xref: /openbmc/linux/arch/powerpc/perf/core-book3s.c (revision 06b72824)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance event support - powerpc architecture code
4  *
5  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6  */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <asm/reg.h>
15 #include <asm/pmc.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
20 
21 #ifdef CONFIG_PPC64
22 #include "internal.h"
23 #endif
24 
25 #define BHRB_MAX_ENTRIES	32
26 #define BHRB_TARGET		0x0000000000000002
27 #define BHRB_PREDICTION		0x0000000000000001
28 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
29 
30 struct cpu_hw_events {
31 	int n_events;
32 	int n_percpu;
33 	int disabled;
34 	int n_added;
35 	int n_limited;
36 	u8  pmcs_enabled;
37 	struct perf_event *event[MAX_HWEVENTS];
38 	u64 events[MAX_HWEVENTS];
39 	unsigned int flags[MAX_HWEVENTS];
40 	/*
41 	 * The order of the MMCR array is:
42 	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
43 	 *  - 32-bit, MMCR0, MMCR1, MMCR2
44 	 */
45 	unsigned long mmcr[4];
46 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
47 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
48 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
51 
52 	unsigned int txn_flags;
53 	int n_txn_start;
54 
55 	/* BHRB bits */
56 	u64				bhrb_filter;	/* BHRB HW branch filter */
57 	unsigned int			bhrb_users;
58 	void				*bhrb_context;
59 	struct	perf_branch_stack	bhrb_stack;
60 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
61 	u64				ic_init;
62 };
63 
64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
65 
66 static struct power_pmu *ppmu;
67 
68 /*
69  * Normally, to ignore kernel events we set the FCS (freeze counters
70  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
71  * hypervisor bit set in the MSR, or if we are running on a processor
72  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
73  * then we need to use the FCHV bit to ignore kernel events.
74  */
75 static unsigned int freeze_events_kernel = MMCR0_FCS;
76 
77 /*
78  * 32-bit doesn't have MMCRA but does have an MMCR2,
79  * and a few other names are different.
80  */
81 #ifdef CONFIG_PPC32
82 
83 #define MMCR0_FCHV		0
84 #define MMCR0_PMCjCE		MMCR0_PMCnCE
85 #define MMCR0_FC56		0
86 #define MMCR0_PMAO		0
87 #define MMCR0_EBE		0
88 #define MMCR0_BHRBA		0
89 #define MMCR0_PMCC		0
90 #define MMCR0_PMCC_U6		0
91 
92 #define SPRN_MMCRA		SPRN_MMCR2
93 #define MMCRA_SAMPLE_ENABLE	0
94 
95 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
96 {
97 	return 0;
98 }
99 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
100 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
101 {
102 	return 0;
103 }
104 static inline void perf_read_regs(struct pt_regs *regs)
105 {
106 	regs->result = 0;
107 }
108 static inline int perf_intr_is_nmi(struct pt_regs *regs)
109 {
110 	return 0;
111 }
112 
113 static inline int siar_valid(struct pt_regs *regs)
114 {
115 	return 1;
116 }
117 
118 static bool is_ebb_event(struct perf_event *event) { return false; }
119 static int ebb_event_check(struct perf_event *event) { return 0; }
120 static void ebb_event_add(struct perf_event *event) { }
121 static void ebb_switch_out(unsigned long mmcr0) { }
122 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
123 {
124 	return cpuhw->mmcr[0];
125 }
126 
127 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
128 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
129 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
130 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
131 static void pmao_restore_workaround(bool ebb) { }
132 #endif /* CONFIG_PPC32 */
133 
134 bool is_sier_available(void)
135 {
136 	if (ppmu->flags & PPMU_HAS_SIER)
137 		return true;
138 
139 	return false;
140 }
141 
142 static bool regs_use_siar(struct pt_regs *regs)
143 {
144 	/*
145 	 * When we take a performance monitor exception the regs are setup
146 	 * using perf_read_regs() which overloads some fields, in particular
147 	 * regs->result to tell us whether to use SIAR.
148 	 *
149 	 * However if the regs are from another exception, eg. a syscall, then
150 	 * they have not been setup using perf_read_regs() and so regs->result
151 	 * is something random.
152 	 */
153 	return ((TRAP(regs) == 0xf00) && regs->result);
154 }
155 
156 /*
157  * Things that are specific to 64-bit implementations.
158  */
159 #ifdef CONFIG_PPC64
160 
161 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
162 {
163 	unsigned long mmcra = regs->dsisr;
164 
165 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
166 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
167 		if (slot > 1)
168 			return 4 * (slot - 1);
169 	}
170 
171 	return 0;
172 }
173 
174 /*
175  * The user wants a data address recorded.
176  * If we're not doing instruction sampling, give them the SDAR
177  * (sampled data address).  If we are doing instruction sampling, then
178  * only give them the SDAR if it corresponds to the instruction
179  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
180  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
181  */
182 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
183 {
184 	unsigned long mmcra = regs->dsisr;
185 	bool sdar_valid;
186 
187 	if (ppmu->flags & PPMU_HAS_SIER)
188 		sdar_valid = regs->dar & SIER_SDAR_VALID;
189 	else {
190 		unsigned long sdsync;
191 
192 		if (ppmu->flags & PPMU_SIAR_VALID)
193 			sdsync = POWER7P_MMCRA_SDAR_VALID;
194 		else if (ppmu->flags & PPMU_ALT_SIPR)
195 			sdsync = POWER6_MMCRA_SDSYNC;
196 		else if (ppmu->flags & PPMU_NO_SIAR)
197 			sdsync = MMCRA_SAMPLE_ENABLE;
198 		else
199 			sdsync = MMCRA_SDSYNC;
200 
201 		sdar_valid = mmcra & sdsync;
202 	}
203 
204 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
205 		*addrp = mfspr(SPRN_SDAR);
206 
207 	if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0)
208 		*addrp = 0;
209 }
210 
211 static bool regs_sihv(struct pt_regs *regs)
212 {
213 	unsigned long sihv = MMCRA_SIHV;
214 
215 	if (ppmu->flags & PPMU_HAS_SIER)
216 		return !!(regs->dar & SIER_SIHV);
217 
218 	if (ppmu->flags & PPMU_ALT_SIPR)
219 		sihv = POWER6_MMCRA_SIHV;
220 
221 	return !!(regs->dsisr & sihv);
222 }
223 
224 static bool regs_sipr(struct pt_regs *regs)
225 {
226 	unsigned long sipr = MMCRA_SIPR;
227 
228 	if (ppmu->flags & PPMU_HAS_SIER)
229 		return !!(regs->dar & SIER_SIPR);
230 
231 	if (ppmu->flags & PPMU_ALT_SIPR)
232 		sipr = POWER6_MMCRA_SIPR;
233 
234 	return !!(regs->dsisr & sipr);
235 }
236 
237 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
238 {
239 	if (regs->msr & MSR_PR)
240 		return PERF_RECORD_MISC_USER;
241 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
242 		return PERF_RECORD_MISC_HYPERVISOR;
243 	return PERF_RECORD_MISC_KERNEL;
244 }
245 
246 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
247 {
248 	bool use_siar = regs_use_siar(regs);
249 
250 	if (!use_siar)
251 		return perf_flags_from_msr(regs);
252 
253 	/*
254 	 * If we don't have flags in MMCRA, rather than using
255 	 * the MSR, we intuit the flags from the address in
256 	 * SIAR which should give slightly more reliable
257 	 * results
258 	 */
259 	if (ppmu->flags & PPMU_NO_SIPR) {
260 		unsigned long siar = mfspr(SPRN_SIAR);
261 		if (is_kernel_addr(siar))
262 			return PERF_RECORD_MISC_KERNEL;
263 		return PERF_RECORD_MISC_USER;
264 	}
265 
266 	/* PR has priority over HV, so order below is important */
267 	if (regs_sipr(regs))
268 		return PERF_RECORD_MISC_USER;
269 
270 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
271 		return PERF_RECORD_MISC_HYPERVISOR;
272 
273 	return PERF_RECORD_MISC_KERNEL;
274 }
275 
276 /*
277  * Overload regs->dsisr to store MMCRA so we only need to read it once
278  * on each interrupt.
279  * Overload regs->dar to store SIER if we have it.
280  * Overload regs->result to specify whether we should use the MSR (result
281  * is zero) or the SIAR (result is non zero).
282  */
283 static inline void perf_read_regs(struct pt_regs *regs)
284 {
285 	unsigned long mmcra = mfspr(SPRN_MMCRA);
286 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
287 	int use_siar;
288 
289 	regs->dsisr = mmcra;
290 
291 	if (ppmu->flags & PPMU_HAS_SIER)
292 		regs->dar = mfspr(SPRN_SIER);
293 
294 	/*
295 	 * If this isn't a PMU exception (eg a software event) the SIAR is
296 	 * not valid. Use pt_regs.
297 	 *
298 	 * If it is a marked event use the SIAR.
299 	 *
300 	 * If the PMU doesn't update the SIAR for non marked events use
301 	 * pt_regs.
302 	 *
303 	 * If the PMU has HV/PR flags then check to see if they
304 	 * place the exception in userspace. If so, use pt_regs. In
305 	 * continuous sampling mode the SIAR and the PMU exception are
306 	 * not synchronised, so they may be many instructions apart.
