (value | cpuhw->avalues[i][0]) +
586 			(value & cpuhw->avalues[i][0] & addf);
587 		if ((((nv + tadd) ^ value) & mask) != 0 ||
588 		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
589 		     cpuhw->amasks[i][0]) != 0)
590 			break;
591 		value = nv;
592 		mask |= cpuhw->amasks[i][0];
593 	}
594 	if (i == n_ev)
595 		return 0;	/* all OK */
596 
597 	/* doesn't work, gather alternatives... */
598 	if (!ppmu->get_alternatives)
599 		return -1;
600 	for (i = 0; i < n_ev; ++i) {
601 		choice[i] = 0;
602 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
603 						  cpuhw->alternatives[i]);
604 		for (j = 1; j < n_alt[i]; ++j)
605 			ppmu->get_constraint(cpuhw->alternatives[i][j],
606 					     &cpuhw->amasks[i][j],
607 					     &cpuhw->avalues[i][j]);
608 	}
609 
610 	/* enumerate all possibilities and see if any will work */
611 	i = 0;
612 	j = -1;
613 	value = mask = nv = 0;
614 	while (i < n_ev) {
615 		if (j >= 0) {
616 			/* we're backtracking, restore context */
617 			value = svalues[i];
618 			mask = smasks[i];
619 			j = choice[i];
620 		}
621 		/*
622 		 * See if any alternative k for event_id i,
623 		 * where k > j, will satisfy the constraints.
624 		 */
625 		while (++j < n_alt[i]) {
626 			nv = (value | cpuhw->avalues[i][j]) +
627 				(value & cpuhw->avalues[i][j] & addf);
628 			if ((((nv + tadd) ^ value) & mask) == 0 &&
629 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
630 			     & cpuhw->amasks[i][j]) == 0)
631 				break;
632 		}
633 		if (j >= n_alt[i]) {
634 			/*
635 			 * No feasible alternative, backtrack
636 			 * to event_id i-1 and continue enumerating its
637 			 * alternatives from where we got up to.
638 			 */
639 			if (--i < 0)
640 				return -1;
641 		} else {
642 			/*
643 			 * Found a feasible alternative for event_id i,
644 			 * remember where we got up to with this event_id,
645 			 * go on to the next event_id, and start with
646 			 * the first alternative for it.
647 			 */
648 			choice[i] = j;
649 			svalues[i] = value;
650 			smasks[i] = mask;
651 			value = nv;
652 			mask |= cpuhw->amasks[i][j];
653 			++i;
654 			j = -1;
655 		}
656 	}
657 
658 	/* OK, we have a feasible combination, tell the caller the solution */
659 	for (i = 0; i < n_ev; ++i)
660 		event_id[i] = cpuhw->alternatives[i][choice[i]];
661 	return 0;
662 }
663 
664 /*
665  * Check if newly-added events have consistent settings for
666  * exclude_{user,kernel,hv} with each other and any previously
667  * added events.
668  */
669 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
670 			  int n_prev, int n_new)
671 {
672 	int eu = 0, ek = 0, eh = 0;
673 	int i, n, first;
674 	struct perf_event *event;
675 
676 	n = n_prev + n_new;
677 	if (n <= 1)
678 		return 0;
679 
680 	first = 1;
681 	for (i = 0; i < n; ++i) {
682 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
683 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
684 			continue;
685 		}
686 		event = ctrs[i];
687 		if (first) {
688 			eu = event->attr.exclude_user;
689 			ek = event->attr.exclude_kernel;
690 			eh = event->attr.exclude_hv;
691 			first = 0;
692 		} else if (event->attr.exclude_user != eu ||
693 			   event->attr.exclude_kernel != ek ||
694 			   event->attr.exclude_hv != eh) {
695 			return -EAGAIN;
696 		}
697 	}
698 
699 	if (eu || ek || eh)
700 		for (i = 0; i < n; ++i)
701 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
702 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
703 
704 	return 0;
705 }
706 
707 static u64 check_and_compute_delta(u64 prev, u64 val)
708 {
709 	u64 delta = (val - prev) & 0xfffffffful;
710 
711 	/*
712 	 * POWER7 can roll back counter values, if the new value is smaller
713 	 * than the previous value it will cause the delta and the counter to
714 	 * have bogus values unless we rolled a counter over.  If a coutner is
715 	 * rolled back, it will be smaller, but within 256, which is the maximum
716 	 * number of events to rollback at once.  If we dectect a rollback
717 	 * return 0.  This can lead to a small lack of precision in the
718 	 * counters.
719 	 */
720 	if (prev > val && (prev - val) < 256)
721 		delta = 0;
722 
723 	return delta;
724 }
725 
726 static void power_pmu_read(struct perf_event *event)
727 {
728 	s64 val, delta, prev;
729 
730 	if (event->hw.state & PERF_HES_STOPPED)
731 		return;
732 
733 	if (!event->hw.idx)
734 		return;
735 	/*
736 	 * Performance monitor interrupts come even when interrupts
737 	 * are soft-disabled, as long as interrupts are hard-enabled.
738 	 * Therefore we treat them like NMIs.
