1 /* 2 * Performance event support - powerpc architecture code 3 * 4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/sched.h> 13 #include <linux/perf_event.h> 14 #include <linux/percpu.h> 15 #include <linux/hardirq.h> 16 #include <linux/uaccess.h> 17 #include <asm/reg.h> 18 #include <asm/pmc.h> 19 #include <asm/machdep.h> 20 #include <asm/firmware.h> 21 #include <asm/ptrace.h> 22 #include <asm/code-patching.h> 23 24 #define BHRB_MAX_ENTRIES 32 25 #define BHRB_TARGET 0x0000000000000002 26 #define BHRB_PREDICTION 0x0000000000000001 27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 28 29 struct cpu_hw_events { 30 int n_events; 31 int n_percpu; 32 int disabled; 33 int n_added; 34 int n_limited; 35 u8 pmcs_enabled; 36 struct perf_event *event[MAX_HWEVENTS]; 37 u64 events[MAX_HWEVENTS]; 38 unsigned int flags[MAX_HWEVENTS]; 39 unsigned long mmcr[3]; 40 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 41 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 42 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 43 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 44 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 45 46 unsigned int group_flag; 47 int n_txn_start; 48 49 /* BHRB bits */ 50 u64 bhrb_filter; /* BHRB HW branch filter */ 51 int bhrb_users; 52 void *bhrb_context; 53 struct perf_branch_stack bhrb_stack; 54 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 55 }; 56 57 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 58 59 struct power_pmu *ppmu; 60 61 /* 62 * Normally, to ignore kernel events we set the FCS (freeze counters 63 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 64 * hypervisor bit set in the MSR, or if we are running on a processor 65 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 66 * then we need to use the FCHV bit to ignore kernel events. 67 */ 68 static unsigned int freeze_events_kernel = MMCR0_FCS; 69 70 /* 71 * 32-bit doesn't have MMCRA but does have an MMCR2, 72 * and a few other names are different. 73 */ 74 #ifdef CONFIG_PPC32 75 76 #define MMCR0_FCHV 0 77 #define MMCR0_PMCjCE MMCR0_PMCnCE 78 #define MMCR0_FC56 0 79 #define MMCR0_PMAO 0 80 #define MMCR0_EBE 0 81 #define MMCR0_BHRBA 0 82 #define MMCR0_PMCC 0 83 #define MMCR0_PMCC_U6 0 84 85 #define SPRN_MMCRA SPRN_MMCR2 86 #define MMCRA_SAMPLE_ENABLE 0 87 88 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 89 { 90 return 0; 91 } 92 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { } 93 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 94 { 95 return 0; 96 } 97 static inline void perf_read_regs(struct pt_regs *regs) 98 { 99 regs->result = 0; 100 } 101 static inline int perf_intr_is_nmi(struct pt_regs *regs) 102 { 103 return 0; 104 } 105 106 static inline int siar_valid(struct pt_regs *regs) 107 { 108 return 1; 109 } 110 111 static bool is_ebb_event(struct perf_event *event) { return false; } 112 static int ebb_event_check(struct perf_event *event) { return 0; } 113 static void ebb_event_add(struct perf_event *event) { } 114 static void ebb_switch_out(unsigned long mmcr0) { } 115 static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0) 116 { 117 return mmcr0; 118 } 119 120 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 121 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 122 void power_pmu_flush_branch_stack(void) {} 123 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {} 124 static void pmao_restore_workaround(bool ebb) { } 125 #endif /* CONFIG_PPC32 */ 126 127 static bool regs_use_siar(struct pt_regs *regs) 128 { 129 return !!regs->result; 130 } 131 132 /* 133 * Things that are specific to 64-bit implementations. 134 */ 135 #ifdef CONFIG_PPC64 136 137 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 138 { 139 unsigned long mmcra = regs->dsisr; 140 141 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 142 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 143 if (slot > 1) 144 return 4 * (slot - 1); 145 } 146 147 return 0; 148 } 149 150 /* 151 * The user wants a data address recorded. 152 * If we're not doing instruction sampling, give them the SDAR 153 * (sampled data address). If we are doing instruction sampling, then 154 * only give them the SDAR if it corresponds to the instruction 155 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 156 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 157 */ 158 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) 159 { 160 unsigned long mmcra = regs->dsisr; 161 bool sdar_valid; 162 163 if (ppmu->flags & PPMU_HAS_SIER) 164 sdar_valid = regs->dar & SIER_SDAR_VALID; 165 else { 166 unsigned long sdsync; 167 168 if (ppmu->flags & PPMU_SIAR_VALID) 169 sdsync = POWER7P_MMCRA_SDAR_VALID; 170 else if (ppmu->flags & PPMU_ALT_SIPR) 171 sdsync = POWER6_MMCRA_SDSYNC; 172 else 173 sdsync = MMCRA_SDSYNC; 174 175 sdar_valid = mmcra & sdsync; 176 } 177 178 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 179 *addrp = mfspr(SPRN_SDAR); 180 } 181 182 static bool regs_sihv(struct pt_regs *regs) 183 { 184 unsigned long sihv = MMCRA_SIHV; 185 186 if (ppmu->flags & PPMU_HAS_SIER) 187 return !!(regs->dar & SIER_SIHV); 188 189 if (ppmu->flags & PPMU_ALT_SIPR) 190 sihv = POWER6_MMCRA_SIHV; 191 192 return !!(regs->dsisr & sihv); 193 } 194 195 static bool regs_sipr(struct pt_regs *regs) 196 { 197 unsigned long sipr = MMCRA_SIPR; 198 199 if (ppmu->flags & PPMU_HAS_SIER) 200 return !!(regs->dar & SIER_SIPR); 201 202 if (ppmu->flags & PPMU_ALT_SIPR) 203 sipr = POWER6_MMCRA_SIPR; 204 205 return !!(regs->dsisr & sipr); 206 } 207 208 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 209 { 210 if (regs->msr & MSR_PR) 211 return PERF_RECORD_MISC_USER; 212 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 213 return PERF_RECORD_MISC_HYPERVISOR; 214 return PERF_RECORD_MISC_KERNEL; 215 } 216 217 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 218 { 219 bool use_siar = regs_use_siar(regs); 220 221 if (!use_siar) 222 return perf_flags_from_msr(regs); 223 224 /* 225 * If we don't have flags in MMCRA, rather than using 226 * the MSR, we intuit the flags from the address in 227 * SIAR which should give slightly more reliable 228 * results 229 */ 230 if (ppmu->flags & PPMU_NO_SIPR) { 231 unsigned long siar = mfspr(SPRN_SIAR); 232 if (siar >= PAGE_OFFSET) 233 return PERF_RECORD_MISC_KERNEL; 234 return PERF_RECORD_MISC_USER; 235 } 236 237 /* PR has priority over HV, so order below is important */ 238 if (regs_sipr(regs)) 239 return PERF_RECORD_MISC_USER; 240 241 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 242 return PERF_RECORD_MISC_HYPERVISOR; 243 244 return PERF_RECORD_MISC_KERNEL; 245 } 246 247 /* 248 * Overload regs->dsisr to store MMCRA so we only need to read it once 249 * on each interrupt. 250 * Overload regs->dar to store SIER if we have it. 251 * Overload regs->result to specify whether we should use the MSR (result 252 * is zero) or the SIAR (result is non zero). 253 */ 254 static inline void perf_read_regs(struct pt_regs *regs) 255 { 256 unsigned long mmcra = mfspr(SPRN_MMCRA); 257 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 258 int use_siar; 259 260 regs->dsisr = mmcra; 261 262 if (ppmu->flags & PPMU_HAS_SIER) 263 regs->dar = mfspr(SPRN_SIER); 264 265 /* 266 * If this isn't a PMU exception (eg a software event) the SIAR is 267 * not valid. Use pt_regs. 268 * 269 * If it is a marked event use the SIAR. 270 * 271 * If the PMU doesn't update the SIAR for non marked events use 272 * pt_regs. 273 * 274 * If the PMU has HV/PR flags then check to see if they 275 * place the exception in userspace. If so, use pt_regs. In 276 * continuous sampling mode the SIAR and the PMU exception are 277 * not synchronised, so they may be many instructions apart. 