1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Performance event support - powerpc architecture code 4 * 5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 6 */ 7 #include <linux/kernel.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/perf_event.h> 11 #include <linux/percpu.h> 12 #include <linux/hardirq.h> 13 #include <linux/uaccess.h> 14 #include <asm/reg.h> 15 #include <asm/pmc.h> 16 #include <asm/machdep.h> 17 #include <asm/firmware.h> 18 #include <asm/ptrace.h> 19 #include <asm/code-patching.h> 20 21 #ifdef CONFIG_PPC64 22 #include "internal.h" 23 #endif 24 25 #define BHRB_MAX_ENTRIES 32 26 #define BHRB_TARGET 0x0000000000000002 27 #define BHRB_PREDICTION 0x0000000000000001 28 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 29 30 struct cpu_hw_events { 31 int n_events; 32 int n_percpu; 33 int disabled; 34 int n_added; 35 int n_limited; 36 u8 pmcs_enabled; 37 struct perf_event *event[MAX_HWEVENTS]; 38 u64 events[MAX_HWEVENTS]; 39 unsigned int flags[MAX_HWEVENTS]; 40 /* 41 * The order of the MMCR array is: 42 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2 43 * - 32-bit, MMCR0, MMCR1, MMCR2 44 */ 45 unsigned long mmcr[4]; 46 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 47 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 48 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 49 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 50 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 51 52 unsigned int txn_flags; 53 int n_txn_start; 54 55 /* BHRB bits */ 56 u64 bhrb_filter; /* BHRB HW branch filter */ 57 unsigned int bhrb_users; 58 void *bhrb_context; 59 struct perf_branch_stack bhrb_stack; 60 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 61 u64 ic_init; 62 }; 63 64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 65 66 static struct power_pmu *ppmu; 67 68 /* 69 * Normally, to ignore kernel events we set the FCS (freeze counters 70 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 71 * hypervisor bit set in the MSR, or if we are running on a processor 72 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 73 * then we need to use the FCHV bit to ignore kernel events. 74 */ 75 static unsigned int freeze_events_kernel = MMCR0_FCS; 76 77 /* 78 * 32-bit doesn't have MMCRA but does have an MMCR2, 79 * and a few other names are different. 80 */ 81 #ifdef CONFIG_PPC32 82 83 #define MMCR0_FCHV 0 84 #define MMCR0_PMCjCE MMCR0_PMCnCE 85 #define MMCR0_FC56 0 86 #define MMCR0_PMAO 0 87 #define MMCR0_EBE 0 88 #define MMCR0_BHRBA 0 89 #define MMCR0_PMCC 0 90 #define MMCR0_PMCC_U6 0 91 92 #define SPRN_MMCRA SPRN_MMCR2 93 #define MMCRA_SAMPLE_ENABLE 0 94 95 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 96 { 97 return 0; 98 } 99 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { } 100 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 101 { 102 return 0; 103 } 104 static inline void perf_read_regs(struct pt_regs *regs) 105 { 106 regs->result = 0; 107 } 108 static inline int perf_intr_is_nmi(struct pt_regs *regs) 109 { 110 return 0; 111 } 112 113 static inline int siar_valid(struct pt_regs *regs) 114 { 115 return 1; 116 } 117 118 static bool is_ebb_event(struct perf_event *event) { return false; } 119 static int ebb_event_check(struct perf_event *event) { return 0; } 120 static void ebb_event_add(struct perf_event *event) { } 121 static void ebb_switch_out(unsigned long mmcr0) { } 122 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 123 { 124 return cpuhw->mmcr[0]; 125 } 126 127 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 128 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 129 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} 130 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {} 131 static void pmao_restore_workaround(bool ebb) { } 132 #endif /* CONFIG_PPC32 */ 133 134 bool is_sier_available(void) 135 { 136 if (ppmu->flags & PPMU_HAS_SIER) 137 return true; 138 139 return false; 140 } 141 142 static bool regs_use_siar(struct pt_regs *regs) 143 { 144 /* 145 * When we take a performance monitor exception the regs are setup 146 * using perf_read_regs() which overloads some fields, in particular 147 * regs->result to tell us whether to use SIAR. 148 * 149 * However if the regs are from another exception, eg. a syscall, then 150 * they have not been setup using perf_read_regs() and so regs->result 151 * is something random. 152 */ 153 return ((TRAP(regs) == 0xf00) && regs->result); 154 } 155 156 /* 157 * Things that are specific to 64-bit implementations. 158 */ 159 #ifdef CONFIG_PPC64 160 161 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 162 { 163 unsigned long mmcra = regs->dsisr; 164 165 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 166 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 167 if (slot > 1) 168 return 4 * (slot - 1); 169 } 170 171 return 0; 172 } 173 174 /* 175 * The user wants a data address recorded. 176 * If we're not doing instruction sampling, give them the SDAR 177 * (sampled data address). If we are doing instruction sampling, then 178 * only give them the SDAR if it corresponds to the instruction 179 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 180 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 181 */ 182 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) 183 { 184 unsigned long mmcra = regs->dsisr; 185 bool sdar_valid; 186 187 if (ppmu->flags & PPMU_HAS_SIER) 188 sdar_valid = regs->dar & SIER_SDAR_VALID; 189 else { 190 unsigned long sdsync; 191 192 if (ppmu->flags & PPMU_SIAR_VALID) 193 sdsync = POWER7P_MMCRA_SDAR_VALID; 194 else if (ppmu->flags & PPMU_ALT_SIPR) 195 sdsync = POWER6_MMCRA_SDSYNC; 196 else if (ppmu->flags & PPMU_NO_SIAR) 197 sdsync = MMCRA_SAMPLE_ENABLE; 198 else 199 sdsync = MMCRA_SDSYNC; 200 201 sdar_valid = mmcra & sdsync; 202 } 203 204 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 205 *addrp = mfspr(SPRN_SDAR); 206 207 if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0) 208 *addrp = 0; 209 } 210 211 static bool regs_sihv(struct pt_regs *regs) 212 { 213 unsigned long sihv = MMCRA_SIHV; 214 215 if (ppmu->flags & PPMU_HAS_SIER) 216 return !!(regs->dar & SIER_SIHV); 217 218 if (ppmu->flags & PPMU_ALT_SIPR) 219 sihv = POWER6_MMCRA_SIHV; 220 221 return !!(regs->dsisr & sihv); 222 } 223 224 static bool regs_sipr(struct pt_regs *regs) 225 { 226 unsigned long sipr = MMCRA_SIPR; 227 228 if (ppmu->flags & PPMU_HAS_SIER) 229 return !!(regs->dar & SIER_SIPR); 230 231 if (ppmu->flags & PPMU_ALT_SIPR) 232 sipr = POWER6_MMCRA_SIPR; 233 234 return !!(regs->dsisr & sipr); 235 } 236 237 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 238 { 239 if (regs->msr & MSR_PR) 240 return PERF_RECORD_MISC_USER; 241 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 242 return PERF_RECORD_MISC_HYPERVISOR; 243 return PERF_RECORD_MISC_KERNEL; 244 } 245 246 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 247 { 248 bool use_siar = regs_use_siar(regs); 249 250 if (!use_siar) 251 return perf_flags_from_msr(regs); 252 253 /* 254 * If we don't have flags in MMCRA, rather than using 255 * the MSR, we intuit the flags from the address in 256 * SIAR which should give slightly more reliable 257 * results 258 */ 259 if (ppmu->flags & PPMU_NO_SIPR) { 260 unsigned long siar = mfspr(SPRN_SIAR); 261 if (is_kernel_addr(siar)) 262 return PERF_RECORD_MISC_KERNEL; 263 return PERF_RECORD_MISC_USER; 264 } 265 266 /* PR has priority over HV, so order below is important */ 267 if (regs_sipr(regs)) 268 return PERF_RECORD_MISC_USER; 269 270 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 271 return PERF_RECORD_MISC_HYPERVISOR; 272 273 return PERF_RECORD_MISC_KERNEL; 274 } 275 276 /* 277 * Overload regs->dsisr to store MMCRA so we only need to read it once 278 * on each interrupt. 279 * Overload regs->dar to store SIER if we have it. 280 * Overload regs->result to specify whether we should use the MSR (result 281 * is zero) or the SIAR (result is non zero). 