xref: /openbmc/linux/arch/powerpc/perf/core-book3s.c (revision 206a81c1)
1 /*
2  * Performance event support - powerpc architecture code
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
17 #include <asm/reg.h>
18 #include <asm/pmc.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
23 
24 #define BHRB_MAX_ENTRIES	32
25 #define BHRB_TARGET		0x0000000000000002
26 #define BHRB_PREDICTION		0x0000000000000001
27 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28 
29 struct cpu_hw_events {
30 	int n_events;
31 	int n_percpu;
32 	int disabled;
33 	int n_added;
34 	int n_limited;
35 	u8  pmcs_enabled;
36 	struct perf_event *event[MAX_HWEVENTS];
37 	u64 events[MAX_HWEVENTS];
38 	unsigned int flags[MAX_HWEVENTS];
39 	unsigned long mmcr[3];
40 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
41 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
42 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
43 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
44 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
45 
46 	unsigned int group_flag;
47 	int n_txn_start;
48 
49 	/* BHRB bits */
50 	u64				bhrb_filter;	/* BHRB HW branch filter */
51 	int				bhrb_users;
52 	void				*bhrb_context;
53 	struct	perf_branch_stack	bhrb_stack;
54 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
55 };
56 
57 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
58 
59 struct power_pmu *ppmu;
60 
61 /*
62  * Normally, to ignore kernel events we set the FCS (freeze counters
63  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
64  * hypervisor bit set in the MSR, or if we are running on a processor
65  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
66  * then we need to use the FCHV bit to ignore kernel events.
67  */
68 static unsigned int freeze_events_kernel = MMCR0_FCS;
69 
70 /*
71  * 32-bit doesn't have MMCRA but does have an MMCR2,
72  * and a few other names are different.
73  */
74 #ifdef CONFIG_PPC32
75 
76 #define MMCR0_FCHV		0
77 #define MMCR0_PMCjCE		MMCR0_PMCnCE
78 #define MMCR0_FC56		0
79 #define MMCR0_PMAO		0
80 #define MMCR0_EBE		0
81 #define MMCR0_BHRBA		0
82 #define MMCR0_PMCC		0
83 #define MMCR0_PMCC_U6		0
84 
85 #define SPRN_MMCRA		SPRN_MMCR2
86 #define MMCRA_SAMPLE_ENABLE	0
87 
88 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
89 {
90 	return 0;
91 }
92 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
93 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
94 {
95 	return 0;
96 }
97 static inline void perf_read_regs(struct pt_regs *regs)
98 {
99 	regs->result = 0;
100 }
101 static inline int perf_intr_is_nmi(struct pt_regs *regs)
102 {
103 	return 0;
104 }
105 
106 static inline int siar_valid(struct pt_regs *regs)
107 {
108 	return 1;
109 }
110 
111 static bool is_ebb_event(struct perf_event *event) { return false; }
112 static int ebb_event_check(struct perf_event *event) { return 0; }
113 static void ebb_event_add(struct perf_event *event) { }
114 static void ebb_switch_out(unsigned long mmcr0) { }
115 static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
116 {
117 	return mmcr0;
118 }
119 
120 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
121 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
122 void power_pmu_flush_branch_stack(void) {}
123 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
124 static void pmao_restore_workaround(bool ebb) { }
125 #endif /* CONFIG_PPC32 */
126 
127 static bool regs_use_siar(struct pt_regs *regs)
128 {
129 	return !!regs->result;
130 }
131 
132 /*
133  * Things that are specific to 64-bit implementations.
134  */
135 #ifdef CONFIG_PPC64
136 
137 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
138 {
139 	unsigned long mmcra = regs->dsisr;
140 
141 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
142 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
143 		if (slot > 1)
144 			return 4 * (slot - 1);
145 	}
146 
147 	return 0;
148 }
149 
150 /*
151  * The user wants a data address recorded.
152  * If we're not doing instruction sampling, give them the SDAR
153  * (sampled data address).  If we are doing instruction sampling, then
154  * only give them the SDAR if it corresponds to the instruction
155  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
156  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
157  */
158 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
159 {
160 	unsigned long mmcra = regs->dsisr;
161 	bool sdar_valid;
162 
163 	if (ppmu->flags & PPMU_HAS_SIER)
164 		sdar_valid = regs->dar & SIER_SDAR_VALID;
165 	else {
166 		unsigned long sdsync;
167 
168 		if (ppmu->flags & PPMU_SIAR_VALID)
169 			sdsync = POWER7P_MMCRA_SDAR_VALID;
170 		else if (ppmu->flags & PPMU_ALT_SIPR)
171 			sdsync = POWER6_MMCRA_SDSYNC;
172 		else
173 			sdsync = MMCRA_SDSYNC;
174 
175 		sdar_valid = mmcra & sdsync;
176 	}
177 
178 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
179 		*addrp = mfspr(SPRN_SDAR);
180 }
181 
182 static bool regs_sihv(struct pt_regs *regs)
183 {
184 	unsigned long sihv = MMCRA_SIHV;
185 
186 	if (ppmu->flags & PPMU_HAS_SIER)
187 		return !!(regs->dar & SIER_SIHV);
188 
189 	if (ppmu->flags & PPMU_ALT_SIPR)
190 		sihv = POWER6_MMCRA_SIHV;
191 
192 	return !!(regs->dsisr & sihv);
193 }
194 
195 static bool regs_sipr(struct pt_regs *regs)
196 {
197 	unsigned long sipr = MMCRA_SIPR;
198 
199 	if (ppmu->flags & PPMU_HAS_SIER)
200 		return !!(regs->dar & SIER_SIPR);
201 
202 	if (ppmu->flags & PPMU_ALT_SIPR)
203 		sipr = POWER6_MMCRA_SIPR;
204 
205 	return !!(regs->dsisr & sipr);
206 }
207 
208 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
209 {
210 	if (regs->msr & MSR_PR)
211 		return PERF_RECORD_MISC_USER;
212 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
213 		return PERF_RECORD_MISC_HYPERVISOR;
214 	return PERF_RECORD_MISC_KERNEL;
215 }
216 
217 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
218 {
219 	bool use_siar = regs_use_siar(regs);
220 
221 	if (!use_siar)
222 		return perf_flags_from_msr(regs);
223 
224 	/*
225 	 * If we don't have flags in MMCRA, rather than using
226 	 * the MSR, we intuit the flags from the address in
227 	 * SIAR which should give slightly more reliable
228 	 * results
229 	 */
230 	if (ppmu->flags & PPMU_NO_SIPR) {
231 		unsigned long siar = mfspr(SPRN_SIAR);
232 		if (siar >= PAGE_OFFSET)
233 			return PERF_RECORD_MISC_KERNEL;
234 		return PERF_RECORD_MISC_USER;
235 	}
236 
237 	/* PR has priority over HV, so order below is important */
238 	if (regs_sipr(regs))
239 		return PERF_RECORD_MISC_USER;
240 
241 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
242 		return PERF_RECORD_MISC_HYPERVISOR;
243 
244 	return PERF_RECORD_MISC_KERNEL;
245 }
246 
247 /*
248  * Overload regs->dsisr to store MMCRA so we only need to read it once
249  * on each interrupt.
250  * Overload regs->dar to store SIER if we have it.
251  * Overload regs->result to specify whether we should use the MSR (result
252  * is zero) or the SIAR (result is non zero).
253  */
254 static inline void perf_read_regs(struct pt_regs *regs)
255 {
256 	unsigned long mmcra = mfspr(SPRN_MMCRA);
257 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
258 	int use_siar;
259 
260 	regs->dsisr = mmcra;
261 
262 	if (ppmu->flags & PPMU_HAS_SIER)
263 		regs->dar = mfspr(SPRN_SIER);
264 
265 	/*
266 	 * If this isn't a PMU exception (eg a software event) the SIAR is
267 	 * not valid. Use pt_regs.
268 	 *
269 	 * If it is a marked event use the SIAR.
270 	 *
271 	 * If the PMU doesn't update the SIAR for non marked events use
272 	 * pt_regs.
273 	 *
274 	 * If the PMU has HV/PR flags then check to see if they
275 	 * place the exception in userspace. If so, use pt_regs. In
276 	 * continuous sampling mode the SIAR and the PMU exception are
277 	 * not synchronised, so they may be many instructions apart.
278 	 * This can result in confusing backtraces. We still want
279 	 * hypervisor samples as well as samples in the kernel with
280 	 * interrupts off hence the userspace check.