307 	 * This can result in confusing backtraces. We still want
308 	 * hypervisor samples as well as samples in the kernel with
309 	 * interrupts off hence the userspace check.
310 	 */
311 	if (TRAP(regs) != 0xf00)
312 		use_siar = 0;
313 	else if ((ppmu->flags & PPMU_NO_SIAR))
314 		use_siar = 0;
315 	else if (marked)
316 		use_siar = 1;
317 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
318 		use_siar = 0;
319 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
320 		use_siar = 0;
321 	else
322 		use_siar = 1;
323 
324 	regs->result = use_siar;
325 }
326 
327 /*
328  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
329  * it as an NMI.
330  */
331 static inline int perf_intr_is_nmi(struct pt_regs *regs)
332 {
333 	return (regs->softe & IRQS_DISABLED);
334 }
335 
336 /*
337  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
338  * must be sampled only if the SIAR-valid bit is set.
339  *
340  * For unmarked instructions and for processors that don't have the SIAR-Valid
341  * bit, assume that SIAR is valid.
342  */
343 static inline int siar_valid(struct pt_regs *regs)
344 {
345 	unsigned long mmcra = regs->dsisr;
346 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
347 
348 	if (marked) {
349 		if (ppmu->flags & PPMU_HAS_SIER)
350 			return regs->dar & SIER_SIAR_VALID;
351 
352 		if (ppmu->flags & PPMU_SIAR_VALID)
353 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
354 	}
355 
356 	return 1;
357 }
358 
359 
360 /* Reset all possible BHRB entries */
361 static void power_pmu_bhrb_reset(void)
362 {
363 	asm volatile(PPC_CLRBHRB);
364 }
365 
366 static void power_pmu_bhrb_enable(struct perf_event *event)
367 {
368 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
369 
370 	if (!ppmu->bhrb_nr)
371 		return;
372 
373 	/* Clear BHRB if we changed task context to avoid data leaks */
374 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
375 		power_pmu_bhrb_reset();
376 		cpuhw->bhrb_context = event->ctx;
377 	}
378 	cpuhw->bhrb_users++;
379 	perf_sched_cb_inc(event->ctx->pmu);
380 }
381 
382 static void power_pmu_bhrb_disable(struct perf_event *event)
383 {
384 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
385 
386 	if (!ppmu->bhrb_nr)
387 		return;
388 
389 	WARN_ON_ONCE(!cpuhw->bhrb_users);
390 	cpuhw->bhrb_users--;
391 	perf_sched_cb_dec(event->ctx->pmu);
392 
393 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
394 		/* BHRB cannot be turned off when other
395 		 * events are active on the PMU.
396 		 */
397 
398 		/* avoid stale pointer */
399 		cpuhw->bhrb_context = NULL;
400 	}
401 }
402 
403 /* Called from ctxsw to prevent one process's branch entries to
404  * mingle with the other process's entries during context switch.
405  */
406 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
407 {
408 	if (!ppmu->bhrb_nr)
409 		return;
410 
411 	if (sched_in)
412 		power_pmu_bhrb_reset();
413 }
414 /* Calculate the to address for a branch */
415 static __u64 power_pmu_bhrb_to(u64 addr)
416 {
417 	unsigned int instr;
418 	__u64 target;
419 
420 	if (is_kernel_addr(addr)) {
421 		if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
422 			return 0;
423 
424 		return branch_target(&instr);
425 	}
426 
427 	/* Userspace: need copy instruction here then translate it */
428 	if (probe_user_read(&instr, (unsigned int __user *)addr, sizeof(instr)))
429 		return 0;
430 
431 	target = branch_target(&instr);
432 	if ((!target) || (instr & BRANCH_ABSOLUTE))
433 		return target;
434 
435 	/* Translate relative branch target from kernel to user address */
436 	return target - (unsigned long)&instr + addr;
437 }
438 
439 /* Processing BHRB entries */
440 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
441 {
442 	u64 val;
443 	u64 addr;
444 	int r_index, u_index, pred;
445 
446 	r_index = 0;
447 	u_index = 0;
448 	while (r_index < ppmu->bhrb_nr) {
449 		/* Assembly read function */
450 		val = read_bhrb(r_index++);
451 		if (!val)
452 			/* Terminal marker: End of valid BHRB entries */
453 			break;
454 		else {
455 			addr = val & BHRB_EA;
456 			pred = val & BHRB_PREDICTION;
457 
458 			if (!addr)
459 				/* invalid entry */
460 				continue;
461 
462 			/*
463 			 * BHRB rolling buffer could very much contain the kernel
464 			 * addresses at this point. Check the privileges before
465 			 * exporting it to userspace (avoid exposure of regions
466 			 * where we could have speculative execution)
467 			 */
468 			if (is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0)
469 				continue;
470 
471 			/* Branches are read most recent first (ie. mfbhrb 0 is
472 			 * the most recent branch).
473 			 * There are two types of valid entries:
474 			 * 1) a target entry which is the to address of a
475 			 *    computed goto like a blr,bctr,btar.  The next
476 			 *    entry read from the bhrb will be branch
477 			 *    corresponding to this target (ie. the actual
478 			 *    blr/bctr/btar instruction).
479 			 * 2) a from address which is an actual branch.  If a
480 			 *    target entry proceeds this, then this is the
481 			 *    matching branch for that target.  If this is not
482 			 *    following a target entry, then this is a branch
483 			 *    where the target is given as an immediate field
484 			 *    in the instruction (ie. an i or b form branch).
485 			 *    In this case we need to read the instruction from
486 			 *    memory to determine the target/to address.
487 			 */
488 
489 			if (val & BHRB_TARGET) {
490 				/* Target branches use two entries
491 				 * (ie. computed gotos/XL form)
492 				 */
493 				cpuhw->bhrb_entries[u_index].to = addr;
494 				cpuhw->bhrb_entries[u_index].mispred = pred;
495 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
496 
497 				/* Get from address in next entry */
498 				val = read_bhrb(r_index++);
499 				addr = val & BHRB_EA;
500 				if (val & BHRB_TARGET) {
501 					/* Shouldn't have two targets in a
502 					   row.. Reset index and try again */
503 					r_index--;
504 					addr = 0;
505 				}
506 				cpuhw->bhrb_entries[u_index].from = addr;
507 			} else {
508 				/* Branches to immediate field
509 				   (ie I or B form) */
510 				cpuhw->bhrb_entries[u_index].from = addr;
511 				cpuhw->bhrb_entries[u_index].to =
512 					power_pmu_bhrb_to(addr);
513 				cpuhw->bhrb_entries[u_index].mispred = pred;
514 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
515 			}
516 			u_index++;
517 
518 		}
519 	}
520 	cpuhw->bhrb_stack.nr = u_index;
521 	return;
522 }
523 
524 static bool is_ebb_event(struct perf_event *event)
525 {
526 	/*
527 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
528 	 * check that the PMU supports EBB, meaning those that don't can still
529 	 * use bit 63 of the event code for something else if they wish.
530 	 */
531 	return (ppmu->flags & PPMU_ARCH_207S) &&
532 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
533 }
534 
535 static int ebb_event_check(struct perf_event *event)
536 {
537 	struct perf_event *leader = event->group_leader;
538 
539 	/* Event and group leader must agree on EBB */
540 	if (is_ebb_event(leader) != is_ebb_event(event))
541 		return -EINVAL;
542 
543 	if (is_ebb_event(event)) {
544 		if (!(event->attach_state & PERF_ATTACH_TASK))
545 			return -EINVAL;
546 
547 		if (!leader->attr.pinned || !leader->attr.exclusive)
548 			return -EINVAL;
549 
550 		if (event->attr.freq ||
551 		    event->attr.inherit ||
552 		    event->attr.sample_type ||
553 		    event->attr.sample_period ||
554 		    event->attr.enable_on_exec)
555 			return -EINVAL;
556 	}
557 
558 	return 0;
559 }
560 
561 static void ebb_event_add(struct perf_event *event)
562 {
563 	if (!is_ebb_event(event) || current->thread.used_ebb)
564 		return;
565 
566 	/*
567 	 * IFF this is the first time we've added an EBB event, set
568 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
569 	 * userspace. We need this so that we can context switch while
570 	 * userspace is in the EBB handler (where PMXE is 0).
571 	 */
572 	current->thread.used_ebb = 1;
573 	current->thread.mmcr0 |= MMCR0_PMXE;
574 }
575 
576 static void ebb_switch_out(unsigned long mmcr0)
577 {
578 	if (!(mmcr0 & MMCR0_EBE))
579 		return;
580 
581 	current->thread.siar  = mfspr(SPRN_SIAR);
582 	current->thread.sier  = mfspr(SPRN_SIER);
583 	current->thread.sdar  = mfspr(SPRN_SDAR);
584 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
585 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
586 }
587 
588 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
589 {
590 	unsigned long mmcr0 = cpuhw->mmcr[0];
591 
592 	if (!ebb)
593 		goto out;
594 
595 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
596 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
597 
598 	/*
599 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
600 	 * with pmao_restore_workaround() because we may add PMAO but we never
601 	 * clear it here.
