xref: /openbmc/linux/arch/powerpc/perf/core-book3s.c (revision 01cc2ec6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance event support - powerpc architecture code
4  *
5  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6  */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <asm/reg.h>
15 #include <asm/pmc.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
20 
21 #ifdef CONFIG_PPC64
22 #include "internal.h"
23 #endif
24 
25 #define BHRB_MAX_ENTRIES	32
26 #define BHRB_TARGET		0x0000000000000002
27 #define BHRB_PREDICTION		0x0000000000000001
28 #define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
29 
30 struct cpu_hw_events {
31 	int n_events;
32 	int n_percpu;
33 	int disabled;
34 	int n_added;
35 	int n_limited;
36 	u8  pmcs_enabled;
37 	struct perf_event *event[MAX_HWEVENTS];
38 	u64 events[MAX_HWEVENTS];
39 	unsigned int flags[MAX_HWEVENTS];
40 	struct mmcr_regs mmcr;
41 	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
42 	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
43 	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
44 	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
45 	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
46 
47 	unsigned int txn_flags;
48 	int n_txn_start;
49 
50 	/* BHRB bits */
51 	u64				bhrb_filter;	/* BHRB HW branch filter */
52 	unsigned int			bhrb_users;
53 	void				*bhrb_context;
54 	struct	perf_branch_stack	bhrb_stack;
55 	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
56 	u64				ic_init;
57 };
58 
59 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
60 
61 static struct power_pmu *ppmu;
62 
63 /*
64  * Normally, to ignore kernel events we set the FCS (freeze counters
65  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
66  * hypervisor bit set in the MSR, or if we are running on a processor
67  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
68  * then we need to use the FCHV bit to ignore kernel events.
69  */
70 static unsigned int freeze_events_kernel = MMCR0_FCS;
71 
72 /*
73  * 32-bit doesn't have MMCRA but does have an MMCR2,
74  * and a few other names are different.
75  * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
76  * Define them as zero knowing that any code path accessing
77  * these registers (via mtspr/mfspr) are done under ppmu flag
78  * check for PPMU_ARCH_31 and we will not enter that code path
79  * for 32-bit.
80  */
81 #ifdef CONFIG_PPC32
82 
83 #define MMCR0_FCHV		0
84 #define MMCR0_PMCjCE		MMCR0_PMCnCE
85 #define MMCR0_FC56		0
86 #define MMCR0_PMAO		0
87 #define MMCR0_EBE		0
88 #define MMCR0_BHRBA		0
89 #define MMCR0_PMCC		0
90 #define MMCR0_PMCC_U6		0
91 
92 #define SPRN_MMCRA		SPRN_MMCR2
93 #define SPRN_MMCR3		0
94 #define SPRN_SIER2		0
95 #define SPRN_SIER3		0
96 #define MMCRA_SAMPLE_ENABLE	0
97 #define MMCRA_BHRB_DISABLE     0
98 
99 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
100 {
101 	return 0;
102 }
103 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
104 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
105 {
106 	return 0;
107 }
108 static inline void perf_read_regs(struct pt_regs *regs)
109 {
110 	regs->result = 0;
111 }
112 static inline int perf_intr_is_nmi(struct pt_regs *regs)
113 {
114 	return 0;
115 }
116 
117 static inline int siar_valid(struct pt_regs *regs)
118 {
119 	return 1;
120 }
121 
122 static bool is_ebb_event(struct perf_event *event) { return false; }
123 static int ebb_event_check(struct perf_event *event) { return 0; }
124 static void ebb_event_add(struct perf_event *event) { }
125 static void ebb_switch_out(unsigned long mmcr0) { }
126 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
127 {
128 	return cpuhw->mmcr.mmcr0;
129 }
130 
131 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
132 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
133 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
134 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
135 static void pmao_restore_workaround(bool ebb) { }
136 #endif /* CONFIG_PPC32 */
137 
138 bool is_sier_available(void)
139 {
140 	if (ppmu->flags & PPMU_HAS_SIER)
141 		return true;
142 
143 	return false;
144 }
145 
146 static bool regs_use_siar(struct pt_regs *regs)
147 {
148 	/*
149 	 * When we take a performance monitor exception the regs are setup
150 	 * using perf_read_regs() which overloads some fields, in particular
151 	 * regs->result to tell us whether to use SIAR.
152 	 *
153 	 * However if the regs are from another exception, eg. a syscall, then
154 	 * they have not been setup using perf_read_regs() and so regs->result
155 	 * is something random.
156 	 */
157 	return ((TRAP(regs) == 0xf00) && regs->result);
158 }
159 
160 /*
161  * Things that are specific to 64-bit implementations.
162  */
163 #ifdef CONFIG_PPC64
164 
165 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
166 {
167 	unsigned long mmcra = regs->dsisr;
168 
169 	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
170 		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
171 		if (slot > 1)
172 			return 4 * (slot - 1);
173 	}
174 
175 	return 0;
176 }
177 
178 /*
179  * The user wants a data address recorded.
180  * If we're not doing instruction sampling, give them the SDAR
181  * (sampled data address).  If we are doing instruction sampling, then
182  * only give them the SDAR if it corresponds to the instruction
183  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
184  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
185  */
186 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
187 {
188 	unsigned long mmcra = regs->dsisr;
189 	bool sdar_valid;
190 
191 	if (ppmu->flags & PPMU_HAS_SIER)
192 		sdar_valid = regs->dar & SIER_SDAR_VALID;
193 	else {
194 		unsigned long sdsync;
195 
196 		if (ppmu->flags & PPMU_SIAR_VALID)
197 			sdsync = POWER7P_MMCRA_SDAR_VALID;
198 		else if (ppmu->flags & PPMU_ALT_SIPR)
199 			sdsync = POWER6_MMCRA_SDSYNC;
200 		else if (ppmu->flags & PPMU_NO_SIAR)
201 			sdsync = MMCRA_SAMPLE_ENABLE;
202 		else
203 			sdsync = MMCRA_SDSYNC;
204 
205 		sdar_valid = mmcra & sdsync;
206 	}
207 
208 	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
209 		*addrp = mfspr(SPRN_SDAR);
210 
211 	if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0)
212 		*addrp = 0;
213 }
214 
215 static bool regs_sihv(struct pt_regs *regs)
216 {
217 	unsigned long sihv = MMCRA_SIHV;
218 
219 	if (ppmu->flags & PPMU_HAS_SIER)
220 		return !!(regs->dar & SIER_SIHV);
221 
222 	if (ppmu->flags & PPMU_ALT_SIPR)
223 		sihv = POWER6_MMCRA_SIHV;
224 
225 	return !!(regs->dsisr & sihv);
226 }
227 
228 static bool regs_sipr(struct pt_regs *regs)
229 {
230 	unsigned long sipr = MMCRA_SIPR;
231 
232 	if (ppmu->flags & PPMU_HAS_SIER)
233 		return !!(regs->dar & SIER_SIPR);
234 
235 	if (ppmu->flags & PPMU_ALT_SIPR)
236 		sipr = POWER6_MMCRA_SIPR;
237 
238 	return !!(regs->dsisr & sipr);
239 }
240 
241 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
242 {
243 	if (regs->msr & MSR_PR)
244 		return PERF_RECORD_MISC_USER;
245 	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
246 		return PERF_RECORD_MISC_HYPERVISOR;
247 	return PERF_RECORD_MISC_KERNEL;
248 }
249 
250 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
251 {
252 	bool use_siar = regs_use_siar(regs);
253 
254 	if (!use_siar)
255 		return perf_flags_from_msr(regs);
256 
257 	/*
258 	 * If we don't have flags in MMCRA, rather than using
259 	 * the MSR, we intuit the flags from the address in
260 	 * SIAR which should give slightly more reliable
261 	 * results
262 	 */
263 	if (ppmu->flags & PPMU_NO_SIPR) {
264 		unsigned long siar = mfspr(SPRN_SIAR);
265 		if (is_kernel_addr(siar))
266 			return PERF_RECORD_MISC_KERNEL;
267 		return PERF_RECORD_MISC_USER;
268 	}
269 
270 	/* PR has priority over HV, so order below is important */
271 	if (regs_sipr(regs))
272 		return PERF_RECORD_MISC_USER;
273 
274 	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
275 		return PERF_RECORD_MISC_HYPERVISOR;
276 
277 	return PERF_RECORD_MISC_KERNEL;
278 }
279 
280 /*
281  * Overload regs->dsisr to store MMCRA so we only need to read it once
282  * on each interrupt.