281 	 */
282 	if (TRAP(regs) != 0xf00)
283 		use_siar = 0;
284 	else if (marked)
285 		use_siar = 1;
286 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
287 		use_siar = 0;
288 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
289 		use_siar = 0;
290 	else
291 		use_siar = 1;
292 
293 	regs->result = use_siar;
294 }
295 
296 /*
297  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
298  * it as an NMI.
299  */
300 static inline int perf_intr_is_nmi(struct pt_regs *regs)
301 {
302 	return !regs->softe;
303 }
304 
305 /*
306  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
307  * must be sampled only if the SIAR-valid bit is set.
308  *
309  * For unmarked instructions and for processors that don't have the SIAR-Valid
310  * bit, assume that SIAR is valid.
311  */
312 static inline int siar_valid(struct pt_regs *regs)
313 {
314 	unsigned long mmcra = regs->dsisr;
315 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
316 
317 	if (marked) {
318 		if (ppmu->flags & PPMU_HAS_SIER)
319 			return regs->dar & SIER_SIAR_VALID;
320 
321 		if (ppmu->flags & PPMU_SIAR_VALID)
322 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
323 	}
324 
325 	return 1;
326 }
327 
328 
329 /* Reset all possible BHRB entries */
330 static void power_pmu_bhrb_reset(void)
331 {
332 	asm volatile(PPC_CLRBHRB);
333 }
334 
335 static void power_pmu_bhrb_enable(struct perf_event *event)
336 {
337 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
338 
339 	if (!ppmu->bhrb_nr)
340 		return;
341 
342 	/* Clear BHRB if we changed task context to avoid data leaks */
343 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
344 		power_pmu_bhrb_reset();
345 		cpuhw->bhrb_context = event->ctx;
346 	}
347 	cpuhw->bhrb_users++;
348 }
349 
350 static void power_pmu_bhrb_disable(struct perf_event *event)
351 {
352 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
353 
354 	if (!ppmu->bhrb_nr)
355 		return;
356 
357 	cpuhw->bhrb_users--;
358 	WARN_ON_ONCE(cpuhw->bhrb_users < 0);
359 
360 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
361 		/* BHRB cannot be turned off when other
362 		 * events are active on the PMU.
363 		 */
364 
365 		/* avoid stale pointer */
366 		cpuhw->bhrb_context = NULL;
367 	}
368 }
369 
370 /* Called from ctxsw to prevent one process's branch entries to
371  * mingle with the other process's entries during context switch.
372  */
373 void power_pmu_flush_branch_stack(void)
374 {
375 	if (ppmu->bhrb_nr)
376 		power_pmu_bhrb_reset();
377 }
378 /* Calculate the to address for a branch */
379 static __u64 power_pmu_bhrb_to(u64 addr)
380 {
381 	unsigned int instr;
382 	int ret;
383 	__u64 target;
384 
385 	if (is_kernel_addr(addr))
386 		return branch_target((unsigned int *)addr);
387 
388 	/* Userspace: need copy instruction here then translate it */
389 	pagefault_disable();
390 	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
391 	if (ret) {
392 		pagefault_enable();
393 		return 0;
394 	}
395 	pagefault_enable();
396 
397 	target = branch_target(&instr);
398 	if ((!target) || (instr & BRANCH_ABSOLUTE))
399 		return target;
400 
401 	/* Translate relative branch target from kernel to user address */
402 	return target - (unsigned long)&instr + addr;
403 }
404 
405 /* Processing BHRB entries */
406 void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
407 {
408 	u64 val;
409 	u64 addr;
410 	int r_index, u_index, pred;
411 
412 	r_index = 0;
413 	u_index = 0;
414 	while (r_index < ppmu->bhrb_nr) {
415 		/* Assembly read function */
416 		val = read_bhrb(r_index++);
417 		if (!val)
418 			/* Terminal marker: End of valid BHRB entries */
419 			break;
420 		else {
421 			addr = val & BHRB_EA;
422 			pred = val & BHRB_PREDICTION;
423 
424 			if (!addr)
425 				/* invalid entry */
426 				continue;
427 
428 			/* Branches are read most recent first (ie. mfbhrb 0 is
429 			 * the most recent branch).
430 			 * There are two types of valid entries:
431 			 * 1) a target entry which is the to address of a
432 			 *    computed goto like a blr,bctr,btar.  The next
433 			 *    entry read from the bhrb will be branch
434 			 *    corresponding to this target (ie. the actual
435 			 *    blr/bctr/btar instruction).
436 			 * 2) a from address which is an actual branch.  If a
437 			 *    target entry proceeds this, then this is the
438 			 *    matching branch for that target.  If this is not
439 			 *    following a target entry, then this is a branch
440 			 *    where the target is given as an immediate field
441 			 *    in the instruction (ie. an i or b form branch).
442 			 *    In this case we need to read the instruction from
443 			 *    memory to determine the target/to address.
444 			 */
445 
446 			if (val & BHRB_TARGET) {
447 				/* Target branches use two entries
448 				 * (ie. computed gotos/XL form)
449 				 */
450 				cpuhw->bhrb_entries[u_index].to = addr;
451 				cpuhw->bhrb_entries[u_index].mispred = pred;
452 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
453 
454 				/* Get from address in next entry */
455 				val = read_bhrb(r_index++);
456 				addr = val & BHRB_EA;
457 				if (val & BHRB_TARGET) {
458 					/* Shouldn't have two targets in a
459 					   row.. Reset index and try again */
460 					r_index--;
461 					addr = 0;
462 				}
463 				cpuhw->bhrb_entries[u_index].from = addr;
464 			} else {
465 				/* Branches to immediate field
466 				   (ie I or B form) */
467 				cpuhw->bhrb_entries[u_index].from = addr;
468 				cpuhw->bhrb_entries[u_index].to =
469 					power_pmu_bhrb_to(addr);
470 				cpuhw->bhrb_entries[u_index].mispred = pred;
471 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
472 			}
473 			u_index++;
474 
475 		}
476 	}
477 	cpuhw->bhrb_stack.nr = u_index;
478 	return;
479 }
480 
481 static bool is_ebb_event(struct perf_event *event)
482 {
483 	/*
484 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
485 	 * check that the PMU supports EBB, meaning those that don't can still
486 	 * use bit 63 of the event code for something else if they wish.
487 	 */
488 	return (ppmu->flags & PPMU_EBB) &&
489 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
490 }
491 
492 static int ebb_event_check(struct perf_event *event)
493 {
494 	struct perf_event *leader = event->group_leader;
495 
496 	/* Event and group leader must agree on EBB */
497 	if (is_ebb_event(leader) != is_ebb_event(event))
498 		return -EINVAL;
499 
500 	if (is_ebb_event(event)) {
501 		if (!(event->attach_state & PERF_ATTACH_TASK))
502 			return -EINVAL;
503 
504 		if (!leader->attr.pinned || !leader->attr.exclusive)
505 			return -EINVAL;
506 
507 		if (event->attr.freq ||
508 		    event->attr.inherit ||
509 		    event->attr.sample_type ||
510 		    event->attr.sample_period ||
511 		    event->attr.enable_on_exec)
512 			return -EINVAL;
513 	}
514 
515 	return 0;
516 }
517 
518 static void ebb_event_add(struct perf_event *event)
519 {
520 	if (!is_ebb_event(event) || current->thread.used_ebb)
521 		return;
522 
523 	/*
524 	 * IFF this is the first time we've added an EBB event, set
525 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
526 	 * userspace. We need this so that we can context switch while
527 	 * userspace is in the EBB handler (where PMXE is 0).
528 	 */
529 	current->thread.used_ebb = 1;
530 	current->thread.mmcr0 |= MMCR0_PMXE;
531 }
532 
533 static void ebb_switch_out(unsigned long mmcr0)
534 {
535 	if (!(mmcr0 & MMCR0_EBE))
536 		return;
537 
538 	current->thread.siar  = mfspr(SPRN_SIAR);
539 	current->thread.sier  = mfspr(SPRN_SIER);
540 	current->thread.sdar  = mfspr(SPRN_SDAR);
541 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
542 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
543 }
544 
545 static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
546 {
547 	if (!ebb)
548 		goto out;
549 
550 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
551 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
552 
553 	/*
554 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
555 	 * with pmao_restore_workaround() because we may add PMAO but we never
556 	 * clear it here.
557 	 */
558 	mmcr0 |= current->thread.mmcr0;
559 
560 	/*
561 	 * Be careful not to set PMXE if userspace had it cleared. This is also
562 	 * compatible with pmao_restore_workaround() because it has already
563 	 * cleared PMXE and we leave PMAO alone.