602 	 */
603 	mmcr0 |= current->thread.mmcr0;
604 
605 	/*
606 	 * Be careful not to set PMXE if userspace had it cleared. This is also
607 	 * compatible with pmao_restore_workaround() because it has already
608 	 * cleared PMXE and we leave PMAO alone.
609 	 */
610 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
611 		mmcr0 &= ~MMCR0_PMXE;
612 
613 	mtspr(SPRN_SIAR, current->thread.siar);
614 	mtspr(SPRN_SIER, current->thread.sier);
615 	mtspr(SPRN_SDAR, current->thread.sdar);
616 
617 	/*
618 	 * Merge the kernel & user values of MMCR2. The semantics we implement
619 	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
620 	 * but not clear bits. If a task wants to be able to clear bits, ie.
621 	 * unfreeze counters, it should not set exclude_xxx in its events and
622 	 * instead manage the MMCR2 entirely by itself.
623 	 */
624 	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
625 out:
626 	return mmcr0;
627 }
628 
629 static void pmao_restore_workaround(bool ebb)
630 {
631 	unsigned pmcs[6];
632 
633 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
634 		return;
635 
636 	/*
637 	 * On POWER8E there is a hardware defect which affects the PMU context
638 	 * switch logic, ie. power_pmu_disable/enable().
639 	 *
640 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
641 	 * by the hardware. Sometime later the actual PMU exception is
642 	 * delivered.
643 	 *
644 	 * If we context switch, or simply disable/enable, the PMU prior to the
645 	 * exception arriving, the exception will be lost when we clear PMAO.
646 	 *
647 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
648 	 * set, and this _should_ generate an exception. However because of the
649 	 * defect no exception is generated when we write PMAO, and we get
650 	 * stuck with no counters counting but no exception delivered.
651 	 *
652 	 * The workaround is to detect this case and tweak the hardware to
653 	 * create another pending PMU exception.
654 	 *
655 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
656 	 * enabling the PMU. That causes a new exception to be generated in the
657 	 * chip, but we don't take it yet because we have interrupts hard
658 	 * disabled. We then write back the PMU state as we want it to be seen
659 	 * by the exception handler. When we reenable interrupts the exception
660 	 * handler will be called and see the correct state.
661 	 *
662 	 * The logic is the same for EBB, except that the exception is gated by
663 	 * us having interrupts hard disabled as well as the fact that we are
664 	 * not in userspace. The exception is finally delivered when we return
665 	 * to userspace.
666 	 */
667 
668 	/* Only if PMAO is set and PMAO_SYNC is clear */
669 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
670 		return;
671 
672 	/* If we're doing EBB, only if BESCR[GE] is set */
673 	if (ebb && !(current->thread.bescr & BESCR_GE))
674 		return;
675 
676 	/*
677 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
678 	 * disable to actually prevent the PMU exception from firing.
679 	 */
680 	hard_irq_disable();
681 
682 	/*
683 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
684 	 * Using read/write_pmc() in a for loop adds 12 function calls and
685 	 * almost doubles our code size.
686 	 */
687 	pmcs[0] = mfspr(SPRN_PMC1);
688 	pmcs[1] = mfspr(SPRN_PMC2);
689 	pmcs[2] = mfspr(SPRN_PMC3);
690 	pmcs[3] = mfspr(SPRN_PMC4);
691 	pmcs[4] = mfspr(SPRN_PMC5);
692 	pmcs[5] = mfspr(SPRN_PMC6);
693 
694 	/* Ensure all freeze bits are unset */
695 	mtspr(SPRN_MMCR2, 0);
696 
697 	/* Set up PMC6 to overflow in one cycle */
698 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
699 
700 	/* Enable exceptions and unfreeze PMC6 */
701 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
702 
703 	/* Now we need to refreeze and restore the PMCs */
704 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
705 
706 	mtspr(SPRN_PMC1, pmcs[0]);
707 	mtspr(SPRN_PMC2, pmcs[1]);
708 	mtspr(SPRN_PMC3, pmcs[2]);
709 	mtspr(SPRN_PMC4, pmcs[3]);
710 	mtspr(SPRN_PMC5, pmcs[4]);
711 	mtspr(SPRN_PMC6, pmcs[5]);
712 }
713 
714 #endif /* CONFIG_PPC64 */
715 
716 static void perf_event_interrupt(struct pt_regs *regs);
717 
718 /*
719  * Read one performance monitor counter (PMC).
720  */
721 static unsigned long read_pmc(int idx)
722 {
723 	unsigned long val;
724 
725 	switch (idx) {
726 	case 1:
727 		val = mfspr(SPRN_PMC1);
728 		break;
729 	case 2:
730 		val = mfspr(SPRN_PMC2);
731 		break;
732 	case 3:
733 		val = mfspr(SPRN_PMC3);
734 		break;
735 	case 4:
736 		val = mfspr(SPRN_PMC4);
737 		break;
738 	case 5:
739 		val = mfspr(SPRN_PMC5);
740 		break;
741 	case 6:
742 		val = mfspr(SPRN_PMC6);
743 		break;
744 #ifdef CONFIG_PPC64
745 	case 7:
746 		val = mfspr(SPRN_PMC7);
747 		break;
748 	case 8:
749 		val = mfspr(SPRN_PMC8);
750 		break;
751 #endif /* CONFIG_PPC64 */
752 	default:
753 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
754 		val = 0;
755 	}
756 	return val;
757 }
758 
759 /*
760  * Write one PMC.
761  */
762 static void write_pmc(int idx, unsigned long val)
763 {
764 	switch (idx) {
765 	case 1:
766 		mtspr(SPRN_PMC1, val);
767 		break;
768 	case 2:
769 		mtspr(SPRN_PMC2, val);
770 		break;
771 	case 3:
772 		mtspr(SPRN_PMC3, val);
773 		break;
774 	case 4:
775 		mtspr(SPRN_PMC4, val);
776 		break;
777 	case 5:
778 		mtspr(SPRN_PMC5, val);
779 		break;
780 	case 6:
781 		mtspr(SPRN_PMC6, val);
782 		break;
783 #ifdef CONFIG_PPC64
784 	case 7:
785 		mtspr(SPRN_PMC7, val);
786 		break;
787 	case 8:
788 		mtspr(SPRN_PMC8, val);
789 		break;
790 #endif /* CONFIG_PPC64 */
791 	default:
792 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
793 	}
794 }
795 
796 /* Called from sysrq_handle_showregs() */
797 void perf_event_print_debug(void)
798 {
799 	unsigned long sdar, sier, flags;
800 	u32 pmcs[MAX_HWEVENTS];
801 	int i;
802 
803 	if (!ppmu) {
804 		pr_info("Performance monitor hardware not registered.\n");
805 		return;
806 	}
807 
808 	if (!ppmu->n_counter)
809 		return;
810 
811 	local_irq_save(flags);
812 
813 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
814 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
815 
816 	for (i = 0; i < ppmu->n_counter; i++)
817 		pmcs[i] = read_pmc(i + 1);
818 
819 	for (; i < MAX_HWEVENTS; i++)
820 		pmcs[i] = 0xdeadbeef;
821 
822 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
823 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
824 
825 	if (ppmu->n_counter > 4)
826 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
827 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
828 
829 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
830 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
831 
832 	sdar = sier = 0;
833 #ifdef CONFIG_PPC64
834 	sdar = mfspr(SPRN_SDAR);
835 
836 	if (ppmu->flags & PPMU_HAS_SIER)
837 		sier = mfspr(SPRN_SIER);
838 
839 	if (ppmu->flags & PPMU_ARCH_207S) {
840 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
841 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
842 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
843 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
844 	}
845 #endif
846 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
847 		mfspr(SPRN_SIAR), sdar, sier);
848 
849 	local_irq_restore(flags);
850 }
851 
852 /*
853  * Check if a set of events can all go on the PMU at once.
854  * If they can't, this will look at alternative codes for the events
855  * and see if any combination of alternative codes is feasible.
856  * The feasible set is returned in event_id[].