278 * This can result in confusing backtraces. We still want 279 * hypervisor samples as well as samples in the kernel with 280 * interrupts off hence the userspace check. 281 */ 282 if (TRAP(regs) != 0xf00) 283 use_siar = 0; 284 else if (marked) 285 use_siar = 1; 286 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 287 use_siar = 0; 288 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 289 use_siar = 0; 290 else 291 use_siar = 1; 292 293 regs->result = use_siar; 294 } 295 296 /* 297 * If interrupts were soft-disabled when a PMU interrupt occurs, treat 298 * it as an NMI. 299 */ 300 static inline int perf_intr_is_nmi(struct pt_regs *regs) 301 { 302 return !regs->softe; 303 } 304 305 /* 306 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 307 * must be sampled only if the SIAR-valid bit is set. 308 * 309 * For unmarked instructions and for processors that don't have the SIAR-Valid 310 * bit, assume that SIAR is valid. 311 */ 312 static inline int siar_valid(struct pt_regs *regs) 313 { 314 unsigned long mmcra = regs->dsisr; 315 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 316 317 if (marked) { 318 if (ppmu->flags & PPMU_HAS_SIER) 319 return regs->dar & SIER_SIAR_VALID; 320 321 if (ppmu->flags & PPMU_SIAR_VALID) 322 return mmcra & POWER7P_MMCRA_SIAR_VALID; 323 } 324 325 return 1; 326 } 327 328 329 /* Reset all possible BHRB entries */ 330 static void power_pmu_bhrb_reset(void) 331 { 332 asm volatile(PPC_CLRBHRB); 333 } 334 335 static void power_pmu_bhrb_enable(struct perf_event *event) 336 { 337 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 338 339 if (!ppmu->bhrb_nr) 340 return; 341 342 /* Clear BHRB if we changed task context to avoid data leaks */ 343 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 344 power_pmu_bhrb_reset(); 345 cpuhw->bhrb_context = event->ctx; 346 } 347 cpuhw->bhrb_users++; 348 } 349 350 static void power_pmu_bhrb_disable(struct perf_event *event) 351 { 352 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 353 354 if (!ppmu->bhrb_nr) 355 return; 356 357 cpuhw->bhrb_users--; 358 WARN_ON_ONCE(cpuhw->bhrb_users < 0); 359 360 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 361 /* BHRB cannot be turned off when other 362 * events are active on the PMU. 363 */ 364 365 /* avoid stale pointer */ 366 cpuhw->bhrb_context = NULL; 367 } 368 } 369 370 /* Called from ctxsw to prevent one process's branch entries to 371 * mingle with the other process's entries during context switch. 372 */ 373 void power_pmu_flush_branch_stack(void) 374 { 375 if (ppmu->bhrb_nr) 376 power_pmu_bhrb_reset(); 377 } 378 /* Calculate the to address for a branch */ 379 static __u64 power_pmu_bhrb_to(u64 addr) 380 { 381 unsigned int instr; 382 int ret; 383 __u64 target; 384 385 if (is_kernel_addr(addr)) 386 return branch_target((unsigned int *)addr); 387 388 /* Userspace: need copy instruction here then translate it */ 389 pagefault_disable(); 390 ret = __get_user_inatomic(instr, (unsigned int __user *)addr); 391 if (ret) { 392 pagefault_enable(); 393 return 0; 394 } 395 pagefault_enable(); 396 397 target = branch_target(&instr); 398 if ((!target) || (instr & BRANCH_ABSOLUTE)) 399 return target; 400 401 /* Translate relative branch target from kernel to user address */ 402 return target - (unsigned long)&instr + addr; 403 } 404 405 /* Processing BHRB entries */ 406 void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) 407 { 408 u64 val; 409 u64 addr; 410 int r_index, u_index, pred; 411 412 r_index = 0; 413 u_index = 0; 414 while (r_index < ppmu->bhrb_nr) { 415 /* Assembly read function */ 416 val = read_bhrb(r_index++); 417 if (!val) 418 /* Terminal marker: End of valid BHRB entries */ 419 break; 420 else { 421 addr = val & BHRB_EA; 422 pred = val & BHRB_PREDICTION; 423 424 if (!addr) 425 /* invalid entry */ 426 continue; 427 428 /* Branches are read most recent first (ie. mfbhrb 0 is 429 * the most recent branch). 430 * There are two types of valid entries: 431 * 1) a target entry which is the to address of a 432 * computed goto like a blr,bctr,btar. The next 433 * entry read from the bhrb will be branch 434 * corresponding to this target (ie. the actual 435 * blr/bctr/btar instruction). 436 * 2) a from address which is an actual branch. If a 437 * target entry proceeds this, then this is the 438 * matching branch for that target. If this is not 439 * following a target entry, then this is a branch 440 * where the target is given as an immediate field 441 * in the instruction (ie. an i or b form branch). 442 * In this case we need to read the instruction from 443 * memory to determine the target/to address. 444 */ 445 446 if (val & BHRB_TARGET) { 447 /* Target branches use two entries 448 * (ie. computed gotos/XL form) 449 */ 450 cpuhw->bhrb_entries[u_index].to = addr; 451 cpuhw->bhrb_entries[u_index].mispred = pred; 452 cpuhw->bhrb_entries[u_index].predicted = ~pred; 453 454 /* Get from address in next entry */ 455 val = read_bhrb(r_index++); 456 addr = val & BHRB_EA; 457 if (val & BHRB_TARGET) { 458 /* Shouldn't have two targets in a 459 row.. Reset index and try again */ 460 r_index--; 461 addr = 0; 462 } 463 cpuhw->bhrb_entries[u_index].from = addr; 464 } else { 465 /* Branches to immediate field 466 (ie I or B form) */ 467 cpuhw->bhrb_entries[u_index].from = addr; 468 cpuhw->bhrb_entries[u_index].to = 469 power_pmu_bhrb_to(addr); 470 cpuhw->bhrb_entries[u_index].mispred = pred; 471 cpuhw->bhrb_entries[u_index].predicted = ~pred; 472 } 473 u_index++; 474 475 } 476 } 477 cpuhw->bhrb_stack.nr = u_index; 478 return; 479 } 480 481 static bool is_ebb_event(struct perf_event *event) 482 { 483 /* 484 * This could be a per-PMU callback, but we'd rather avoid the cost. We 485 * check that the PMU supports EBB, meaning those that don't can still 486 * use bit 63 of the event code for something else if they wish. 487 */ 488 return (ppmu->flags & PPMU_EBB) && 489 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 490 } 491 492 static int ebb_event_check(struct perf_event *event) 493 { 494 struct perf_event *leader = event->group_leader; 495 496 /* Event and group leader must agree on EBB */ 497 if (is_ebb_event(leader) != is_ebb_event(event)) 498 return -EINVAL; 499 500 if (is_ebb_event(event)) { 501 if (!(event->attach_state & PERF_ATTACH_TASK)) 502 return -EINVAL; 503 504 if (!leader->attr.pinned || !leader->attr.exclusive) 505 return -EINVAL; 506 507 if (event->attr.freq || 508 event->attr.inherit || 509 event->attr.sample_type || 510 event->attr.sample_period || 511 event->attr.enable_on_exec) 512 return -EINVAL; 513 } 514 515 return 0; 516 } 517 518 static void ebb_event_add(struct perf_event *event) 519 { 520 if (!is_ebb_event(event) || current->thread.used_ebb) 521 return; 522 523 /* 524 * IFF this is the first time we've added an EBB event, set 525 * PMXE in the user MMCR0 so we can detect when it's cleared by 526 * userspace. We need this so that we can context switch while 527 * userspace is in the EBB handler (where PMXE is 0). 528 */ 529 current->thread.used_ebb = 1; 530 current->thread.mmcr0 |= MMCR0_PMXE; 531 } 532 533 static void ebb_switch_out(unsigned long mmcr0) 534 { 535 if (!