564 	 */
565 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
566 		mmcr0 &= ~MMCR0_PMXE;
567 
568 	mtspr(SPRN_SIAR, current->thread.siar);
569 	mtspr(SPRN_SIER, current->thread.sier);
570 	mtspr(SPRN_SDAR, current->thread.sdar);
571 	mtspr(SPRN_MMCR2, current->thread.mmcr2);
572 out:
573 	return mmcr0;
574 }
575 
576 static void pmao_restore_workaround(bool ebb)
577 {
578 	unsigned pmcs[6];
579 
580 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
581 		return;
582 
583 	/*
584 	 * On POWER8E there is a hardware defect which affects the PMU context
585 	 * switch logic, ie. power_pmu_disable/enable().
586 	 *
587 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
588 	 * by the hardware. Sometime later the actual PMU exception is
589 	 * delivered.
590 	 *
591 	 * If we context switch, or simply disable/enable, the PMU prior to the
592 	 * exception arriving, the exception will be lost when we clear PMAO.
593 	 *
594 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
595 	 * set, and this _should_ generate an exception. However because of the
596 	 * defect no exception is generated when we write PMAO, and we get
597 	 * stuck with no counters counting but no exception delivered.
598 	 *
599 	 * The workaround is to detect this case and tweak the hardware to
600 	 * create another pending PMU exception.
601 	 *
602 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
603 	 * enabling the PMU. That causes a new exception to be generated in the
604 	 * chip, but we don't take it yet because we have interrupts hard
605 	 * disabled. We then write back the PMU state as we want it to be seen
606 	 * by the exception handler. When we reenable interrupts the exception
607 	 * handler will be called and see the correct state.
608 	 *
609 	 * The logic is the same for EBB, except that the exception is gated by
610 	 * us having interrupts hard disabled as well as the fact that we are
611 	 * not in userspace. The exception is finally delivered when we return
612 	 * to userspace.
613 	 */
614 
615 	/* Only if PMAO is set and PMAO_SYNC is clear */
616 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
617 		return;
618 
619 	/* If we're doing EBB, only if BESCR[GE] is set */
620 	if (ebb && !(current->thread.bescr & BESCR_GE))
621 		return;
622 
623 	/*
624 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
625 	 * enable to actually prevent the PMU exception from firing.
626 	 */
627 	hard_irq_disable();
628 
629 	/*
630 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
631 	 * Using read/write_pmc() in a for loop adds 12 function calls and
632 	 * almost doubles our code size.
633 	 */
634 	pmcs[0] = mfspr(SPRN_PMC1);
635 	pmcs[1] = mfspr(SPRN_PMC2);
636 	pmcs[2] = mfspr(SPRN_PMC3);
637 	pmcs[3] = mfspr(SPRN_PMC4);
638 	pmcs[4] = mfspr(SPRN_PMC5);
639 	pmcs[5] = mfspr(SPRN_PMC6);
640 
641 	/* Ensure all freeze bits are unset */
642 	mtspr(SPRN_MMCR2, 0);
643 
644 	/* Set up PMC6 to overflow in one cycle */
645 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
646 
647 	/* Enable exceptions and unfreeze PMC6 */
648 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
649 
650 	/* Now we need to refreeze and restore the PMCs */
651 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
652 
653 	mtspr(SPRN_PMC1, pmcs[0]);
654 	mtspr(SPRN_PMC2, pmcs[1]);
655 	mtspr(SPRN_PMC3, pmcs[2]);
656 	mtspr(SPRN_PMC4, pmcs[3]);
657 	mtspr(SPRN_PMC5, pmcs[4]);
658 	mtspr(SPRN_PMC6, pmcs[5]);
659 }
660 #endif /* CONFIG_PPC64 */
661 
662 static void perf_event_interrupt(struct pt_regs *regs);
663 
664 /*
665  * Read one performance monitor counter (PMC).
666  */
667 static unsigned long read_pmc(int idx)
668 {
669 	unsigned long val;
670 
671 	switch (idx) {
672 	case 1:
673 		val = mfspr(SPRN_PMC1);
674 		break;
675 	case 2:
676 		val = mfspr(SPRN_PMC2);
677 		break;
678 	case 3:
679 		val = mfspr(SPRN_PMC3);
680 		break;
681 	case 4:
682 		val = mfspr(SPRN_PMC4);
683 		break;
684 	case 5:
685 		val = mfspr(SPRN_PMC5);
686 		break;
687 	case 6:
688 		val = mfspr(SPRN_PMC6);
689 		break;
690 #ifdef CONFIG_PPC64
691 	case 7:
692 		val = mfspr(SPRN_PMC7);
693 		break;
694 	case 8:
695 		val = mfspr(SPRN_PMC8);
696 		break;
697 #endif /* CONFIG_PPC64 */
698 	default:
699 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
700 		val = 0;
701 	}
702 	return val;
703 }
704 
705 /*
706  * Write one PMC.
707  */
708 static void write_pmc(int idx, unsigned long val)
709 {
710 	switch (idx) {
711 	case 1:
712 		mtspr(SPRN_PMC1, val);
713 		break;
714 	case 2:
715 		mtspr(SPRN_PMC2, val);
716 		break;
717 	case 3:
718 		mtspr(SPRN_PMC3, val);
719 		break;
720 	case 4:
721 		mtspr(SPRN_PMC4, val);
722 		break;
723 	case 5:
724 		mtspr(SPRN_PMC5, val);
725 		break;
726 	case 6:
727 		mtspr(SPRN_PMC6, val);
728 		break;
729 #ifdef CONFIG_PPC64
730 	case 7:
731 		mtspr(SPRN_PMC7, val);
732 		break;
733 	case 8:
734 		mtspr(SPRN_PMC8, val);
735 		break;
736 #endif /* CONFIG_PPC64 */
737 	default:
738 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
739 	}
740 }
741 
742 /* Called from sysrq_handle_showregs() */
743 void perf_event_print_debug(void)
744 {
745 	unsigned long sdar, sier, flags;
746 	u32 pmcs[MAX_HWEVENTS];
747 	int i;
748 
749 	if (!ppmu->n_counter)
750 		return;
751 
752 	local_irq_save(flags);
753 
754 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
755 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
756 
757 	for (i = 0; i < ppmu->n_counter; i++)
758 		pmcs[i] = read_pmc(i + 1);
759 
760 	for (; i < MAX_HWEVENTS; i++)
761 		pmcs[i] = 0xdeadbeef;
762 
763 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
764 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
765 
766 	if (ppmu->n_counter > 4)
767 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
768 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
769 
770 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
771 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
772 
773 	sdar = sier = 0;
774 #ifdef CONFIG_PPC64
775 	sdar = mfspr(SPRN_SDAR);
776 
777 	if (ppmu->flags & PPMU_HAS_SIER)
778 		sier = mfspr(SPRN_SIER);
779 
780 	if (ppmu->flags & PPMU_EBB) {
781 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
782 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
783 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
784 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
785 	}
786 #endif
787 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
788 		mfspr(SPRN_SIAR), sdar, sier);
789 
790 	local_irq_restore(flags);
791 }
792 
793 /*
794  * Check if a set of events can all go on the PMU at once.
795  * If they can't, this will look at alternative codes for the events
796  * and see if any combination of alternative codes is feasible.
797  * The feasible set is returned in event_id[].