857  */
858 static int power_check_constraints(struct cpu_hw_events *cpuhw,
859 				   u64 event_id[], unsigned int cflags[],
860 				   int n_ev)
861 {
862 	unsigned long mask, value, nv;
863 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
864 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
865 	int i, j;
866 	unsigned long addf = ppmu->add_fields;
867 	unsigned long tadd = ppmu->test_adder;
868 	unsigned long grp_mask = ppmu->group_constraint_mask;
869 	unsigned long grp_val = ppmu->group_constraint_val;
870 
871 	if (n_ev > ppmu->n_counter)
872 		return -1;
873 
874 	/* First see if the events will go on as-is */
875 	for (i = 0; i < n_ev; ++i) {
876 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
877 		    && !ppmu->limited_pmc_event(event_id[i])) {
878 			ppmu->get_alternatives(event_id[i], cflags[i],
879 					       cpuhw->alternatives[i]);
880 			event_id[i] = cpuhw->alternatives[i][0];
881 		}
882 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
883 					 &cpuhw->avalues[i][0]))
884 			return -1;
885 	}
886 	value = mask = 0;
887 	for (i = 0; i < n_ev; ++i) {
888 		nv = (value | cpuhw->avalues[i][0]) +
889 			(value & cpuhw->avalues[i][0] & addf);
890 
891 		if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
892 			break;
893 
894 		if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
895 			& (~grp_mask)) != 0)
896 			break;
897 
898 		value = nv;
899 		mask |= cpuhw->amasks[i][0];
900 	}
901 	if (i == n_ev) {
902 		if ((value & mask & grp_mask) != (mask & grp_val))
903 			return -1;
904 		else
905 			return 0;	/* all OK */
906 	}
907 
908 	/* doesn't work, gather alternatives... */
909 	if (!ppmu->get_alternatives)
910 		return -1;
911 	for (i = 0; i < n_ev; ++i) {
912 		choice[i] = 0;
913 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
914 						  cpuhw->alternatives[i]);
915 		for (j = 1; j < n_alt[i]; ++j)
916 			ppmu->get_constraint(cpuhw->alternatives[i][j],
917 					     &cpuhw->amasks[i][j],
918 					     &cpuhw->avalues[i][j]);
919 	}
920 
921 	/* enumerate all possibilities and see if any will work */
922 	i = 0;
923 	j = -1;
924 	value = mask = nv = 0;
925 	while (i < n_ev) {
926 		if (j >= 0) {
927 			/* we're backtracking, restore context */
928 			value = svalues[i];
929 			mask = smasks[i];
930 			j = choice[i];
931 		}
932 		/*
933 		 * See if any alternative k for event_id i,
934 		 * where k > j, will satisfy the constraints.
935 		 */
936 		while (++j < n_alt[i]) {
937 			nv = (value | cpuhw->avalues[i][j]) +
938 				(value & cpuhw->avalues[i][j] & addf);
939 			if ((((nv + tadd) ^ value) & mask) == 0 &&
940 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
941 			     & cpuhw->amasks[i][j]) == 0)
942 				break;
943 		}
944 		if (j >= n_alt[i]) {
945 			/*
946 			 * No feasible alternative, backtrack
947 			 * to event_id i-1 and continue enumerating its
948 			 * alternatives from where we got up to.
949 			 */
950 			if (--i < 0)
951 				return -1;
952 		} else {
953 			/*
954 			 * Found a feasible alternative for event_id i,
955 			 * remember where we got up to with this event_id,
956 			 * go on to the next event_id, and start with
957 			 * the first alternative for it.
958 			 */
959 			choice[i] = j;
960 			svalues[i] = value;
961 			smasks[i] = mask;
962 			value = nv;
963 			mask |= cpuhw->amasks[i][j];
964 			++i;
965 			j = -1;
966 		}
967 	}
968 
969 	/* OK, we have a feasible combination, tell the caller the solution */
970 	for (i = 0; i < n_ev; ++i)
971 		event_id[i] = cpuhw->alternatives[i][choice[i]];
972 	return 0;
973 }
974 
975 /*
976  * Check if newly-added events have consistent settings for
977  * exclude_{user,kernel,hv} with each other and any previously
978  * added events.
979  */
980 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
981 			  int n_prev, int n_new)
982 {
983 	int eu = 0, ek = 0, eh = 0;
984 	int i, n, first;
985 	struct perf_event *event;
986 
987 	/*
988 	 * If the PMU we're on supports per event exclude settings then we
989 	 * don't need to do any of this logic. NB. This assumes no PMU has both
990 	 * per event exclude and limited PMCs.
991 	 */
992 	if (ppmu->flags & PPMU_ARCH_207S)
993 		return 0;
994 
995 	n = n_prev + n_new;
996 	if (n <= 1)
997 		return 0;
998 
999 	first = 1;
1000 	for (i = 0; i < n; ++i) {
1001 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1002 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1003 			continue;
1004 		}
1005 		event = ctrs[i];
1006 		if (first) {
1007 			eu = event->attr.exclude_user;
1008 			ek = event->attr.exclude_kernel;
1009 			eh = event->attr.exclude_hv;
1010 			first = 0;
1011 		} else if (event->attr.exclude_user != eu ||
1012 			   event->attr.exclude_kernel != ek ||
1013 			   event->attr.exclude_hv != eh) {
1014 			return -EAGAIN;
1015 		}
1016 	}
1017 
1018 	if (eu || ek || eh)
1019 		for (i = 0; i < n; ++i)
1020 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
1021 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
1022 
1023 	return 0;
1024 }
1025 
1026 static u64 check_and_compute_delta(u64 prev, u64 val)
1027 {
1028 	u64 delta = (val - prev) & 0xfffffffful;
1029 
1030 	/*
1031 	 * POWER7 can roll back counter values, if the new value is smaller
1032 	 * than the previous value it will cause the delta and the counter to
1033 	 * have bogus values unless we rolled a counter over.  If a coutner is
1034 	 * rolled back, it will be smaller, but within 256, which is the maximum
1035 	 * number of events to rollback at once.  If we detect a rollback
1036 	 * return 0.  This can lead to a small lack of precision in the
1037 	 * counters.
1038 	 */
1039 	if (prev > val && (prev - val) < 256)
1040 		delta = 0;
1041 
1042 	return delta;
1043 }
1044 
1045 static void power_pmu_read(struct perf_event *event)
1046 {
1047 	s64 val, delta, prev;
1048 
1049 	if (event->hw.state & PERF_HES_STOPPED)
1050 		return;
1051 
1052 	if (!event->hw.idx)
1053 		return;
1054 
1055 	if (is_ebb_event(event)) {
1056 		val = read_pmc(event->hw.idx);
1057 		local64_set(&event->hw.prev_count, val);
1058 		return;
1059 	}
1060 
1061 	/*
1062 	 * Performance monitor interrupts come even when interrupts
1063 	 * are soft-disabled, as long as interrupts are hard-enabled.
1064 	 * Therefore we treat them like NMIs.
1065 	 */
1066 	do {
1067 		prev = local64_read(&event->hw.prev_count);
1068 		barrier();
1069 		val = read_pmc(event->hw.idx);
1070 		delta = check_and_compute_delta(prev, val);
1071 		if (!delta)
1072 			return;
1073 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1074 
1075 	local64_add(delta, &event->count);
1076 
1077 	/*
1078 	 * A number of places program the PMC with (0x80000000 - period_left).
1079 	 * We never want period_left to be less than 1 because we will program
1080 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1081 	 * roll around to 0 before taking an exception. We have seen this
1082 	 * on POWER8.
1083 	 *
1084 	 * To fix this, clamp the minimum value of period_left to 1.
1085 	 */
1086 	do {
1087 		prev = local64_read(&event->hw.period_left);
1088 		val = prev - delta;
1089 		if (val < 1)
1090 			val = 1;
1091 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1092 }
1093 
1094 /*
1095  * On some machines, PMC5 and PMC6 can't be written, don't respect
1096  * the freeze conditions, and don't generate interrupts.  This tells
1097  * us if `event' is using such a PMC.
1098  */
1099 static int is_limited_pmc(int pmcnum)
1100 {
1101 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1102 		&& (pmcnum == 5 || pmcnum == 6);
1103 }
1104 
1105 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1106 				    unsigned long pmc5, unsigned long pmc6)
1107 {
1108 	struct perf_event *event;
1109 	u64 val, prev, delta;
1110 	int i;
1111 
1112 	for (i = 0; i < cpuhw->n_limited; ++i) {
1113 		event = cpuhw->limited_counter[i];
1114 		if (!event->hw.idx)
1115 			continue;
1116 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1117 		prev = local64_read(&event->hw.prev_count);
1118 		event->hw.idx = 0;
1119 		delta = check_and_compute_delta(prev, val);
1120 		if (delta)
1121 			local64_add(delta, &event->count);
1122 	}
1123 }
1124 
1125 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1126 				  unsigned long pmc5, unsigned long pmc6)
1127 {
1128 	struct perf_event *event;
1129 	u64 val, prev;
1130 	int i;
1131 
1132 	for (i = 0; i < cpuhw->n_limited; ++i) {
1133 		event = cpuhw->limited_counter[i];
1134 		event->hw.idx = cpuhw->limited_hwidx[i];
1135 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1136 		prev = local64_read(&event->hw.prev_count);
1137 		if (check_and_compute_delta(prev, val))
1138 			local64_set(&event->hw.prev_count, val);
1139 		perf_event_update_userpage(event);
1140 	}
1141 }
1142 
1143 /*
1144  * Since limited events don't respect the freeze conditions, we
1145  * have to read them immediately after freezing or unfreezing the
1146  * other events.  We try to keep the values from the limited
1147  * events as consistent as possible by keeping the delay (in
1148  * cycles and instructions) between freezing/unfreezing and reading
1149  * the limited events as small and consistent as possible.
1150  * Therefore, if any limited events are in use, we read them
1151  * both, and always in the same order, to minimize variability,
1152  * and do it inside the same asm that writes MMCR0.
1153  */
1154 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1155 {
1156 	unsigned long pmc5, pmc6;
1157 
1158 	if (!cpuhw->n_limited) {
1159 		mtspr(SPRN_MMCR0, mmcr0);
1160 		return;
1161 	}
1162 
1163 	/*
1164 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1165 	 * To ensure we don't get a performance monitor interrupt
1166 	 * between writing MMCR0 and freezing/thawing the limited
1167 	 * events, we first write MMCR0 with the event overflow
1168 	 * interrupt enable bits turned off.