283  * Overload regs->dar to store SIER if we have it.
284  * Overload regs->result to specify whether we should use the MSR (result
285  * is zero) or the SIAR (result is non zero).
286  */
287 static inline void perf_read_regs(struct pt_regs *regs)
288 {
289 	unsigned long mmcra = mfspr(SPRN_MMCRA);
290 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
291 	int use_siar;
292 
293 	regs->dsisr = mmcra;
294 
295 	if (ppmu->flags & PPMU_HAS_SIER)
296 		regs->dar = mfspr(SPRN_SIER);
297 
298 	/*
299 	 * If this isn't a PMU exception (eg a software event) the SIAR is
300 	 * not valid. Use pt_regs.
301 	 *
302 	 * If it is a marked event use the SIAR.
303 	 *
304 	 * If the PMU doesn't update the SIAR for non marked events use
305 	 * pt_regs.
306 	 *
307 	 * If the PMU has HV/PR flags then check to see if they
308 	 * place the exception in userspace. If so, use pt_regs. In
309 	 * continuous sampling mode the SIAR and the PMU exception are
310 	 * not synchronised, so they may be many instructions apart.
311 	 * This can result in confusing backtraces. We still want
312 	 * hypervisor samples as well as samples in the kernel with
313 	 * interrupts off hence the userspace check.
314 	 */
315 	if (TRAP(regs) != 0xf00)
316 		use_siar = 0;
317 	else if ((ppmu->flags & PPMU_NO_SIAR))
318 		use_siar = 0;
319 	else if (marked)
320 		use_siar = 1;
321 	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
322 		use_siar = 0;
323 	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
324 		use_siar = 0;
325 	else
326 		use_siar = 1;
327 
328 	regs->result = use_siar;
329 }
330 
331 /*
332  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
333  * it as an NMI.
334  */
335 static inline int perf_intr_is_nmi(struct pt_regs *regs)
336 {
337 	return (regs->softe & IRQS_DISABLED);
338 }
339 
340 /*
341  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
342  * must be sampled only if the SIAR-valid bit is set.
343  *
344  * For unmarked instructions and for processors that don't have the SIAR-Valid
345  * bit, assume that SIAR is valid.
346  */
347 static inline int siar_valid(struct pt_regs *regs)
348 {
349 	unsigned long mmcra = regs->dsisr;
350 	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
351 
352 	if (marked) {
353 		if (ppmu->flags & PPMU_HAS_SIER)
354 			return regs->dar & SIER_SIAR_VALID;
355 
356 		if (ppmu->flags & PPMU_SIAR_VALID)
357 			return mmcra & POWER7P_MMCRA_SIAR_VALID;
358 	}
359 
360 	return 1;
361 }
362 
363 
364 /* Reset all possible BHRB entries */
365 static void power_pmu_bhrb_reset(void)
366 {
367 	asm volatile(PPC_CLRBHRB);
368 }
369 
370 static void power_pmu_bhrb_enable(struct perf_event *event)
371 {
372 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
373 
374 	if (!ppmu->bhrb_nr)
375 		return;
376 
377 	/* Clear BHRB if we changed task context to avoid data leaks */
378 	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
379 		power_pmu_bhrb_reset();
380 		cpuhw->bhrb_context = event->ctx;
381 	}
382 	cpuhw->bhrb_users++;
383 	perf_sched_cb_inc(event->ctx->pmu);
384 }
385 
386 static void power_pmu_bhrb_disable(struct perf_event *event)
387 {
388 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
389 
390 	if (!ppmu->bhrb_nr)
391 		return;
392 
393 	WARN_ON_ONCE(!cpuhw->bhrb_users);
394 	cpuhw->bhrb_users--;
395 	perf_sched_cb_dec(event->ctx->pmu);
396 
397 	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
398 		/* BHRB cannot be turned off when other
399 		 * events are active on the PMU.
400 		 */
401 
402 		/* avoid stale pointer */
403 		cpuhw->bhrb_context = NULL;
404 	}
405 }
406 
407 /* Called from ctxsw to prevent one process's branch entries to
408  * mingle with the other process's entries during context switch.
409  */
410 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
411 {
412 	if (!ppmu->bhrb_nr)
413 		return;
414 
415 	if (sched_in)
416 		power_pmu_bhrb_reset();
417 }
418 /* Calculate the to address for a branch */
419 static __u64 power_pmu_bhrb_to(u64 addr)
420 {
421 	unsigned int instr;
422 	__u64 target;
423 
424 	if (is_kernel_addr(addr)) {
425 		if (copy_from_kernel_nofault(&instr, (void *)addr,
426 				sizeof(instr)))
427 			return 0;
428 
429 		return branch_target((struct ppc_inst *)&instr);
430 	}
431 
432 	/* Userspace: need copy instruction here then translate it */
433 	if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
434 			sizeof(instr)))
435 		return 0;
436 
437 	target = branch_target((struct ppc_inst *)&instr);
438 	if ((!target) || (instr & BRANCH_ABSOLUTE))
439 		return target;
440 
441 	/* Translate relative branch target from kernel to user address */
442 	return target - (unsigned long)&instr + addr;
443 }
444 
445 /* Processing BHRB entries */
446 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
447 {
448 	u64 val;
449 	u64 addr;
450 	int r_index, u_index, pred;
451 
452 	r_index = 0;
453 	u_index = 0;
454 	while (r_index < ppmu->bhrb_nr) {
455 		/* Assembly read function */
456 		val = read_bhrb(r_index++);
457 		if (!val)
458 			/* Terminal marker: End of valid BHRB entries */
459 			break;
460 		else {
461 			addr = val & BHRB_EA;
462 			pred = val & BHRB_PREDICTION;
463 
464 			if (!addr)
465 				/* invalid entry */
466 				continue;
467 
468 			/*
469 			 * BHRB rolling buffer could very much contain the kernel
470 			 * addresses at this point. Check the privileges before
471 			 * exporting it to userspace (avoid exposure of regions
472 			 * where we could have speculative execution)
473 			 * Incase of ISA v3.1, BHRB will capture only user-space
474 			 * addresses, hence include a check before filtering code
475 			 */
476 			if (!(ppmu->flags & PPMU_ARCH_31) &&
477 				is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0)
478 				continue;
479 
480 			/* Branches are read most recent first (ie. mfbhrb 0 is
481 			 * the most recent branch).