798  */
799 static int power_check_constraints(struct cpu_hw_events *cpuhw,
800 				   u64 event_id[], unsigned int cflags[],
801 				   int n_ev)
802 {
803 	unsigned long mask, value, nv;
804 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
805 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
806 	int i, j;
807 	unsigned long addf = ppmu->add_fields;
808 	unsigned long tadd = ppmu->test_adder;
809 
810 	if (n_ev > ppmu->n_counter)
811 		return -1;
812 
813 	/* First see if the events will go on as-is */
814 	for (i = 0; i < n_ev; ++i) {
815 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
816 		    && !ppmu->limited_pmc_event(event_id[i])) {
817 			ppmu->get_alternatives(event_id[i], cflags[i],
818 					       cpuhw->alternatives[i]);
819 			event_id[i] = cpuhw->alternatives[i][0];
820 		}
821 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
822 					 &cpuhw->avalues[i][0]))
823 			return -1;
824 	}
825 	value = mask = 0;
826 	for (i = 0; i < n_ev; ++i) {
827 		nv = (value | cpuhw->avalues[i][0]) +
828 			(value & cpuhw->avalues[i][0] & addf);
829 		if ((((nv + tadd) ^ value) & mask) != 0 ||
830 		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
831 		     cpuhw->amasks[i][0]) != 0)
832 			break;
833 		value = nv;
834 		mask |= cpuhw->amasks[i][0];
835 	}
836 	if (i == n_ev)
837 		return 0;	/* all OK */
838 
839 	/* doesn't work, gather alternatives... */
840 	if (!ppmu->get_alternatives)
841 		return -1;
842 	for (i = 0; i < n_ev; ++i) {
843 		choice[i] = 0;
844 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
845 						  cpuhw->alternatives[i]);
846 		for (j = 1; j < n_alt[i]; ++j)
847 			ppmu->get_constraint(cpuhw->alternatives[i][j],
848 					     &cpuhw->amasks[i][j],
849 					     &cpuhw->avalues[i][j]);
850 	}
851 
852 	/* enumerate all possibilities and see if any will work */
853 	i = 0;
854 	j = -1;
855 	value = mask = nv = 0;
856 	while (i < n_ev) {
857 		if (j >= 0) {
858 			/* we're backtracking, restore context */
859 			value = svalues[i];
860 			mask = smasks[i];
861 			j = choice[i];
862 		}
863 		/*
864 		 * See if any alternative k for event_id i,
865 		 * where k > j, will satisfy the constraints.
866 		 */
867 		while (++j < n_alt[i]) {
868 			nv = (value | cpuhw->avalues[i][j]) +
869 				(value & cpuhw->avalues[i][j] & addf);
870 			if ((((nv + tadd) ^ value) & mask) == 0 &&
871 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
872 			     & cpuhw->amasks[i][j]) == 0)
873 				break;
874 		}
875 		if (j >= n_alt[i]) {
876 			/*
877 			 * No feasible alternative, backtrack
878 			 * to event_id i-1 and continue enumerating its
879 			 * alternatives from where we got up to.
880 			 */
881 			if (--i < 0)
882 				return -1;
883 		} else {
884 			/*
885 			 * Found a feasible alternative for event_id i,
886 			 * remember where we got up to with this event_id,
887 			 * go on to the next event_id, and start with
888 			 * the first alternative for it.
889 			 */
890 			choice[i] = j;
891 			svalues[i] = value;
892 			smasks[i] = mask;
893 			value = nv;
894 			mask |= cpuhw->amasks[i][j];
895 			++i;
896 			j = -1;
897 		}
898 	}
899 
900 	/* OK, we have a feasible combination, tell the caller the solution */
901 	for (i = 0; i < n_ev; ++i)
902 		event_id[i] = cpuhw->alternatives[i][choice[i]];
903 	return 0;
904 }
905 
906 /*
907  * Check if newly-added events have consistent settings for
908  * exclude_{user,kernel,hv} with each other and any previously
909  * added events.
910  */
911 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
912 			  int n_prev, int n_new)
913 {
914 	int eu = 0, ek = 0, eh = 0;
915 	int i, n, first;
916 	struct perf_event *event;
917 
918 	n = n_prev + n_new;
919 	if (n <= 1)
920 		return 0;
921 
922 	first = 1;
923 	for (i = 0; i < n; ++i) {
924 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
925 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
926 			continue;
927 		}
928 		event = ctrs[i];
929 		if (first) {
930 			eu = event->attr.exclude_user;
931 			ek = event->attr.exclude_kernel;
932 			eh = event->attr.exclude_hv;
933 			first = 0;
934 		} else if (event->attr.exclude_user != eu ||
935 			   event->attr.exclude_kernel != ek ||
936 			   event->attr.exclude_hv != eh) {
937 			return -EAGAIN;
938 		}
939 	}
940 
941 	if (eu || ek || eh)
942 		for (i = 0; i < n; ++i)
943 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
944 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
945 
946 	return 0;
947 }
948 
949 static u64 check_and_compute_delta(u64 prev, u64 val)
950 {
951 	u64 delta = (val - prev) & 0xfffffffful;
952 
953 	/*
954 	 * POWER7 can roll back counter values, if the new value is smaller
955 	 * than the previous value it will cause the delta and the counter to
956 	 * have bogus values unless we rolled a counter over.  If a coutner is
957 	 * rolled back, it will be smaller, but within 256, which is the maximum
958 	 * number of events to rollback at once.  If we dectect a rollback
959 	 * return 0.  This can lead to a small lack of precision in the
960 	 * counters.
961 	 */
962 	if (prev > val && (prev - val) < 256)
963 		delta = 0;
964 
965 	return delta;
966 }
967 
968 static void power_pmu_read(struct perf_event *event)
969 {
970 	s64 val, delta, prev;
971 
972 	if (event->hw.state & PERF_HES_STOPPED)
973 		return;
974 
975 	if (!event->hw.idx)
976 		return;
977 
978 	if (is_ebb_event(event)) {
979 		val = read_pmc(event->hw.idx);
980 		local64_set(&event->hw.prev_count, val);
981 		return;
982 	}
983 
984 	/*
985 	 * Performance monitor interrupts come even when interrupts
986 	 * are soft-disabled, as long as interrupts are hard-enabled.
987 	 * Therefore we treat them like NMIs.
988 	 */
989 	do {
990 		prev = local64_read(&event->hw.prev_count);
991 		barrier();
992 		val = read_pmc(event->hw.idx);
993 		delta = check_and_compute_delta(prev, val);
994 		if (!delta)
995 			return;
996 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
997 
998 	local64_add(delta, &event->count);
999 	local64_sub(delta, &event->hw.period_left);
1000 }
1001 
1002 /*
1003  * On some machines, PMC5 and PMC6 can't be written, don't respect
1004  * the freeze conditions, and don't generate interrupts.  This tells
1005  * us if `event' is using such a PMC.
1006  */
1007 static int is_limited_pmc(int pmcnum)
1008 {
1009 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1010 		&& (pmcnum == 5 || pmcnum == 6);
1011 }
1012 
1013 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1014 				    unsigned long pmc5, unsigned long pmc6)
1015 {
1016 	struct perf_event *event;
1017 	u64 val, prev, delta;
1018 	int i;
1019 
1020 	for (i = 0; i < cpuhw->n_limited; ++i) {
1021 		event = cpuhw->limited_counter[i];
1022 		if (!event->hw.idx)
1023 			continue;
1024 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1025 		prev = local64_read(&event->hw.prev_count);
1026 		event->hw.idx = 0;
1027 		delta = check_and_compute_delta(prev, val);
1028 		if (delta)
1029 			local64_add(delta, &event->count);
1030 	}
1031 }
1032 
1033 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1034 				  unsigned long pmc5, unsigned long pmc6)
1035 {
1036 	struct perf_event *event;
1037 	u64 val, prev;
1038 	int i;
1039 
1040 	for (i = 0; i < cpuhw->n_limited; ++i) {
1041 		event = cpuhw->limited_counter[i];
1042 		event->hw.idx = cpuhw->limited_hwidx[i];
1043 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1044 		prev = local64_read(&event->hw.prev_count);
1045 		if (check_and_compute_delta(prev, val))
1046 			local64_set(&event->hw.prev_count, val);
1047 		perf_event_update_userpage(event);
1048 	}
1049 }
1050 
1051 /*
1052  * Since limited events don't respect the freeze conditions, we
1053  * have to read them immediately after freezing or unfreezing the
1054  * other events.  We try to keep the values from the limited
1055  * events as consistent as possible by keeping the delay (in
1056  * cycles and instructions) between freezing/unfreezing and reading
1057  * the limited events as small and consistent as possible.
1058  * Therefore, if any limited events are in use, we read them
1059  * both, and always in the same order, to minimize variability,
1060  * and do it inside the same asm that writes MMCR0.
1061  */
1062 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1063 {
1064 	unsigned long pmc5, pmc6;
1065 
1066 	if (!cpuhw->n_limited) {
1067 		mtspr(SPRN_MMCR0, mmcr0);
1068 		return;
1069 	}
1070 
1071 	/*
1072 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1073 	 * To ensure we don't get a performance monitor interrupt
1074 	 * between writing MMCR0 and freezing/thawing the limited
1075 	 * events, we first write MMCR0 with the event overflow
1076 	 * interrupt enable bits turned off.
1077 	 */
1078 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1079 		     : "=&r" (pmc5), "=&r" (pmc6)
1080 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1081 		       "i" (SPRN_MMCR0),
1082 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1083 
1084 	if (mmcr0 & MMCR0_FC)
1085 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1086 	else
1087 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1088 
1089 	/*
1090 	 * Write the full MMCR0 including the event overflow interrupt
1091 	 * enable bits, if necessary.