1169 	 */
1170 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1171 		     : "=&r" (pmc5), "=&r" (pmc6)
1172 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1173 		       "i" (SPRN_MMCR0),
1174 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1175 
1176 	if (mmcr0 & MMCR0_FC)
1177 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1178 	else
1179 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1180 
1181 	/*
1182 	 * Write the full MMCR0 including the event overflow interrupt
1183 	 * enable bits, if necessary.
1184 	 */
1185 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1186 		mtspr(SPRN_MMCR0, mmcr0);
1187 }
1188 
1189 /*
1190  * Disable all events to prevent PMU interrupts and to allow
1191  * events to be added or removed.
1192  */
1193 static void power_pmu_disable(struct pmu *pmu)
1194 {
1195 	struct cpu_hw_events *cpuhw;
1196 	unsigned long flags, mmcr0, val;
1197 
1198 	if (!ppmu)
1199 		return;
1200 	local_irq_save(flags);
1201 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1202 
1203 	if (!cpuhw->disabled) {
1204 		/*
1205 		 * Check if we ever enabled the PMU on this cpu.
1206 		 */
1207 		if (!cpuhw->pmcs_enabled) {
1208 			ppc_enable_pmcs();
1209 			cpuhw->pmcs_enabled = 1;
1210 		}
1211 
1212 		/*
1213 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1214 		 */
1215 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1216 		val |= MMCR0_FC;
1217 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1218 			 MMCR0_FC56);
1219 
1220 		/*
1221 		 * The barrier is to make sure the mtspr has been
1222 		 * executed and the PMU has frozen the events etc.
1223 		 * before we return.
1224 		 */
1225 		write_mmcr0(cpuhw, val);
1226 		mb();
1227 		isync();
1228 
1229 		/*
1230 		 * Disable instruction sampling if it was enabled
1231 		 */
1232 		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1233 			mtspr(SPRN_MMCRA,
1234 			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1235 			mb();
1236 			isync();
1237 		}
1238 
1239 		cpuhw->disabled = 1;
1240 		cpuhw->n_added = 0;
1241 
1242 		ebb_switch_out(mmcr0);
1243 
1244 #ifdef CONFIG_PPC64
1245 		/*
1246 		 * These are readable by userspace, may contain kernel
1247 		 * addresses and are not switched by context switch, so clear
1248 		 * them now to avoid leaking anything to userspace in general
1249 		 * including to another process.
1250 		 */
1251 		if (ppmu->flags & PPMU_ARCH_207S) {
1252 			mtspr(SPRN_SDAR, 0);
1253 			mtspr(SPRN_SIAR, 0);
1254 		}
1255 #endif
1256 	}
1257 
1258 	local_irq_restore(flags);
1259 }
1260 
1261 /*
1262  * Re-enable all events if disable == 0.
1263  * If we were previously disabled and events were added, then
1264  * put the new config on the PMU.
1265  */
1266 static void power_pmu_enable(struct pmu *pmu)
1267 {
1268 	struct perf_event *event;
1269 	struct cpu_hw_events *cpuhw;
1270 	unsigned long flags;
1271 	long i;
1272 	unsigned long val, mmcr0;
1273 	s64 left;
1274 	unsigned int hwc_index[MAX_HWEVENTS];
1275 	int n_lim;
1276 	int idx;
1277 	bool ebb;
1278 
1279 	if (!ppmu)
1280 		return;
1281 	local_irq_save(flags);
1282 
1283 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1284 	if (!cpuhw->disabled)
1285 		goto out;
1286 
1287 	if (cpuhw->n_events == 0) {
1288 		ppc_set_pmu_inuse(0);
1289 		goto out;
1290 	}
1291 
1292 	cpuhw->disabled = 0;
1293 
1294 	/*
1295 	 * EBB requires an exclusive group and all events must have the EBB
1296 	 * flag set, or not set, so we can just check a single event. Also we
1297 	 * know we have at least one event.
1298 	 */
1299 	ebb = is_ebb_event(cpuhw->event[0]);
1300 
1301 	/*
1302 	 * If we didn't change anything, or only removed events,
1303 	 * no need to recalculate MMCR* settings and reset the PMCs.
1304 	 * Just reenable the PMU with the current MMCR* settings
1305 	 * (possibly updated for removal of events).
1306 	 */
1307 	if (!cpuhw->n_added) {
1308 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1309 		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1310 		goto out_enable;
1311 	}
1312 
1313 	/*
1314 	 * Clear all MMCR settings and recompute them for the new set of events.
1315 	 */
1316 	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1317 
1318 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1319 			       cpuhw->mmcr, cpuhw->event)) {
1320 		/* shouldn't ever get here */
1321 		printk(KERN_ERR "oops compute_mmcr failed\n");
1322 		goto out;
1323 	}
1324 
1325 	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1326 		/*
1327 		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1328 		 * bits for the first event. We have already checked that all
1329 		 * events have the same value for these bits as the first event.
1330 		 */
1331 		event = cpuhw->event[0];
1332 		if (event->attr.exclude_user)
1333 			cpuhw->mmcr[0] |= MMCR0_FCP;
1334 		if (event->attr.exclude_kernel)
1335 			cpuhw->mmcr[0] |= freeze_events_kernel;
1336 		if (event->attr.exclude_hv)
1337 			cpuhw->mmcr[0] |= MMCR0_FCHV;
1338 	}
1339 
1340 	/*
1341 	 * Write the new configuration to MMCR* with the freeze
1342 	 * bit set and set the hardware events to their initial values.
1343 	 * Then unfreeze the events.
1344 	 */
1345 	ppc_set_pmu_inuse(1);
1346 	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1347 	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1348 	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1349 				| MMCR0_FC);
1350 	if (ppmu->flags & PPMU_ARCH_207S)
1351 		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1352 
1353 	/*
1354 	 * Read off any pre-existing events that need to move
1355 	 * to another PMC.
1356 	 */
1357 	for (i = 0; i < cpuhw->n_events; ++i) {
1358 		event = cpuhw->event[i];
1359 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1360 			power_pmu_read(event);
1361 			write_pmc(event->hw.idx, 0);
1362 			event->hw.idx = 0;
1363 		}
1364 	}
1365 
1366 	/*
1367 	 * Initialize the PMCs for all the new and moved events.
1368 	 */
1369 	cpuhw->n_limited = n_lim = 0;
1370 	for (i = 0; i < cpuhw->n_events; ++i) {
1371 		event = cpuhw->event[i];
1372 		if (event->hw.idx)
1373 			continue;
1374 		idx = hwc_index[i] + 1;
1375 		if (is_limited_pmc(idx)) {
1376 			cpuhw->limited_counter[n_lim] = event;
1377 			cpuhw->limited_hwidx[n_lim] = idx;
1378 			++n_lim;
1379 			continue;
1380 		}
1381 
1382 		if (ebb)
1383 			val = local64_read(&event->hw.prev_count);
1384 		else {
1385 			val = 0;
1386 			if (event->hw.sample_period) {
1387 				left = local64_read(&event->hw.period_left);
1388 				if (left < 0x80000000L)
1389 					val = 0x80000000L - left;
1390 			}
1391 			local64_set(&event->hw.prev_count, val);
1392 		}
1393 
1394 		event->hw.idx = idx;
1395 		if (event->hw.state & PERF_HES_STOPPED)
1396 			val = 0;
1397 		write_pmc(idx, val);
1398 
1399 		perf_event_update_userpage(event);
1400 	}
1401 	cpuhw->n_limited = n_lim;
1402 	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1403 
1404  out_enable:
1405 	pmao_restore_workaround(ebb);
1406 
1407 	mmcr0 = ebb_switch_in(ebb, cpuhw);
1408 
1409 	mb();
1410 	if (cpuhw->bhrb_users)
1411 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1412 
1413 	write_mmcr0(cpuhw, mmcr0);
1414 
1415 	/*
1416 	 * Enable instruction sampling if necessary
1417 	 */
1418 	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1419 		mb();
1420 		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1421 	}
1422 
1423  out:
1424 
1425 	local_irq_restore(flags);
1426 }
1427 
1428 static int collect_events(struct perf_event *group, int max_count,
1429 			  struct perf_event *ctrs[], u64 *events,
1430 			  unsigned int *flags)
1431 {
1432 	int n = 0;
1433 	struct perf_event *event;
1434 
1435 	if (group->pmu->task_ctx_nr == perf_hw_context) {
1436 		if (n >= max_count)
1437 			return -1;
1438 		ctrs[n] = group;
1439 		flags[n] = group->hw.event_base;
1440 		events[n++] = group->hw.config;
1441 	}
1442 	for_each_sibling_event(event, group) {
1443 		if (event->pmu->task_ctx_nr == perf_hw_context &&
1444 		    event->state != PERF_EVENT_STATE_OFF) {
1445 			if (n >= max_count)
1446 				return -1;
1447 			ctrs[n] = event;
1448 			flags[n] = event->hw.event_base;
1449 			events[n++] = event->hw.config;
1450 		}
1451 	}
1452 	return n;
1453 }
1454 
1455 /*
1456  * Add an event to the PMU.