(mmcr0 & MMCR0_EBE)) 536 return; 537 538 current->thread.siar = mfspr(SPRN_SIAR); 539 current->thread.sier = mfspr(SPRN_SIER); 540 current->thread.sdar = mfspr(SPRN_SDAR); 541 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 542 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 543 } 544 545 static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0) 546 { 547 if (!ebb) 548 goto out; 549 550 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 551 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 552 553 /* 554 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 555 * with pmao_restore_workaround() because we may add PMAO but we never 556 * clear it here. 557 */ 558 mmcr0 |= current->thread.mmcr0; 559 560 /* 561 * Be careful not to set PMXE if userspace had it cleared. This is also 562 * compatible with pmao_restore_workaround() because it has already 563 * cleared PMXE and we leave PMAO alone. 564 */ 565 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 566 mmcr0 &= ~MMCR0_PMXE; 567 568 mtspr(SPRN_SIAR, current->thread.siar); 569 mtspr(SPRN_SIER, current->thread.sier); 570 mtspr(SPRN_SDAR, current->thread.sdar); 571 mtspr(SPRN_MMCR2, current->thread.mmcr2); 572 out: 573 return mmcr0; 574 } 575 576 static void pmao_restore_workaround(bool ebb) 577 { 578 unsigned pmcs[6]; 579 580 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 581 return; 582 583 /* 584 * On POWER8E there is a hardware defect which affects the PMU context 585 * switch logic, ie. power_pmu_disable/enable(). 586 * 587 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 588 * by the hardware. Sometime later the actual PMU exception is 589 * delivered. 590 * 591 * If we context switch, or simply disable/enable, the PMU prior to the 592 * exception arriving, the exception will be lost when we clear PMAO. 593 * 594 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 595 * set, and this _should_ generate an exception. However because of the 596 * defect no exception is generated when we write PMAO, and we get 597 * stuck with no counters counting but no exception delivered. 598 * 599 * The workaround is to detect this case and tweak the hardware to 600 * create another pending PMU exception. 601 * 602 * We do that by setting up PMC6 (cycles) for an imminent overflow and 603 * enabling the PMU. That causes a new exception to be generated in the 604 * chip, but we don't take it yet because we have interrupts hard 605 * disabled. We then write back the PMU state as we want it to be seen 606 * by the exception handler. When we reenable interrupts the exception 607 * handler will be called and see the correct state. 608 * 609 * The logic is the same for EBB, except that the exception is gated by 610 * us having interrupts hard disabled as well as the fact that we are 611 * not in userspace. The exception is finally delivered when we return 612 * to userspace. 613 */ 614 615 /* Only if PMAO is set and PMAO_SYNC is clear */ 616 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 617 return; 618 619 /* If we're doing EBB, only if BESCR[GE] is set */ 620 if (ebb && !(current->thread.bescr & BESCR_GE)) 621 return; 622 623 /* 624 * We are already soft-disabled in power_pmu_enable(). We need to hard 625 * enable to actually prevent the PMU exception from firing. 626 */ 627 hard_irq_disable(); 628 629 /* 630 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 631 * Using read/write_pmc() in a for loop adds 12 function calls and 632 * almost doubles our code size. 633 */ 634 pmcs[0] = mfspr(SPRN_PMC1); 635 pmcs[1] = mfspr(SPRN_PMC2); 636 pmcs[2] = mfspr(SPRN_PMC3); 637 pmcs[3] = mfspr(SPRN_PMC4); 638 pmcs[4] = mfspr(SPRN_PMC5); 639 pmcs[5] = mfspr(SPRN_PMC6); 640 641 /* Ensure all freeze bits are unset */ 642 mtspr(SPRN_MMCR2, 0); 643 644 /* Set up PMC6 to overflow in one cycle */ 645 mtspr(SPRN_PMC6, 0x7FFFFFFE); 646 647 /* Enable exceptions and unfreeze PMC6 */ 648 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 649 650 /* Now we need to refreeze and restore the PMCs */ 651 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 652 653 mtspr(SPRN_PMC1, pmcs[0]); 654 mtspr(SPRN_PMC2, pmcs[1]); 655 mtspr(SPRN_PMC3, pmcs[2]); 656 mtspr(SPRN_PMC4, pmcs[3]); 657 mtspr(SPRN_PMC5, pmcs[4]); 658 mtspr(SPRN_PMC6, pmcs[5]); 659 } 660 #endif /* CONFIG_PPC64 */ 661 662 static void perf_event_interrupt(struct pt_regs *regs); 663 664 /* 665 * Read one performance monitor counter (PMC). 666 */ 667 static unsigned long read_pmc(int idx) 668 { 669 unsigned long val; 670 671 switch (idx) { 672 case 1: 673 val = mfspr(SPRN_PMC1); 674 break; 675 case 2: 676 val = mfspr(SPRN_PMC2); 677 break; 678 case 3: 679 val = mfspr(SPRN_PMC3); 680 break; 681 case 4: 682 val = mfspr(SPRN_PMC4); 683 break; 684 case 5: 685 val = mfspr(SPRN_PMC5); 686 break; 687 case 6: 688 val = mfspr(SPRN_PMC6); 689 break; 690 #ifdef CONFIG_PPC64 691 case 7: 692 val = mfspr(SPRN_PMC7); 693 break; 694 case 8: 695 val = mfspr(SPRN_PMC8); 696 break; 697 #endif /* CONFIG_PPC64 */ 698 default: 699 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 700 val = 0; 701 } 702 return val; 703 } 704 705 /* 706 * Write one PMC. 707 */ 708 static void write_pmc(int idx, unsigned long val) 709 { 710 switch (idx) { 711 case 1: 712 mtspr(SPRN_PMC1, val); 713 break; 714 case 2: 715 mtspr(SPRN_PMC2, val); 716 break; 717 case 3: 718 mtspr(SPRN_PMC3, val); 719 break; 720 case 4: 721 mtspr(SPRN_PMC4, val); 722 break; 723 case 5: 724 mtspr(SPRN_PMC5, val); 725 break; 726 case 6: 727 mtspr(SPRN_PMC6, val); 728 break; 729 #ifdef CONFIG_PPC64 730 case 7: 731 mtspr(SPRN_PMC7, val); 732 break; 733 case 8: 734 mtspr(SPRN_PMC8, val); 735 break; 736 #endif /* CONFIG_PPC64 */ 737 default: 738 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 739 } 740 } 741 742 /* Called from sysrq_handle_showregs() */ 743 void perf_event_print_debug(void) 744 { 745 unsigned long sdar, sier, flags; 746 u32 pmcs[MAX_HWEVENTS]; 747 int i; 748 749 if (!ppmu->n_counter) 750 return; 751 752 local_irq_save(flags); 753 754 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 755 smp_processor_id(), ppmu->name, ppmu->n_counter); 756 757 for (i = 0; i < ppmu->n_counter; i++) 758 pmcs[i] = read_pmc(i + 1); 759 760 for (; i < MAX_HWEVENTS; i++) 761 pmcs[i] = 0xdeadbeef; 762 763 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 764 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 765 766 if (ppmu->n_counter > 4) 767 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 768 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 769 770 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 771 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 772 773 sdar = sier = 0; 774 #ifdef CONFIG_PPC64 775 sdar = mfspr(SPRN_SDAR); 776 777 if (ppmu->flags & PPMU_HAS_SIER) 778 sier = mfspr(SPRN_SIER); 779 780 if (ppmu->flags & PPMU_EBB) { 781 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 782 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 783 pr_info("EBBRR: %016lx BESCR: %016lx\n", 784 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 785 } 786 #endif 787 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 788 mfspr(SPRN_SIAR), sdar, sier); 789 790 local_irq_restore(flags); 791 } 792 793 /* 794 * Check if a set of events can all go on the PMU at once. 795 * If they can't, this will look at alternative codes for the events 796 * and see if any combination of alternative codes is feasible. 