1092 	 */
1093 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1094 		mtspr(SPRN_MMCR0, mmcr0);
1095 }
1096 
1097 /*
1098  * Disable all events to prevent PMU interrupts and to allow
1099  * events to be added or removed.
1100  */
1101 static void power_pmu_disable(struct pmu *pmu)
1102 {
1103 	struct cpu_hw_events *cpuhw;
1104 	unsigned long flags, mmcr0, val;
1105 
1106 	if (!ppmu)
1107 		return;
1108 	local_irq_save(flags);
1109 	cpuhw = &__get_cpu_var(cpu_hw_events);
1110 
1111 	if (!cpuhw->disabled) {
1112 		/*
1113 		 * Check if we ever enabled the PMU on this cpu.
1114 		 */
1115 		if (!cpuhw->pmcs_enabled) {
1116 			ppc_enable_pmcs();
1117 			cpuhw->pmcs_enabled = 1;
1118 		}
1119 
1120 		/*
1121 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1122 		 */
1123 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1124 		val |= MMCR0_FC;
1125 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1126 			 MMCR0_FC56);
1127 
1128 		/*
1129 		 * The barrier is to make sure the mtspr has been
1130 		 * executed and the PMU has frozen the events etc.
1131 		 * before we return.
1132 		 */
1133 		write_mmcr0(cpuhw, val);
1134 		mb();
1135 
1136 		/*
1137 		 * Disable instruction sampling if it was enabled
1138 		 */
1139 		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1140 			mtspr(SPRN_MMCRA,
1141 			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1142 			mb();
1143 		}
1144 
1145 		cpuhw->disabled = 1;
1146 		cpuhw->n_added = 0;
1147 
1148 		ebb_switch_out(mmcr0);
1149 	}
1150 
1151 	local_irq_restore(flags);
1152 }
1153 
1154 /*
1155  * Re-enable all events if disable == 0.
1156  * If we were previously disabled and events were added, then
1157  * put the new config on the PMU.
1158  */
1159 static void power_pmu_enable(struct pmu *pmu)
1160 {
1161 	struct perf_event *event;
1162 	struct cpu_hw_events *cpuhw;
1163 	unsigned long flags;
1164 	long i;
1165 	unsigned long val, mmcr0;
1166 	s64 left;
1167 	unsigned int hwc_index[MAX_HWEVENTS];
1168 	int n_lim;
1169 	int idx;
1170 	bool ebb;
1171 
1172 	if (!ppmu)
1173 		return;
1174 	local_irq_save(flags);
1175 
1176 	cpuhw = &__get_cpu_var(cpu_hw_events);
1177 	if (!cpuhw->disabled)
1178 		goto out;
1179 
1180 	if (cpuhw->n_events == 0) {
1181 		ppc_set_pmu_inuse(0);
1182 		goto out;
1183 	}
1184 
1185 	cpuhw->disabled = 0;
1186 
1187 	/*
1188 	 * EBB requires an exclusive group and all events must have the EBB
1189 	 * flag set, or not set, so we can just check a single event. Also we
1190 	 * know we have at least one event.
1191 	 */
1192 	ebb = is_ebb_event(cpuhw->event[0]);
1193 
1194 	/*
1195 	 * If we didn't change anything, or only removed events,
1196 	 * no need to recalculate MMCR* settings and reset the PMCs.
1197 	 * Just reenable the PMU with the current MMCR* settings
1198 	 * (possibly updated for removal of events).
1199 	 */
1200 	if (!cpuhw->n_added) {
1201 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1202 		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1203 		goto out_enable;
1204 	}
1205 
1206 	/*
1207 	 * Compute MMCR* values for the new set of events
1208 	 */
1209 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1210 			       cpuhw->mmcr)) {
1211 		/* shouldn't ever get here */
1212 		printk(KERN_ERR "oops compute_mmcr failed\n");
1213 		goto out;
1214 	}
1215 
1216 	/*
1217 	 * Add in MMCR0 freeze bits corresponding to the
1218 	 * attr.exclude_* bits for the first event.
1219 	 * We have already checked that all events have the
1220 	 * same values for these bits as the first event.
1221 	 */
1222 	event = cpuhw->event[0];
1223 	if (event->attr.exclude_user)
1224 		cpuhw->mmcr[0] |= MMCR0_FCP;
1225 	if (event->attr.exclude_kernel)
1226 		cpuhw->mmcr[0] |= freeze_events_kernel;
1227 	if (event->attr.exclude_hv)
1228 		cpuhw->mmcr[0] |= MMCR0_FCHV;
1229 
1230 	/*
1231 	 * Write the new configuration to MMCR* with the freeze
1232 	 * bit set and set the hardware events to their initial values.
1233 	 * Then unfreeze the events.
1234 	 */
1235 	ppc_set_pmu_inuse(1);
1236 	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1237 	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1238 	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1239 				| MMCR0_FC);
1240 
1241 	/*
1242 	 * Read off any pre-existing events that need to move
1243 	 * to another PMC.
1244 	 */
1245 	for (i = 0; i < cpuhw->n_events; ++i) {
1246 		event = cpuhw->event[i];
1247 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1248 			power_pmu_read(event);
1249 			write_pmc(event->hw.idx, 0);
1250 			event->hw.idx = 0;
1251 		}
1252 	}
1253 
1254 	/*
1255 	 * Initialize the PMCs for all the new and moved events.
1256 	 */
1257 	cpuhw->n_limited = n_lim = 0;
1258 	for (i = 0; i < cpuhw->n_events; ++i) {
1259 		event = cpuhw->event[i];
1260 		if (event->hw.idx)
1261 			continue;
1262 		idx = hwc_index[i] + 1;
1263 		if (is_limited_pmc(idx)) {
1264 			cpuhw->limited_counter[n_lim] = event;
1265 			cpuhw->limited_hwidx[n_lim] = idx;
1266 			++n_lim;
1267 			continue;
1268 		}
1269 
1270 		if (ebb)
1271 			val = local64_read(&event->hw.prev_count);
1272 		else {
1273 			val = 0;
1274 			if (event->hw.sample_period) {
1275 				left = local64_read(&event->hw.period_left);
1276 				if (left < 0x80000000L)
1277 					val = 0x80000000L - left;
1278 			}
1279 			local64_set(&event->hw.prev_count, val);
1280 		}
1281 
1282 		event->hw.idx = idx;
1283 		if (event->hw.state & PERF_HES_STOPPED)
1284 			val = 0;
1285 		write_pmc(idx, val);
1286 
1287 		perf_event_update_userpage(event);
1288 	}
1289 	cpuhw->n_limited = n_lim;
1290 	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1291 
1292  out_enable:
1293 	pmao_restore_workaround(ebb);
1294 
1295 	mmcr0 = ebb_switch_in(ebb, cpuhw->mmcr[0]);
1296 
1297 	mb();
1298 	if (cpuhw->bhrb_users)
1299 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1300 
1301 	write_mmcr0(cpuhw, mmcr0);
1302 
1303 	/*
1304 	 * Enable instruction sampling if necessary
1305 	 */
1306 	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1307 		mb();
1308 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1309 	}
1310 
1311  out:
1312 
1313 	local_irq_restore(flags);
1314 }
1315 
1316 static int collect_events(struct perf_event *group, int max_count,
1317 			  struct perf_event *ctrs[], u64 *events,
1318 			  unsigned int *flags)
1319 {
1320 	int n = 0;
1321 	struct perf_event *event;
1322 
1323 	if (!is_software_event(group)) {
1324 		if (n >= max_count)
1325 			return -1;
1326 		ctrs[n] = group;
1327 		flags[n] = group->hw.event_base;
1328 		events[n++] = group->hw.config;
1329 	}
1330 	list_for_each_entry(event, &group->sibling_list, group_entry) {
1331 		if (!is_software_event(event) &&
1332 		    event->state != PERF_EVENT_STATE_OFF) {
1333 			if (n >= max_count)
1334 				return -1;
1335 			ctrs[n] = event;
1336 			flags[n] = event->hw.event_base;
1337 			events[n++] = event->hw.config;
1338 		}
1339 	}
1340 	return n;
1341 }
1342 
1343 /*
1344  * Add a event to the PMU.
1345  * If all events are not already frozen, then we disable and
1346  * re-enable the PMU in order to get hw_perf_enable to do the
1347  * actual work of reconfiguring the PMU.