282 */ 283 static inline void perf_read_regs(struct pt_regs *regs) 284 { 285 unsigned long mmcra = mfspr(SPRN_MMCRA); 286 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 287 int use_siar; 288 289 regs->dsisr = mmcra; 290 291 if (ppmu->flags & PPMU_HAS_SIER) 292 regs->dar = mfspr(SPRN_SIER); 293 294 /* 295 * If this isn't a PMU exception (eg a software event) the SIAR is 296 * not valid. Use pt_regs. 297 * 298 * If it is a marked event use the SIAR. 299 * 300 * If the PMU doesn't update the SIAR for non marked events use 301 * pt_regs. 302 * 303 * If the PMU has HV/PR flags then check to see if they 304 * place the exception in userspace. If so, use pt_regs. In 305 * continuous sampling mode the SIAR and the PMU exception are 306 * not synchronised, so they may be many instructions apart. 307 * This can result in confusing backtraces. We still want 308 * hypervisor samples as well as samples in the kernel with 309 * interrupts off hence the userspace check. 310 */ 311 if (TRAP(regs) != 0xf00) 312 use_siar = 0; 313 else if ((ppmu->flags & PPMU_NO_SIAR)) 314 use_siar = 0; 315 else if (marked) 316 use_siar = 1; 317 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 318 use_siar = 0; 319 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 320 use_siar = 0; 321 else 322 use_siar = 1; 323 324 regs->result = use_siar; 325 } 326 327 /* 328 * If interrupts were soft-disabled when a PMU interrupt occurs, treat 329 * it as an NMI. 330 */ 331 static inline int perf_intr_is_nmi(struct pt_regs *regs) 332 { 333 return (regs->softe & IRQS_DISABLED); 334 } 335 336 /* 337 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 338 * must be sampled only if the SIAR-valid bit is set. 339 * 340 * For unmarked instructions and for processors that don't have the SIAR-Valid 341 * bit, assume that SIAR is valid. 342 */ 343 static inline int siar_valid(struct pt_regs *regs) 344 { 345 unsigned long mmcra = regs->dsisr; 346 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 347 348 if (marked) { 349 if (ppmu->flags & PPMU_HAS_SIER) 350 return regs->dar & SIER_SIAR_VALID; 351 352 if (ppmu->flags & PPMU_SIAR_VALID) 353 return mmcra & POWER7P_MMCRA_SIAR_VALID; 354 } 355 356 return 1; 357 } 358 359 360 /* Reset all possible BHRB entries */ 361 static void power_pmu_bhrb_reset(void) 362 { 363 asm volatile(PPC_CLRBHRB); 364 } 365 366 static void power_pmu_bhrb_enable(struct perf_event *event) 367 { 368 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 369 370 if (!ppmu->bhrb_nr) 371 return; 372 373 /* Clear BHRB if we changed task context to avoid data leaks */ 374 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 375 power_pmu_bhrb_reset(); 376 cpuhw->bhrb_context = event->ctx; 377 } 378 cpuhw->bhrb_users++; 379 perf_sched_cb_inc(event->ctx->pmu); 380 } 381 382 static void power_pmu_bhrb_disable(struct perf_event *event) 383 { 384 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 385 386 if (!ppmu->bhrb_nr) 387 return; 388 389 WARN_ON_ONCE(!cpuhw->bhrb_users); 390 cpuhw->bhrb_users--; 391 perf_sched_cb_dec(event->ctx->pmu); 392 393 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 394 /* BHRB cannot be turned off when other 395 * events are active on the PMU. 396 */ 397 398 /* avoid stale pointer */ 399 cpuhw->bhrb_context = NULL; 400 } 401 } 402 403 /* Called from ctxsw to prevent one process's branch entries to 404 * mingle with the other process's entries during context switch. 405 */ 406 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 407 { 408 if (!ppmu->bhrb_nr) 409 return; 410 411 if (sched_in) 412 power_pmu_bhrb_reset(); 413 } 414 /* Calculate the to address for a branch */ 415 static __u64 power_pmu_bhrb_to(u64 addr) 416 { 417 unsigned int instr; 418 __u64 target; 419 420 if (is_kernel_addr(addr)) { 421 if (probe_kernel_read(&instr, (void *)addr, sizeof(instr))) 422 return 0; 423 424 return branch_target(&instr); 425 } 426 427 /* Userspace: need copy instruction here then translate it */ 428 if (probe_user_read(&instr, (unsigned int __user *)addr, sizeof(instr))) 429 return 0; 430 431 target = branch_target(&instr); 432 if ((!target) || (instr & BRANCH_ABSOLUTE)) 433 return target; 434 435 /* Translate relative branch target from kernel to user address */ 436 return target - (unsigned long)&instr + addr; 437 } 438 439 /* Processing BHRB entries */ 440 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) 441 { 442 u64 val; 443 u64 addr; 444 int r_index, u_index, pred; 445 446 r_index = 0; 447 u_index = 0; 448 while (r_index < ppmu->bhrb_nr) { 449 /* Assembly read function */ 450 val = read_bhrb(r_index++); 451 if (!val) 452 /* Terminal marker: End of valid BHRB entries */ 453 break; 454 else { 455 addr = val & BHRB_EA; 456 pred = val & BHRB_PREDICTION; 457 458 if (!addr) 459 /* invalid entry */ 460 continue; 461 462 /* 463 * BHRB rolling buffer could very much contain the kernel 464 * addresses at this point. Check the privileges before 465 * exporting it to userspace (avoid exposure of regions 466 * where we could have speculative execution) 467 */ 468 if (is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0) 469 continue; 470 471 /* Branches are read most recent first (ie. mfbhrb 0 is 472 * the most recent branch). 473 * There are two types of valid entries: 474 * 1) a target entry which is the to address of a 475 * computed goto like a blr,bctr,btar. The next 476 * entry read from the bhrb will be branch 477 * corresponding to this target (ie. the actual 478 * blr/bctr/btar instruction). 479 * 2) a from address which is an actual branch. If a 480 * target entry proceeds this, then this is the 481 * matching branch for that target. If this is not 482 * following a target entry, then this is a branch 483 * where the target is given as an immediate field 484 * in the instruction (ie. an i or b form branch). 485 * In this case we need to read the instruction from 486 * memory to determine the target/to address. 487 */ 488 489 if (val & BHRB_TARGET) { 490 /* Target branches use two entries 491 * (ie. computed gotos/XL form) 492 */ 493 cpuhw->bhrb_entries[u_index].to = addr; 494 cpuhw->bhrb_entries[u_index].mispred = pred; 495 cpuhw->bhrb_entries[u_index].predicted = ~pred; 496 497 /* Get from address in next entry */ 498 val = read_bhrb(r_index++); 499 addr = val & BHRB_EA; 500 if (val & BHRB_TARGET) { 501 /* Shouldn't have two targets in a 502 row.. Reset index and try again */ 503 r_index--; 504 addr = 0; 505 } 506 cpuhw->bhrb_entries[u_index].from = addr; 507 } else { 508 /* Branches to immediate field 509 (ie I or B form) */ 510 cpuhw->bhrb_entries[u_index].from = addr; 511 cpuhw->bhrb_entries[u_index].to = 512 power_pmu_bhrb_to(addr); 513 cpuhw->bhrb_entries[u_index].mispred = pred; 514 cpuhw->bhrb_entries[u_index].predicted = ~pred; 515 } 516 u_index++; 517 518 } 519 } 520 cpuhw->bhrb_stack.nr = u_index; 521 cpuhw->bhrb_stack.hw_idx = -1ULL; 522 return; 523 } 524 525 static bool is_ebb_event(struct perf_event *event) 526 { 527 /* 528 * This could be a per-PMU callback, but we'd rather avoid the cost. We 529 * check that the PMU supports EBB, meaning those that don't can still 530 * use bit 63 of the event code for something else if they wish. 531 */ 532 return (ppmu->flags & PPMU_ARCH_207S) && 533 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 534 } 535 536 static int ebb_event_check(struct perf_event *event) 537 { 538 struct perf_event *leader = event->group_leader; 539 540 /* Event and group leader must agree on EBB */ 541 if (is_ebb_event(leader) != is_ebb_event(event)) 542 return -EINVAL; 543 544 if (is_ebb_event(event)) { 545 if (!(event->attach_state & PERF_ATTACH_TASK)) 546 return -EINVAL; 547 548 if (!leader->attr.pinned || !leader->attr.exclusive) 549 return -EINVAL; 550 551 if (event->attr.freq || 552 event->attr.inherit || 553 event->attr.sample_type || 554 event->attr.sample_period || 555 event->attr.enable_on_exec) 556 return -EINVAL; 557 } 558 559 return 0; 560 } 561 562 static void ebb_event_add(struct perf_event *event) 563 { 564 if (!is_ebb_event(event) || current->thread.used_ebb) 565 return; 566 567 /* 568 * IFF this is the first time we've added an EBB event, set 569 * PMXE in the user MMCR0 so we can detect when it's cleared by 570 * userspace. We need this so that we can context switch while 571 * userspace is in the EBB handler (where PMXE is 0). 