482 			 * There are two types of valid entries:
483 			 * 1) a target entry which is the to address of a
484 			 *    computed goto like a blr,bctr,btar.  The next
485 			 *    entry read from the bhrb will be branch
486 			 *    corresponding to this target (ie. the actual
487 			 *    blr/bctr/btar instruction).
488 			 * 2) a from address which is an actual branch.  If a
489 			 *    target entry proceeds this, then this is the
490 			 *    matching branch for that target.  If this is not
491 			 *    following a target entry, then this is a branch
492 			 *    where the target is given as an immediate field
493 			 *    in the instruction (ie. an i or b form branch).
494 			 *    In this case we need to read the instruction from
495 			 *    memory to determine the target/to address.
496 			 */
497 
498 			if (val & BHRB_TARGET) {
499 				/* Target branches use two entries
500 				 * (ie. computed gotos/XL form)
501 				 */
502 				cpuhw->bhrb_entries[u_index].to = addr;
503 				cpuhw->bhrb_entries[u_index].mispred = pred;
504 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
505 
506 				/* Get from address in next entry */
507 				val = read_bhrb(r_index++);
508 				addr = val & BHRB_EA;
509 				if (val & BHRB_TARGET) {
510 					/* Shouldn't have two targets in a
511 					   row.. Reset index and try again */
512 					r_index--;
513 					addr = 0;
514 				}
515 				cpuhw->bhrb_entries[u_index].from = addr;
516 			} else {
517 				/* Branches to immediate field
518 				   (ie I or B form) */
519 				cpuhw->bhrb_entries[u_index].from = addr;
520 				cpuhw->bhrb_entries[u_index].to =
521 					power_pmu_bhrb_to(addr);
522 				cpuhw->bhrb_entries[u_index].mispred = pred;
523 				cpuhw->bhrb_entries[u_index].predicted = ~pred;
524 			}
525 			u_index++;
526 
527 		}
528 	}
529 	cpuhw->bhrb_stack.nr = u_index;
530 	cpuhw->bhrb_stack.hw_idx = -1ULL;
531 	return;
532 }
533 
534 static bool is_ebb_event(struct perf_event *event)
535 {
536 	/*
537 	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
538 	 * check that the PMU supports EBB, meaning those that don't can still
539 	 * use bit 63 of the event code for something else if they wish.
540 	 */
541 	return (ppmu->flags & PPMU_ARCH_207S) &&
542 	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
543 }
544 
545 static int ebb_event_check(struct perf_event *event)
546 {
547 	struct perf_event *leader = event->group_leader;
548 
549 	/* Event and group leader must agree on EBB */
550 	if (is_ebb_event(leader) != is_ebb_event(event))
551 		return -EINVAL;
552 
553 	if (is_ebb_event(event)) {
554 		if (!(event->attach_state & PERF_ATTACH_TASK))
555 			return -EINVAL;
556 
557 		if (!leader->attr.pinned || !leader->attr.exclusive)
558 			return -EINVAL;
559 
560 		if (event->attr.freq ||
561 		    event->attr.inherit ||
562 		    event->attr.sample_type ||
563 		    event->attr.sample_period ||
564 		    event->attr.enable_on_exec)
565 			return -EINVAL;
566 	}
567 
568 	return 0;
569 }
570 
571 static void ebb_event_add(struct perf_event *event)
572 {
573 	if (!is_ebb_event(event) || current->thread.used_ebb)
574 		return;
575 
576 	/*
577 	 * IFF this is the first time we've added an EBB event, set
578 	 * PMXE in the user MMCR0 so we can detect when it's cleared by
579 	 * userspace. We need this so that we can context switch while
580 	 * userspace is in the EBB handler (where PMXE is 0).
581 	 */
582 	current->thread.used_ebb = 1;
583 	current->thread.mmcr0 |= MMCR0_PMXE;
584 }
585 
586 static void ebb_switch_out(unsigned long mmcr0)
587 {
588 	if (!(mmcr0 & MMCR0_EBE))
589 		return;
590 
591 	current->thread.siar  = mfspr(SPRN_SIAR);
592 	current->thread.sier  = mfspr(SPRN_SIER);
593 	current->thread.sdar  = mfspr(SPRN_SDAR);
594 	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
595 	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
596 	if (ppmu->flags & PPMU_ARCH_31) {
597 		current->thread.mmcr3 = mfspr(SPRN_MMCR3);
598 		current->thread.sier2 = mfspr(SPRN_SIER2);
599 		current->thread.sier3 = mfspr(SPRN_SIER3);
600 	}
601 }
602 
603 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
604 {
605 	unsigned long mmcr0 = cpuhw->mmcr.mmcr0;
606 
607 	if (!ebb)
608 		goto out;
609 
610 	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
611 	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
612 
613 	/*
614 	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
615 	 * with pmao_restore_workaround() because we may add PMAO but we never
616 	 * clear it here.
617 	 */
618 	mmcr0 |= current->thread.mmcr0;
619 
620 	/*
621 	 * Be careful not to set PMXE if userspace had it cleared. This is also
622 	 * compatible with pmao_restore_workaround() because it has already
623 	 * cleared PMXE and we leave PMAO alone.
624 	 */
625 	if (!(current->thread.mmcr0 & MMCR0_PMXE))
626 		mmcr0 &= ~MMCR0_PMXE;
627 
628 	mtspr(SPRN_SIAR, current->thread.siar);
629 	mtspr(SPRN_SIER, current->thread.sier);
630 	mtspr(SPRN_SDAR, current->thread.sdar);
631 
632 	/*
633 	 * Merge the kernel & user values of MMCR2. The semantics we implement
634 	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
635 	 * but not clear bits. If a task wants to be able to clear bits, ie.
636 	 * unfreeze counters, it should not set exclude_xxx in its events and
637 	 * instead manage the MMCR2 entirely by itself.
638 	 */
639 	mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);
640 
641 	if (ppmu->flags & PPMU_ARCH_31) {
642 		mtspr(SPRN_MMCR3, current->thread.mmcr3);
643 		mtspr(SPRN_SIER2, current->thread.sier2);
644 		mtspr(SPRN_SIER3, current->thread.sier3);
645 	}
646 out:
647 	return mmcr0;
648 }
649 
650 static void pmao_restore_workaround(bool ebb)
651 {
652 	unsigned pmcs[6];
653 
654 	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
655 		return;
656 
657 	/*
658 	 * On POWER8E there is a hardware defect which affects the PMU context
659 	 * switch logic, ie. power_pmu_disable/enable().
660 	 *
661 	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
662 	 * by the hardware. Sometime later the actual PMU exception is
663 	 * delivered.