1348  */
1349 static int power_pmu_add(struct perf_event *event, int ef_flags)
1350 {
1351 	struct cpu_hw_events *cpuhw;
1352 	unsigned long flags;
1353 	int n0;
1354 	int ret = -EAGAIN;
1355 
1356 	local_irq_save(flags);
1357 	perf_pmu_disable(event->pmu);
1358 
1359 	/*
1360 	 * Add the event to the list (if there is room)
1361 	 * and check whether the total set is still feasible.
1362 	 */
1363 	cpuhw = &__get_cpu_var(cpu_hw_events);
1364 	n0 = cpuhw->n_events;
1365 	if (n0 >= ppmu->n_counter)
1366 		goto out;
1367 	cpuhw->event[n0] = event;
1368 	cpuhw->events[n0] = event->hw.config;
1369 	cpuhw->flags[n0] = event->hw.event_base;
1370 
1371 	/*
1372 	 * This event may have been disabled/stopped in record_and_restart()
1373 	 * because we exceeded the ->event_limit. If re-starting the event,
1374 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1375 	 * notification is re-enabled.
1376 	 */
1377 	if (!(ef_flags & PERF_EF_START))
1378 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1379 	else
1380 		event->hw.state = 0;
1381 
1382 	/*
1383 	 * If group events scheduling transaction was started,
1384 	 * skip the schedulability test here, it will be performed
1385 	 * at commit time(->commit_txn) as a whole
1386 	 */
1387 	if (cpuhw->group_flag & PERF_EVENT_TXN)
1388 		goto nocheck;
1389 
1390 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1391 		goto out;
1392 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1393 		goto out;
1394 	event->hw.config = cpuhw->events[n0];
1395 
1396 nocheck:
1397 	ebb_event_add(event);
1398 
1399 	++cpuhw->n_events;
1400 	++cpuhw->n_added;
1401 
1402 	ret = 0;
1403  out:
1404 	if (has_branch_stack(event)) {
1405 		power_pmu_bhrb_enable(event);
1406 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1407 					event->attr.branch_sample_type);
1408 	}
1409 
1410 	perf_pmu_enable(event->pmu);
1411 	local_irq_restore(flags);
1412 	return ret;
1413 }
1414 
1415 /*
1416  * Remove a event from the PMU.
1417  */
1418 static void power_pmu_del(struct perf_event *event, int ef_flags)
1419 {
1420 	struct cpu_hw_events *cpuhw;
1421 	long i;
1422 	unsigned long flags;
1423 
1424 	local_irq_save(flags);
1425 	perf_pmu_disable(event->pmu);
1426 
1427 	power_pmu_read(event);
1428 
1429 	cpuhw = &__get_cpu_var(cpu_hw_events);
1430 	for (i = 0; i < cpuhw->n_events; ++i) {
1431 		if (event == cpuhw->event[i]) {
1432 			while (++i < cpuhw->n_events) {
1433 				cpuhw->event[i-1] = cpuhw->event[i];
1434 				cpuhw->events[i-1] = cpuhw->events[i];
1435 				cpuhw->flags[i-1] = cpuhw->flags[i];
1436 			}
1437 			--cpuhw->n_events;
1438 			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1439 			if (event->hw.idx) {
1440 				write_pmc(event->hw.idx, 0);
1441 				event->hw.idx = 0;
1442 			}
1443 			perf_event_update_userpage(event);
1444 			break;
1445 		}
1446 	}
1447 	for (i = 0; i < cpuhw->n_limited; ++i)
1448 		if (event == cpuhw->limited_counter[i])
1449 			break;
1450 	if (i < cpuhw->n_limited) {
1451 		while (++i < cpuhw->n_limited) {
1452 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1453 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1454 		}
1455 		--cpuhw->n_limited;
1456 	}
1457 	if (cpuhw->n_events == 0) {
1458 		/* disable exceptions if no events are running */
1459 		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1460 	}
1461 
1462 	if (has_branch_stack(event))
1463 		power_pmu_bhrb_disable(event);
1464 
1465 	perf_pmu_enable(event->pmu);
1466 	local_irq_restore(flags);
1467 }
1468 
1469 /*
1470  * POWER-PMU does not support disabling individual counters, hence
1471  * program their cycle counter to their max value and ignore the interrupts.
1472  */
1473 
1474 static void power_pmu_start(struct perf_event *event, int ef_flags)
1475 {
1476 	unsigned long flags;
1477 	s64 left;
1478 	unsigned long val;
1479 
1480 	if (!event->hw.idx || !event->hw.sample_period)
1481 		return;
1482 
1483 	if (!(event->hw.state & PERF_HES_STOPPED))
1484 		return;
1485 
1486 	if (ef_flags & PERF_EF_RELOAD)
1487 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1488 
1489 	local_irq_save(flags);
1490 	perf_pmu_disable(event->pmu);
1491 
1492 	event->hw.state = 0;
1493 	left = local64_read(&event->hw.period_left);
1494 
1495 	val = 0;
1496 	if (left < 0x80000000L)
1497 		val = 0x80000000L - left;
1498 
1499 	write_pmc(event->hw.idx, val);
1500 
1501 	perf_event_update_userpage(event);
1502 	perf_pmu_enable(event->pmu);
1503 	local_irq_restore(flags);
1504 }
1505 
1506 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1507 {
1508 	unsigned long flags;
1509 
1510 	if (!event->hw.idx || !event->hw.sample_period)
1511 		return;
1512 
1513 	if (event->hw.state & PERF_HES_STOPPED)
1514 		return;
1515 
1516 	local_irq_save(flags);
1517 	perf_pmu_disable(event->pmu);
1518 
1519 	power_pmu_read(event);
1520 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1521 	write_pmc(event->hw.idx, 0);
1522 
1523 	perf_event_update_userpage(event);
1524 	perf_pmu_enable(event->pmu);
1525 	local_irq_restore(flags);
1526 }
1527 
1528 /*
1529  * Start group events scheduling transaction
1530  * Set the flag to make pmu::enable() not perform the
1531  * schedulability test, it will be performed at commit time
1532  */
1533 void power_pmu_start_txn(struct pmu *pmu)
1534 {
1535 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1536 
1537 	perf_pmu_disable(pmu);
1538 	cpuhw->group_flag |= PERF_EVENT_TXN;
1539 	cpuhw->n_txn_start = cpuhw->n_events;
1540 }
1541 
1542 /*
1543  * Stop group events scheduling transaction
1544  * Clear the flag and pmu::enable() will perform the
1545  * schedulability test.
1546  */
1547 void power_pmu_cancel_txn(struct pmu *pmu)
1548 {
1549 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1550 
1551 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1552 	perf_pmu_enable(pmu);
1553 }
1554 
1555 /*
1556  * Commit group events scheduling transaction
1557  * Perform the group schedulability test as a whole
1558  * Return 0 if success
1559  */
1560 int power_pmu_commit_txn(struct pmu *pmu)
1561 {
1562 	struct cpu_hw_events *cpuhw;
1563 	long i, n;
1564 
1565 	if (!ppmu)
1566 		return -EAGAIN;
1567 	cpuhw = &__get_cpu_var(cpu_hw_events);
1568 	n = cpuhw->n_events;
1569 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1570 		return -EAGAIN;
1571 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1572 	if (i < 0)
1573 		return -EAGAIN;
1574 
1575 	for (i = cpuhw->n_txn_start; i < n; ++i)
1576 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1577 
1578 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1579 	perf_pmu_enable(pmu);
1580 	return 0;
1581 }
1582 
1583 /*
1584  * Return 1 if we might be able to put event on a limited PMC,
1585  * or 0 if not.
1586  * A event can only go on a limited PMC if it counts something
1587  * that a limited PMC can count, doesn't require interrupts, and
1588  * doesn't exclude any processor mode.
1589  */
1590 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1591 				 unsigned int flags)
1592 {
1593 	int n;
1594 	u64 alt[MAX_EVENT_ALTERNATIVES];
1595 
1596 	if (event->attr.exclude_user
1597 	    || event->attr.exclude_kernel
1598 	    || event->attr.exclude_hv
1599 	    || event->attr.sample_period)
1600 		return 0;
1601 
1602 	if (ppmu->limited_pmc_event(ev))
1603 		return 1;
1604 
1605 	/*
1606 	 * The requested event_id isn't on a limited PMC already;
1607 	 * see if any alternative code goes on a limited PMC.