572 */ 573 current->thread.used_ebb = 1; 574 current->thread.mmcr0 |= MMCR0_PMXE; 575 } 576 577 static void ebb_switch_out(unsigned long mmcr0) 578 { 579 if (!(mmcr0 & MMCR0_EBE)) 580 return; 581 582 current->thread.siar = mfspr(SPRN_SIAR); 583 current->thread.sier = mfspr(SPRN_SIER); 584 current->thread.sdar = mfspr(SPRN_SDAR); 585 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 586 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 587 } 588 589 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 590 { 591 unsigned long mmcr0 = cpuhw->mmcr[0]; 592 593 if (!ebb) 594 goto out; 595 596 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 597 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 598 599 /* 600 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 601 * with pmao_restore_workaround() because we may add PMAO but we never 602 * clear it here. 603 */ 604 mmcr0 |= current->thread.mmcr0; 605 606 /* 607 * Be careful not to set PMXE if userspace had it cleared. This is also 608 * compatible with pmao_restore_workaround() because it has already 609 * cleared PMXE and we leave PMAO alone. 610 */ 611 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 612 mmcr0 &= ~MMCR0_PMXE; 613 614 mtspr(SPRN_SIAR, current->thread.siar); 615 mtspr(SPRN_SIER, current->thread.sier); 616 mtspr(SPRN_SDAR, current->thread.sdar); 617 618 /* 619 * Merge the kernel & user values of MMCR2. The semantics we implement 620 * are that the user MMCR2 can set bits, ie. cause counters to freeze, 621 * but not clear bits. If a task wants to be able to clear bits, ie. 622 * unfreeze counters, it should not set exclude_xxx in its events and 623 * instead manage the MMCR2 entirely by itself. 624 */ 625 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2); 626 out: 627 return mmcr0; 628 } 629 630 static void pmao_restore_workaround(bool ebb) 631 { 632 unsigned pmcs[6]; 633 634 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 635 return; 636 637 /* 638 * On POWER8E there is a hardware defect which affects the PMU context 639 * switch logic, ie. power_pmu_disable/enable(). 640 * 641 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 642 * by the hardware. Sometime later the actual PMU exception is 643 * delivered. 644 * 645 * If we context switch, or simply disable/enable, the PMU prior to the 646 * exception arriving, the exception will be lost when we clear PMAO. 647 * 648 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 649 * set, and this _should_ generate an exception. However because of the 650 * defect no exception is generated when we write PMAO, and we get 651 * stuck with no counters counting but no exception delivered. 652 * 653 * The workaround is to detect this case and tweak the hardware to 654 * create another pending PMU exception. 655 * 656 * We do that by setting up PMC6 (cycles) for an imminent overflow and 657 * enabling the PMU. That causes a new exception to be generated in the 658 * chip, but we don't take it yet because we have interrupts hard 659 * disabled. We then write back the PMU state as we want it to be seen 660 * by the exception handler. When we reenable interrupts the exception 661 * handler will be called and see the correct state. 662 * 663 * The logic is the same for EBB, except that the exception is gated by 664 * us having interrupts hard disabled as well as the fact that we are 665 * not in userspace. The exception is finally delivered when we return 666 * to userspace. 667 */ 668 669 /* Only if PMAO is set and PMAO_SYNC is clear */ 670 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 671 return; 672 673 /* If we're doing EBB, only if BESCR[GE] is set */ 674 if (ebb && !(current->thread.bescr & BESCR_GE)) 675 return; 676 677 /* 678 * We are already soft-disabled in power_pmu_enable(). We need to hard 679 * disable to actually prevent the PMU exception from firing. 680 */ 681 hard_irq_disable(); 682 683 /* 684 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 685 * Using read/write_pmc() in a for loop adds 12 function calls and 686 * almost doubles our code size. 687 */ 688 pmcs[0] = mfspr(SPRN_PMC1); 689 pmcs[1] = mfspr(SPRN_PMC2); 690 pmcs[2] = mfspr(SPRN_PMC3); 691 pmcs[3] = mfspr(SPRN_PMC4); 692 pmcs[4] = mfspr(SPRN_PMC5); 693 pmcs[5] = mfspr(SPRN_PMC6); 694 695 /* Ensure all freeze bits are unset */ 696 mtspr(SPRN_MMCR2, 0); 697 698 /* Set up PMC6 to overflow in one cycle */ 699 mtspr(SPRN_PMC6, 0x7FFFFFFE); 700 701 /* Enable exceptions and unfreeze PMC6 */ 702 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 703 704 /* Now we need to refreeze and restore the PMCs */ 705 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 706 707 mtspr(SPRN_PMC1, pmcs[0]); 708 mtspr(SPRN_PMC2, pmcs[1]); 709 mtspr(SPRN_PMC3, pmcs[2]); 710 mtspr(SPRN_PMC4, pmcs[3]); 711 mtspr(SPRN_PMC5, pmcs[4]); 712 mtspr(SPRN_PMC6, pmcs[5]); 713 } 714 715 #endif /* CONFIG_PPC64 */ 716 717 static void perf_event_interrupt(struct pt_regs *regs); 718 719 /* 720 * Read one performance monitor counter (PMC). 721 */ 722 static unsigned long read_pmc(int idx) 723 { 724 unsigned long val; 725 726 switch (idx) { 727 case 1: 728 val = mfspr(SPRN_PMC1); 729 break; 730 case 2: 731 val = mfspr(SPRN_PMC2); 732 break; 733 case 3: 734 val = mfspr(SPRN_PMC3); 735 break; 736 case 4: 737 val = mfspr(SPRN_PMC4); 738 break; 739 case 5: 740 val = mfspr(SPRN_PMC5); 741 break; 742 case 6: 743 val = mfspr(SPRN_PMC6); 744 break; 745 #ifdef CONFIG_PPC64 746 case 7: 747 val = mfspr(SPRN_PMC7); 748 break; 749 case 8: 750 val = mfspr(SPRN_PMC8); 751 break; 752 #endif /* CONFIG_PPC64 */ 753 default: 754 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 755 val = 0; 756 } 757 return val; 758 } 759 760 /* 761 * Write one PMC. 762 */ 763 static void write_pmc(int idx, unsigned long val) 764 { 765 switch (idx) { 766 case 1: 767 mtspr(SPRN_PMC1, val); 768 break; 769 case 2: 770 mtspr(SPRN_PMC2, val); 771 break; 772 case 3: 773 mtspr(SPRN_PMC3, val); 774 break; 775 case 4: 776 mtspr(SPRN_PMC4, val); 777 break; 778 case 5: 779 mtspr(SPRN_PMC5, val); 780 break; 781 case 6: 782 mtspr(SPRN_PMC6, val); 783 break; 784 #ifdef CONFIG_PPC64 785 case 7: 786 mtspr(SPRN_PMC7, val); 787 break; 788 case 8: 789 mtspr(SPRN_PMC8, val); 790 break; 791 #endif /* CONFIG_PPC64 */ 792 default: 793 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 794 } 795 } 796 797 /* Called from sysrq_handle_showregs() */ 798 void perf_event_print_debug(void) 799 { 800 unsigned long sdar, sier, flags; 801 u32 pmcs[MAX_HWEVENTS]; 802 int i; 803 804 if (!ppmu) { 805 pr_info("Performance monitor hardware not registered.\n"); 806 return; 807 } 808 809 if (!ppmu->n_counter) 810 return; 811 812 local_irq_save(flags); 813 814 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 815 smp_processor_id(), ppmu->name, ppmu->n_counter); 816 817 for (i = 0; i < ppmu->n_counter; i++) 818 pmcs[i] = read_pmc(i + 1); 819 820 for (; i < MAX_HWEVENTS; i++) 821 pmcs[i] = 0xdeadbeef; 822 823 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 824 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 825 826 if (ppmu->n_counter > 4) 827 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 828 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 829 830 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 831 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 832 833 sdar = sier = 0; 834 #ifdef CONFIG_PPC64 835 sdar = mfspr(SPRN_SDAR); 836 837 if (ppmu->flags & PPMU_HAS_SIER) 838 sier = mfspr(SPRN_SIER); 839 840 if (ppmu->flags & PPMU_ARCH_207S) { 841 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 842 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 843 pr_info("EBBRR: %016lx BESCR: %016lx\n", 844 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 845 } 846 #endif 847 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 848 mfspr(SPRN_SIAR), sdar, sier); 849 850 local_irq_restore(flags); 851 } 852 853 /* 854 * Check if a set of events can all go on the PMU at once. 855 * If they can't, this will look at alternative codes for the events 856 * and see if any combination of alternative codes is feasible. 857 * The feasible set is returned in event_id[]. 