797 * The feasible set is returned in event_id[]. 798 */ 799 static int power_check_constraints(struct cpu_hw_events *cpuhw, 800 u64 event_id[], unsigned int cflags[], 801 int n_ev) 802 { 803 unsigned long mask, value, nv; 804 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 805 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 806 int i, j; 807 unsigned long addf = ppmu->add_fields; 808 unsigned long tadd = ppmu->test_adder; 809 810 if (n_ev > ppmu->n_counter) 811 return -1; 812 813 /* First see if the events will go on as-is */ 814 for (i = 0; i < n_ev; ++i) { 815 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 816 && !ppmu->limited_pmc_event(event_id[i])) { 817 ppmu->get_alternatives(event_id[i], cflags[i], 818 cpuhw->alternatives[i]); 819 event_id[i] = cpuhw->alternatives[i][0]; 820 } 821 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 822 &cpuhw->avalues[i][0])) 823 return -1; 824 } 825 value = mask = 0; 826 for (i = 0; i < n_ev; ++i) { 827 nv = (value | cpuhw->avalues[i][0]) + 828 (value & cpuhw->avalues[i][0] & addf); 829 if ((((nv + tadd) ^ value) & mask) != 0 || 830 (((nv + tadd) ^ cpuhw->avalues[i][0]) & 831 cpuhw->amasks[i][0]) != 0) 832 break; 833 value = nv; 834 mask |= cpuhw->amasks[i][0]; 835 } 836 if (i == n_ev) 837 return 0; /* all OK */ 838 839 /* doesn't work, gather alternatives... */ 840 if (!ppmu->get_alternatives) 841 return -1; 842 for (i = 0; i < n_ev; ++i) { 843 choice[i] = 0; 844 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 845 cpuhw->alternatives[i]); 846 for (j = 1; j < n_alt[i]; ++j) 847 ppmu->get_constraint(cpuhw->alternatives[i][j], 848 &cpuhw->amasks[i][j], 849 &cpuhw->avalues[i][j]); 850 } 851 852 /* enumerate all possibilities and see if any will work */ 853 i = 0; 854 j = -1; 855 value = mask = nv = 0; 856 while (i < n_ev) { 857 if (j >= 0) { 858 /* we're backtracking, restore context */ 859 value = svalues[i]; 860 mask = smasks[i]; 861 j = choice[i]; 862 } 863 /* 864 * See if any alternative k for event_id i, 865 * where k > j, will satisfy the constraints. 866 */ 867 while (++j < n_alt[i]) { 868 nv = (value | cpuhw->avalues[i][j]) + 869 (value & cpuhw->avalues[i][j] & addf); 870 if ((((nv + tadd) ^ value) & mask) == 0 && 871 (((nv + tadd) ^ cpuhw->avalues[i][j]) 872 & cpuhw->amasks[i][j]) == 0) 873 break; 874 } 875 if (j >= n_alt[i]) { 876 /* 877 * No feasible alternative, backtrack 878 * to event_id i-1 and continue enumerating its 879 * alternatives from where we got up to. 880 */ 881 if (--i < 0) 882 return -1; 883 } else { 884 /* 885 * Found a feasible alternative for event_id i, 886 * remember where we got up to with this event_id, 887 * go on to the next event_id, and start with 888 * the first alternative for it. 889 */ 890 choice[i] = j; 891 svalues[i] = value; 892 smasks[i] = mask; 893 value = nv; 894 mask |= cpuhw->amasks[i][j]; 895 ++i; 896 j = -1; 897 } 898 } 899 900 /* OK, we have a feasible combination, tell the caller the solution */ 901 for (i = 0; i < n_ev; ++i) 902 event_id[i] = cpuhw->alternatives[i][choice[i]]; 903 return 0; 904 } 905 906 /* 907 * Check if newly-added events have consistent settings for 908 * exclude_{user,kernel,hv} with each other and any previously 909 * added events. 910 */ 911 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 912 int n_prev, int n_new) 913 { 914 int eu = 0, ek = 0, eh = 0; 915 int i, n, first; 916 struct perf_event *event; 917 918 n = n_prev + n_new; 919 if (n <= 1) 920 return 0; 921 922 first = 1; 923 for (i = 0; i < n; ++i) { 924 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 925 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 926 continue; 927 } 928 event = ctrs[i]; 929 if (first) { 930 eu = event->attr.exclude_user; 931 ek = event->attr.exclude_kernel; 932 eh = event->attr.exclude_hv; 933 first = 0; 934 } else if (event->attr.exclude_user != eu || 935 event->attr.exclude_kernel != ek || 936 event->attr.exclude_hv != eh) { 937 return -EAGAIN; 938 } 939 } 940 941 if (eu || ek || eh) 942 for (i = 0; i < n; ++i) 943 if (cflags[i] & PPMU_LIMITED_PMC_OK) 944 cflags[i] |= PPMU_LIMITED_PMC_REQD; 945 946 return 0; 947 } 948 949 static u64 check_and_compute_delta(u64 prev, u64 val) 950 { 951 u64 delta = (val - prev) & 0xfffffffful; 952 953 /* 954 * POWER7 can roll back counter values, if the new value is smaller 955 * than the previous value it will cause the delta and the counter to 956 * have bogus values unless we rolled a counter over. If a coutner is 957 * rolled back, it will be smaller, but within 256, which is the maximum 958 * number of events to rollback at once. If we dectect a rollback 959 * return 0. This can lead to a small lack of precision in the 960 * counters. 961 */ 962 if (prev > val && (prev - val) < 256) 963 delta = 0; 964 965 return delta; 966 } 967 968 static void power_pmu_read(struct perf_event *event) 969 { 970 s64 val, delta, prev; 971 972 if (event->hw.state & PERF_HES_STOPPED) 973 return; 974 975 if (!event->hw.idx) 976 return; 977 978 if (is_ebb_event(event)) { 979 val = read_pmc(event->hw.idx); 980 local64_set(&event->hw.prev_count, val); 981 return; 982 } 983 984 /* 985 * Performance monitor interrupts come even when interrupts 986 * are soft-disabled, as long as interrupts are hard-enabled. 987 * Therefore we treat them like NMIs. 988 */ 989 do { 990 prev = local64_read(&event->hw.prev_count); 991 barrier(); 992 val = read_pmc(event->hw.idx); 993 delta = check_and_compute_delta(prev, val); 994 if (!delta) 995 return; 996 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 997 998 local64_add(delta, &event->count); 999 local64_sub(delta, &event->hw.period_left); 1000 } 1001 1002 /* 1003 * On some machines, PMC5 and PMC6 can't be written, don't respect 1004 * the freeze conditions, and don't generate interrupts. This tells 1005 * us if `event' is using such a PMC. 1006 */ 1007 static int is_limited_pmc(int pmcnum) 1008 { 1009 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1010 && (pmcnum == 5 || pmcnum == 6); 1011 } 1012 1013 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1014 unsigned long pmc5, unsigned long pmc6) 1015 { 1016 struct perf_event *event; 1017 u64 val, prev, delta; 1018 int i; 1019 1020 for (i = 0; i < cpuhw->n_limited; ++i) { 1021 event = cpuhw->limited_counter[i]; 1022 if (!event->hw.idx) 1023 continue; 1024 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1025 prev = local64_read(&event->hw.prev_count); 1026 event->hw.idx = 0; 1027 delta = check_and_compute_delta(prev, val); 1028 if (delta) 1029 local64_add(delta, &event->count); 1030 } 1031 } 1032 1033 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1034 unsigned long pmc5, unsigned long pmc6) 1035 { 1036 struct perf_event *event; 1037 u64 val, prev; 1038 int i; 1039 1040 for (i = 0; i < cpuhw->n_limited; ++i) { 1041 event = cpuhw->limited_counter[i]; 1042 event->hw.idx = cpuhw->limited_hwidx[i]; 1043 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1044 prev = local64_read(&event->hw.prev_count); 1045 if (check_and_compute_delta(prev, val)) 1046 local64_set(&event->hw.prev_count, val); 1047 perf_event_update_userpage(event); 1048 } 1049 } 1050 1051 /* 1052 * Since limited events don't respect the freeze conditions, we 1053 * have to read them immediately after freezing or unfreezing the 1054 * other events. We try to keep the values from the limited 1055 * events as consistent as possible by keeping the delay (in 1056 * cycles and instructions) between freezing/unfreezing and reading 1057 * the limited events as small and consistent as possible. 