739 	 */
740 	do {
741 		prev = local64_read(&event->hw.prev_count);
742 		barrier();
743 		val = read_pmc(event->hw.idx);
744 		delta = check_and_compute_delta(prev, val);
745 		if (!delta)
746 			return;
747 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
748 
749 	local64_add(delta, &event->count);
750 	local64_sub(delta, &event->hw.period_left);
751 }
752 
753 /*
754  * On some machines, PMC5 and PMC6 can't be written, don't respect
755  * the freeze conditions, and don't generate interrupts.  This tells
756  * us if `event' is using such a PMC.
757  */
758 static int is_limited_pmc(int pmcnum)
759 {
760 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
761 		&& (pmcnum == 5 || pmcnum == 6);
762 }
763 
764 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
765 				    unsigned long pmc5, unsigned long pmc6)
766 {
767 	struct perf_event *event;
768 	u64 val, prev, delta;
769 	int i;
770 
771 	for (i = 0; i < cpuhw->n_limited; ++i) {
772 		event = cpuhw->limited_counter[i];
773 		if (!event->hw.idx)
774 			continue;
775 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
776 		prev = local64_read(&event->hw.prev_count);
777 		event->hw.idx = 0;
778 		delta = check_and_compute_delta(prev, val);
779 		if (delta)
780 			local64_add(delta, &event->count);
781 	}
782 }
783 
784 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
785 				  unsigned long pmc5, unsigned long pmc6)
786 {
787 	struct perf_event *event;
788 	u64 val, prev;
789 	int i;
790 
791 	for (i = 0; i < cpuhw->n_limited; ++i) {
792 		event = cpuhw->limited_counter[i];
793 		event->hw.idx = cpuhw->limited_hwidx[i];
794 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
795 		prev = local64_read(&event->hw.prev_count);
796 		if (check_and_compute_delta(prev, val))
797 			local64_set(&event->hw.prev_count, val);
798 		perf_event_update_userpage(event);
799 	}
800 }
801 
802 /*
803  * Since limited events don't respect the freeze conditions, we
804  * have to read them immediately after freezing or unfreezing the
805  * other events.  We try to keep the values from the limited
806  * events as consistent as possible by keeping the delay (in
807  * cycles and instructions) between freezing/unfreezing and reading
808  * the limited events as small and consistent as possible.
809  * Therefore, if any limited events are in use, we read them
810  * both, and always in the same order, to minimize variability,
811  * and do it inside the same asm that writes MMCR0.
812  */
813 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
814 {
815 	unsigned long pmc5, pmc6;
816 
817 	if (!cpuhw->n_limited) {
818 		mtspr(SPRN_MMCR0, mmcr0);
819 		return;
820 	}
821 
822 	/*
823 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
824 	 * To ensure we don't get a performance monitor interrupt
825 	 * between writing MMCR0 and freezing/thawing the limited
826 	 * events, we first write MMCR0 with the event overflow
827 	 * interrupt enable bits turned off.
828 	 */
829 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
830 		     : "=&r" (pmc5), "=&r" (pmc6)
831 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
832 		       "i" (SPRN_MMCR0),
833 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
834 
835 	if (mmcr0 & MMCR0_FC)
836 		freeze_limited_counters(cpuhw, pmc5, pmc6);
837 	else
838 		thaw_limited_counters(cpuhw, pmc5, pmc6);
839 
840 	/*
841 	 * Write the full MMCR0 including the event overflow interrupt
842 	 * enable bits, if necessary.
843 	 */
844 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
845 		mtspr(SPRN_MMCR0, mmcr0);
846 }
847 
848 /*
849  * Disable all events to prevent PMU interrupts and to allow
850  * events to be added or removed.
851  */
852 static void power_pmu_disable(struct pmu *pmu)
853 {
854 	struct cpu_hw_events *cpuhw;
855 	unsigned long flags;
856 
857 	if (!ppmu)
858 		return;
859 	local_irq_save(flags);
860 	cpuhw = &__get_cpu_var(cpu_hw_events);
861 
862 	if (!cpuhw->disabled) {
863 		cpuhw->disabled = 1;
864 		cpuhw->n_added = 0;
865 
866 		/*
867 		 * Check if we ever enabled the PMU on this cpu.
868 		 */
869 		if (!cpuhw->pmcs_enabled) {
870 			ppc_enable_pmcs();
871 			cpuhw->pmcs_enabled = 1;
872 		}
873 
874 		/*
875 		 * Disable instruction sampling if it was enabled
876 		 */
877 		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
878 			mtspr(SPRN_MMCRA,
879 			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
880 			mb();
881 		}
882 
883 		/*
884 		 * Set the 'freeze counters' bit.
885 		 * The barrier is to make sure the mtspr has been
886 		 * executed and the PMU has frozen the events
887 		 * before we return.
888 		 */
889 		write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
890 		mb();
891 	}
892 	local_irq_restore(flags);
893 }
894 
895 /*
896  * Re-enable all events if disable == 0.
897  * If we were previously disabled and events were added, then
898  * put the new config on the PMU.