858 */ 859 static int power_check_constraints(struct cpu_hw_events *cpuhw, 860 u64 event_id[], unsigned int cflags[], 861 int n_ev) 862 { 863 unsigned long mask, value, nv; 864 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 865 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 866 int i, j; 867 unsigned long addf = ppmu->add_fields; 868 unsigned long tadd = ppmu->test_adder; 869 unsigned long grp_mask = ppmu->group_constraint_mask; 870 unsigned long grp_val = ppmu->group_constraint_val; 871 872 if (n_ev > ppmu->n_counter) 873 return -1; 874 875 /* First see if the events will go on as-is */ 876 for (i = 0; i < n_ev; ++i) { 877 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 878 && !ppmu->limited_pmc_event(event_id[i])) { 879 ppmu->get_alternatives(event_id[i], cflags[i], 880 cpuhw->alternatives[i]); 881 event_id[i] = cpuhw->alternatives[i][0]; 882 } 883 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 884 &cpuhw->avalues[i][0])) 885 return -1; 886 } 887 value = mask = 0; 888 for (i = 0; i < n_ev; ++i) { 889 nv = (value | cpuhw->avalues[i][0]) + 890 (value & cpuhw->avalues[i][0] & addf); 891 892 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0) 893 break; 894 895 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0]) 896 & (~grp_mask)) != 0) 897 break; 898 899 value = nv; 900 mask |= cpuhw->amasks[i][0]; 901 } 902 if (i == n_ev) { 903 if ((value & mask & grp_mask) != (mask & grp_val)) 904 return -1; 905 else 906 return 0; /* all OK */ 907 } 908 909 /* doesn't work, gather alternatives... */ 910 if (!ppmu->get_alternatives) 911 return -1; 912 for (i = 0; i < n_ev; ++i) { 913 choice[i] = 0; 914 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 915 cpuhw->alternatives[i]); 916 for (j = 1; j < n_alt[i]; ++j) 917 ppmu->get_constraint(cpuhw->alternatives[i][j], 918 &cpuhw->amasks[i][j], 919 &cpuhw->avalues[i][j]); 920 } 921 922 /* enumerate all possibilities and see if any will work */ 923 i = 0; 924 j = -1; 925 value = mask = nv = 0; 926 while (i < n_ev) { 927 if (j >= 0) { 928 /* we're backtracking, restore context */ 929 value = svalues[i]; 930 mask = smasks[i]; 931 j = choice[i]; 932 } 933 /* 934 * See if any alternative k for event_id i, 935 * where k > j, will satisfy the constraints. 936 */ 937 while (++j < n_alt[i]) { 938 nv = (value | cpuhw->avalues[i][j]) + 939 (value & cpuhw->avalues[i][j] & addf); 940 if ((((nv + tadd) ^ value) & mask) == 0 && 941 (((nv + tadd) ^ cpuhw->avalues[i][j]) 942 & cpuhw->amasks[i][j]) == 0) 943 break; 944 } 945 if (j >= n_alt[i]) { 946 /* 947 * No feasible alternative, backtrack 948 * to event_id i-1 and continue enumerating its 949 * alternatives from where we got up to. 950 */ 951 if (--i < 0) 952 return -1; 953 } else { 954 /* 955 * Found a feasible alternative for event_id i, 956 * remember where we got up to with this event_id, 957 * go on to the next event_id, and start with 958 * the first alternative for it. 959 */ 960 choice[i] = j; 961 svalues[i] = value; 962 smasks[i] = mask; 963 value = nv; 964 mask |= cpuhw->amasks[i][j]; 965 ++i; 966 j = -1; 967 } 968 } 969 970 /* OK, we have a feasible combination, tell the caller the solution */ 971 for (i = 0; i < n_ev; ++i) 972 event_id[i] = cpuhw->alternatives[i][choice[i]]; 973 return 0; 974 } 975 976 /* 977 * Check if newly-added events have consistent settings for 978 * exclude_{user,kernel,hv} with each other and any previously 979 * added events. 980 */ 981 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 982 int n_prev, int n_new) 983 { 984 int eu = 0, ek = 0, eh = 0; 985 int i, n, first; 986 struct perf_event *event; 987 988 /* 989 * If the PMU we're on supports per event exclude settings then we 990 * don't need to do any of this logic. NB. This assumes no PMU has both 991 * per event exclude and limited PMCs. 992 */ 993 if (ppmu->flags & PPMU_ARCH_207S) 994 return 0; 995 996 n = n_prev + n_new; 997 if (n <= 1) 998 return 0; 999 1000 first = 1; 1001 for (i = 0; i < n; ++i) { 1002 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 1003 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 1004 continue; 1005 } 1006 event = ctrs[i]; 1007 if (first) { 1008 eu = event->attr.exclude_user; 1009 ek = event->attr.exclude_kernel; 1010 eh = event->attr.exclude_hv; 1011 first = 0; 1012 } else if (event->attr.exclude_user != eu || 1013 event->attr.exclude_kernel != ek || 1014 event->attr.exclude_hv != eh) { 1015 return -EAGAIN; 1016 } 1017 } 1018 1019 if (eu || ek || eh) 1020 for (i = 0; i < n; ++i) 1021 if (cflags[i] & PPMU_LIMITED_PMC_OK) 1022 cflags[i] |= PPMU_LIMITED_PMC_REQD; 1023 1024 return 0; 1025 } 1026 1027 static u64 check_and_compute_delta(u64 prev, u64 val) 1028 { 1029 u64 delta = (val - prev) & 0xfffffffful; 1030 1031 /* 1032 * POWER7 can roll back counter values, if the new value is smaller 1033 * than the previous value it will cause the delta and the counter to 1034 * have bogus values unless we rolled a counter over. If a coutner is 1035 * rolled back, it will be smaller, but within 256, which is the maximum 1036 * number of events to rollback at once. If we detect a rollback 1037 * return 0. This can lead to a small lack of precision in the 1038 * counters. 1039 */ 1040 if (prev > val && (prev - val) < 256) 1041 delta = 0; 1042 1043 return delta; 1044 } 1045 1046 static void power_pmu_read(struct perf_event *event) 1047 { 1048 s64 val, delta, prev; 1049 1050 if (event->hw.state & PERF_HES_STOPPED) 1051 return; 1052 1053 if (!event->hw.idx) 1054 return; 1055 1056 if (is_ebb_event(event)) { 1057 val = read_pmc(event->hw.idx); 1058 local64_set(&event->hw.prev_count, val); 1059 return; 1060 } 1061 1062 /* 1063 * Performance monitor interrupts come even when interrupts 1064 * are soft-disabled, as long as interrupts are hard-enabled. 1065 * Therefore we treat them like NMIs. 1066 */ 1067 do { 1068 prev = local64_read(&event->hw.prev_count); 1069 barrier(); 1070 val = read_pmc(event->hw.idx); 1071 delta = check_and_compute_delta(prev, val); 1072 if (!delta) 1073 return; 1074 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 1075 1076 local64_add(delta, &event->count); 1077 1078 /* 1079 * A number of places program the PMC with (0x80000000 - period_left). 1080 * We never want period_left to be less than 1 because we will program 1081 * the PMC with a value >= 0x800000000 and an edge detected PMC will 1082 * roll around to 0 before taking an exception. We have seen this 1083 * on POWER8. 1084 * 1085 * To fix this, clamp the minimum value of period_left to 1. 1086 */ 1087 do { 1088 prev = local64_read(&event->hw.period_left); 1089 val = prev - delta; 1090 if (val < 1) 1091 val = 1; 1092 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); 1093 } 1094 1095 /* 1096 * On some machines, PMC5 and PMC6 can't be written, don't respect 1097 * the freeze conditions, and don't generate interrupts. This tells 1098 * us if `event' is using such a PMC. 1099 */ 1100 static int is_limited_pmc(int pmcnum) 1101 { 1102 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1103 && (pmcnum == 5 || pmcnum == 6); 1104 } 1105 1106 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1107 unsigned long pmc5, unsigned long pmc6) 1108 { 1109 struct perf_event *event; 1110 u64 val, prev, delta; 1111 int i; 1112 1113 for (i = 0; i < cpuhw->n_limited; ++i) { 1114 event = cpuhw->limited_counter[i]; 1115 if (!event->hw.idx) 1116 continue; 1117 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1118 prev = local64_read(&event->hw.prev_count); 1119 event->hw.idx = 0; 1120 delta = check_and_compute_delta(prev, val); 1121 if (delta) 1122 local64_add(delta, &event->count); 1123 } 1124 } 1125 1126 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1127 unsigned long pmc5, unsigned long pmc6) 1128 { 1129 struct perf_event *event; 1130 u64 val, prev; 1131 int i; 1132 1133 for (i = 0; i < cpuhw->n_limited; ++i) { 1134 event = cpuhw->limited_counter[i]; 1135 event->hw.idx = cpuhw->limited_hwidx[i]; 1136 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1137 prev = local64_read(&event->hw.prev_count); 1138 if (check_and_compute_delta(prev, val)) 1139 local64_set(&event->hw.prev_count, val); 1140 perf_event_update_userpage(event); 1141 } 1142 } 1143 1144 /* 1145 * Since limited events don't respect the freeze conditions, we 1146 * have to read them immediately after freezing or unfreezing the 1147 * other events. We try to keep the values from the limited 1148 * events as consistent as possible by keeping the delay (in 1149 * cycles and instructions) between freezing/unfreezing and reading 1150 * the limited events as small and consistent as possible. 