1457  * If all events are not already frozen, then we disable and
1458  * re-enable the PMU in order to get hw_perf_enable to do the
1459  * actual work of reconfiguring the PMU.
1460  */
1461 static int power_pmu_add(struct perf_event *event, int ef_flags)
1462 {
1463 	struct cpu_hw_events *cpuhw;
1464 	unsigned long flags;
1465 	int n0;
1466 	int ret = -EAGAIN;
1467 
1468 	local_irq_save(flags);
1469 	perf_pmu_disable(event->pmu);
1470 
1471 	/*
1472 	 * Add the event to the list (if there is room)
1473 	 * and check whether the total set is still feasible.
1474 	 */
1475 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1476 	n0 = cpuhw->n_events;
1477 	if (n0 >= ppmu->n_counter)
1478 		goto out;
1479 	cpuhw->event[n0] = event;
1480 	cpuhw->events[n0] = event->hw.config;
1481 	cpuhw->flags[n0] = event->hw.event_base;
1482 
1483 	/*
1484 	 * This event may have been disabled/stopped in record_and_restart()
1485 	 * because we exceeded the ->event_limit. If re-starting the event,
1486 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1487 	 * notification is re-enabled.
1488 	 */
1489 	if (!(ef_flags & PERF_EF_START))
1490 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1491 	else
1492 		event->hw.state = 0;
1493 
1494 	/*
1495 	 * If group events scheduling transaction was started,
1496 	 * skip the schedulability test here, it will be performed
1497 	 * at commit time(->commit_txn) as a whole
1498 	 */
1499 	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1500 		goto nocheck;
1501 
1502 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1503 		goto out;
1504 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1505 		goto out;
1506 	event->hw.config = cpuhw->events[n0];
1507 
1508 nocheck:
1509 	ebb_event_add(event);
1510 
1511 	++cpuhw->n_events;
1512 	++cpuhw->n_added;
1513 
1514 	ret = 0;
1515  out:
1516 	if (has_branch_stack(event)) {
1517 		power_pmu_bhrb_enable(event);
1518 		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1519 					event->attr.branch_sample_type);
1520 	}
1521 
1522 	perf_pmu_enable(event->pmu);
1523 	local_irq_restore(flags);
1524 	return ret;
1525 }
1526 
1527 /*
1528  * Remove an event from the PMU.
1529  */
1530 static void power_pmu_del(struct perf_event *event, int ef_flags)
1531 {
1532 	struct cpu_hw_events *cpuhw;
1533 	long i;
1534 	unsigned long flags;
1535 
1536 	local_irq_save(flags);
1537 	perf_pmu_disable(event->pmu);
1538 
1539 	power_pmu_read(event);
1540 
1541 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1542 	for (i = 0; i < cpuhw->n_events; ++i) {
1543 		if (event == cpuhw->event[i]) {
1544 			while (++i < cpuhw->n_events) {
1545 				cpuhw->event[i-1] = cpuhw->event[i];
1546 				cpuhw->events[i-1] = cpuhw->events[i];
1547 				cpuhw->flags[i-1] = cpuhw->flags[i];
1548 			}
1549 			--cpuhw->n_events;
1550 			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1551 			if (event->hw.idx) {
1552 				write_pmc(event->hw.idx, 0);
1553 				event->hw.idx = 0;
1554 			}
1555 			perf_event_update_userpage(event);
1556 			break;
1557 		}
1558 	}
1559 	for (i = 0; i < cpuhw->n_limited; ++i)
1560 		if (event == cpuhw->limited_counter[i])
1561 			break;
1562 	if (i < cpuhw->n_limited) {
1563 		while (++i < cpuhw->n_limited) {
1564 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1565 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1566 		}
1567 		--cpuhw->n_limited;
1568 	}
1569 	if (cpuhw->n_events == 0) {
1570 		/* disable exceptions if no events are running */
1571 		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1572 	}
1573 
1574 	if (has_branch_stack(event))
1575 		power_pmu_bhrb_disable(event);
1576 
1577 	perf_pmu_enable(event->pmu);
1578 	local_irq_restore(flags);
1579 }
1580 
1581 /*
1582  * POWER-PMU does not support disabling individual counters, hence
1583  * program their cycle counter to their max value and ignore the interrupts.
1584  */
1585 
1586 static void power_pmu_start(struct perf_event *event, int ef_flags)
1587 {
1588 	unsigned long flags;
1589 	s64 left;
1590 	unsigned long val;
1591 
1592 	if (!event->hw.idx || !event->hw.sample_period)
1593 		return;
1594 
1595 	if (!(event->hw.state & PERF_HES_STOPPED))
1596 		return;
1597 
1598 	if (ef_flags & PERF_EF_RELOAD)
1599 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1600 
1601 	local_irq_save(flags);
1602 	perf_pmu_disable(event->pmu);
1603 
1604 	event->hw.state = 0;
1605 	left = local64_read(&event->hw.period_left);
1606 
1607 	val = 0;
1608 	if (left < 0x80000000L)
1609 		val = 0x80000000L - left;
1610 
1611 	write_pmc(event->hw.idx, val);
1612 
1613 	perf_event_update_userpage(event);
1614 	perf_pmu_enable(event->pmu);
1615 	local_irq_restore(flags);
1616 }
1617 
1618 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1619 {
1620 	unsigned long flags;
1621 
1622 	if (!event->hw.idx || !event->hw.sample_period)
1623 		return;
1624 
1625 	if (event->hw.state & PERF_HES_STOPPED)
1626 		return;
1627 
1628 	local_irq_save(flags);
1629 	perf_pmu_disable(event->pmu);
1630 
1631 	power_pmu_read(event);
1632 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1633 	write_pmc(event->hw.idx, 0);
1634 
1635 	perf_event_update_userpage(event);
1636 	perf_pmu_enable(event->pmu);
1637 	local_irq_restore(flags);
1638 }
1639 
1640 /*
1641  * Start group events scheduling transaction
1642  * Set the flag to make pmu::enable() not perform the
1643  * schedulability test, it will be performed at commit time
1644  *
1645  * We only support PERF_PMU_TXN_ADD transactions. Save the
1646  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1647  * transactions.
1648  */
1649 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1650 {
1651 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1652 
1653 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1654 
1655 	cpuhw->txn_flags = txn_flags;
1656 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1657 		return;
1658 
1659 	perf_pmu_disable(pmu);
1660 	cpuhw->n_txn_start = cpuhw->n_events;
1661 }
1662 
1663 /*
1664  * Stop group events scheduling transaction
1665  * Clear the flag and pmu::enable() will perform the
1666  * schedulability test.
1667  */
1668 static void power_pmu_cancel_txn(struct pmu *pmu)
1669 {
1670 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1671 	unsigned int txn_flags;
1672 
1673 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1674 
1675 	txn_flags = cpuhw->txn_flags;
1676 	cpuhw->txn_flags = 0;
1677 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1678 		return;
1679 
1680 	perf_pmu_enable(pmu);
1681 }
1682 
1683 /*
1684  * Commit group events scheduling transaction
1685  * Perform the group schedulability test as a whole
1686  * Return 0 if success
1687  */
1688 static int power_pmu_commit_txn(struct pmu *pmu)
1689 {
1690 	struct cpu_hw_events *cpuhw;
1691 	long i, n;
1692 
1693 	if (!ppmu)
1694 		return -EAGAIN;
1695 
1696 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1697 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1698 
1699 	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1700 		cpuhw->txn_flags = 0;
1701 		return 0;
1702 	}
1703 
1704 	n = cpuhw->n_events;
1705 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1706 		return -EAGAIN;
1707 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1708 	if (i < 0)
1709 		return -EAGAIN;
1710 
1711 	for (i = cpuhw->n_txn_start; i < n; ++i)
1712 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1713 
1714 	cpuhw->txn_flags = 0;
1715 	perf_pmu_enable(pmu);
1716 	return 0;
1717 }
1718 
1719 /*
1720  * Return 1 if we might be able to put event on a limited PMC,
1721  * or 0 if not.
1722  * An event can only go on a limited PMC if it counts something
1723  * that a limited PMC can count, doesn't require interrupts, and
1724  * doesn't exclude any processor mode.
1725  */
1726 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1727 				 unsigned int flags)
1728 {
1729 	int n;
1730 	u64 alt[MAX_EVENT_ALTERNATIVES];
1731 
1732 	if (event->attr.exclude_user
1733 	    || event->attr.exclude_kernel
1734 	    || event->attr.exclude_hv
1735 	    || event->attr.sample_period)
1736 		return 0;
1737 
1738 	if (ppmu->limited_pmc_event(ev))
1739 		return 1;
1740 
1741 	/*
1742 	 * The requested event_id isn't on a limited PMC already;
1743 	 * see if any alternative code goes on a limited PMC.
1744 	 */
1745 	if (!ppmu->get_alternatives)
1746 		return 0;
1747 
1748 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1749 	n = ppmu->get_alternatives(ev, flags, alt);
1750 
1751 	return n > 0;
1752 }
1753 
1754 /*
1755  * Find an alternative event_id that goes on a normal PMC, if possible,
1756  * and return the event_id code, or 0 if there is no such alternative.