1058 * Therefore, if any limited events are in use, we read them 1059 * both, and always in the same order, to minimize variability, 1060 * and do it inside the same asm that writes MMCR0. 1061 */ 1062 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1063 { 1064 unsigned long pmc5, pmc6; 1065 1066 if (!cpuhw->n_limited) { 1067 mtspr(SPRN_MMCR0, mmcr0); 1068 return; 1069 } 1070 1071 /* 1072 * Write MMCR0, then read PMC5 and PMC6 immediately. 1073 * To ensure we don't get a performance monitor interrupt 1074 * between writing MMCR0 and freezing/thawing the limited 1075 * events, we first write MMCR0 with the event overflow 1076 * interrupt enable bits turned off. 1077 */ 1078 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1079 : "=&r" (pmc5), "=&r" (pmc6) 1080 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1081 "i" (SPRN_MMCR0), 1082 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1083 1084 if (mmcr0 & MMCR0_FC) 1085 freeze_limited_counters(cpuhw, pmc5, pmc6); 1086 else 1087 thaw_limited_counters(cpuhw, pmc5, pmc6); 1088 1089 /* 1090 * Write the full MMCR0 including the event overflow interrupt 1091 * enable bits, if necessary. 1092 */ 1093 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1094 mtspr(SPRN_MMCR0, mmcr0); 1095 } 1096 1097 /* 1098 * Disable all events to prevent PMU interrupts and to allow 1099 * events to be added or removed. 1100 */ 1101 static void power_pmu_disable(struct pmu *pmu) 1102 { 1103 struct cpu_hw_events *cpuhw; 1104 unsigned long flags, mmcr0, val; 1105 1106 if (!ppmu) 1107 return; 1108 local_irq_save(flags); 1109 cpuhw = &__get_cpu_var(cpu_hw_events); 1110 1111 if (!cpuhw->disabled) { 1112 /* 1113 * Check if we ever enabled the PMU on this cpu. 1114 */ 1115 if (!cpuhw->pmcs_enabled) { 1116 ppc_enable_pmcs(); 1117 cpuhw->pmcs_enabled = 1; 1118 } 1119 1120 /* 1121 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1122 */ 1123 val = mmcr0 = mfspr(SPRN_MMCR0); 1124 val |= MMCR0_FC; 1125 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1126 MMCR0_FC56); 1127 1128 /* 1129 * The barrier is to make sure the mtspr has been 1130 * executed and the PMU has frozen the events etc. 1131 * before we return. 1132 */ 1133 write_mmcr0(cpuhw, val); 1134 mb(); 1135 1136 /* 1137 * Disable instruction sampling if it was enabled 1138 */ 1139 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1140 mtspr(SPRN_MMCRA, 1141 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1142 mb(); 1143 } 1144 1145 cpuhw->disabled = 1; 1146 cpuhw->n_added = 0; 1147 1148 ebb_switch_out(mmcr0); 1149 } 1150 1151 local_irq_restore(flags); 1152 } 1153 1154 /* 1155 * Re-enable all events if disable == 0. 1156 * If we were previously disabled and events were added, then 1157 * put the new config on the PMU. 1158 */ 1159 static void power_pmu_enable(struct pmu *pmu) 1160 { 1161 struct perf_event *event; 1162 struct cpu_hw_events *cpuhw; 1163 unsigned long flags; 1164 long i; 1165 unsigned long val, mmcr0; 1166 s64 left; 1167 unsigned int hwc_index[MAX_HWEVENTS]; 1168 int n_lim; 1169 int idx; 1170 bool ebb; 1171 1172 if (!ppmu) 1173 return; 1174 local_irq_save(flags); 1175 1176 cpuhw = &__get_cpu_var(cpu_hw_events); 1177 if (!cpuhw->disabled) 1178 goto out; 1179 1180 if (cpuhw->n_events == 0) { 1181 ppc_set_pmu_inuse(0); 1182 goto out; 1183 } 1184 1185 cpuhw->disabled = 0; 1186 1187 /* 1188 * EBB requires an exclusive group and all events must have the EBB 1189 * flag set, or not set, so we can just check a single event. Also we 1190 * know we have at least one event. 1191 */ 1192 ebb = is_ebb_event(cpuhw->event[0]); 1193 1194 /* 1195 * If we didn't change anything, or only removed events, 1196 * no need to recalculate MMCR* settings and reset the PMCs. 1197 * Just reenable the PMU with the current MMCR* settings 1198 * (possibly updated for removal of events). 1199 */ 1200 if (!cpuhw->n_added) { 1201 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1202 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1203 goto out_enable; 1204 } 1205 1206 /* 1207 * Compute MMCR* values for the new set of events 1208 */ 1209 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1210 cpuhw->mmcr)) { 1211 /* shouldn't ever get here */ 1212 printk(KERN_ERR "oops compute_mmcr failed\n"); 1213 goto out; 1214 } 1215 1216 /* 1217 * Add in MMCR0 freeze bits corresponding to the 1218 * attr.exclude_* bits for the first event. 1219 * We have already checked that all events have the 1220 * same values for these bits as the first event. 1221 */ 1222 event = cpuhw->event[0]; 1223 if (event->attr.exclude_user) 1224 cpuhw->mmcr[0] |= MMCR0_FCP; 1225 if (event->attr.exclude_kernel) 1226 cpuhw->mmcr[0] |= freeze_events_kernel; 1227 if (event->attr.exclude_hv) 1228 cpuhw->mmcr[0] |= MMCR0_FCHV; 1229 1230 /* 1231 * Write the new configuration to MMCR* with the freeze 1232 * bit set and set the hardware events to their initial values. 1233 * Then unfreeze the events. 1234 */ 1235 ppc_set_pmu_inuse(1); 1236 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1237 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1238 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1239 | MMCR0_FC); 1240 1241 /* 1242 * Read off any pre-existing events that need to move 1243 * to another PMC. 1244 */ 1245 for (i = 0; i < cpuhw->n_events; ++i) { 1246 event = cpuhw->event[i]; 1247 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1248 power_pmu_read(event); 1249 write_pmc(event->hw.idx, 0); 1250 event->hw.idx = 0; 1251 } 1252 } 1253 1254 /* 1255 * Initialize the PMCs for all the new and moved events. 1256 */ 1257 cpuhw->n_limited = n_lim = 0; 1258 for (i = 0; i < cpuhw->n_events; ++i) { 1259 event = cpuhw->event[i]; 1260 if (event->hw.idx) 1261 continue; 1262 idx = hwc_index[i] + 1; 1263 if (is_limited_pmc(idx)) { 1264 cpuhw->limited_counter[n_lim] = event; 1265 cpuhw->limited_hwidx[n_lim] = idx; 1266 ++n_lim; 1267 continue; 1268 } 1269 1270 if (ebb) 1271 val = local64_read(&event->hw.prev_count); 1272 else { 1273 val = 0; 1274 if (event->hw.sample_period) { 1275 left = local64_read(&event->hw.period_left); 1276 if (left < 0x80000000L) 1277 val = 0x80000000L - left; 1278 } 1279 local64_set(&event->hw.prev_count, val); 1280 } 1281 1282 event->hw.idx = idx; 1283 if (event->hw.state & PERF_HES_STOPPED) 1284 val = 0; 1285 write_pmc(idx, val); 1286 1287 perf_event_update_userpage(event); 1288 } 1289 cpuhw->n_limited = n_lim; 1290 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; 1291 1292 out_enable: 1293 pmao_restore_workaround(ebb); 1294 1295 mmcr0 = ebb_switch_in(ebb, cpuhw->mmcr[0]); 1296 1297 mb(); 1298 if (cpuhw->bhrb_users) 1299 ppmu->config_bhrb(cpuhw->bhrb_filter); 1300 1301 write_mmcr0(cpuhw, mmcr0); 1302 1303 /* 1304 * Enable instruction sampling if necessary 1305 */ 1306 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1307 mb(); 1308 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); 1309 } 1310 1311 out: 1312 1313 local_irq_restore(flags); 1314 } 1315 1316 static int collect_events(struct perf_event *group, int max_count, 1317 struct perf_event *ctrs[], u64 *events, 1318 unsigned int *flags) 1319 { 1320 int n = 0; 1321 struct perf_event *event; 1322 1323 if (!is_software_event(group)) { 1324 if (n >= max_count) 1325 return -1; 1326 ctrs[n] = group; 1327 flags[n] = group->hw.event_base; 1328 events[n++] = group->hw.config; 1329 } 1330 list_for_each_entry(event, &group->sibling_list, group_entry) { 1331 if (!is_software_event(event) && 1332 event->state != PERF_EVENT_STATE_OFF) { 1333 if (n >= max_count) 1334 return -1; 1335 ctrs[n] = event; 1336 flags[n] = event->hw.event_base; 1337 events[n++] = event->hw.config; 1338 } 1339 } 1340 return n; 1341 } 1342 1343 /* 1344 * Add a event to the PMU. 1345 * If all events are not already frozen, then we disable and 1346 * re-enable the PMU in order to get hw_perf_enable to do the 1347 * actual work of reconfiguring the PMU. 1348 */ 1349 static int power_pmu_add(struct perf_event *event, int ef_flags) 1350 { 1351 struct cpu_hw_events *cpuhw; 1352 unsigned long flags; 1353 int n0; 1354 int ret = -EAGAIN; 1355 1356 local_irq_save(flags); 1357 perf_pmu_disable(event->pmu); 1358 1359 /* 1360 * Add the event to the list (if there is room) 1361 * and check whether the total set is still feasible. 