899  */
900 static void power_pmu_enable(struct pmu *pmu)
901 {
902 	struct perf_event *event;
903 	struct cpu_hw_events *cpuhw;
904 	unsigned long flags;
905 	long i;
906 	unsigned long val;
907 	s64 left;
908 	unsigned int hwc_index[MAX_HWEVENTS];
909 	int n_lim;
910 	int idx;
911 
912 	if (!ppmu)
913 		return;
914 	local_irq_save(flags);
915 	cpuhw = &__get_cpu_var(cpu_hw_events);
916 	if (!cpuhw->disabled) {
917 		local_irq_restore(flags);
918 		return;
919 	}
920 	cpuhw->disabled = 0;
921 
922 	/*
923 	 * If we didn't change anything, or only removed events,
924 	 * no need to recalculate MMCR* settings and reset the PMCs.
925 	 * Just reenable the PMU with the current MMCR* settings
926 	 * (possibly updated for removal of events).
927 	 */
928 	if (!cpuhw->n_added) {
929 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
930 		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
931 		if (cpuhw->n_events == 0)
932 			ppc_set_pmu_inuse(0);
933 		goto out_enable;
934 	}
935 
936 	/*
937 	 * Compute MMCR* values for the new set of events
938 	 */
939 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
940 			       cpuhw->mmcr)) {
941 		/* shouldn't ever get here */
942 		printk(KERN_ERR "oops compute_mmcr failed\n");
943 		goto out;
944 	}
945 
946 	/*
947 	 * Add in MMCR0 freeze bits corresponding to the
948 	 * attr.exclude_* bits for the first event.
949 	 * We have already checked that all events have the
950 	 * same values for these bits as the first event.
951 	 */
952 	event = cpuhw->event[0];
953 	if (event->attr.exclude_user)
954 		cpuhw->mmcr[0] |= MMCR0_FCP;
955 	if (event->attr.exclude_kernel)
956 		cpuhw->mmcr[0] |= freeze_events_kernel;
957 	if (event->attr.exclude_hv)
958 		cpuhw->mmcr[0] |= MMCR0_FCHV;
959 
960 	/*
961 	 * Write the new configuration to MMCR* with the freeze
962 	 * bit set and set the hardware events to their initial values.
963 	 * Then unfreeze the events.
964 	 */
965 	ppc_set_pmu_inuse(1);
966 	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
967 	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
968 	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
969 				| MMCR0_FC);
970 
971 	/*
972 	 * Read off any pre-existing events that need to move
973 	 * to another PMC.
974 	 */
975 	for (i = 0; i < cpuhw->n_events; ++i) {
976 		event = cpuhw->event[i];
977 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
978 			power_pmu_read(event);
979 			write_pmc(event->hw.idx, 0);
980 			event->hw.idx = 0;
981 		}
982 	}
983 
984 	/*
985 	 * Initialize the PMCs for all the new and moved events.
986 	 */
987 	cpuhw->n_limited = n_lim = 0;
988 	for (i = 0; i < cpuhw->n_events; ++i) {
989 		event = cpuhw->event[i];
990 		if (event->hw.idx)
991 			continue;
992 		idx = hwc_index[i] + 1;
993 		if (is_limited_pmc(idx)) {
994 			cpuhw->limited_counter[n_lim] = event;
995 			cpuhw->limited_hwidx[n_lim] = idx;
996 			++n_lim;
997 			continue;
998 		}
999 		val = 0;
1000 		if (event->hw.sample_period) {
1001 			left = local64_read(&event->hw.period_left);
1002 			if (left < 0x80000000L)
1003 				val = 0x80000000L - left;
1004 		}
1005 		local64_set(&event->hw.prev_count, val);
1006 		event->hw.idx = idx;
1007 		if (event->hw.state & PERF_HES_STOPPED)
1008 			val = 0;
1009 		write_pmc(idx, val);
1010 		perf_event_update_userpage(event);
1011 	}
1012 	cpuhw->n_limited = n_lim;
1013 	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1014 
1015  out_enable:
1016 	mb();
1017 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1018 
1019 	/*
1020 	 * Enable instruction sampling if necessary
1021 	 */
1022 	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1023 		mb();
1024 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1025 	}
1026 
1027  out:
1028 	if (cpuhw->bhrb_users)
1029 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1030 
1031 	local_irq_restore(flags);
1032 }
1033 
1034 static int collect_events(struct perf_event *group, int max_count,
1035 			  struct perf_event *ctrs[], u64 *events,
1036 			  unsigned int *flags)
1037 {
1038 	int n = 0;
1039 	struct perf_event *event;
1040 
1041 	if (!is_software_event(group)) {
1042 		if (n >= max_count)
1043 			return -1;
1044 		ctrs[n] = group;
1045 		flags[n] = group->hw.event_base;
1046 		events[n++] = group->hw.config;
1047 	}
1048 	list_for_each_entry(event, &group->sibling_list, group_entry) {
1049 		if (!is_software_event(event) &&
1050 		    event->state != PERF_EVENT_STATE_OFF) {
1051 			if (n >= max_count)
1052 				return -1;
1053 			ctrs[n] = event;
1054 			flags[n] = event->hw.event_base;
1055 			events[n++] = event->hw.config;
1056 		}
1057 	}
1058 	return n;
1059 }
1060 
1061 /*
1062  * Add a event to the PMU.