1757  * (Note: event_id code 0 is "don't count" on all machines.)
1758  */
1759 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1760 {
1761 	u64 alt[MAX_EVENT_ALTERNATIVES];
1762 	int n;
1763 
1764 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1765 	n = ppmu->get_alternatives(ev, flags, alt);
1766 	if (!n)
1767 		return 0;
1768 	return alt[0];
1769 }
1770 
1771 /* Number of perf_events counting hardware events */
1772 static atomic_t num_events;
1773 /* Used to avoid races in calling reserve/release_pmc_hardware */
1774 static DEFINE_MUTEX(pmc_reserve_mutex);
1775 
1776 /*
1777  * Release the PMU if this is the last perf_event.
1778  */
1779 static void hw_perf_event_destroy(struct perf_event *event)
1780 {
1781 	if (!atomic_add_unless(&num_events, -1, 1)) {
1782 		mutex_lock(&pmc_reserve_mutex);
1783 		if (atomic_dec_return(&num_events) == 0)
1784 			release_pmc_hardware();
1785 		mutex_unlock(&pmc_reserve_mutex);
1786 	}
1787 }
1788 
1789 /*
1790  * Translate a generic cache event_id config to a raw event_id code.
1791  */
1792 static int hw_perf_cache_event(u64 config, u64 *eventp)
1793 {
1794 	unsigned long type, op, result;
1795 	int ev;
1796 
1797 	if (!ppmu->cache_events)
1798 		return -EINVAL;
1799 
1800 	/* unpack config */
1801 	type = config & 0xff;
1802 	op = (config >> 8) & 0xff;
1803 	result = (config >> 16) & 0xff;
1804 
1805 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1806 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1807 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1808 		return -EINVAL;
1809 
1810 	ev = (*ppmu->cache_events)[type][op][result];
1811 	if (ev == 0)
1812 		return -EOPNOTSUPP;
1813 	if (ev == -1)
1814 		return -EINVAL;
1815 	*eventp = ev;
1816 	return 0;
1817 }
1818 
1819 static bool is_event_blacklisted(u64 ev)
1820 {
1821 	int i;
1822 
1823 	for (i=0; i < ppmu->n_blacklist_ev; i++) {
1824 		if (ppmu->blacklist_ev[i] == ev)
1825 			return true;
1826 	}
1827 
1828 	return false;
1829 }
1830 
1831 static int power_pmu_event_init(struct perf_event *event)
1832 {
1833 	u64 ev;
1834 	unsigned long flags;
1835 	struct perf_event *ctrs[MAX_HWEVENTS];
1836 	u64 events[MAX_HWEVENTS];
1837 	unsigned int cflags[MAX_HWEVENTS];
1838 	int n;
1839 	int err;
1840 	struct cpu_hw_events *cpuhw;
1841 	u64 bhrb_filter;
1842 
1843 	if (!ppmu)
1844 		return -ENOENT;
1845 
1846 	if (has_branch_stack(event)) {
1847 	        /* PMU has BHRB enabled */
1848 		if (!(ppmu->flags & PPMU_ARCH_207S))
1849 			return -EOPNOTSUPP;
1850 	}
1851 
1852 	switch (event->attr.type) {
1853 	case PERF_TYPE_HARDWARE:
1854 		ev = event->attr.config;
1855 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1856 			return -EOPNOTSUPP;
1857 
1858 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1859 			return -EINVAL;
1860 		ev = ppmu->generic_events[ev];
1861 		break;
1862 	case PERF_TYPE_HW_CACHE:
1863 		err = hw_perf_cache_event(event->attr.config, &ev);
1864 		if (err)
1865 			return err;
1866 
1867 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1868 			return -EINVAL;
1869 		break;
1870 	case PERF_TYPE_RAW:
1871 		ev = event->attr.config;
1872 
1873 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1874 			return -EINVAL;
1875 		break;
1876 	default:
1877 		return -ENOENT;
1878 	}
1879 
1880 	event->hw.config_base = ev;
1881 	event->hw.idx = 0;
1882 
1883 	/*
1884 	 * If we are not running on a hypervisor, force the
1885 	 * exclude_hv bit to 0 so that we don't care what
1886 	 * the user set it to.
1887 	 */
1888 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1889 		event->attr.exclude_hv = 0;
1890 
1891 	/*
1892 	 * If this is a per-task event, then we can use
1893 	 * PM_RUN_* events interchangeably with their non RUN_*
1894 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1895 	 * XXX we should check if the task is an idle task.
1896 	 */
1897 	flags = 0;
1898 	if (event->attach_state & PERF_ATTACH_TASK)
1899 		flags |= PPMU_ONLY_COUNT_RUN;
1900 
1901 	/*
1902 	 * If this machine has limited events, check whether this
1903 	 * event_id could go on a limited event.
1904 	 */
1905 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1906 		if (can_go_on_limited_pmc(event, ev, flags)) {
1907 			flags |= PPMU_LIMITED_PMC_OK;
1908 		} else if (ppmu->limited_pmc_event(ev)) {
1909 			/*
1910 			 * The requested event_id is on a limited PMC,
1911 			 * but we can't use a limited PMC; see if any
1912 			 * alternative goes on a normal PMC.
1913 			 */
1914 			ev = normal_pmc_alternative(ev, flags);
1915 			if (!ev)
1916 				return -EINVAL;
1917 		}
1918 	}
1919 
1920 	/* Extra checks for EBB */
1921 	err = ebb_event_check(event);
1922 	if (err)
1923 		return err;
1924 
1925 	/*
1926 	 * If this is in a group, check if it can go on with all the
1927 	 * other hardware events in the group.  We assume the event
1928 	 * hasn't been linked into its leader's sibling list at this point.
1929 	 */
1930 	n = 0;
1931 	if (event->group_leader != event) {
1932 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1933 				   ctrs, events, cflags);
1934 		if (n < 0)
1935 			return -EINVAL;
1936 	}
1937 	events[n] = ev;
1938 	ctrs[n] = event;
1939 	cflags[n] = flags;
1940 	if (check_excludes(ctrs, cflags, n, 1))
1941 		return -EINVAL;
1942 
1943 	cpuhw = &get_cpu_var(cpu_hw_events);
1944 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1945 
1946 	if (has_branch_stack(event)) {
1947 		bhrb_filter = ppmu->bhrb_filter_map(
1948 					event->attr.branch_sample_type);
1949 
1950 		if (bhrb_filter == -1) {
1951 			put_cpu_var(cpu_hw_events);
1952 			return -EOPNOTSUPP;
1953 		}
1954 		cpuhw->bhrb_filter = bhrb_filter;
1955 	}
1956 
1957 	put_cpu_var(cpu_hw_events);
1958 	if (err)
1959 		return -EINVAL;
1960 
1961 	event->hw.config = events[n];
1962 	event->hw.event_base = cflags[n];
1963 	event->hw.last_period = event->hw.sample_period;
1964 	local64_set(&event->hw.period_left, event->hw.last_period);
1965 
1966 	/*
1967 	 * For EBB events we just context switch the PMC value, we don't do any
1968 	 * of the sample_period logic. We use hw.prev_count for this.
1969 	 */
1970 	if (is_ebb_event(event))
1971 		local64_set(&event->hw.prev_count, 0);
1972 
1973 	/*
1974 	 * See if we need to reserve the PMU.
1975 	 * If no events are currently in use, then we have to take a
1976 	 * mutex to ensure that we don't race with another task doing
1977 	 * reserve_pmc_hardware or release_pmc_hardware.
1978 	 */
1979 	err = 0;
1980 	if (!atomic_inc_not_zero(&num_events)) {
1981 		mutex_lock(&pmc_reserve_mutex);
1982 		if (atomic_read(&num_events) == 0 &&
1983 		    reserve_pmc_hardware(perf_event_interrupt))
1984 			err = -EBUSY;
1985 		else
1986 			atomic_inc(&num_events);
1987 		mutex_unlock(&pmc_reserve_mutex);
1988 	}
1989 	event->destroy = hw_perf_event_destroy;
1990 
1991 	return err;
1992 }
1993 
1994 static int power_pmu_event_idx(struct perf_event *event)
1995 {
1996 	return event->hw.idx;
1997 }
1998 
1999 ssize_t power_events_sysfs_show(struct device *dev,
2000 				struct device_attribute *attr, char *page)
2001 {
2002 	struct perf_pmu_events_attr *pmu_attr;
2003 
2004 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2005 
2006 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2007 }
2008 
2009 static struct pmu power_pmu = {
2010 	.pmu_enable	= power_pmu_enable,
2011 	.pmu_disable	= power_pmu_disable,
2012 	.event_init	= power_pmu_event_init,
2013 	.add		= power_pmu_add,
2014 	.del		= power_pmu_del,
2015 	.start		= power_pmu_start,
2016 	.stop		= power_pmu_stop,
2017 	.read		= power_pmu_read,
2018 	.start_txn	= power_pmu_start_txn,
2019 	.cancel_txn	= power_pmu_cancel_txn,
2020 	.commit_txn	= power_pmu_commit_txn,
2021 	.event_idx	= power_pmu_event_idx,
2022 	.sched_task	= power_pmu_sched_task,
2023 };
2024 
2025 /*
2026  * A counter has overflowed; update its count and record
2027  * things if requested.  Note that interrupts are hard-disabled
2028  * here so there is no possibility of being interrupted.