1362 */ 1363 cpuhw = &__get_cpu_var(cpu_hw_events); 1364 n0 = cpuhw->n_events; 1365 if (n0 >= ppmu->n_counter) 1366 goto out; 1367 cpuhw->event[n0] = event; 1368 cpuhw->events[n0] = event->hw.config; 1369 cpuhw->flags[n0] = event->hw.event_base; 1370 1371 /* 1372 * This event may have been disabled/stopped in record_and_restart() 1373 * because we exceeded the ->event_limit. If re-starting the event, 1374 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1375 * notification is re-enabled. 1376 */ 1377 if (!(ef_flags & PERF_EF_START)) 1378 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1379 else 1380 event->hw.state = 0; 1381 1382 /* 1383 * If group events scheduling transaction was started, 1384 * skip the schedulability test here, it will be performed 1385 * at commit time(->commit_txn) as a whole 1386 */ 1387 if (cpuhw->group_flag & PERF_EVENT_TXN) 1388 goto nocheck; 1389 1390 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1391 goto out; 1392 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) 1393 goto out; 1394 event->hw.config = cpuhw->events[n0]; 1395 1396 nocheck: 1397 ebb_event_add(event); 1398 1399 ++cpuhw->n_events; 1400 ++cpuhw->n_added; 1401 1402 ret = 0; 1403 out: 1404 if (has_branch_stack(event)) { 1405 power_pmu_bhrb_enable(event); 1406 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1407 event->attr.branch_sample_type); 1408 } 1409 1410 perf_pmu_enable(event->pmu); 1411 local_irq_restore(flags); 1412 return ret; 1413 } 1414 1415 /* 1416 * Remove a event from the PMU. 1417 */ 1418 static void power_pmu_del(struct perf_event *event, int ef_flags) 1419 { 1420 struct cpu_hw_events *cpuhw; 1421 long i; 1422 unsigned long flags; 1423 1424 local_irq_save(flags); 1425 perf_pmu_disable(event->pmu); 1426 1427 power_pmu_read(event); 1428 1429 cpuhw = &__get_cpu_var(cpu_hw_events); 1430 for (i = 0; i < cpuhw->n_events; ++i) { 1431 if (event == cpuhw->event[i]) { 1432 while (++i < cpuhw->n_events) { 1433 cpuhw->event[i-1] = cpuhw->event[i]; 1434 cpuhw->events[i-1] = cpuhw->events[i]; 1435 cpuhw->flags[i-1] = cpuhw->flags[i]; 1436 } 1437 --cpuhw->n_events; 1438 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); 1439 if (event->hw.idx) { 1440 write_pmc(event->hw.idx, 0); 1441 event->hw.idx = 0; 1442 } 1443 perf_event_update_userpage(event); 1444 break; 1445 } 1446 } 1447 for (i = 0; i < cpuhw->n_limited; ++i) 1448 if (event == cpuhw->limited_counter[i]) 1449 break; 1450 if (i < cpuhw->n_limited) { 1451 while (++i < cpuhw->n_limited) { 1452 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1453 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1454 } 1455 --cpuhw->n_limited; 1456 } 1457 if (cpuhw->n_events == 0) { 1458 /* disable exceptions if no events are running */ 1459 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); 1460 } 1461 1462 if (has_branch_stack(event)) 1463 power_pmu_bhrb_disable(event); 1464 1465 perf_pmu_enable(event->pmu); 1466 local_irq_restore(flags); 1467 } 1468 1469 /* 1470 * POWER-PMU does not support disabling individual counters, hence 1471 * program their cycle counter to their max value and ignore the interrupts. 1472 */ 1473 1474 static void power_pmu_start(struct perf_event *event, int ef_flags) 1475 { 1476 unsigned long flags; 1477 s64 left; 1478 unsigned long val; 1479 1480 if (!event->hw.idx || !event->hw.sample_period) 1481 return; 1482 1483 if (!(event->hw.state & PERF_HES_STOPPED)) 1484 return; 1485 1486 if (ef_flags & PERF_EF_RELOAD) 1487 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1488 1489 local_irq_save(flags); 1490 perf_pmu_disable(event->pmu); 1491 1492 event->hw.state = 0; 1493 left = local64_read(&event->hw.period_left); 1494 1495 val = 0; 1496 if (left < 0x80000000L) 1497 val = 0x80000000L - left; 1498 1499 write_pmc(event->hw.idx, val); 1500 1501 perf_event_update_userpage(event); 1502 perf_pmu_enable(event->pmu); 1503 local_irq_restore(flags); 1504 } 1505 1506 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1507 { 1508 unsigned long flags; 1509 1510 if (!event->hw.idx || !event->hw.sample_period) 1511 return; 1512 1513 if (event->hw.state & PERF_HES_STOPPED) 1514 return; 1515 1516 local_irq_save(flags); 1517 perf_pmu_disable(event->pmu); 1518 1519 power_pmu_read(event); 1520 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1521 write_pmc(event->hw.idx, 0); 1522 1523 perf_event_update_userpage(event); 1524 perf_pmu_enable(event->pmu); 1525 local_irq_restore(flags); 1526 } 1527 1528 /* 1529 * Start group events scheduling transaction 1530 * Set the flag to make pmu::enable() not perform the 1531 * schedulability test, it will be performed at commit time 1532 */ 1533 void power_pmu_start_txn(struct pmu *pmu) 1534 { 1535 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 1536 1537 perf_pmu_disable(pmu); 1538 cpuhw->group_flag |= PERF_EVENT_TXN; 1539 cpuhw->n_txn_start = cpuhw->n_events; 1540 } 1541 1542 /* 1543 * Stop group events scheduling transaction 1544 * Clear the flag and pmu::enable() will perform the 1545 * schedulability test. 1546 */ 1547 void power_pmu_cancel_txn(struct pmu *pmu) 1548 { 1549 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 1550 1551 cpuhw->group_flag &= ~PERF_EVENT_TXN; 1552 perf_pmu_enable(pmu); 1553 } 1554 1555 /* 1556 * Commit group events scheduling transaction 1557 * Perform the group schedulability test as a whole 1558 * Return 0 if success 1559 */ 1560 int power_pmu_commit_txn(struct pmu *pmu) 1561 { 1562 struct cpu_hw_events *cpuhw; 1563 long i, n; 1564 1565 if (!ppmu) 1566 return -EAGAIN; 1567 cpuhw = &__get_cpu_var(cpu_hw_events); 1568 n = cpuhw->n_events; 1569 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1570 return -EAGAIN; 1571 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); 1572 if (i < 0) 1573 return -EAGAIN; 1574 1575 for (i = cpuhw->n_txn_start; i < n; ++i) 1576 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1577 1578 cpuhw->group_flag &= ~PERF_EVENT_TXN; 1579 perf_pmu_enable(pmu); 1580 return 0; 1581 } 1582 1583 /* 1584 * Return 1 if we might be able to put event on a limited PMC, 1585 * or 0 if not. 1586 * A event can only go on a limited PMC if it counts something 1587 * that a limited PMC can count, doesn't require interrupts, and 1588 * doesn't exclude any processor mode. 1589 */ 1590 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1591 unsigned int flags) 1592 { 1593 int n; 1594 u64 alt[MAX_EVENT_ALTERNATIVES]; 1595 1596 if (event->attr.exclude_user 1597 || event->attr.exclude_kernel 1598 || event->attr.exclude_hv 1599 || event->attr.sample_period) 1600 return 0; 1601 1602 if (ppmu->limited_pmc_event(ev)) 1603 return 1; 1604 1605 /* 1606 * The requested event_id isn't on a limited PMC already; 1607 * see if any alternative code goes on a limited PMC. 1608 */ 1609 if (!ppmu->get_alternatives) 1610 return 0; 1611 1612 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1613 n = ppmu->get_alternatives(ev, flags, alt); 1614 1615 return n > 0; 1616 } 1617 1618 /* 1619 * Find an alternative event_id that goes on a normal PMC, if possible, 1620 * and return the event_id code, or 0 if there is no such alternative. 