1608 	 */
1609 	if (!ppmu->get_alternatives)
1610 		return 0;
1611 
1612 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1613 	n = ppmu->get_alternatives(ev, flags, alt);
1614 
1615 	return n > 0;
1616 }
1617 
1618 /*
1619  * Find an alternative event_id that goes on a normal PMC, if possible,
1620  * and return the event_id code, or 0 if there is no such alternative.
1621  * (Note: event_id code 0 is "don't count" on all machines.)
1622  */
1623 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1624 {
1625 	u64 alt[MAX_EVENT_ALTERNATIVES];
1626 	int n;
1627 
1628 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1629 	n = ppmu->get_alternatives(ev, flags, alt);
1630 	if (!n)
1631 		return 0;
1632 	return alt[0];
1633 }
1634 
1635 /* Number of perf_events counting hardware events */
1636 static atomic_t num_events;
1637 /* Used to avoid races in calling reserve/release_pmc_hardware */
1638 static DEFINE_MUTEX(pmc_reserve_mutex);
1639 
1640 /*
1641  * Release the PMU if this is the last perf_event.
1642  */
1643 static void hw_perf_event_destroy(struct perf_event *event)
1644 {
1645 	if (!atomic_add_unless(&num_events, -1, 1)) {
1646 		mutex_lock(&pmc_reserve_mutex);
1647 		if (atomic_dec_return(&num_events) == 0)
1648 			release_pmc_hardware();
1649 		mutex_unlock(&pmc_reserve_mutex);
1650 	}
1651 }
1652 
1653 /*
1654  * Translate a generic cache event_id config to a raw event_id code.
1655  */
1656 static int hw_perf_cache_event(u64 config, u64 *eventp)
1657 {
1658 	unsigned long type, op, result;
1659 	int ev;
1660 
1661 	if (!ppmu->cache_events)
1662 		return -EINVAL;
1663 
1664 	/* unpack config */
1665 	type = config & 0xff;
1666 	op = (config >> 8) & 0xff;
1667 	result = (config >> 16) & 0xff;
1668 
1669 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1670 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1671 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1672 		return -EINVAL;
1673 
1674 	ev = (*ppmu->cache_events)[type][op][result];
1675 	if (ev == 0)
1676 		return -EOPNOTSUPP;
1677 	if (ev == -1)
1678 		return -EINVAL;
1679 	*eventp = ev;
1680 	return 0;
1681 }
1682 
1683 static int power_pmu_event_init(struct perf_event *event)
1684 {
1685 	u64 ev;
1686 	unsigned long flags;
1687 	struct perf_event *ctrs[MAX_HWEVENTS];
1688 	u64 events[MAX_HWEVENTS];
1689 	unsigned int cflags[MAX_HWEVENTS];
1690 	int n;
1691 	int err;
1692 	struct cpu_hw_events *cpuhw;
1693 
1694 	if (!ppmu)
1695 		return -ENOENT;
1696 
1697 	if (has_branch_stack(event)) {
1698 	        /* PMU has BHRB enabled */
1699 		if (!(ppmu->flags & PPMU_BHRB))
1700 			return -EOPNOTSUPP;
1701 	}
1702 
1703 	switch (event->attr.type) {
1704 	case PERF_TYPE_HARDWARE:
1705 		ev = event->attr.config;
1706 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1707 			return -EOPNOTSUPP;
1708 		ev = ppmu->generic_events[ev];
1709 		break;
1710 	case PERF_TYPE_HW_CACHE:
1711 		err = hw_perf_cache_event(event->attr.config, &ev);
1712 		if (err)
1713 			return err;
1714 		break;
1715 	case PERF_TYPE_RAW:
1716 		ev = event->attr.config;
1717 		break;
1718 	default:
1719 		return -ENOENT;
1720 	}
1721 
1722 	event->hw.config_base = ev;
1723 	event->hw.idx = 0;
1724 
1725 	/*
1726 	 * If we are not running on a hypervisor, force the
1727 	 * exclude_hv bit to 0 so that we don't care what
1728 	 * the user set it to.
1729 	 */
1730 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1731 		event->attr.exclude_hv = 0;
1732 
1733 	/*
1734 	 * If this is a per-task event, then we can use
1735 	 * PM_RUN_* events interchangeably with their non RUN_*
1736 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1737 	 * XXX we should check if the task is an idle task.
1738 	 */
1739 	flags = 0;
1740 	if (event->attach_state & PERF_ATTACH_TASK)
1741 		flags |= PPMU_ONLY_COUNT_RUN;
1742 
1743 	/*
1744 	 * If this machine has limited events, check whether this
1745 	 * event_id could go on a limited event.
1746 	 */
1747 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1748 		if (can_go_on_limited_pmc(event, ev, flags)) {
1749 			flags |= PPMU_LIMITED_PMC_OK;
1750 		} else if (ppmu->limited_pmc_event(ev)) {
1751 			/*
1752 			 * The requested event_id is on a limited PMC,
1753 			 * but we can't use a limited PMC; see if any
1754 			 * alternative goes on a normal PMC.
1755 			 */
1756 			ev = normal_pmc_alternative(ev, flags);
1757 			if (!ev)
1758 				return -EINVAL;
1759 		}
1760 	}
1761 
1762 	/* Extra checks for EBB */
1763 	err = ebb_event_check(event);
1764 	if (err)
1765 		return err;
1766 
1767 	/*
1768 	 * If this is in a group, check if it can go on with all the
1769 	 * other hardware events in the group.  We assume the event
1770 	 * hasn't been linked into its leader's sibling list at this point.
1771 	 */
1772 	n = 0;
1773 	if (event->group_leader != event) {
1774 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1775 				   ctrs, events, cflags);
1776 		if (n < 0)
1777 			return -EINVAL;
1778 	}
1779 	events[n] = ev;
1780 	ctrs[n] = event;
1781 	cflags[n] = flags;
1782 	if (check_excludes(ctrs, cflags, n, 1))
1783 		return -EINVAL;
1784 
1785 	cpuhw = &get_cpu_var(cpu_hw_events);
1786 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1787 
1788 	if (has_branch_stack(event)) {
1789 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1790 					event->attr.branch_sample_type);
1791 
1792 		if(cpuhw->bhrb_filter == -1)
1793 			return -EOPNOTSUPP;
1794 	}
1795 
1796 	put_cpu_var(cpu_hw_events);
1797 	if (err)
1798 		return -EINVAL;
1799 
1800 	event->hw.config = events[n];
1801 	event->hw.event_base = cflags[n];
1802 	event->hw.last_period = event->hw.sample_period;
1803 	local64_set(&event->hw.period_left, event->hw.last_period);
1804 
1805 	/*
1806 	 * For EBB events we just context switch the PMC value, we don't do any
1807 	 * of the sample_period logic. We use hw.prev_count for this.
1808 	 */
1809 	if (is_ebb_event(event))
1810 		local64_set(&event->hw.prev_count, 0);
1811 
1812 	/*
1813 	 * See if we need to reserve the PMU.
1814 	 * If no events are currently in use, then we have to take a
1815 	 * mutex to ensure that we don't race with another task doing
1816 	 * reserve_pmc_hardware or release_pmc_hardware.
1817 	 */
1818 	err = 0;
1819 	if (!atomic_inc_not_zero(&num_events)) {
1820 		mutex_lock(&pmc_reserve_mutex);
1821 		if (atomic_read(&num_events) == 0 &&
1822 		    reserve_pmc_hardware(perf_event_interrupt))
1823 			err = -EBUSY;
1824 		else
1825 			atomic_inc(&num_events);
1826 		mutex_unlock(&pmc_reserve_mutex);
1827 	}
1828 	event->destroy = hw_perf_event_destroy;
1829 
1830 	return err;
1831 }
1832 
1833 static int power_pmu_event_idx(struct perf_event *event)
1834 {
1835 	return event->hw.idx;
1836 }
1837 
1838 ssize_t power_events_sysfs_show(struct device *dev,
1839 				struct device_attribute *attr, char *page)
1840 {
1841 	struct perf_pmu_events_attr *pmu_attr;
1842 
1843 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1844 
1845 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1846 }
1847 
1848 struct pmu power_pmu = {
1849 	.pmu_enable	= power_pmu_enable,
1850 	.pmu_disable	= power_pmu_disable,
1851 	.event_init	= power_pmu_event_init,
1852 	.add		= power_pmu_add,
1853 	.del		= power_pmu_del,
1854 	.start		= power_pmu_start,
1855 	.stop		= power_pmu_stop,
1856 	.read		= power_pmu_read,
1857 	.start_txn	= power_pmu_start_txn,
1858 	.cancel_txn	= power_pmu_cancel_txn,
1859 	.commit_txn	= power_pmu_commit_txn,
1860 	.event_idx	= power_pmu_event_idx,
1861 	.flush_branch_stack = power_pmu_flush_branch_stack,
1862 };
1863 
1864 /*
1865  * A counter has overflowed; update its count and record
1866  * things if requested.  Note that interrupts are hard-disabled
1867  * here so there is no possibility of being interrupted.