2029  */
2030 static void record_and_restart(struct perf_event *event, unsigned long val,
2031 			       struct pt_regs *regs)
2032 {
2033 	u64 period = event->hw.sample_period;
2034 	s64 prev, delta, left;
2035 	int record = 0;
2036 
2037 	if (event->hw.state & PERF_HES_STOPPED) {
2038 		write_pmc(event->hw.idx, 0);
2039 		return;
2040 	}
2041 
2042 	/* we don't have to worry about interrupts here */
2043 	prev = local64_read(&event->hw.prev_count);
2044 	delta = check_and_compute_delta(prev, val);
2045 	local64_add(delta, &event->count);
2046 
2047 	/*
2048 	 * See if the total period for this event has expired,
2049 	 * and update for the next period.
2050 	 */
2051 	val = 0;
2052 	left = local64_read(&event->hw.period_left) - delta;
2053 	if (delta == 0)
2054 		left++;
2055 	if (period) {
2056 		if (left <= 0) {
2057 			left += period;
2058 			if (left <= 0)
2059 				left = period;
2060 			record = siar_valid(regs);
2061 			event->hw.last_period = event->hw.sample_period;
2062 		}
2063 		if (left < 0x80000000LL)
2064 			val = 0x80000000LL - left;
2065 	}
2066 
2067 	write_pmc(event->hw.idx, val);
2068 	local64_set(&event->hw.prev_count, val);
2069 	local64_set(&event->hw.period_left, left);
2070 	perf_event_update_userpage(event);
2071 
2072 	/*
2073 	 * Finally record data if requested.
2074 	 */
2075 	if (record) {
2076 		struct perf_sample_data data;
2077 
2078 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2079 
2080 		if (event->attr.sample_type &
2081 		    (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2082 			perf_get_data_addr(event, regs, &data.addr);
2083 
2084 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2085 			struct cpu_hw_events *cpuhw;
2086 			cpuhw = this_cpu_ptr(&cpu_hw_events);
2087 			power_pmu_bhrb_read(event, cpuhw);
2088 			data.br_stack = &cpuhw->bhrb_stack;
2089 		}
2090 
2091 		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2092 						ppmu->get_mem_data_src)
2093 			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2094 
2095 		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2096 						ppmu->get_mem_weight)
2097 			ppmu->get_mem_weight(&data.weight);
2098 
2099 		if (perf_event_overflow(event, &data, regs))
2100 			power_pmu_stop(event, 0);
2101 	}
2102 }
2103 
2104 /*
2105  * Called from generic code to get the misc flags (i.e. processor mode)
2106  * for an event_id.
2107  */
2108 unsigned long perf_misc_flags(struct pt_regs *regs)
2109 {
2110 	u32 flags = perf_get_misc_flags(regs);
2111 
2112 	if (flags)
2113 		return flags;
2114 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2115 		PERF_RECORD_MISC_KERNEL;
2116 }
2117 
2118 /*
2119  * Called from generic code to get the instruction pointer
2120  * for an event_id.
2121  */
2122 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2123 {
2124 	bool use_siar = regs_use_siar(regs);
2125 
2126 	if (use_siar && siar_valid(regs))
2127 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2128 	else if (use_siar)
2129 		return 0;		// no valid instruction pointer
2130 	else
2131 		return regs->nip;
2132 }
2133 
2134 static bool pmc_overflow_power7(unsigned long val)
2135 {
2136 	/*
2137 	 * Events on POWER7 can roll back if a speculative event doesn't
2138 	 * eventually complete. Unfortunately in some rare cases they will
2139 	 * raise a performance monitor exception. We need to catch this to
2140 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2141 	 * cycles from overflow.
2142 	 *
2143 	 * We only do this if the first pass fails to find any overflowing
2144 	 * PMCs because a user might set a period of less than 256 and we
2145 	 * don't want to mistakenly reset them.
2146 	 */
2147 	if ((0x80000000 - val) <= 256)
2148 		return true;
2149 
2150 	return false;
2151 }
2152 
2153 static bool pmc_overflow(unsigned long val)
2154 {
2155 	if ((int)val < 0)
2156 		return true;
2157 
2158 	return false;
2159 }
2160 
2161 /*
2162  * Performance monitor interrupt stuff
2163  */
2164 static void __perf_event_interrupt(struct pt_regs *regs)
2165 {
2166 	int i, j;
2167 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2168 	struct perf_event *event;
2169 	unsigned long val[8];
2170 	int found, active;
2171 	int nmi;
2172 
2173 	if (cpuhw->n_limited)
2174 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2175 					mfspr(SPRN_PMC6));
2176 
2177 	perf_read_regs(regs);
2178 
2179 	nmi = perf_intr_is_nmi(regs);
2180 	if (nmi)
2181 		nmi_enter();
2182 	else
2183 		irq_enter();
2184 
2185 	/* Read all the PMCs since we'll need them a bunch of times */
2186 	for (i = 0; i < ppmu->n_counter; ++i)
2187 		val[i] = read_pmc(i + 1);
2188 
2189 	/* Try to find what caused the IRQ */
2190 	found = 0;
2191 	for (i = 0; i < ppmu->n_counter; ++i) {
2192 		if (!pmc_overflow(val[i]))
2193 			continue;
2194 		if (is_limited_pmc(i + 1))
2195 			continue; /* these won't generate IRQs */
2196 		/*
2197 		 * We've found one that's overflowed.  For active
2198 		 * counters we need to log this.  For inactive
2199 		 * counters, we need to reset it anyway
2200 		 */
2201 		found = 1;
2202 		active = 0;
2203 		for (j = 0; j < cpuhw->n_events; ++j) {
2204 			event = cpuhw->event[j];
2205 			if (event->hw.idx == (i + 1)) {
2206 				active = 1;
2207 				record_and_restart(event, val[i], regs);
2208 				break;
2209 			}
2210 		}
2211 		if (!active)
2212 			/* reset non active counters that have overflowed */
2213 			write_pmc(i + 1, 0);
2214 	}
2215 	if (!found && pvr_version_is(PVR_POWER7)) {
2216 		/* check active counters for special buggy p7 overflow */
2217 		for (i = 0; i < cpuhw->n_events; ++i) {
2218 			event = cpuhw->event[i];
2219 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2220 				continue;
2221 			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2222 				/* event has overflowed in a buggy way*/
2223 				found = 1;
2224 				record_and_restart(event,
2225 						   val[event->hw.idx - 1],
2226 						   regs);
2227 			}
2228 		}
2229 	}
2230 	if (!found && !nmi && printk_ratelimit())
2231 		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2232 
2233 	/*
2234 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2235 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2236 	 * and thus allow interrupts to occur again.
2237 	 * XXX might want to use MSR.PM to keep the events frozen until
2238 	 * we get back out of this interrupt.
2239 	 */
2240 	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2241 
2242 	if (nmi)
2243 		nmi_exit();
2244 	else
2245 		irq_exit();
2246 }
2247 
2248 static void perf_event_interrupt(struct pt_regs *regs)
2249 {
2250 	u64 start_clock = sched_clock();
2251 
2252 	__perf_event_interrupt(regs);
2253 	perf_sample_event_took(sched_clock() - start_clock);
2254 }
2255 
2256 static int power_pmu_prepare_cpu(unsigned int cpu)
2257 {
2258 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2259 
2260 	if (ppmu) {
2261 		memset(cpuhw, 0, sizeof(*cpuhw));
2262 		cpuhw->mmcr[0] = MMCR0_FC;
2263 	}
2264 	return 0;
2265 }
2266 
2267 int register_power_pmu(struct power_pmu *pmu)
2268 {
2269 	if (ppmu)
2270 		return -EBUSY;		/* something's already registered */
2271 
2272 	ppmu = pmu;
2273 	pr_info("%s performance monitor hardware support registered\n",
2274 		pmu->name);
2275 
2276 	power_pmu.attr_groups = ppmu->attr_groups;
2277 
2278 #ifdef MSR_HV
2279 	/*
2280 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2281 	 */
2282 	if (mfmsr() & MSR_HV)
2283 		freeze_events_kernel = MMCR0_FCHV;
2284 #endif /* CONFIG_PPC64 */
2285 
2286 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2287 	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2288 			  power_pmu_prepare_cpu, NULL);
2289 	return 0;
2290 }
2291 
2292 #ifdef CONFIG_PPC64
2293 static int __init init_ppc64_pmu(void)
2294 {
2295 	/* run through all the pmu drivers one at a time */
2296 	if (!init_power5_pmu())
2297 		return 0;
2298 	else if (!init_power5p_pmu())
2299 		return 0;
2300 	else if (!init_power6_pmu())
2301 		return 0;
2302 	else if (!init_power7_pmu())
2303 		return 0;
2304 	else if (!init_power8_pmu())
2305 		return 0;
2306 	else if (!init_power9_pmu())
2307 		return 0;
2308 	else if (!init_ppc970_pmu())
2309 		return 0;
2310 	else
2311 		return init_generic_compat_pmu();
2312 }
2313 early_initcall(init_ppc64_pmu);
2314 #endif
2315