1151 * Therefore, if any limited events are in use, we read them 1152 * both, and always in the same order, to minimize variability, 1153 * and do it inside the same asm that writes MMCR0. 1154 */ 1155 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1156 { 1157 unsigned long pmc5, pmc6; 1158 1159 if (!cpuhw->n_limited) { 1160 mtspr(SPRN_MMCR0, mmcr0); 1161 return; 1162 } 1163 1164 /* 1165 * Write MMCR0, then read PMC5 and PMC6 immediately. 1166 * To ensure we don't get a performance monitor interrupt 1167 * between writing MMCR0 and freezing/thawing the limited 1168 * events, we first write MMCR0 with the event overflow 1169 * interrupt enable bits turned off. 1170 */ 1171 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1172 : "=&r" (pmc5), "=&r" (pmc6) 1173 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1174 "i" (SPRN_MMCR0), 1175 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1176 1177 if (mmcr0 & MMCR0_FC) 1178 freeze_limited_counters(cpuhw, pmc5, pmc6); 1179 else 1180 thaw_limited_counters(cpuhw, pmc5, pmc6); 1181 1182 /* 1183 * Write the full MMCR0 including the event overflow interrupt 1184 * enable bits, if necessary. 1185 */ 1186 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1187 mtspr(SPRN_MMCR0, mmcr0); 1188 } 1189 1190 /* 1191 * Disable all events to prevent PMU interrupts and to allow 1192 * events to be added or removed. 1193 */ 1194 static void power_pmu_disable(struct pmu *pmu) 1195 { 1196 struct cpu_hw_events *cpuhw; 1197 unsigned long flags, mmcr0, val; 1198 1199 if (!ppmu) 1200 return; 1201 local_irq_save(flags); 1202 cpuhw = this_cpu_ptr(&cpu_hw_events); 1203 1204 if (!cpuhw->disabled) { 1205 /* 1206 * Check if we ever enabled the PMU on this cpu. 1207 */ 1208 if (!cpuhw->pmcs_enabled) { 1209 ppc_enable_pmcs(); 1210 cpuhw->pmcs_enabled = 1; 1211 } 1212 1213 /* 1214 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1215 */ 1216 val = mmcr0 = mfspr(SPRN_MMCR0); 1217 val |= MMCR0_FC; 1218 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1219 MMCR0_FC56); 1220 1221 /* 1222 * The barrier is to make sure the mtspr has been 1223 * executed and the PMU has frozen the events etc. 1224 * before we return. 1225 */ 1226 write_mmcr0(cpuhw, val); 1227 mb(); 1228 isync(); 1229 1230 /* 1231 * Disable instruction sampling if it was enabled 1232 */ 1233 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1234 mtspr(SPRN_MMCRA, 1235 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1236 mb(); 1237 isync(); 1238 } 1239 1240 cpuhw->disabled = 1; 1241 cpuhw->n_added = 0; 1242 1243 ebb_switch_out(mmcr0); 1244 1245 #ifdef CONFIG_PPC64 1246 /* 1247 * These are readable by userspace, may contain kernel 1248 * addresses and are not switched by context switch, so clear 1249 * them now to avoid leaking anything to userspace in general 1250 * including to another process. 1251 */ 1252 if (ppmu->flags & PPMU_ARCH_207S) { 1253 mtspr(SPRN_SDAR, 0); 1254 mtspr(SPRN_SIAR, 0); 1255 } 1256 #endif 1257 } 1258 1259 local_irq_restore(flags); 1260 } 1261 1262 /* 1263 * Re-enable all events if disable == 0. 1264 * If we were previously disabled and events were added, then 1265 * put the new config on the PMU. 1266 */ 1267 static void power_pmu_enable(struct pmu *pmu) 1268 { 1269 struct perf_event *event; 1270 struct cpu_hw_events *cpuhw; 1271 unsigned long flags; 1272 long i; 1273 unsigned long val, mmcr0; 1274 s64 left; 1275 unsigned int hwc_index[MAX_HWEVENTS]; 1276 int n_lim; 1277 int idx; 1278 bool ebb; 1279 1280 if (!ppmu) 1281 return; 1282 local_irq_save(flags); 1283 1284 cpuhw = this_cpu_ptr(&cpu_hw_events); 1285 if (!cpuhw->disabled) 1286 goto out; 1287 1288 if (cpuhw->n_events == 0) { 1289 ppc_set_pmu_inuse(0); 1290 goto out; 1291 } 1292 1293 cpuhw->disabled = 0; 1294 1295 /* 1296 * EBB requires an exclusive group and all events must have the EBB 1297 * flag set, or not set, so we can just check a single event. Also we 1298 * know we have at least one event. 1299 */ 1300 ebb = is_ebb_event(cpuhw->event[0]); 1301 1302 /* 1303 * If we didn't change anything, or only removed events, 1304 * no need to recalculate MMCR* settings and reset the PMCs. 1305 * Just reenable the PMU with the current MMCR* settings 1306 * (possibly updated for removal of events). 1307 */ 1308 if (!cpuhw->n_added) { 1309 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1310 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1311 goto out_enable; 1312 } 1313 1314 /* 1315 * Clear all MMCR settings and recompute them for the new set of events. 1316 */ 1317 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); 1318 1319 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1320 cpuhw->mmcr, cpuhw->event)) { 1321 /* shouldn't ever get here */ 1322 printk(KERN_ERR "oops compute_mmcr failed\n"); 1323 goto out; 1324 } 1325 1326 if (!(ppmu->flags & PPMU_ARCH_207S)) { 1327 /* 1328 * Add in MMCR0 freeze bits corresponding to the attr.exclude_* 1329 * bits for the first event. We have already checked that all 1330 * events have the same value for these bits as the first event. 1331 */ 1332 event = cpuhw->event[0]; 1333 if (event->attr.exclude_user) 1334 cpuhw->mmcr[0] |= MMCR0_FCP; 1335 if (event->attr.exclude_kernel) 1336 cpuhw->mmcr[0] |= freeze_events_kernel; 1337 if (event->attr.exclude_hv) 1338 cpuhw->mmcr[0] |= MMCR0_FCHV; 1339 } 1340 1341 /* 1342 * Write the new configuration to MMCR* with the freeze 1343 * bit set and set the hardware events to their initial values. 1344 * Then unfreeze the events. 1345 */ 1346 ppc_set_pmu_inuse(1); 1347 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1348 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1349 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1350 | MMCR0_FC); 1351 if (ppmu->flags & PPMU_ARCH_207S) 1352 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]); 1353 1354 /* 1355 * Read off any pre-existing events that need to move 1356 * to another PMC. 1357 */ 1358 for (i = 0; i < cpuhw->n_events; ++i) { 1359 event = cpuhw->event[i]; 1360 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1361 power_pmu_read(event); 1362 write_pmc(event->hw.idx, 0); 1363 event->hw.idx = 0; 1364 } 1365 } 1366 1367 /* 1368 * Initialize the PMCs for all the new and moved events. 1369 */ 1370 cpuhw->n_limited = n_lim = 0; 1371 for (i = 0; i < cpuhw->n_events; ++i) { 1372 event = cpuhw->event[i]; 1373 if (event->hw.idx) 1374 continue; 1375 idx = hwc_index[i] + 1; 1376 if (is_limited_pmc(idx)) { 1377 cpuhw->limited_counter[n_lim] = event; 1378 cpuhw->limited_hwidx[n_lim] = idx; 1379 ++n_lim; 1380 continue; 1381 } 1382 1383 if (ebb) 1384 val = local64_read(&event->hw.prev_count); 1385 else { 1386 val = 0; 1387 if (event->hw.sample_period) { 1388 left = local64_read(&event->hw.period_left); 1389 if (left < 0x80000000L) 1390 val = 0x80000000L - left; 1391 } 1392 local64_set(&event->hw.prev_count, val); 1393 } 1394 1395 event->hw.idx = idx; 1396 if (event->hw.state & PERF_HES_STOPPED) 1397 val = 0; 1398 write_pmc(idx, val); 1399 1400 perf_event_update_userpage(event); 1401 } 1402 cpuhw->n_limited = n_lim; 1403 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; 1404 1405 out_enable: 1406 pmao_restore_workaround(ebb); 1407 1408 mmcr0 = ebb_switch_in(ebb, cpuhw); 1409 1410 mb(); 1411 if (cpuhw->bhrb_users) 1412 ppmu->config_bhrb(cpuhw->bhrb_filter); 1413 1414 write_mmcr0(cpuhw, mmcr0); 1415 1416 /* 1417 * Enable instruction sampling if necessary 1418 */ 1419 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1420 mb(); 1421 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); 1422 } 1423 1424 out: 1425 1426 local_irq_restore(flags); 1427 } 1428 1429 static int collect_events(struct perf_event *group, int max_count, 1430 struct perf_event *ctrs[], u64 *events, 1431 unsigned int *flags) 1432 { 1433 int n = 0; 1434 struct perf_event *event; 1435 1436 if (group->pmu->task_ctx_nr == perf_hw_context) { 1437 if (n >= max_count) 1438 return -1; 1439 ctrs[n] = group; 1440 flags[n] = group->hw.event_base; 1441 events[n++] = group->hw.config; 1442 } 1443 for_each_sibling_event(event, group) { 1444 if (event->pmu->task_ctx_nr == perf_hw_context && 1445 event->state != PERF_EVENT_STATE_OFF) { 1446 if (n >= max_count) 1447 return -1; 1448 ctrs[n] = event; 1449 flags[n] = event->hw.event_base; 1450 events[n++] = event->hw.config; 1451 } 1452 } 1453 return n; 1454 } 1455 1456 /* 1457 * Add an event to the PMU. 1458 * If all events are not already frozen, then we disable and 1459 * re-enable the PMU in order to get hw_perf_enable to do the 1460 * actual work of reconfiguring the PMU. 1461 */ 1462 static int power_pmu_add(struct perf_event *event, int ef_flags) 1463 { 1464 struct cpu_hw_events *cpuhw; 1465 unsigned long flags; 1466 int n0; 1467 int ret = -EAGAIN; 1468 1469 local_irq_save(flags); 1470 perf_pmu_disable(event->pmu); 1471 1472 /* 1473 * Add the event to the list (if there is room) 1474 * and check whether the total set is still feasible. 