1063  * If all events are not already frozen, then we disable and
1064  * re-enable the PMU in order to get hw_perf_enable to do the
1065  * actual work of reconfiguring the PMU.
1066  */
1067 static int power_pmu_add(struct perf_event *event, int ef_flags)
1068 {
1069 	struct cpu_hw_events *cpuhw;
1070 	unsigned long flags;
1071 	int n0;
1072 	int ret = -EAGAIN;
1073 
1074 	local_irq_save(flags);
1075 	perf_pmu_disable(event->pmu);
1076 
1077 	/*
1078 	 * Add the event to the list (if there is room)
1079 	 * and check whether the total set is still feasible.
1080 	 */
1081 	cpuhw = &__get_cpu_var(cpu_hw_events);
1082 	n0 = cpuhw->n_events;
1083 	if (n0 >= ppmu->n_counter)
1084 		goto out;
1085 	cpuhw->event[n0] = event;
1086 	cpuhw->events[n0] = event->hw.config;
1087 	cpuhw->flags[n0] = event->hw.event_base;
1088 
1089 	/*
1090 	 * This event may have been disabled/stopped in record_and_restart()
1091 	 * because we exceeded the ->event_limit. If re-starting the event,
1092 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1093 	 * notification is re-enabled.
1094 	 */
1095 	if (!(ef_flags & PERF_EF_START))
1096 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1097 	else
1098 		event->hw.state = 0;
1099 
1100 	/*
1101 	 * If group events scheduling transaction was started,
1102 	 * skip the schedulability test here, it will be performed
1103 	 * at commit time(->commit_txn) as a whole
1104 	 */
1105 	if (cpuhw->group_flag & PERF_EVENT_TXN)
1106 		goto nocheck;
1107 
1108 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1109 		goto out;
1110 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1111 		goto out;
1112 	event->hw.config = cpuhw->events[n0];
1113 
1114 nocheck:
1115 	++cpuhw->n_events;
1116 	++cpuhw->n_added;
1117 
1118 	ret = 0;
1119  out:
1120 	if (has_branch_stack(event))
1121 		power_pmu_bhrb_enable(event);
1122 
1123 	perf_pmu_enable(event->pmu);
1124 	local_irq_restore(flags);
1125 	return ret;
1126 }
1127 
1128 /*
1129  * Remove a event from the PMU.
1130  */
1131 static void power_pmu_del(struct perf_event *event, int ef_flags)
1132 {
1133 	struct cpu_hw_events *cpuhw;
1134 	long i;
1135 	unsigned long flags;
1136 
1137 	local_irq_save(flags);
1138 	perf_pmu_disable(event->pmu);
1139 
1140 	power_pmu_read(event);
1141 
1142 	cpuhw = &__get_cpu_var(cpu_hw_events);
1143 	for (i = 0; i < cpuhw->n_events; ++i) {
1144 		if (event == cpuhw->event[i]) {
1145 			while (++i < cpuhw->n_events) {
1146 				cpuhw->event[i-1] = cpuhw->event[i];
1147 				cpuhw->events[i-1] = cpuhw->events[i];
1148 				cpuhw->flags[i-1] = cpuhw->flags[i];
1149 			}
1150 			--cpuhw->n_events;
1151 			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1152 			if (event->hw.idx) {
1153 				write_pmc(event->hw.idx, 0);
1154 				event->hw.idx = 0;
1155 			}
1156 			perf_event_update_userpage(event);
1157 			break;
1158 		}
1159 	}
1160 	for (i = 0; i < cpuhw->n_limited; ++i)
1161 		if (event == cpuhw->limited_counter[i])
1162 			break;
1163 	if (i < cpuhw->n_limited) {
1164 		while (++i < cpuhw->n_limited) {
1165 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1166 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1167 		}
1168 		--cpuhw->n_limited;
1169 	}
1170 	if (cpuhw->n_events == 0) {
1171 		/* disable exceptions if no events are running */
1172 		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1173 	}
1174 
1175 	if (has_branch_stack(event))
1176 		power_pmu_bhrb_disable(event);
1177 
1178 	perf_pmu_enable(event->pmu);
1179 	local_irq_restore(flags);
1180 }
1181 
1182 /*
1183  * POWER-PMU does not support disabling individual counters, hence
1184  * program their cycle counter to their max value and ignore the interrupts.