664 	 *
665 	 * If we context switch, or simply disable/enable, the PMU prior to the
666 	 * exception arriving, the exception will be lost when we clear PMAO.
667 	 *
668 	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
669 	 * set, and this _should_ generate an exception. However because of the
670 	 * defect no exception is generated when we write PMAO, and we get
671 	 * stuck with no counters counting but no exception delivered.
672 	 *
673 	 * The workaround is to detect this case and tweak the hardware to
674 	 * create another pending PMU exception.
675 	 *
676 	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
677 	 * enabling the PMU. That causes a new exception to be generated in the
678 	 * chip, but we don't take it yet because we have interrupts hard
679 	 * disabled. We then write back the PMU state as we want it to be seen
680 	 * by the exception handler. When we reenable interrupts the exception
681 	 * handler will be called and see the correct state.
682 	 *
683 	 * The logic is the same for EBB, except that the exception is gated by
684 	 * us having interrupts hard disabled as well as the fact that we are
685 	 * not in userspace. The exception is finally delivered when we return
686 	 * to userspace.
687 	 */
688 
689 	/* Only if PMAO is set and PMAO_SYNC is clear */
690 	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
691 		return;
692 
693 	/* If we're doing EBB, only if BESCR[GE] is set */
694 	if (ebb && !(current->thread.bescr & BESCR_GE))
695 		return;
696 
697 	/*
698 	 * We are already soft-disabled in power_pmu_enable(). We need to hard
699 	 * disable to actually prevent the PMU exception from firing.
700 	 */
701 	hard_irq_disable();
702 
703 	/*
704 	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
705 	 * Using read/write_pmc() in a for loop adds 12 function calls and
706 	 * almost doubles our code size.
707 	 */
708 	pmcs[0] = mfspr(SPRN_PMC1);
709 	pmcs[1] = mfspr(SPRN_PMC2);
710 	pmcs[2] = mfspr(SPRN_PMC3);
711 	pmcs[3] = mfspr(SPRN_PMC4);
712 	pmcs[4] = mfspr(SPRN_PMC5);
713 	pmcs[5] = mfspr(SPRN_PMC6);
714 
715 	/* Ensure all freeze bits are unset */
716 	mtspr(SPRN_MMCR2, 0);
717 
718 	/* Set up PMC6 to overflow in one cycle */
719 	mtspr(SPRN_PMC6, 0x7FFFFFFE);
720 
721 	/* Enable exceptions and unfreeze PMC6 */
722 	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
723 
724 	/* Now we need to refreeze and restore the PMCs */
725 	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
726 
727 	mtspr(SPRN_PMC1, pmcs[0]);
728 	mtspr(SPRN_PMC2, pmcs[1]);
729 	mtspr(SPRN_PMC3, pmcs[2]);
730 	mtspr(SPRN_PMC4, pmcs[3]);
731 	mtspr(SPRN_PMC5, pmcs[4]);
732 	mtspr(SPRN_PMC6, pmcs[5]);
733 }
734 
735 #endif /* CONFIG_PPC64 */
736 
737 static void perf_event_interrupt(struct pt_regs *regs);
738 
739 /*
740  * Read one performance monitor counter (PMC).
741  */
742 static unsigned long read_pmc(int idx)
743 {
744 	unsigned long val;
745 
746 	switch (idx) {
747 	case 1:
748 		val = mfspr(SPRN_PMC1);
749 		break;
750 	case 2:
751 		val = mfspr(SPRN_PMC2);
752 		break;
753 	case 3:
754 		val = mfspr(SPRN_PMC3);
755 		break;
756 	case 4:
757 		val = mfspr(SPRN_PMC4);
758 		break;
759 	case 5:
760 		val = mfspr(SPRN_PMC5);
761 		break;
762 	case 6:
763 		val = mfspr(SPRN_PMC6);
764 		break;
765 #ifdef CONFIG_PPC64
766 	case 7:
767 		val = mfspr(SPRN_PMC7);
768 		break;
769 	case 8:
770 		val = mfspr(SPRN_PMC8);
771 		break;
772 #endif /* CONFIG_PPC64 */
773 	default:
774 		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
775 		val = 0;
776 	}
777 	return val;
778 }
779 
780 /*
781  * Write one PMC.
782  */
783 static void write_pmc(int idx, unsigned long val)
784 {
785 	switch (idx) {
786 	case 1:
787 		mtspr(SPRN_PMC1, val);
788 		break;
789 	case 2:
790 		mtspr(SPRN_PMC2, val);
791 		break;
792 	case 3:
793 		mtspr(SPRN_PMC3, val);
794 		break;
795 	case 4:
796 		mtspr(SPRN_PMC4, val);
797 		break;
798 	case 5:
799 		mtspr(SPRN_PMC5, val);
800 		break;
801 	case 6:
802 		mtspr(SPRN_PMC6, val);
803 		break;
804 #ifdef CONFIG_PPC64
805 	case 7:
806 		mtspr(SPRN_PMC7, val);
807 		break;
808 	case 8:
809 		mtspr(SPRN_PMC8, val);
810 		break;
811 #endif /* CONFIG_PPC64 */
812 	default:
813 		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
814 	}
815 }
816 
817 /* Called from sysrq_handle_showregs() */
818 void perf_event_print_debug(void)
819 {
820 	unsigned long sdar, sier, flags;
821 	u32 pmcs[MAX_HWEVENTS];
822 	int i;
823 
824 	if (!ppmu) {
825 		pr_info("Performance monitor hardware not registered.\n");
826 		return;
827 	}
828 
829 	if (!ppmu->n_counter)
830 		return;
831 
832 	local_irq_save(flags);
833 
834 	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
835 		 smp_processor_id(), ppmu->name, ppmu->n_counter);
836 
837 	for (i = 0; i < ppmu->n_counter; i++)
838 		pmcs[i] = read_pmc(i + 1);
839 
840 	for (; i < MAX_HWEVENTS; i++)
841 		pmcs[i] = 0xdeadbeef;
842 
843 	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
844 		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
845 
846 	if (ppmu->n_counter > 4)
847 		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
848 			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
849 
850 	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
851 		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
852 
853 	sdar = sier = 0;
854 #ifdef CONFIG_PPC64
855 	sdar = mfspr(SPRN_SDAR);
856 
857 	if (ppmu->flags & PPMU_HAS_SIER)
858 		sier = mfspr(SPRN_SIER);
859 
860 	if (ppmu->flags & PPMU_ARCH_207S) {
861 		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
862 			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
863 		pr_info("EBBRR: %016lx BESCR: %016lx\n",
864 			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
865 	}
866 
867 	if (ppmu->flags & PPMU_ARCH_31) {
868 		pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
869 			mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
870 	}
871 #endif
872 	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
873 		mfspr(SPRN_SIAR), sdar, sier);
874 
875 	local_irq_restore(flags);
876 }
877 
878 /*
879  * Check if a set of events can all go on the PMU at once.
880  * If they can't, this will look at alternative codes for the events
881  * and see if any combination of alternative codes is feasible.
882  * The feasible set is returned in event_id[].