1475 */ 1476 cpuhw = this_cpu_ptr(&cpu_hw_events); 1477 n0 = cpuhw->n_events; 1478 if (n0 >= ppmu->n_counter) 1479 goto out; 1480 cpuhw->event[n0] = event; 1481 cpuhw->events[n0] = event->hw.config; 1482 cpuhw->flags[n0] = event->hw.event_base; 1483 1484 /* 1485 * This event may have been disabled/stopped in record_and_restart() 1486 * because we exceeded the ->event_limit. If re-starting the event, 1487 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1488 * notification is re-enabled. 1489 */ 1490 if (!(ef_flags & PERF_EF_START)) 1491 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1492 else 1493 event->hw.state = 0; 1494 1495 /* 1496 * If group events scheduling transaction was started, 1497 * skip the schedulability test here, it will be performed 1498 * at commit time(->commit_txn) as a whole 1499 */ 1500 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD) 1501 goto nocheck; 1502 1503 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1504 goto out; 1505 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) 1506 goto out; 1507 event->hw.config = cpuhw->events[n0]; 1508 1509 nocheck: 1510 ebb_event_add(event); 1511 1512 ++cpuhw->n_events; 1513 ++cpuhw->n_added; 1514 1515 ret = 0; 1516 out: 1517 if (has_branch_stack(event)) { 1518 power_pmu_bhrb_enable(event); 1519 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1520 event->attr.branch_sample_type); 1521 } 1522 1523 perf_pmu_enable(event->pmu); 1524 local_irq_restore(flags); 1525 return ret; 1526 } 1527 1528 /* 1529 * Remove an event from the PMU. 1530 */ 1531 static void power_pmu_del(struct perf_event *event, int ef_flags) 1532 { 1533 struct cpu_hw_events *cpuhw; 1534 long i; 1535 unsigned long flags; 1536 1537 local_irq_save(flags); 1538 perf_pmu_disable(event->pmu); 1539 1540 power_pmu_read(event); 1541 1542 cpuhw = this_cpu_ptr(&cpu_hw_events); 1543 for (i = 0; i < cpuhw->n_events; ++i) { 1544 if (event == cpuhw->event[i]) { 1545 while (++i < cpuhw->n_events) { 1546 cpuhw->event[i-1] = cpuhw->event[i]; 1547 cpuhw->events[i-1] = cpuhw->events[i]; 1548 cpuhw->flags[i-1] = cpuhw->flags[i]; 1549 } 1550 --cpuhw->n_events; 1551 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); 1552 if (event->hw.idx) { 1553 write_pmc(event->hw.idx, 0); 1554 event->hw.idx = 0; 1555 } 1556 perf_event_update_userpage(event); 1557 break; 1558 } 1559 } 1560 for (i = 0; i < cpuhw->n_limited; ++i) 1561 if (event == cpuhw->limited_counter[i]) 1562 break; 1563 if (i < cpuhw->n_limited) { 1564 while (++i < cpuhw->n_limited) { 1565 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1566 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1567 } 1568 --cpuhw->n_limited; 1569 } 1570 if (cpuhw->n_events == 0) { 1571 /* disable exceptions if no events are running */ 1572 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); 1573 } 1574 1575 if (has_branch_stack(event)) 1576 power_pmu_bhrb_disable(event); 1577 1578 perf_pmu_enable(event->pmu); 1579 local_irq_restore(flags); 1580 } 1581 1582 /* 1583 * POWER-PMU does not support disabling individual counters, hence 1584 * program their cycle counter to their max value and ignore the interrupts. 1585 */ 1586 1587 static void power_pmu_start(struct perf_event *event, int ef_flags) 1588 { 1589 unsigned long flags; 1590 s64 left; 1591 unsigned long val; 1592 1593 if (!event->hw.idx || !event->hw.sample_period) 1594 return; 1595 1596 if (!(event->hw.state & PERF_HES_STOPPED)) 1597 return; 1598 1599 if (ef_flags & PERF_EF_RELOAD) 1600 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1601 1602 local_irq_save(flags); 1603 perf_pmu_disable(event->pmu); 1604 1605 event->hw.state = 0; 1606 left = local64_read(&event->hw.period_left); 1607 1608 val = 0; 1609 if (left < 0x80000000L) 1610 val = 0x80000000L - left; 1611 1612 write_pmc(event->hw.idx, val); 1613 1614 perf_event_update_userpage(event); 1615 perf_pmu_enable(event->pmu); 1616 local_irq_restore(flags); 1617 } 1618 1619 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1620 { 1621 unsigned long flags; 1622 1623 if (!event->hw.idx || !event->hw.sample_period) 1624 return; 1625 1626 if (event->hw.state & PERF_HES_STOPPED) 1627 return; 1628 1629 local_irq_save(flags); 1630 perf_pmu_disable(event->pmu); 1631 1632 power_pmu_read(event); 1633 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1634 write_pmc(event->hw.idx, 0); 1635 1636 perf_event_update_userpage(event); 1637 perf_pmu_enable(event->pmu); 1638 local_irq_restore(flags); 1639 } 1640 1641 /* 1642 * Start group events scheduling transaction 1643 * Set the flag to make pmu::enable() not perform the 1644 * schedulability test, it will be performed at commit time 1645 * 1646 * We only support PERF_PMU_TXN_ADD transactions. Save the 1647 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1648 * transactions. 1649 */ 1650 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1651 { 1652 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1653 1654 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ 1655 1656 cpuhw->txn_flags = txn_flags; 1657 if (txn_flags & ~PERF_PMU_TXN_ADD) 1658 return; 1659 1660 perf_pmu_disable(pmu); 1661 cpuhw->n_txn_start = cpuhw->n_events; 1662 } 1663 1664 /* 1665 * Stop group events scheduling transaction 1666 * Clear the flag and pmu::enable() will perform the 1667 * schedulability test. 1668 */ 1669 static void power_pmu_cancel_txn(struct pmu *pmu) 1670 { 1671 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1672 unsigned int txn_flags; 1673 1674 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1675 1676 txn_flags = cpuhw->txn_flags; 1677 cpuhw->txn_flags = 0; 1678 if (txn_flags & ~PERF_PMU_TXN_ADD) 1679 return; 1680 1681 perf_pmu_enable(pmu); 1682 } 1683 1684 /* 1685 * Commit group events scheduling transaction 1686 * Perform the group schedulability test as a whole 1687 * Return 0 if success 1688 */ 1689 static int power_pmu_commit_txn(struct pmu *pmu) 1690 { 1691 struct cpu_hw_events *cpuhw; 1692 long i, n; 1693 1694 if (!ppmu) 1695 return -EAGAIN; 1696 1697 cpuhw = this_cpu_ptr(&cpu_hw_events); 1698 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1699 1700 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) { 1701 cpuhw->txn_flags = 0; 1702 return 0; 1703 } 1704 1705 n = cpuhw->n_events; 1706 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1707 return -EAGAIN; 1708 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); 1709 if (i < 0) 1710 return -EAGAIN; 1711 1712 for (i = cpuhw->n_txn_start; i < n; ++i) 1713 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1714 1715 cpuhw->txn_flags = 0; 1716 perf_pmu_enable(pmu); 1717 return 0; 1718 } 1719 1720 /* 1721 * Return 1 if we might be able to put event on a limited PMC, 1722 * or 0 if not. 1723 * An event can only go on a limited PMC if it counts something 1724 * that a limited PMC can count, doesn't require interrupts, and 1725 * doesn't exclude any processor mode. 1726 */ 1727 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1728 unsigned int flags) 1729 { 1730 int n; 1731 u64 alt[MAX_EVENT_ALTERNATIVES]; 1732 1733 if (event->attr.exclude_user 1734 || event->attr.exclude_kernel 1735 || event->attr.exclude_hv 1736 || event->attr.sample_period) 1737 return 0; 1738 1739 if (ppmu->limited_pmc_event(ev)) 1740 return 1; 1741 1742 /* 1743 * The requested event_id isn't on a limited PMC already; 1744 * see if any alternative code goes on a limited PMC. 1745 */ 1746 if (!ppmu->get_alternatives) 1747 return 0; 1748 1749 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1750 n = ppmu->get_alternatives(ev, flags, alt); 1751 1752 return n > 0; 1753 } 1754 1755 /* 1756 * Find an alternative event_id that goes on a normal PMC, if possible, 1757 * and return the event_id code, or 0 if there is no such alternative. 