1621 * (Note: event_id code 0 is "don't count" on all machines.) 1622 */ 1623 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1624 { 1625 u64 alt[MAX_EVENT_ALTERNATIVES]; 1626 int n; 1627 1628 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1629 n = ppmu->get_alternatives(ev, flags, alt); 1630 if (!n) 1631 return 0; 1632 return alt[0]; 1633 } 1634 1635 /* Number of perf_events counting hardware events */ 1636 static atomic_t num_events; 1637 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1638 static DEFINE_MUTEX(pmc_reserve_mutex); 1639 1640 /* 1641 * Release the PMU if this is the last perf_event. 1642 */ 1643 static void hw_perf_event_destroy(struct perf_event *event) 1644 { 1645 if (!atomic_add_unless(&num_events, -1, 1)) { 1646 mutex_lock(&pmc_reserve_mutex); 1647 if (atomic_dec_return(&num_events) == 0) 1648 release_pmc_hardware(); 1649 mutex_unlock(&pmc_reserve_mutex); 1650 } 1651 } 1652 1653 /* 1654 * Translate a generic cache event_id config to a raw event_id code. 1655 */ 1656 static int hw_perf_cache_event(u64 config, u64 *eventp) 1657 { 1658 unsigned long type, op, result; 1659 int ev; 1660 1661 if (!ppmu->cache_events) 1662 return -EINVAL; 1663 1664 /* unpack config */ 1665 type = config & 0xff; 1666 op = (config >> 8) & 0xff; 1667 result = (config >> 16) & 0xff; 1668 1669 if (type >= PERF_COUNT_HW_CACHE_MAX || 1670 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1671 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1672 return -EINVAL; 1673 1674 ev = (*ppmu->cache_events)[type][op][result]; 1675 if (ev == 0) 1676 return -EOPNOTSUPP; 1677 if (ev == -1) 1678 return -EINVAL; 1679 *eventp = ev; 1680 return 0; 1681 } 1682 1683 static int power_pmu_event_init(struct perf_event *event) 1684 { 1685 u64 ev; 1686 unsigned long flags; 1687 struct perf_event *ctrs[MAX_HWEVENTS]; 1688 u64 events[MAX_HWEVENTS]; 1689 unsigned int cflags[MAX_HWEVENTS]; 1690 int n; 1691 int err; 1692 struct cpu_hw_events *cpuhw; 1693 1694 if (!ppmu) 1695 return -ENOENT; 1696 1697 if (has_branch_stack(event)) { 1698 /* PMU has BHRB enabled */ 1699 if (!(ppmu->flags & PPMU_BHRB)) 1700 return -EOPNOTSUPP; 1701 } 1702 1703 switch (event->attr.type) { 1704 case PERF_TYPE_HARDWARE: 1705 ev = event->attr.config; 1706 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1707 return -EOPNOTSUPP; 1708 ev = ppmu->generic_events[ev]; 1709 break; 1710 case PERF_TYPE_HW_CACHE: 1711 err = hw_perf_cache_event(event->attr.config, &ev); 1712 if (err) 1713 return err; 1714 break; 1715 case PERF_TYPE_RAW: 1716 ev = event->attr.config; 1717 break; 1718 default: 1719 return -ENOENT; 1720 } 1721 1722 event->hw.config_base = ev; 1723 event->hw.idx = 0; 1724 1725 /* 1726 * If we are not running on a hypervisor, force the 1727 * exclude_hv bit to 0 so that we don't care what 1728 * the user set it to. 1729 */ 1730 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1731 event->attr.exclude_hv = 0; 1732 1733 /* 1734 * If this is a per-task event, then we can use 1735 * PM_RUN_* events interchangeably with their non RUN_* 1736 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1737 * XXX we should check if the task is an idle task. 1738 */ 1739 flags = 0; 1740 if (event->attach_state & PERF_ATTACH_TASK) 1741 flags |= PPMU_ONLY_COUNT_RUN; 1742 1743 /* 1744 * If this machine has limited events, check whether this 1745 * event_id could go on a limited event. 1746 */ 1747 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1748 if (can_go_on_limited_pmc(event, ev, flags)) { 1749 flags |= PPMU_LIMITED_PMC_OK; 1750 } else if (ppmu->limited_pmc_event(ev)) { 1751 /* 1752 * The requested event_id is on a limited PMC, 1753 * but we can't use a limited PMC; see if any 1754 * alternative goes on a normal PMC. 1755 */ 1756 ev = normal_pmc_alternative(ev, flags); 1757 if (!ev) 1758 return -EINVAL; 1759 } 1760 } 1761 1762 /* Extra checks for EBB */ 1763 err = ebb_event_check(event); 1764 if (err) 1765 return err; 1766 1767 /* 1768 * If this is in a group, check if it can go on with all the 1769 * other hardware events in the group. We assume the event 1770 * hasn't been linked into its leader's sibling list at this point. 1771 */ 1772 n = 0; 1773 if (event->group_leader != event) { 1774 n = collect_events(event->group_leader, ppmu->n_counter - 1, 1775 ctrs, events, cflags); 1776 if (n < 0) 1777 return -EINVAL; 1778 } 1779 events[n] = ev; 1780 ctrs[n] = event; 1781 cflags[n] = flags; 1782 if (check_excludes(ctrs, cflags, n, 1)) 1783 return -EINVAL; 1784 1785 cpuhw = &get_cpu_var(cpu_hw_events); 1786 err = power_check_constraints(cpuhw, events, cflags, n + 1); 1787 1788 if (has_branch_stack(event)) { 1789 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1790 event->attr.branch_sample_type); 1791 1792 if(cpuhw->bhrb_filter == -1) 1793 return -EOPNOTSUPP; 1794 } 1795 1796 put_cpu_var(cpu_hw_events); 1797 if (err) 1798 return -EINVAL; 1799 1800 event->hw.config = events[n]; 1801 event->hw.event_base = cflags[n]; 1802 event->hw.last_period = event->hw.sample_period; 1803 local64_set(&event->hw.period_left, event->hw.last_period); 1804 1805 /* 1806 * For EBB events we just context switch the PMC value, we don't do any 1807 * of the sample_period logic. We use hw.prev_count for this. 1808 */ 1809 if (is_ebb_event(event)) 1810 local64_set(&event->hw.prev_count, 0); 1811 1812 /* 1813 * See if we need to reserve the PMU. 1814 * If no events are currently in use, then we have to take a 1815 * mutex to ensure that we don't race with another task doing 1816 * reserve_pmc_hardware or release_pmc_hardware. 1817 */ 1818 err = 0; 1819 if (!atomic_inc_not_zero(&num_events)) { 1820 mutex_lock(&pmc_reserve_mutex); 1821 if (atomic_read(&num_events) == 0 && 1822 reserve_pmc_hardware(perf_event_interrupt)) 1823 err = -EBUSY; 1824 else 1825 atomic_inc(&num_events); 1826 mutex_unlock(&pmc_reserve_mutex); 1827 } 1828 event->destroy = hw_perf_event_destroy; 1829 1830 return err; 1831 } 1832 1833 static int power_pmu_event_idx(struct perf_event *event) 1834 { 1835 return event->hw.idx; 1836 } 1837 1838 ssize_t power_events_sysfs_show(struct device *dev, 1839 struct device_attribute *attr, char *page) 1840 { 1841 struct perf_pmu_events_attr *pmu_attr; 1842 1843 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 1844 1845 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 1846 } 1847 1848 struct pmu power_pmu = { 1849 .pmu_enable = power_pmu_enable, 1850 .pmu_disable = power_pmu_disable, 1851 .event_init = power_pmu_event_init, 1852 .add = power_pmu_add, 1853 .del = power_pmu_del, 1854 .start = power_pmu_start, 1855 .stop = power_pmu_stop, 1856 .read = power_pmu_read, 1857 .start_txn = power_pmu_start_txn, 1858 .cancel_txn = power_pmu_cancel_txn, 1859 .commit_txn = power_pmu_commit_txn, 1860 .event_idx = power_pmu_event_idx, 1861 .flush_branch_stack = power_pmu_flush_branch_stack, 1862 }; 1863 1864 /* 1865 * A counter has overflowed; update its count and record 1866 * things if requested. Note that interrupts are hard-disabled 1867 * here so there is no possibility of being interrupted. 