883  */
884 static int power_check_constraints(struct cpu_hw_events *cpuhw,
885 				   u64 event_id[], unsigned int cflags[],
886 				   int n_ev)
887 {
888 	unsigned long mask, value, nv;
889 	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
890 	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
891 	int i, j;
892 	unsigned long addf = ppmu->add_fields;
893 	unsigned long tadd = ppmu->test_adder;
894 	unsigned long grp_mask = ppmu->group_constraint_mask;
895 	unsigned long grp_val = ppmu->group_constraint_val;
896 
897 	if (n_ev > ppmu->n_counter)
898 		return -1;
899 
900 	/* First see if the events will go on as-is */
901 	for (i = 0; i < n_ev; ++i) {
902 		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
903 		    && !ppmu->limited_pmc_event(event_id[i])) {
904 			ppmu->get_alternatives(event_id[i], cflags[i],
905 					       cpuhw->alternatives[i]);
906 			event_id[i] = cpuhw->alternatives[i][0];
907 		}
908 		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
909 					 &cpuhw->avalues[i][0]))
910 			return -1;
911 	}
912 	value = mask = 0;
913 	for (i = 0; i < n_ev; ++i) {
914 		nv = (value | cpuhw->avalues[i][0]) +
915 			(value & cpuhw->avalues[i][0] & addf);
916 
917 		if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
918 			break;
919 
920 		if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
921 			& (~grp_mask)) != 0)
922 			break;
923 
924 		value = nv;
925 		mask |= cpuhw->amasks[i][0];
926 	}
927 	if (i == n_ev) {
928 		if ((value & mask & grp_mask) != (mask & grp_val))
929 			return -1;
930 		else
931 			return 0;	/* all OK */
932 	}
933 
934 	/* doesn't work, gather alternatives... */
935 	if (!ppmu->get_alternatives)
936 		return -1;
937 	for (i = 0; i < n_ev; ++i) {
938 		choice[i] = 0;
939 		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
940 						  cpuhw->alternatives[i]);
941 		for (j = 1; j < n_alt[i]; ++j)
942 			ppmu->get_constraint(cpuhw->alternatives[i][j],
943 					     &cpuhw->amasks[i][j],
944 					     &cpuhw->avalues[i][j]);
945 	}
946 
947 	/* enumerate all possibilities and see if any will work */
948 	i = 0;
949 	j = -1;
950 	value = mask = nv = 0;
951 	while (i < n_ev) {
952 		if (j >= 0) {
953 			/* we're backtracking, restore context */
954 			value = svalues[i];
955 			mask = smasks[i];
956 			j = choice[i];
957 		}
958 		/*
959 		 * See if any alternative k for event_id i,
960 		 * where k > j, will satisfy the constraints.
961 		 */
962 		while (++j < n_alt[i]) {
963 			nv = (value | cpuhw->avalues[i][j]) +
964 				(value & cpuhw->avalues[i][j] & addf);
965 			if ((((nv + tadd) ^ value) & mask) == 0 &&
966 			    (((nv + tadd) ^ cpuhw->avalues[i][j])
967 			     & cpuhw->amasks[i][j]) == 0)
968 				break;
969 		}
970 		if (j >= n_alt[i]) {
971 			/*
972 			 * No feasible alternative, backtrack
973 			 * to event_id i-1 and continue enumerating its
974 			 * alternatives from where we got up to.
975 			 */
976 			if (--i < 0)
977 				return -1;
978 		} else {
979 			/*
980 			 * Found a feasible alternative for event_id i,
981 			 * remember where we got up to with this event_id,
982 			 * go on to the next event_id, and start with
983 			 * the first alternative for it.
984 			 */
985 			choice[i] = j;
986 			svalues[i] = value;
987 			smasks[i] = mask;
988 			value = nv;
989 			mask |= cpuhw->amasks[i][j];
990 			++i;
991 			j = -1;
992 		}
993 	}
994 
995 	/* OK, we have a feasible combination, tell the caller the solution */
996 	for (i = 0; i < n_ev; ++i)
997 		event_id[i] = cpuhw->alternatives[i][choice[i]];
998 	return 0;
999 }
1000 
1001 /*
1002  * Check if newly-added events have consistent settings for
1003  * exclude_{user,kernel,hv} with each other and any previously
1004  * added events.
1005  */
1006 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
1007 			  int n_prev, int n_new)
1008 {
1009 	int eu = 0, ek = 0, eh = 0;
1010 	int i, n, first;
1011 	struct perf_event *event;
1012 
1013 	/*
1014 	 * If the PMU we're on supports per event exclude settings then we
1015 	 * don't need to do any of this logic. NB. This assumes no PMU has both
1016 	 * per event exclude and limited PMCs.
1017 	 */
1018 	if (ppmu->flags & PPMU_ARCH_207S)
1019 		return 0;
1020 
1021 	n = n_prev + n_new;
1022 	if (n <= 1)
1023 		return 0;
1024 
1025 	first = 1;
1026 	for (i = 0; i < n; ++i) {
1027 		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1028 			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1029 			continue;
1030 		}
1031 		event = ctrs[i];
1032 		if (first) {
1033 			eu = event->attr.exclude_user;
1034 			ek = event->attr.exclude_kernel;
1035 			eh = event->attr.exclude_hv;
1036 			first = 0;
1037 		} else if (event->attr.exclude_user != eu ||
1038 			   event->attr.exclude_kernel != ek ||
1039 			   event->attr.exclude_hv != eh) {
1040 			return -EAGAIN;
1041 		}
1042 	}
1043 
1044 	if (eu || ek || eh)
1045 		for (i = 0; i < n; ++i)
1046 			if (cflags[i] & PPMU_LIMITED_PMC_OK)
1047 				cflags[i] |= PPMU_LIMITED_PMC_REQD;
1048 
1049 	return 0;
1050 }
1051 
1052 static u64 check_and_compute_delta(u64 prev, u64 val)
1053 {
1054 	u64 delta = (val - prev) & 0xfffffffful;
1055 
1056 	/*
1057 	 * POWER7 can roll back counter values, if the new value is smaller
1058 	 * than the previous value it will cause the delta and the counter to
1059 	 * have bogus values unless we rolled a counter over.  If a coutner is
1060 	 * rolled back, it will be smaller, but within 256, which is the maximum
1061 	 * number of events to rollback at once.  If we detect a rollback
1062 	 * return 0.  This can lead to a small lack of precision in the
1063 	 * counters.
1064 	 */
1065 	if (prev > val && (prev - val) < 256)
1066 		delta = 0;
1067 
1068 	return delta;
1069 }
1070 
1071 static void power_pmu_read(struct perf_event *event)
1072 {
1073 	s64 val, delta, prev;
1074 
1075 	if (event->hw.state & PERF_HES_STOPPED)
1076 		return;
1077 
1078 	if (!event->hw.idx)
1079 		return;
1080 
1081 	if (is_ebb_event(event)) {
1082 		val = read_pmc(event->hw.idx);
1083 		local64_set(&event->hw.prev_count, val);
1084 		return;
1085 	}
1086 
1087 	/*
1088 	 * Performance monitor interrupts come even when interrupts
1089 	 * are soft-disabled, as long as interrupts are hard-enabled.