1758 * (Note: event_id code 0 is "don't count" on all machines.) 1759 */ 1760 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1761 { 1762 u64 alt[MAX_EVENT_ALTERNATIVES]; 1763 int n; 1764 1765 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1766 n = ppmu->get_alternatives(ev, flags, alt); 1767 if (!n) 1768 return 0; 1769 return alt[0]; 1770 } 1771 1772 /* Number of perf_events counting hardware events */ 1773 static atomic_t num_events; 1774 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1775 static DEFINE_MUTEX(pmc_reserve_mutex); 1776 1777 /* 1778 * Release the PMU if this is the last perf_event. 1779 */ 1780 static void hw_perf_event_destroy(struct perf_event *event) 1781 { 1782 if (!atomic_add_unless(&num_events, -1, 1)) { 1783 mutex_lock(&pmc_reserve_mutex); 1784 if (atomic_dec_return(&num_events) == 0) 1785 release_pmc_hardware(); 1786 mutex_unlock(&pmc_reserve_mutex); 1787 } 1788 } 1789 1790 /* 1791 * Translate a generic cache event_id config to a raw event_id code. 1792 */ 1793 static int hw_perf_cache_event(u64 config, u64 *eventp) 1794 { 1795 unsigned long type, op, result; 1796 int ev; 1797 1798 if (!ppmu->cache_events) 1799 return -EINVAL; 1800 1801 /* unpack config */ 1802 type = config & 0xff; 1803 op = (config >> 8) & 0xff; 1804 result = (config >> 16) & 0xff; 1805 1806 if (type >= PERF_COUNT_HW_CACHE_MAX || 1807 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1808 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1809 return -EINVAL; 1810 1811 ev = (*ppmu->cache_events)[type][op][result]; 1812 if (ev == 0) 1813 return -EOPNOTSUPP; 1814 if (ev == -1) 1815 return -EINVAL; 1816 *eventp = ev; 1817 return 0; 1818 } 1819 1820 static bool is_event_blacklisted(u64 ev) 1821 { 1822 int i; 1823 1824 for (i=0; i < ppmu->n_blacklist_ev; i++) { 1825 if (ppmu->blacklist_ev[i] == ev) 1826 return true; 1827 } 1828 1829 return false; 1830 } 1831 1832 static int power_pmu_event_init(struct perf_event *event) 1833 { 1834 u64 ev; 1835 unsigned long flags; 1836 struct perf_event *ctrs[MAX_HWEVENTS]; 1837 u64 events[MAX_HWEVENTS]; 1838 unsigned int cflags[MAX_HWEVENTS]; 1839 int n; 1840 int err; 1841 struct cpu_hw_events *cpuhw; 1842 u64 bhrb_filter; 1843 1844 if (!ppmu) 1845 return -ENOENT; 1846 1847 if (has_branch_stack(event)) { 1848 /* PMU has BHRB enabled */ 1849 if (!(ppmu->flags & PPMU_ARCH_207S)) 1850 return -EOPNOTSUPP; 1851 } 1852 1853 switch (event->attr.type) { 1854 case PERF_TYPE_HARDWARE: 1855 ev = event->attr.config; 1856 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1857 return -EOPNOTSUPP; 1858 1859 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1860 return -EINVAL; 1861 ev = ppmu->generic_events[ev]; 1862 break; 1863 case PERF_TYPE_HW_CACHE: 1864 err = hw_perf_cache_event(event->attr.config, &ev); 1865 if (err) 1866 return err; 1867 1868 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1869 return -EINVAL; 1870 break; 1871 case PERF_TYPE_RAW: 1872 ev = event->attr.config; 1873 1874 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1875 return -EINVAL; 1876 break; 1877 default: 1878 return -ENOENT; 1879 } 1880 1881 event->hw.config_base = ev; 1882 event->hw.idx = 0; 1883 1884 /* 1885 * If we are not running on a hypervisor, force the 1886 * exclude_hv bit to 0 so that we don't care what 1887 * the user set it to. 1888 */ 1889 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1890 event->attr.exclude_hv = 0; 1891 1892 /* 1893 * If this is a per-task event, then we can use 1894 * PM_RUN_* events interchangeably with their non RUN_* 1895 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1896 * XXX we should check if the task is an idle task. 1897 */ 1898 flags = 0; 1899 if (event->attach_state & PERF_ATTACH_TASK) 1900 flags |= PPMU_ONLY_COUNT_RUN; 1901 1902 /* 1903 * If this machine has limited events, check whether this 1904 * event_id could go on a limited event. 1905 */ 1906 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1907 if (can_go_on_limited_pmc(event, ev, flags)) { 1908 flags |= PPMU_LIMITED_PMC_OK; 1909 } else if (ppmu->limited_pmc_event(ev)) { 1910 /* 1911 * The requested event_id is on a limited PMC, 1912 * but we can't use a limited PMC; see if any 1913 * alternative goes on a normal PMC. 1914 */ 1915 ev = normal_pmc_alternative(ev, flags); 1916 if (!ev) 1917 return -EINVAL; 1918 } 1919 } 1920 1921 /* Extra checks for EBB */ 1922 err = ebb_event_check(event); 1923 if (err) 1924 return err; 1925 1926 /* 1927 * If this is in a group, check if it can go on with all the 1928 * other hardware events in the group. We assume the event 1929 * hasn't been linked into its leader's sibling list at this point. 1930 */ 1931 n = 0; 1932 if (event->group_leader != event) { 1933 n = collect_events(event->group_leader, ppmu->n_counter - 1, 1934 ctrs, events, cflags); 1935 if (n < 0) 1936 return -EINVAL; 1937 } 1938 events[n] = ev; 1939 ctrs[n] = event; 1940 cflags[n] = flags; 1941 if (check_excludes(ctrs, cflags, n, 1)) 1942 return -EINVAL; 1943 1944 cpuhw = &get_cpu_var(cpu_hw_events); 1945 err = power_check_constraints(cpuhw, events, cflags, n + 1); 1946 1947 if (has_branch_stack(event)) { 1948 bhrb_filter = ppmu->bhrb_filter_map( 1949 event->attr.branch_sample_type); 1950 1951 if (bhrb_filter == -1) { 1952 put_cpu_var(cpu_hw_events); 1953 return -EOPNOTSUPP; 1954 } 1955 cpuhw->bhrb_filter = bhrb_filter; 1956 } 1957 1958 put_cpu_var(cpu_hw_events); 1959 if (err) 1960 return -EINVAL; 1961 1962 event->hw.config = events[n]; 1963 event->hw.event_base = cflags[n]; 1964 event->hw.last_period = event->hw.sample_period; 1965 local64_set(&event->hw.period_left, event->hw.last_period); 1966 1967 /* 1968 * For EBB events we just context switch the PMC value, we don't do any 1969 * of the sample_period logic. We use hw.prev_count for this. 1970 */ 1971 if (is_ebb_event(event)) 1972 local64_set(&event->hw.prev_count, 0); 1973 1974 /* 1975 * See if we need to reserve the PMU. 1976 * If no events are currently in use, then we have to take a 1977 * mutex to ensure that we don't race with another task doing 1978 * reserve_pmc_hardware or release_pmc_hardware. 1979 */ 1980 err = 0; 1981 if (!atomic_inc_not_zero(&num_events)) { 1982 mutex_lock(&pmc_reserve_mutex); 1983 if (atomic_read(&num_events) == 0 && 1984 reserve_pmc_hardware(perf_event_interrupt)) 1985 err = -EBUSY; 1986 else 1987 atomic_inc(&num_events); 1988 mutex_unlock(&pmc_reserve_mutex); 1989 } 1990 event->destroy = hw_perf_event_destroy; 1991 1992 return err; 1993 } 1994 1995 static int power_pmu_event_idx(struct perf_event *event) 1996 { 1997 return event->hw.idx; 1998 } 1999 2000 ssize_t power_events_sysfs_show(struct device *dev, 2001 struct device_attribute *attr, char *page) 2002 { 2003 struct perf_pmu_events_attr *pmu_attr; 2004 2005 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 2006 2007 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 2008 } 2009 2010 static struct pmu power_pmu = { 2011 .pmu_enable = power_pmu_enable, 2012 .pmu_disable = power_pmu_disable, 2013 .event_init = power_pmu_event_init, 2014 .add = power_pmu_add, 2015 .del = power_pmu_del, 2016 .start = power_pmu_start, 2017 .stop = power_pmu_stop, 2018 .read = power_pmu_read, 2019 .start_txn = power_pmu_start_txn, 2020 .cancel_txn = power_pmu_cancel_txn, 2021 .commit_txn = power_pmu_commit_txn, 2022 .event_idx = power_pmu_event_idx, 2023 .sched_task = power_pmu_sched_task, 2024 }; 2025 2026 /* 2027 * A counter has overflowed; update its count and record 2028 * things if requested. Note that interrupts are hard-disabled 2029 * here so there is no possibility of being interrupted. 