1185  */
1186 
1187 static void power_pmu_start(struct perf_event *event, int ef_flags)
1188 {
1189 	unsigned long flags;
1190 	s64 left;
1191 	unsigned long val;
1192 
1193 	if (!event->hw.idx || !event->hw.sample_period)
1194 		return;
1195 
1196 	if (!(event->hw.state & PERF_HES_STOPPED))
1197 		return;
1198 
1199 	if (ef_flags & PERF_EF_RELOAD)
1200 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1201 
1202 	local_irq_save(flags);
1203 	perf_pmu_disable(event->pmu);
1204 
1205 	event->hw.state = 0;
1206 	left = local64_read(&event->hw.period_left);
1207 
1208 	val = 0;
1209 	if (left < 0x80000000L)
1210 		val = 0x80000000L - left;
1211 
1212 	write_pmc(event->hw.idx, val);
1213 
1214 	perf_event_update_userpage(event);
1215 	perf_pmu_enable(event->pmu);
1216 	local_irq_restore(flags);
1217 }
1218 
1219 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1220 {
1221 	unsigned long flags;
1222 
1223 	if (!event->hw.idx || !event->hw.sample_period)
1224 		return;
1225 
1226 	if (event->hw.state & PERF_HES_STOPPED)
1227 		return;
1228 
1229 	local_irq_save(flags);
1230 	perf_pmu_disable(event->pmu);
1231 
1232 	power_pmu_read(event);
1233 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1234 	write_pmc(event->hw.idx, 0);
1235 
1236 	perf_event_update_userpage(event);
1237 	perf_pmu_enable(event->pmu);
1238 	local_irq_restore(flags);
1239 }
1240 
1241 /*
1242  * Start group events scheduling transaction
1243  * Set the flag to make pmu::enable() not perform the
1244  * schedulability test, it will be performed at commit time
1245  */
1246 void power_pmu_start_txn(struct pmu *pmu)
1247 {
1248 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1249 
1250 	perf_pmu_disable(pmu);
1251 	cpuhw->group_flag |= PERF_EVENT_TXN;
1252 	cpuhw->n_txn_start = cpuhw->n_events;
1253 }
1254 
1255 /*
1256  * Stop group events scheduling transaction
1257  * Clear the flag and pmu::enable() will perform the
1258  * schedulability test.
1259  */
1260 void power_pmu_cancel_txn(struct pmu *pmu)
1261 {
1262 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1263 
1264 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1265 	perf_pmu_enable(pmu);
1266 }
1267 
1268 /*
1269  * Commit group events scheduling transaction
1270  * Perform the group schedulability test as a whole
1271  * Return 0 if success
1272  */
1273 int power_pmu_commit_txn(struct pmu *pmu)
1274 {
1275 	struct cpu_hw_events *cpuhw;
1276 	long i, n;
1277 
1278 	if (!ppmu)
1279 		return -EAGAIN;
1280 	cpuhw = &__get_cpu_var(cpu_hw_events);
1281 	n = cpuhw->n_events;
1282 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1283 		return -EAGAIN;
1284 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1285 	if (i < 0)
1286 		return -EAGAIN;
1287 
1288 	for (i = cpuhw->n_txn_start; i < n; ++i)
1289 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1290 
1291 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1292 	perf_pmu_enable(pmu);
1293 	return 0;
1294 }
1295 
1296 /*
1297  * Return 1 if we might be able to put event on a limited PMC,
1298  * or 0 if not.
1299  * A event can only go on a limited PMC if it counts something
1300  * that a limited PMC can count, doesn't require interrupts, and
1301  * doesn't exclude any processor mode.
1302  */
1303 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1304 				 unsigned int flags)
1305 {
1306 	int n;
1307 	u64 alt[MAX_EVENT_ALTERNATIVES];
1308 
1309 	if (event->attr.exclude_user
1310 	    || event->attr.exclude_kernel
1311 	    || event->attr.exclude_hv
1312 	    || event->attr.sample_period)
1313 		return 0;
1314 
1315 	if (ppmu->limited_pmc_event(ev))
1316 		return 1;
1317 
1318 	/*
1319 	 * The requested event_id isn't on a limited PMC already;
1320 	 * see if any alternative code goes on a limited PMC.
1321 	 */
1322 	if (!ppmu->get_alternatives)
1323 		return 0;
1324 
1325 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1326 	n = ppmu->get_alternatives(ev, flags, alt);
1327 
1328 	return n > 0;
1329 }
1330 
1331 /*
1332  * Find an alternative event_id that goes on a normal PMC, if possible,
1333  * and return the event_id code, or 0 if there is no such alternative.
1334  * (Note: event_id code 0 is "don't count" on all machines.)
1335  */
1336 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1337 {
1338 	u64 alt[MAX_EVENT_ALTERNATIVES];
1339 	int n;
1340 
1341 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1342 	n = ppmu->get_alternatives(ev, flags, alt);
1343 	if (!n)
1344 		return 0;
1345 	return alt[0];
1346 }
1347 
1348 /* Number of perf_events counting hardware events */
1349 static atomic_t num_events;
1350 /* Used to avoid races in calling reserve/release_pmc_hardware */
1351 static DEFINE_MUTEX(pmc_reserve_mutex);
1352 
1353 /*
1354  * Release the PMU if this is the last perf_event.
1355  */
1356 static void hw_perf_event_destroy(struct perf_event *event)
1357 {
1358 	if (!atomic_add_unless(&num_events, -1, 1)) {
1359 		mutex_lock(&pmc_reserve_mutex);
1360 		if (atomic_dec_return(&num_events) == 0)
1361 			release_pmc_hardware();
1362 		mutex_unlock(&pmc_reserve_mutex);
1363 	}
1364 }
1365 
1366 /*
1367  * Translate a generic cache event_id config to a raw event_id code.