1090 	 * Therefore we treat them like NMIs.
1091 	 */
1092 	do {
1093 		prev = local64_read(&event->hw.prev_count);
1094 		barrier();
1095 		val = read_pmc(event->hw.idx);
1096 		delta = check_and_compute_delta(prev, val);
1097 		if (!delta)
1098 			return;
1099 	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1100 
1101 	local64_add(delta, &event->count);
1102 
1103 	/*
1104 	 * A number of places program the PMC with (0x80000000 - period_left).
1105 	 * We never want period_left to be less than 1 because we will program
1106 	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1107 	 * roll around to 0 before taking an exception. We have seen this
1108 	 * on POWER8.
1109 	 *
1110 	 * To fix this, clamp the minimum value of period_left to 1.
1111 	 */
1112 	do {
1113 		prev = local64_read(&event->hw.period_left);
1114 		val = prev - delta;
1115 		if (val < 1)
1116 			val = 1;
1117 	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1118 }
1119 
1120 /*
1121  * On some machines, PMC5 and PMC6 can't be written, don't respect
1122  * the freeze conditions, and don't generate interrupts.  This tells
1123  * us if `event' is using such a PMC.
1124  */
1125 static int is_limited_pmc(int pmcnum)
1126 {
1127 	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1128 		&& (pmcnum == 5 || pmcnum == 6);
1129 }
1130 
1131 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1132 				    unsigned long pmc5, unsigned long pmc6)
1133 {
1134 	struct perf_event *event;
1135 	u64 val, prev, delta;
1136 	int i;
1137 
1138 	for (i = 0; i < cpuhw->n_limited; ++i) {
1139 		event = cpuhw->limited_counter[i];
1140 		if (!event->hw.idx)
1141 			continue;
1142 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1143 		prev = local64_read(&event->hw.prev_count);
1144 		event->hw.idx = 0;
1145 		delta = check_and_compute_delta(prev, val);
1146 		if (delta)
1147 			local64_add(delta, &event->count);
1148 	}
1149 }
1150 
1151 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1152 				  unsigned long pmc5, unsigned long pmc6)
1153 {
1154 	struct perf_event *event;
1155 	u64 val, prev;
1156 	int i;
1157 
1158 	for (i = 0; i < cpuhw->n_limited; ++i) {
1159 		event = cpuhw->limited_counter[i];
1160 		event->hw.idx = cpuhw->limited_hwidx[i];
1161 		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1162 		prev = local64_read(&event->hw.prev_count);
1163 		if (check_and_compute_delta(prev, val))
1164 			local64_set(&event->hw.prev_count, val);
1165 		perf_event_update_userpage(event);
1166 	}
1167 }
1168 
1169 /*
1170  * Since limited events don't respect the freeze conditions, we
1171  * have to read them immediately after freezing or unfreezing the
1172  * other events.  We try to keep the values from the limited
1173  * events as consistent as possible by keeping the delay (in
1174  * cycles and instructions) between freezing/unfreezing and reading
1175  * the limited events as small and consistent as possible.
1176  * Therefore, if any limited events are in use, we read them
1177  * both, and always in the same order, to minimize variability,
1178  * and do it inside the same asm that writes MMCR0.
1179  */
1180 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1181 {
1182 	unsigned long pmc5, pmc6;
1183 
1184 	if (!cpuhw->n_limited) {
1185 		mtspr(SPRN_MMCR0, mmcr0);
1186 		return;
1187 	}
1188 
1189 	/*
1190 	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1191 	 * To ensure we don't get a performance monitor interrupt
1192 	 * between writing MMCR0 and freezing/thawing the limited
1193 	 * events, we first write MMCR0 with the event overflow
1194 	 * interrupt enable bits turned off.
1195 	 */
1196 	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1197 		     : "=&r" (pmc5), "=&r" (pmc6)
1198 		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1199 		       "i" (SPRN_MMCR0),
1200 		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1201 
1202 	if (mmcr0 & MMCR0_FC)
1203 		freeze_limited_counters(cpuhw, pmc5, pmc6);
1204 	else
1205 		thaw_limited_counters(cpuhw, pmc5, pmc6);
1206 
1207 	/*
1208 	 * Write the full MMCR0 including the event overflow interrupt
1209 	 * enable bits, if necessary.
1210 	 */
1211 	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1212 		mtspr(SPRN_MMCR0, mmcr0);
1213 }
1214 
1215 /*
1216  * Disable all events to prevent PMU interrupts and to allow
1217  * events to be added or removed.
1218  */
1219 static void power_pmu_disable(struct pmu *pmu)
1220 {
1221 	struct cpu_hw_events *cpuhw;
1222 	unsigned long flags, mmcr0, val, mmcra;
1223 
1224 	if (!ppmu)
1225 		return;
1226 	local_irq_save(flags);
1227 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1228 
1229 	if (!cpuhw->disabled) {
1230 		/*
1231 		 * Check if we ever enabled the PMU on this cpu.
1232 		 */
1233 		if (!cpuhw->pmcs_enabled) {
1234 			ppc_enable_pmcs();
1235 			cpuhw->pmcs_enabled = 1;
1236 		}
1237 
1238 		/*
1239 		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1240 		 */
1241 		val  = mmcr0 = mfspr(SPRN_MMCR0);
1242 		val |= MMCR0_FC;
1243 		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1244 			 MMCR0_FC56);
1245 
1246 		/*
1247 		 * The barrier is to make sure the mtspr has been
1248 		 * executed and the PMU has frozen the events etc.
1249 		 * before we return.
1250 		 */
1251 		write_mmcr0(cpuhw, val);
1252 		mb();
1253 		isync();
1254 
1255 		val = mmcra = cpuhw->mmcr.mmcra;
1256 
1257 		/*
1258 		 * Disable instruction sampling if it was enabled
1259 		 */
1260 		if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE)
1261 			val &= ~MMCRA_SAMPLE_ENABLE;
1262 
1263 		/* Disable BHRB via mmcra (BHRBRD) for p10 */
1264 		if (ppmu->flags & PPMU_ARCH_31)
1265 			val |= MMCRA_BHRB_DISABLE;
1266 
1267 		/*
1268 		 * Write SPRN_MMCRA if mmcra has either disabled
1269 		 * instruction sampling or BHRB.
1270 		 */
1271 		if (val != mmcra) {
1272 			mtspr(SPRN_MMCRA, mmcra);
1273 			mb();
1274 			isync();
1275 		}
1276 
1277 		cpuhw->disabled = 1;
1278 		cpuhw->n_added = 0;
1279 
1280 		ebb_switch_out(mmcr0);
1281 
1282 #ifdef CONFIG_PPC64
1283 		/*
1284 		 * These are readable by userspace, may contain kernel
1285 		 * addresses and are not switched by context switch, so clear
1286 		 * them now to avoid leaking anything to userspace in general
1287 		 * including to another process.
1288 		 */
1289 		if (ppmu->flags & PPMU_ARCH_207S) {
1290 			mtspr(SPRN_SDAR, 0);
1291 			mtspr(SPRN_SIAR, 0);
1292 		}
1293 #endif
1294 	}
1295 
1296 	local_irq_restore(flags);
1297 }
1298 
1299 /*
1300  * Re-enable all events if disable == 0.