1868 */ 1869 static void record_and_restart(struct perf_event *event, unsigned long val, 1870 struct pt_regs *regs) 1871 { 1872 u64 period = event->hw.sample_period; 1873 s64 prev, delta, left; 1874 int record = 0; 1875 1876 if (event->hw.state & PERF_HES_STOPPED) { 1877 write_pmc(event->hw.idx, 0); 1878 return; 1879 } 1880 1881 /* we don't have to worry about interrupts here */ 1882 prev = local64_read(&event->hw.prev_count); 1883 delta = check_and_compute_delta(prev, val); 1884 local64_add(delta, &event->count); 1885 1886 /* 1887 * See if the total period for this event has expired, 1888 * and update for the next period. 1889 */ 1890 val = 0; 1891 left = local64_read(&event->hw.period_left) - delta; 1892 if (delta == 0) 1893 left++; 1894 if (period) { 1895 if (left <= 0) { 1896 left += period; 1897 if (left <= 0) 1898 left = period; 1899 record = siar_valid(regs); 1900 event->hw.last_period = event->hw.sample_period; 1901 } 1902 if (left < 0x80000000LL) 1903 val = 0x80000000LL - left; 1904 } 1905 1906 write_pmc(event->hw.idx, val); 1907 local64_set(&event->hw.prev_count, val); 1908 local64_set(&event->hw.period_left, left); 1909 perf_event_update_userpage(event); 1910 1911 /* 1912 * Finally record data if requested. 1913 */ 1914 if (record) { 1915 struct perf_sample_data data; 1916 1917 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 1918 1919 if (event->attr.sample_type & PERF_SAMPLE_ADDR) 1920 perf_get_data_addr(regs, &data.addr); 1921 1922 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 1923 struct cpu_hw_events *cpuhw; 1924 cpuhw = &__get_cpu_var(cpu_hw_events); 1925 power_pmu_bhrb_read(cpuhw); 1926 data.br_stack = &cpuhw->bhrb_stack; 1927 } 1928 1929 if (perf_event_overflow(event, &data, regs)) 1930 power_pmu_stop(event, 0); 1931 } 1932 } 1933 1934 /* 1935 * Called from generic code to get the misc flags (i.e. processor mode) 1936 * for an event_id. 1937 */ 1938 unsigned long perf_misc_flags(struct pt_regs *regs) 1939 { 1940 u32 flags = perf_get_misc_flags(regs); 1941 1942 if (flags) 1943 return flags; 1944 return user_mode(regs) ? PERF_RECORD_MISC_USER : 1945 PERF_RECORD_MISC_KERNEL; 1946 } 1947 1948 /* 1949 * Called from generic code to get the instruction pointer 1950 * for an event_id. 1951 */ 1952 unsigned long perf_instruction_pointer(struct pt_regs *regs) 1953 { 1954 bool use_siar = regs_use_siar(regs); 1955 1956 if (use_siar && siar_valid(regs)) 1957 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 1958 else if (use_siar) 1959 return 0; // no valid instruction pointer 1960 else 1961 return regs->nip; 1962 } 1963 1964 static bool pmc_overflow_power7(unsigned long val) 1965 { 1966 /* 1967 * Events on POWER7 can roll back if a speculative event doesn't 1968 * eventually complete. Unfortunately in some rare cases they will 1969 * raise a performance monitor exception. We need to catch this to 1970 * ensure we reset the PMC. In all cases the PMC will be 256 or less 1971 * cycles from overflow. 1972 * 1973 * We only do this if the first pass fails to find any overflowing 1974 * PMCs because a user might set a period of less than 256 and we 1975 * don't want to mistakenly reset them. 1976 */ 1977 if ((0x80000000 - val) <= 256) 1978 return true; 1979 1980 return false; 1981 } 1982 1983 static bool pmc_overflow(unsigned long val) 1984 { 1985 if ((int)val < 0) 1986 return true; 1987 1988 return false; 1989 } 1990 1991 /* 1992 * Performance monitor interrupt stuff 1993 */ 1994 static void perf_event_interrupt(struct pt_regs *regs) 1995 { 1996 int i, j; 1997 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); 1998 struct perf_event *event; 1999 unsigned long val[8]; 2000 int found, active; 2001 int nmi; 2002 2003 if (cpuhw->n_limited) 2004 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2005 mfspr(SPRN_PMC6)); 2006 2007 perf_read_regs(regs); 2008 2009 nmi = perf_intr_is_nmi(regs); 2010 if (nmi) 2011 nmi_enter(); 2012 else 2013 irq_enter(); 2014 2015 /* Read all the PMCs since we'll need them a bunch of times */ 2016 for (i = 0; i < ppmu->n_counter; ++i) 2017 val[i] = read_pmc(i + 1); 2018 2019 /* Try to find what caused the IRQ */ 2020 found = 0; 2021 for (i = 0; i < ppmu->n_counter; ++i) { 2022 if (!pmc_overflow(val[i])) 2023 continue; 2024 if (is_limited_pmc(i + 1)) 2025 continue; /* these won't generate IRQs */ 2026 /* 2027 * We've found one that's overflowed. For active 2028 * counters we need to log this. For inactive 2029 * counters, we need to reset it anyway 2030 */ 2031 found = 1; 2032 active = 0; 2033 for (j = 0; j < cpuhw->n_events; ++j) { 2034 event = cpuhw->event[j]; 2035 if (event->hw.idx == (i + 1)) { 2036 active = 1; 2037 record_and_restart(event, val[i], regs); 2038 break; 2039 } 2040 } 2041 if (!active) 2042 /* reset non active counters that have overflowed */ 2043 write_pmc(i + 1, 0); 2044 } 2045 if (!found && pvr_version_is(PVR_POWER7)) { 2046 /* check active counters for special buggy p7 overflow */ 2047 for (i = 0; i < cpuhw->n_events; ++i) { 2048 event = cpuhw->event[i]; 2049 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2050 continue; 2051 if (pmc_overflow_power7(val[event->hw.idx - 1])) { 2052 /* event has overflowed in a buggy way*/ 2053 found = 1; 2054 record_and_restart(event, 2055 val[event->hw.idx - 1], 2056 regs); 2057 } 2058 } 2059 } 2060 if (!found && !nmi && printk_ratelimit()) 2061 printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2062 2063 /* 2064 * Reset MMCR0 to its normal value. This will set PMXE and 2065 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2066 * and thus allow interrupts to occur again. 2067 * XXX might want to use MSR.PM to keep the events frozen until 2068 * we get back out of this interrupt. 2069 */ 2070 write_mmcr0(cpuhw, cpuhw->mmcr[0]); 2071 2072 if (nmi) 2073 nmi_exit(); 2074 else 2075 irq_exit(); 2076 } 2077 2078 static void power_pmu_setup(int cpu) 2079 { 2080 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2081 2082 if (!ppmu) 2083 return; 2084 memset(cpuhw, 0, sizeof(*cpuhw)); 2085 cpuhw->mmcr[0] = MMCR0_FC; 2086 } 2087 2088 static int 2089 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) 2090 { 2091 unsigned int cpu = (long)hcpu; 2092 2093 switch (action & ~CPU_TASKS_FROZEN) { 2094 case CPU_UP_PREPARE: 2095 power_pmu_setup(cpu); 2096 break; 2097 2098 default: 2099 break; 2100 } 2101 2102 return NOTIFY_OK; 2103 } 2104 2105 int register_power_pmu(struct power_pmu *pmu) 2106 { 2107 if (ppmu) 2108 return -EBUSY; /* something's already registered */ 2109 2110 ppmu = pmu; 2111 pr_info("%s performance monitor hardware support registered\n", 2112 pmu->name); 2113 2114 power_pmu.attr_groups = ppmu->attr_groups; 2115 2116 #ifdef MSR_HV 2117 /* 2118 * Use FCHV to ignore kernel events if MSR.HV is set. 2119 */ 2120 if (mfmsr() & MSR_HV) 2121 freeze_events_kernel = MMCR0_FCHV; 2122 #endif /* CONFIG_PPC64 */ 2123 2124 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2125 perf_cpu_notifier(power_pmu_notifier); 2126 2127 return 0; 2128 } 2129