1368  */
1369 static int hw_perf_cache_event(u64 config, u64 *eventp)
1370 {
1371 	unsigned long type, op, result;
1372 	int ev;
1373 
1374 	if (!ppmu->cache_events)
1375 		return -EINVAL;
1376 
1377 	/* unpack config */
1378 	type = config & 0xff;
1379 	op = (config >> 8) & 0xff;
1380 	result = (config >> 16) & 0xff;
1381 
1382 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1383 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1384 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1385 		return -EINVAL;
1386 
1387 	ev = (*ppmu->cache_events)[type][op][result];
1388 	if (ev == 0)
1389 		return -EOPNOTSUPP;
1390 	if (ev == -1)
1391 		return -EINVAL;
1392 	*eventp = ev;
1393 	return 0;
1394 }
1395 
1396 static int power_pmu_event_init(struct perf_event *event)
1397 {
1398 	u64 ev;
1399 	unsigned long flags;
1400 	struct perf_event *ctrs[MAX_HWEVENTS];
1401 	u64 events[MAX_HWEVENTS];
1402 	unsigned int cflags[MAX_HWEVENTS];
1403 	int n;
1404 	int err;
1405 	struct cpu_hw_events *cpuhw;
1406 
1407 	if (!ppmu)
1408 		return -ENOENT;
1409 
1410 	if (has_branch_stack(event)) {
1411 	        /* PMU has BHRB enabled */
1412 		if (!(ppmu->flags & PPMU_BHRB))
1413 			return -EOPNOTSUPP;
1414 	}
1415 
1416 	switch (event->attr.type) {
1417 	case PERF_TYPE_HARDWARE:
1418 		ev = event->attr.config;
1419 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1420 			return -EOPNOTSUPP;
1421 		ev = ppmu->generic_events[ev];
1422 		break;
1423 	case PERF_TYPE_HW_CACHE:
1424 		err = hw_perf_cache_event(event->attr.config, &ev);
1425 		if (err)
1426 			return err;
1427 		break;
1428 	case PERF_TYPE_RAW:
1429 		ev = event->attr.config;
1430 		break;
1431 	default:
1432 		return -ENOENT;
1433 	}
1434 
1435 	event->hw.config_base = ev;
1436 	event->hw.idx = 0;
1437 
1438 	/*
1439 	 * If we are not running on a hypervisor, force the
1440 	 * exclude_hv bit to 0 so that we don't care what
1441 	 * the user set it to.
1442 	 */
1443 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1444 		event->attr.exclude_hv = 0;
1445 
1446 	/*
1447 	 * If this is a per-task event, then we can use
1448 	 * PM_RUN_* events interchangeably with their non RUN_*
1449 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1450 	 * XXX we should check if the task is an idle task.
1451 	 */
1452 	flags = 0;
1453 	if (event->attach_state & PERF_ATTACH_TASK)
1454 		flags |= PPMU_ONLY_COUNT_RUN;
1455 
1456 	/*
1457 	 * If this machine has limited events, check whether this
1458 	 * event_id could go on a limited event.
1459 	 */
1460 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1461 		if (can_go_on_limited_pmc(event, ev, flags)) {
1462 			flags |= PPMU_LIMITED_PMC_OK;
1463 		} else if (ppmu->limited_pmc_event(ev)) {
1464 			/*
1465 			 * The requested event_id is on a limited PMC,
1466 			 * but we can't use a limited PMC; see if any
1467 			 * alternative goes on a normal PMC.
1468 			 */
1469 			ev = normal_pmc_alternative(ev, flags);
1470 			if (!ev)
1471 				return -EINVAL;
1472 		}
1473 	}
1474 
1475 	/*
1476 	 * If this is in a group, check if it can go on with all the
1477 	 * other hardware events in the group.  We assume the event
1478 	 * hasn't been linked into its leader's sibling list at this point.
1479 	 */
1480 	n = 0;
1481 	if (event->group_leader != event) {
1482 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1483 				   ctrs, events, cflags);
1484 		if (n < 0)
1485 			return -EINVAL;
1486 	}
1487 	events[n] = ev;
1488 	ctrs[n] = event;
1489 	cflags[n] = flags;
1490 	if (check_excludes(ctrs, cflags, n, 1))
1491 		return -EINVAL;
1492 
1493 	cpuhw = &get_cpu_var(cpu_hw_events);
1494 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1495 
1496 	if (has_branch_stack(event)) {
1497 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1498 					event->attr.branch_sample_type);
1499 
1500 		if(cpuhw->bhrb_filter == -1)
1501 			return -EOPNOTSUPP;
1502 	}
1503 
1504 	put_cpu_var(cpu_hw_events);
1505 	if (err)
1506 		return -EINVAL;
1507 
1508 	event->hw.config = events[n];
1509 	event->hw.event_base = cflags[n];
1510 	event->hw.last_period = event->hw.sample_period;
1511 	local64_set(&event->hw.period_left, event->hw.last_period);
1512 
1513 	/*
1514 	 * See if we need to reserve the PMU.
1515 	 * If no events are currently in use, then we have to take a
1516 	 * mutex to ensure that we don't race with another task doing
1517 	 * reserve_pmc_hardware or release_pmc_hardware.