1301  * If we were previously disabled and events were added, then
1302  * put the new config on the PMU.
1303  */
1304 static void power_pmu_enable(struct pmu *pmu)
1305 {
1306 	struct perf_event *event;
1307 	struct cpu_hw_events *cpuhw;
1308 	unsigned long flags;
1309 	long i;
1310 	unsigned long val, mmcr0;
1311 	s64 left;
1312 	unsigned int hwc_index[MAX_HWEVENTS];
1313 	int n_lim;
1314 	int idx;
1315 	bool ebb;
1316 
1317 	if (!ppmu)
1318 		return;
1319 	local_irq_save(flags);
1320 
1321 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1322 	if (!cpuhw->disabled)
1323 		goto out;
1324 
1325 	if (cpuhw->n_events == 0) {
1326 		ppc_set_pmu_inuse(0);
1327 		goto out;
1328 	}
1329 
1330 	cpuhw->disabled = 0;
1331 
1332 	/*
1333 	 * EBB requires an exclusive group and all events must have the EBB
1334 	 * flag set, or not set, so we can just check a single event. Also we
1335 	 * know we have at least one event.
1336 	 */
1337 	ebb = is_ebb_event(cpuhw->event[0]);
1338 
1339 	/*
1340 	 * If we didn't change anything, or only removed events,
1341 	 * no need to recalculate MMCR* settings and reset the PMCs.
1342 	 * Just reenable the PMU with the current MMCR* settings
1343 	 * (possibly updated for removal of events).
1344 	 */
1345 	if (!cpuhw->n_added) {
1346 		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1347 		mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1348 		if (ppmu->flags & PPMU_ARCH_31)
1349 			mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1350 		goto out_enable;
1351 	}
1352 
1353 	/*
1354 	 * Clear all MMCR settings and recompute them for the new set of events.
1355 	 */
1356 	memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1357 
1358 	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1359 			       &cpuhw->mmcr, cpuhw->event)) {
1360 		/* shouldn't ever get here */
1361 		printk(KERN_ERR "oops compute_mmcr failed\n");
1362 		goto out;
1363 	}
1364 
1365 	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1366 		/*
1367 		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1368 		 * bits for the first event. We have already checked that all
1369 		 * events have the same value for these bits as the first event.
1370 		 */
1371 		event = cpuhw->event[0];
1372 		if (event->attr.exclude_user)
1373 			cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
1374 		if (event->attr.exclude_kernel)
1375 			cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
1376 		if (event->attr.exclude_hv)
1377 			cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
1378 	}
1379 
1380 	/*
1381 	 * Write the new configuration to MMCR* with the freeze
1382 	 * bit set and set the hardware events to their initial values.
1383 	 * Then unfreeze the events.
1384 	 */
1385 	ppc_set_pmu_inuse(1);
1386 	mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1387 	mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1388 	mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1389 				| MMCR0_FC);
1390 	if (ppmu->flags & PPMU_ARCH_207S)
1391 		mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);
1392 
1393 	if (ppmu->flags & PPMU_ARCH_31)
1394 		mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1395 
1396 	/*
1397 	 * Read off any pre-existing events that need to move
1398 	 * to another PMC.
1399 	 */
1400 	for (i = 0; i < cpuhw->n_events; ++i) {
1401 		event = cpuhw->event[i];
1402 		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1403 			power_pmu_read(event);
1404 			write_pmc(event->hw.idx, 0);
1405 			event->hw.idx = 0;
1406 		}
1407 	}
1408 
1409 	/*
1410 	 * Initialize the PMCs for all the new and moved events.
1411 	 */
1412 	cpuhw->n_limited = n_lim = 0;
1413 	for (i = 0; i < cpuhw->n_events; ++i) {
1414 		event = cpuhw->event[i];
1415 		if (event->hw.idx)
1416 			continue;
1417 		idx = hwc_index[i] + 1;
1418 		if (is_limited_pmc(idx)) {
1419 			cpuhw->limited_counter[n_lim] = event;
1420 			cpuhw->limited_hwidx[n_lim] = idx;
1421 			++n_lim;
1422 			continue;
1423 		}
1424 
1425 		if (ebb)
1426 			val = local64_read(&event->hw.prev_count);
1427 		else {
1428 			val = 0;
1429 			if (event->hw.sample_period) {
1430 				left = local64_read(&event->hw.period_left);
1431 				if (left < 0x80000000L)
1432 					val = 0x80000000L - left;
1433 			}
1434 			local64_set(&event->hw.prev_count, val);
1435 		}
1436 
1437 		event->hw.idx = idx;
1438 		if (event->hw.state & PERF_HES_STOPPED)
1439 			val = 0;
1440 		write_pmc(idx, val);
1441 
1442 		perf_event_update_userpage(event);
1443 	}
1444 	cpuhw->n_limited = n_lim;
1445 	cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;
1446 
1447  out_enable:
1448 	pmao_restore_workaround(ebb);
1449 
1450 	mmcr0 = ebb_switch_in(ebb, cpuhw);
1451 
1452 	mb();
1453 	if (cpuhw->bhrb_users)
1454 		ppmu->config_bhrb(cpuhw->bhrb_filter);
1455 
1456 	write_mmcr0(cpuhw, mmcr0);
1457 
1458 	/*
1459 	 * Enable instruction sampling if necessary
1460 	 */
1461 	if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
1462 		mb();
1463 		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
1464 	}
1465 
1466  out:
1467 
1468 	local_irq_restore(flags);
1469 }
1470 
1471 static int collect_events(struct perf_event *group, int max_count,
1472 			  struct perf_event *ctrs[], u64 *events,
1473 			  unsigned int *flags)
1474 {
1475 	int n = 0;
1476 	struct perf_event *event;
1477 
1478 	if (group->pmu->task_ctx_nr == perf_hw_context) {
1479 		if (n >= max_count)
1480 			return -1;
1481 		ctrs[n] = group;
1482 		flags[n] = group->hw.event_base;
1483 		events[n++] = group->hw.config;
1484 	}
1485 	for_each_sibling_event(event, group) {
1486 		if (event->pmu->task_ctx_nr == perf_hw_context &&
1487 		    event->state != PERF_EVENT_STATE_OFF) {
1488 			if (n >= max_count)
1489 				return -1;
1490 			ctrs[n] = event;
1491 			flags[n] = event->hw.event_base;
1492 			events[n++] = event->hw.config;
1493 		}
1494 	}
1495 	return n;
1496 }
1497 
1498 /*
1499  * Add an event to the PMU.
1500  * If all events are not already frozen, then we disable and
1501  * re-enable the PMU in order to get hw_perf_enable to do the
1502  * actual work of reconfiguring the PMU.
1503  */
1504 static int power_pmu_add(struct perf_event *event, int ef_flags)
1505 {
1506 	struct cpu_hw_events *cpuhw;
1507 	unsigned long flags;
1508 	int n0;
1509 	int ret = -EAGAIN;
1510 
1511 	local_irq_save(flags);
1512 	perf_pmu_disable(event->pmu);
1513 
1514 	/*
1515 	 * Add the event to the list (if there is room)
1516 	 * and check whether the total set is still feasible.