1868  */
1869 static void record_and_restart(struct perf_event *event, unsigned long val,
1870 			       struct pt_regs *regs)
1871 {
1872 	u64 period = event->hw.sample_period;
1873 	s64 prev, delta, left;
1874 	int record = 0;
1875 
1876 	if (event->hw.state & PERF_HES_STOPPED) {
1877 		write_pmc(event->hw.idx, 0);
1878 		return;
1879 	}
1880 
1881 	/* we don't have to worry about interrupts here */
1882 	prev = local64_read(&event->hw.prev_count);
1883 	delta = check_and_compute_delta(prev, val);
1884 	local64_add(delta, &event->count);
1885 
1886 	/*
1887 	 * See if the total period for this event has expired,
1888 	 * and update for the next period.
1889 	 */
1890 	val = 0;
1891 	left = local64_read(&event->hw.period_left) - delta;
1892 	if (delta == 0)
1893 		left++;
1894 	if (period) {
1895 		if (left <= 0) {
1896 			left += period;
1897 			if (left <= 0)
1898 				left = period;
1899 			record = siar_valid(regs);
1900 			event->hw.last_period = event->hw.sample_period;
1901 		}
1902 		if (left < 0x80000000LL)
1903 			val = 0x80000000LL - left;
1904 	}
1905 
1906 	write_pmc(event->hw.idx, val);
1907 	local64_set(&event->hw.prev_count, val);
1908 	local64_set(&event->hw.period_left, left);
1909 	perf_event_update_userpage(event);
1910 
1911 	/*
1912 	 * Finally record data if requested.
1913 	 */
1914 	if (record) {
1915 		struct perf_sample_data data;
1916 
1917 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1918 
1919 		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1920 			perf_get_data_addr(regs, &data.addr);
1921 
1922 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
1923 			struct cpu_hw_events *cpuhw;
1924 			cpuhw = &__get_cpu_var(cpu_hw_events);
1925 			power_pmu_bhrb_read(cpuhw);
1926 			data.br_stack = &cpuhw->bhrb_stack;
1927 		}
1928 
1929 		if (perf_event_overflow(event, &data, regs))
1930 			power_pmu_stop(event, 0);
1931 	}
1932 }
1933 
1934 /*
1935  * Called from generic code to get the misc flags (i.e. processor mode)
1936  * for an event_id.
1937  */
1938 unsigned long perf_misc_flags(struct pt_regs *regs)
1939 {
1940 	u32 flags = perf_get_misc_flags(regs);
1941 
1942 	if (flags)
1943 		return flags;
1944 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
1945 		PERF_RECORD_MISC_KERNEL;
1946 }
1947 
1948 /*
1949  * Called from generic code to get the instruction pointer
1950  * for an event_id.
1951  */
1952 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1953 {
1954 	bool use_siar = regs_use_siar(regs);
1955 
1956 	if (use_siar && siar_valid(regs))
1957 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1958 	else if (use_siar)
1959 		return 0;		// no valid instruction pointer
1960 	else
1961 		return regs->nip;
1962 }
1963 
1964 static bool pmc_overflow_power7(unsigned long val)
1965 {
1966 	/*
1967 	 * Events on POWER7 can roll back if a speculative event doesn't
1968 	 * eventually complete. Unfortunately in some rare cases they will
1969 	 * raise a performance monitor exception. We need to catch this to
1970 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1971 	 * cycles from overflow.
1972 	 *
1973 	 * We only do this if the first pass fails to find any overflowing
1974 	 * PMCs because a user might set a period of less than 256 and we
1975 	 * don't want to mistakenly reset them.
1976 	 */
1977 	if ((0x80000000 - val) <= 256)
1978 		return true;
1979 
1980 	return false;
1981 }
1982 
1983 static bool pmc_overflow(unsigned long val)
1984 {
1985 	if ((int)val < 0)
1986 		return true;
1987 
1988 	return false;
1989 }
1990 
1991 /*
1992  * Performance monitor interrupt stuff
1993  */
1994 static void perf_event_interrupt(struct pt_regs *regs)
1995 {
1996 	int i, j;
1997 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1998 	struct perf_event *event;
1999 	unsigned long val[8];
2000 	int found, active;
2001 	int nmi;
2002 
2003 	if (cpuhw->n_limited)
2004 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2005 					mfspr(SPRN_PMC6));
2006 
2007 	perf_read_regs(regs);
2008 
2009 	nmi = perf_intr_is_nmi(regs);
2010 	if (nmi)
2011 		nmi_enter();
2012 	else
2013 		irq_enter();
2014 
2015 	/* Read all the PMCs since we'll need them a bunch of times */
2016 	for (i = 0; i < ppmu->n_counter; ++i)
2017 		val[i] = read_pmc(i + 1);
2018 
2019 	/* Try to find what caused the IRQ */
2020 	found = 0;
2021 	for (i = 0; i < ppmu->n_counter; ++i) {
2022 		if (!pmc_overflow(val[i]))
2023 			continue;
2024 		if (is_limited_pmc(i + 1))
2025 			continue; /* these won't generate IRQs */
2026 		/*
2027 		 * We've found one that's overflowed.  For active
2028 		 * counters we need to log this.  For inactive
2029 		 * counters, we need to reset it anyway
2030 		 */
2031 		found = 1;
2032 		active = 0;
2033 		for (j = 0; j < cpuhw->n_events; ++j) {
2034 			event = cpuhw->event[j];
2035 			if (event->hw.idx == (i + 1)) {
2036 				active = 1;
2037 				record_and_restart(event, val[i], regs);
2038 				break;
2039 			}
2040 		}
2041 		if (!active)
2042 			/* reset non active counters that have overflowed */
2043 			write_pmc(i + 1, 0);
2044 	}
2045 	if (!found && pvr_version_is(PVR_POWER7)) {
2046 		/* check active counters for special buggy p7 overflow */
2047 		for (i = 0; i < cpuhw->n_events; ++i) {
2048 			event = cpuhw->event[i];
2049 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2050 				continue;
2051 			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2052 				/* event has overflowed in a buggy way*/
2053 				found = 1;
2054 				record_and_restart(event,
2055 						   val[event->hw.idx - 1],
2056 						   regs);
2057 			}
2058 		}
2059 	}
2060 	if (!found && !nmi && printk_ratelimit())
2061 		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2062 
2063 	/*
2064 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2065 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2066 	 * and thus allow interrupts to occur again.
2067 	 * XXX might want to use MSR.PM to keep the events frozen until
2068 	 * we get back out of this interrupt.
2069 	 */
2070 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2071 
2072 	if (nmi)
2073 		nmi_exit();
2074 	else
2075 		irq_exit();
2076 }
2077 
2078 static void power_pmu_setup(int cpu)
2079 {
2080 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2081 
2082 	if (!ppmu)
2083 		return;
2084 	memset(cpuhw, 0, sizeof(*cpuhw));
2085 	cpuhw->mmcr[0] = MMCR0_FC;
2086 }
2087 
2088 static int
2089 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
2090 {
2091 	unsigned int cpu = (long)hcpu;
2092 
2093 	switch (action & ~CPU_TASKS_FROZEN) {
2094 	case CPU_UP_PREPARE:
2095 		power_pmu_setup(cpu);
2096 		break;
2097 
2098 	default:
2099 		break;
2100 	}
2101 
2102 	return NOTIFY_OK;
2103 }
2104 
2105 int register_power_pmu(struct power_pmu *pmu)
2106 {
2107 	if (ppmu)
2108 		return -EBUSY;		/* something's already registered */
2109 
2110 	ppmu = pmu;
2111 	pr_info("%s performance monitor hardware support registered\n",
2112 		pmu->name);
2113 
2114 	power_pmu.attr_groups = ppmu->attr_groups;
2115 
2116 #ifdef MSR_HV
2117 	/*
2118 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2119 	 */
2120 	if (mfmsr() & MSR_HV)
2121 		freeze_events_kernel = MMCR0_FCHV;
2122 #endif /* CONFIG_PPC64 */
2123 
2124 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2125 	perf_cpu_notifier(power_pmu_notifier);
2126 
2127 	return 0;
2128 }
2129