1518 	 */
1519 	err = 0;
1520 	if (!atomic_inc_not_zero(&num_events)) {
1521 		mutex_lock(&pmc_reserve_mutex);
1522 		if (atomic_read(&num_events) == 0 &&
1523 		    reserve_pmc_hardware(perf_event_interrupt))
1524 			err = -EBUSY;
1525 		else
1526 			atomic_inc(&num_events);
1527 		mutex_unlock(&pmc_reserve_mutex);
1528 	}
1529 	event->destroy = hw_perf_event_destroy;
1530 
1531 	return err;
1532 }
1533 
1534 static int power_pmu_event_idx(struct perf_event *event)
1535 {
1536 	return event->hw.idx;
1537 }
1538 
1539 ssize_t power_events_sysfs_show(struct device *dev,
1540 				struct device_attribute *attr, char *page)
1541 {
1542 	struct perf_pmu_events_attr *pmu_attr;
1543 
1544 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1545 
1546 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1547 }
1548 
1549 struct pmu power_pmu = {
1550 	.pmu_enable	= power_pmu_enable,
1551 	.pmu_disable	= power_pmu_disable,
1552 	.event_init	= power_pmu_event_init,
1553 	.add		= power_pmu_add,
1554 	.del		= power_pmu_del,
1555 	.start		= power_pmu_start,
1556 	.stop		= power_pmu_stop,
1557 	.read		= power_pmu_read,
1558 	.start_txn	= power_pmu_start_txn,
1559 	.cancel_txn	= power_pmu_cancel_txn,
1560 	.commit_txn	= power_pmu_commit_txn,
1561 	.event_idx	= power_pmu_event_idx,
1562 	.flush_branch_stack = power_pmu_flush_branch_stack,
1563 };
1564 
1565 /*
1566  * A counter has overflowed; update its count and record
1567  * things if requested.  Note that interrupts are hard-disabled
1568  * here so there is no possibility of being interrupted.
1569  */
1570 static void record_and_restart(struct perf_event *event, unsigned long val,
1571 			       struct pt_regs *regs)
1572 {
1573 	u64 period = event->hw.sample_period;
1574 	s64 prev, delta, left;
1575 	int record = 0;
1576 
1577 	if (event->hw.state & PERF_HES_STOPPED) {
1578 		write_pmc(event->hw.idx, 0);
1579 		return;
1580 	}
1581 
1582 	/* we don't have to worry about interrupts here */
1583 	prev = local64_read(&event->hw.prev_count);
1584 	delta = check_and_compute_delta(prev, val);
1585 	local64_add(delta, &event->count);
1586 
1587 	/*
1588 	 * See if the total period for this event has expired,
1589 	 * and update for the next period.
1590 	 */
1591 	val = 0;
1592 	left = local64_read(&event->hw.period_left) - delta;
1593 	if (delta == 0)
1594 		left++;
1595 	if (period) {
1596 		if (left <= 0) {
1597 			left += period;
1598 			if (left <= 0)
1599 				left = period;
1600 			record = siar_valid(regs);
1601 			event->hw.last_period = event->hw.sample_period;
1602 		}
1603 		if (left < 0x80000000LL)
1604 			val = 0x80000000LL - left;
1605 	}
1606 
1607 	write_pmc(event->hw.idx, val);
1608 	local64_set(&event->hw.prev_count, val);
1609 	local64_set(&event->hw.period_left, left);
1610 	perf_event_update_userpage(event);
1611 
1612 	/*
1613 	 * Finally record data if requested.
1614 	 */
1615 	if (record) {
1616 		struct perf_sample_data data;
1617 
1618 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1619 
1620 		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1621 			perf_get_data_addr(regs, &data.addr);
1622 
1623 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
1624 			struct cpu_hw_events *cpuhw;
1625 			cpuhw = &__get_cpu_var(cpu_hw_events);
1626 			power_pmu_bhrb_read(cpuhw);
1627 			data.br_stack = &cpuhw->bhrb_stack;
1628 		}
1629 
1630 		if (perf_event_overflow(event, &data, regs))
1631 			power_pmu_stop(event, 0);
1632 	}
1633 }
1634 
1635 /*
1636  * Called from generic code to get the misc flags (i.e. processor mode)
1637  * for an event_id.
1638  */
1639 unsigned long perf_misc_flags(struct pt_regs *regs)
1640 {
1641 	u32 flags = perf_get_misc_flags(regs);
1642 
1643 	if (flags)
1644 		return flags;
1645 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
1646 		PERF_RECORD_MISC_KERNEL;
1647 }
1648 
1649 /*
1650  * Called from generic code to get the instruction pointer
1651  * for an event_id.
1652  */
1653 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1654 {
1655 	bool use_siar = regs_use_siar(regs);
1656 
1657 	if (use_siar && siar_valid(regs))
1658 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1659 	else if (use_siar)
1660 		return 0;		// no valid instruction pointer
1661 	else
1662 		return regs->nip;
1663 }
1664 
1665 static bool pmc_overflow_power7(unsigned long val)
1666 {
1667 	/*
1668 	 * Events on POWER7 can roll back if a speculative event doesn't
1669 	 * eventually complete. Unfortunately in some rare cases they will
1670 	 * raise a performance monitor exception. We need to catch this to
1671 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1672 	 * cycles from overflow.