2030 */ 2031 static void record_and_restart(struct perf_event *event, unsigned long val, 2032 struct pt_regs *regs) 2033 { 2034 u64 period = event->hw.sample_period; 2035 s64 prev, delta, left; 2036 int record = 0; 2037 2038 if (event->hw.state & PERF_HES_STOPPED) { 2039 write_pmc(event->hw.idx, 0); 2040 return; 2041 } 2042 2043 /* we don't have to worry about interrupts here */ 2044 prev = local64_read(&event->hw.prev_count); 2045 delta = check_and_compute_delta(prev, val); 2046 local64_add(delta, &event->count); 2047 2048 /* 2049 * See if the total period for this event has expired, 2050 * and update for the next period. 2051 */ 2052 val = 0; 2053 left = local64_read(&event->hw.period_left) - delta; 2054 if (delta == 0) 2055 left++; 2056 if (period) { 2057 if (left <= 0) { 2058 left += period; 2059 if (left <= 0) 2060 left = period; 2061 record = siar_valid(regs); 2062 event->hw.last_period = event->hw.sample_period; 2063 } 2064 if (left < 0x80000000LL) 2065 val = 0x80000000LL - left; 2066 } 2067 2068 write_pmc(event->hw.idx, val); 2069 local64_set(&event->hw.prev_count, val); 2070 local64_set(&event->hw.period_left, left); 2071 perf_event_update_userpage(event); 2072 2073 /* 2074 * Finally record data if requested. 2075 */ 2076 if (record) { 2077 struct perf_sample_data data; 2078 2079 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 2080 2081 if (event->attr.sample_type & 2082 (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) 2083 perf_get_data_addr(event, regs, &data.addr); 2084 2085 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 2086 struct cpu_hw_events *cpuhw; 2087 cpuhw = this_cpu_ptr(&cpu_hw_events); 2088 power_pmu_bhrb_read(event, cpuhw); 2089 data.br_stack = &cpuhw->bhrb_stack; 2090 } 2091 2092 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC && 2093 ppmu->get_mem_data_src) 2094 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs); 2095 2096 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT && 2097 ppmu->get_mem_weight) 2098 ppmu->get_mem_weight(&data.weight); 2099 2100 if (perf_event_overflow(event, &data, regs)) 2101 power_pmu_stop(event, 0); 2102 } 2103 } 2104 2105 /* 2106 * Called from generic code to get the misc flags (i.e. processor mode) 2107 * for an event_id. 2108 */ 2109 unsigned long perf_misc_flags(struct pt_regs *regs) 2110 { 2111 u32 flags = perf_get_misc_flags(regs); 2112 2113 if (flags) 2114 return flags; 2115 return user_mode(regs) ? PERF_RECORD_MISC_USER : 2116 PERF_RECORD_MISC_KERNEL; 2117 } 2118 2119 /* 2120 * Called from generic code to get the instruction pointer 2121 * for an event_id. 2122 */ 2123 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2124 { 2125 bool use_siar = regs_use_siar(regs); 2126 2127 if (use_siar && siar_valid(regs)) 2128 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 2129 else if (use_siar) 2130 return 0; // no valid instruction pointer 2131 else 2132 return regs->nip; 2133 } 2134 2135 static bool pmc_overflow_power7(unsigned long val) 2136 { 2137 /* 2138 * Events on POWER7 can roll back if a speculative event doesn't 2139 * eventually complete. Unfortunately in some rare cases they will 2140 * raise a performance monitor exception. We need to catch this to 2141 * ensure we reset the PMC. In all cases the PMC will be 256 or less 2142 * cycles from overflow. 2143 * 2144 * We only do this if the first pass fails to find any overflowing 2145 * PMCs because a user might set a period of less than 256 and we 2146 * don't want to mistakenly reset them. 2147 */ 2148 if ((0x80000000 - val) <= 256) 2149 return true; 2150 2151 return false; 2152 } 2153 2154 static bool pmc_overflow(unsigned long val) 2155 { 2156 if ((int)val < 0) 2157 return true; 2158 2159 return false; 2160 } 2161 2162 /* 2163 * Performance monitor interrupt stuff 2164 */ 2165 static void __perf_event_interrupt(struct pt_regs *regs) 2166 { 2167 int i, j; 2168 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 2169 struct perf_event *event; 2170 unsigned long val[8]; 2171 int found, active; 2172 int nmi; 2173 2174 if (cpuhw->n_limited) 2175 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2176 mfspr(SPRN_PMC6)); 2177 2178 perf_read_regs(regs); 2179 2180 nmi = perf_intr_is_nmi(regs); 2181 if (nmi) 2182 nmi_enter(); 2183 else 2184 irq_enter(); 2185 2186 /* Read all the PMCs since we'll need them a bunch of times */ 2187 for (i = 0; i < ppmu->n_counter; ++i) 2188 val[i] = read_pmc(i + 1); 2189 2190 /* Try to find what caused the IRQ */ 2191 found = 0; 2192 for (i = 0; i < ppmu->n_counter; ++i) { 2193 if (!pmc_overflow(val[i])) 2194 continue; 2195 if (is_limited_pmc(i + 1)) 2196 continue; /* these won't generate IRQs */ 2197 /* 2198 * We've found one that's overflowed. For active 2199 * counters we need to log this. For inactive 2200 * counters, we need to reset it anyway 2201 */ 2202 found = 1; 2203 active = 0; 2204 for (j = 0; j < cpuhw->n_events; ++j) { 2205 event = cpuhw->event[j]; 2206 if (event->hw.idx == (i + 1)) { 2207 active = 1; 2208 record_and_restart(event, val[i], regs); 2209 break; 2210 } 2211 } 2212 if (!active) 2213 /* reset non active counters that have overflowed */ 2214 write_pmc(i + 1, 0); 2215 } 2216 if (!found && pvr_version_is(PVR_POWER7)) { 2217 /* check active counters for special buggy p7 overflow */ 2218 for (i = 0; i < cpuhw->n_events; ++i) { 2219 event = cpuhw->event[i]; 2220 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2221 continue; 2222 if (pmc_overflow_power7(val[event->hw.idx - 1])) { 2223 /* event has overflowed in a buggy way*/ 2224 found = 1; 2225 record_and_restart(event, 2226 val[event->hw.idx - 1], 2227 regs); 2228 } 2229 } 2230 } 2231 if (!found && !nmi && printk_ratelimit()) 2232 printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2233 2234 /* 2235 * Reset MMCR0 to its normal value. This will set PMXE and 2236 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2237 * and thus allow interrupts to occur again. 2238 * XXX might want to use MSR.PM to keep the events frozen until 2239 * we get back out of this interrupt. 2240 */ 2241 write_mmcr0(cpuhw, cpuhw->mmcr[0]); 2242 2243 if (nmi) 2244 nmi_exit(); 2245 else 2246 irq_exit(); 2247 } 2248 2249 static void perf_event_interrupt(struct pt_regs *regs) 2250 { 2251 u64 start_clock = sched_clock(); 2252 2253 __perf_event_interrupt(regs); 2254 perf_sample_event_took(sched_clock() - start_clock); 2255 } 2256 2257 static int power_pmu_prepare_cpu(unsigned int cpu) 2258 { 2259 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2260 2261 if (ppmu) { 2262 memset(cpuhw, 0, sizeof(*cpuhw)); 2263 cpuhw->mmcr[0] = MMCR0_FC; 2264 } 2265 return 0; 2266 } 2267 2268 int register_power_pmu(struct power_pmu *pmu) 2269 { 2270 if (ppmu) 2271 return -EBUSY; /* something's already registered */ 2272 2273 ppmu = pmu; 2274 pr_info("%s performance monitor hardware support registered\n", 2275 pmu->name); 2276 2277 power_pmu.attr_groups = ppmu->attr_groups; 2278 2279 #ifdef MSR_HV 2280 /* 2281 * Use FCHV to ignore kernel events if MSR.HV is set. 2282 */ 2283 if (mfmsr() & MSR_HV) 2284 freeze_events_kernel = MMCR0_FCHV; 2285 #endif /* CONFIG_PPC64 */ 2286 2287 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2288 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", 2289 power_pmu_prepare_cpu, NULL); 2290 return 0; 2291 } 2292 2293 #ifdef CONFIG_PPC64 2294 static int __init init_ppc64_pmu(void) 2295 { 2296 /* run through all the pmu drivers one at a time */ 2297 if (!init_power5_pmu()) 2298 return 0; 2299 else if (!init_power5p_pmu()) 2300 return 0; 2301 else if (!init_power6_pmu()) 2302 return 0; 2303 else if (!init_power7_pmu()) 2304 return 0; 2305 else if (!init_power8_pmu()) 2306 return 0; 2307 else if (!init_power9_pmu()) 2308 return 0; 2309 else if (!init_ppc970_pmu()) 2310 return 0; 2311 else 2312 return init_generic_compat_pmu(); 2313 } 2314 early_initcall(init_ppc64_pmu); 2315 #endif 2316