1673 	 *
1674 	 * We only do this if the first pass fails to find any overflowing
1675 	 * PMCs because a user might set a period of less than 256 and we
1676 	 * don't want to mistakenly reset them.
1677 	 */
1678 	if ((0x80000000 - val) <= 256)
1679 		return true;
1680 
1681 	return false;
1682 }
1683 
1684 static bool pmc_overflow(unsigned long val)
1685 {
1686 	if ((int)val < 0)
1687 		return true;
1688 
1689 	return false;
1690 }
1691 
1692 /*
1693  * Performance monitor interrupt stuff
1694  */
1695 static void perf_event_interrupt(struct pt_regs *regs)
1696 {
1697 	int i, j;
1698 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1699 	struct perf_event *event;
1700 	unsigned long val[8];
1701 	int found, active;
1702 	int nmi;
1703 
1704 	if (cpuhw->n_limited)
1705 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1706 					mfspr(SPRN_PMC6));
1707 
1708 	perf_read_regs(regs);
1709 
1710 	nmi = perf_intr_is_nmi(regs);
1711 	if (nmi)
1712 		nmi_enter();
1713 	else
1714 		irq_enter();
1715 
1716 	/* Read all the PMCs since we'll need them a bunch of times */
1717 	for (i = 0; i < ppmu->n_counter; ++i)
1718 		val[i] = read_pmc(i + 1);
1719 
1720 	/* Try to find what caused the IRQ */
1721 	found = 0;
1722 	for (i = 0; i < ppmu->n_counter; ++i) {
1723 		if (!pmc_overflow(val[i]))
1724 			continue;
1725 		if (is_limited_pmc(i + 1))
1726 			continue; /* these won't generate IRQs */
1727 		/*
1728 		 * We've found one that's overflowed.  For active
1729 		 * counters we need to log this.  For inactive
1730 		 * counters, we need to reset it anyway
1731 		 */
1732 		found = 1;
1733 		active = 0;
1734 		for (j = 0; j < cpuhw->n_events; ++j) {
1735 			event = cpuhw->event[j];
1736 			if (event->hw.idx == (i + 1)) {
1737 				active = 1;
1738 				record_and_restart(event, val[i], regs);
1739 				break;
1740 			}
1741 		}
1742 		if (!active)
1743 			/* reset non active counters that have overflowed */
1744 			write_pmc(i + 1, 0);
1745 	}
1746 	if (!found && pvr_version_is(PVR_POWER7)) {
1747 		/* check active counters for special buggy p7 overflow */
1748 		for (i = 0; i < cpuhw->n_events; ++i) {
1749 			event = cpuhw->event[i];
1750 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1751 				continue;
1752 			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
1753 				/* event has overflowed in a buggy way*/
1754 				found = 1;
1755 				record_and_restart(event,
1756 						   val[event->hw.idx - 1],
1757 						   regs);
1758 			}
1759 		}
1760 	}
1761 	if ((!found) && printk_ratelimit())
1762 		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
1763 
1764 	/*
1765 	 * Reset MMCR0 to its normal value.  This will set PMXE and
1766 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1767 	 * and thus allow interrupts to occur again.
1768 	 * XXX might want to use MSR.PM to keep the events frozen until
1769 	 * we get back out of this interrupt.
1770 	 */
1771 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1772 
1773 	if (nmi)
1774 		nmi_exit();
1775 	else
1776 		irq_exit();
1777 }
1778 
1779 static void power_pmu_setup(int cpu)
1780 {
1781 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1782 
1783 	if (!ppmu)
1784 		return;
1785 	memset(cpuhw, 0, sizeof(*cpuhw));
1786 	cpuhw->mmcr[0] = MMCR0_FC;
1787 }
1788 
1789 static int __cpuinit
1790 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1791 {
1792 	unsigned int cpu = (long)hcpu;
1793 
1794 	switch (action & ~CPU_TASKS_FROZEN) {
1795 	case CPU_UP_PREPARE:
1796 		power_pmu_setup(cpu);
1797 		break;
1798 
1799 	default:
1800 		break;
1801 	}
1802 
1803 	return NOTIFY_OK;
1804 }
1805 
1806 int __cpuinit register_power_pmu(struct power_pmu *pmu)
1807 {
1808 	if (ppmu)
1809 		return -EBUSY;		/* something's already registered */
1810 
1811 	ppmu = pmu;
1812 	pr_info("%s performance monitor hardware support registered\n",
1813 		pmu->name);
1814 
1815 	power_pmu.attr_groups = ppmu->attr_groups;
1816 
1817 #ifdef MSR_HV
1818 	/*
1819 	 * Use FCHV to ignore kernel events if MSR.HV is set.
1820 	 */
1821 	if (mfmsr() & MSR_HV)
1822 		freeze_events_kernel = MMCR0_FCHV;
1823 #endif /* CONFIG_PPC64 */
1824 
1825 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1826 	perf_cpu_notifier(power_pmu_notifier);
1827 
1828 	return 0;
1829 }
1830