1517 	 */
1518 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1519 	n0 = cpuhw->n_events;
1520 	if (n0 >= ppmu->n_counter)
1521 		goto out;
1522 	cpuhw->event[n0] = event;
1523 	cpuhw->events[n0] = event->hw.config;
1524 	cpuhw->flags[n0] = event->hw.event_base;
1525 
1526 	/*
1527 	 * This event may have been disabled/stopped in record_and_restart()
1528 	 * because we exceeded the ->event_limit. If re-starting the event,
1529 	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1530 	 * notification is re-enabled.
1531 	 */
1532 	if (!(ef_flags & PERF_EF_START))
1533 		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1534 	else
1535 		event->hw.state = 0;
1536 
1537 	/*
1538 	 * If group events scheduling transaction was started,
1539 	 * skip the schedulability test here, it will be performed
1540 	 * at commit time(->commit_txn) as a whole
1541 	 */
1542 	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1543 		goto nocheck;
1544 
1545 	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1546 		goto out;
1547 	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1548 		goto out;
1549 	event->hw.config = cpuhw->events[n0];
1550 
1551 nocheck:
1552 	ebb_event_add(event);
1553 
1554 	++cpuhw->n_events;
1555 	++cpuhw->n_added;
1556 
1557 	ret = 0;
1558  out:
1559 	if (has_branch_stack(event)) {
1560 		u64 bhrb_filter = -1;
1561 
1562 		if (ppmu->bhrb_filter_map)
1563 			bhrb_filter = ppmu->bhrb_filter_map(
1564 				event->attr.branch_sample_type);
1565 
1566 		if (bhrb_filter != -1) {
1567 			cpuhw->bhrb_filter = bhrb_filter;
1568 			power_pmu_bhrb_enable(event);
1569 		}
1570 	}
1571 
1572 	perf_pmu_enable(event->pmu);
1573 	local_irq_restore(flags);
1574 	return ret;
1575 }
1576 
1577 /*
1578  * Remove an event from the PMU.
1579  */
1580 static void power_pmu_del(struct perf_event *event, int ef_flags)
1581 {
1582 	struct cpu_hw_events *cpuhw;
1583 	long i;
1584 	unsigned long flags;
1585 
1586 	local_irq_save(flags);
1587 	perf_pmu_disable(event->pmu);
1588 
1589 	power_pmu_read(event);
1590 
1591 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1592 	for (i = 0; i < cpuhw->n_events; ++i) {
1593 		if (event == cpuhw->event[i]) {
1594 			while (++i < cpuhw->n_events) {
1595 				cpuhw->event[i-1] = cpuhw->event[i];
1596 				cpuhw->events[i-1] = cpuhw->events[i];
1597 				cpuhw->flags[i-1] = cpuhw->flags[i];
1598 			}
1599 			--cpuhw->n_events;
1600 			ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
1601 			if (event->hw.idx) {
1602 				write_pmc(event->hw.idx, 0);
1603 				event->hw.idx = 0;
1604 			}
1605 			perf_event_update_userpage(event);
1606 			break;
1607 		}
1608 	}
1609 	for (i = 0; i < cpuhw->n_limited; ++i)
1610 		if (event == cpuhw->limited_counter[i])
1611 			break;
1612 	if (i < cpuhw->n_limited) {
1613 		while (++i < cpuhw->n_limited) {
1614 			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1615 			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1616 		}
1617 		--cpuhw->n_limited;
1618 	}
1619 	if (cpuhw->n_events == 0) {
1620 		/* disable exceptions if no events are running */
1621 		cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
1622 	}
1623 
1624 	if (has_branch_stack(event))
1625 		power_pmu_bhrb_disable(event);
1626 
1627 	perf_pmu_enable(event->pmu);
1628 	local_irq_restore(flags);
1629 }
1630 
1631 /*
1632  * POWER-PMU does not support disabling individual counters, hence
1633  * program their cycle counter to their max value and ignore the interrupts.
1634  */
1635 
1636 static void power_pmu_start(struct perf_event *event, int ef_flags)
1637 {
1638 	unsigned long flags;
1639 	s64 left;
1640 	unsigned long val;
1641 
1642 	if (!event->hw.idx || !event->hw.sample_period)
1643 		return;
1644 
1645 	if (!(event->hw.state & PERF_HES_STOPPED))
1646 		return;
1647 
1648 	if (ef_flags & PERF_EF_RELOAD)
1649 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1650 
1651 	local_irq_save(flags);
1652 	perf_pmu_disable(event->pmu);
1653 
1654 	event->hw.state = 0;
1655 	left = local64_read(&event->hw.period_left);
1656 
1657 	val = 0;
1658 	if (left < 0x80000000L)
1659 		val = 0x80000000L - left;
1660 
1661 	write_pmc(event->hw.idx, val);
1662 
1663 	perf_event_update_userpage(event);
1664 	perf_pmu_enable(event->pmu);
1665 	local_irq_restore(flags);
1666 }
1667 
1668 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1669 {
1670 	unsigned long flags;
1671 
1672 	if (!event->hw.idx || !event->hw.sample_period)
1673 		return;
1674 
1675 	if (event->hw.state & PERF_HES_STOPPED)
1676 		return;
1677 
1678 	local_irq_save(flags);
1679 	perf_pmu_disable(event->pmu);
1680 
1681 	power_pmu_read(event);
1682 	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1683 	write_pmc(event->hw.idx, 0);
1684 
1685 	perf_event_update_userpage(event);
1686 	perf_pmu_enable(event->pmu);
1687 	local_irq_restore(flags);
1688 }
1689 
1690 /*
1691  * Start group events scheduling transaction
1692  * Set the flag to make pmu::enable() not perform the
1693  * schedulability test, it will be performed at commit time
1694  *
1695  * We only support PERF_PMU_TXN_ADD transactions. Save the
1696  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1697  * transactions.
1698  */
1699 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1700 {
1701 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1702 
1703 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1704 
1705 	cpuhw->txn_flags = txn_flags;
1706 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1707 		return;
1708 
1709 	perf_pmu_disable(pmu);
1710 	cpuhw->n_txn_start = cpuhw->n_events;
1711 }
1712 
1713 /*
1714  * Stop group events scheduling transaction
1715  * Clear the flag and pmu::enable() will perform the
1716  * schedulability test.
1717  */
1718 static void power_pmu_cancel_txn(struct pmu *pmu)
1719 {
1720 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1721 	unsigned int txn_flags;
1722 
1723 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1724 
1725 	txn_flags = cpuhw->txn_flags;
1726 	cpuhw->txn_flags = 0;
1727 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1728 		return;
1729 
1730 	perf_pmu_enable(pmu);
1731 }
1732 
1733 /*
1734  * Commit group events scheduling transaction
1735  * Perform the group schedulability test as a whole
1736  * Return 0 if success
1737  */
1738 static int power_pmu_commit_txn(struct pmu *pmu)
1739 {
1740 	struct cpu_hw_events *cpuhw;
1741 	long i, n;
1742 
1743 	if (!ppmu)
1744 		return -EAGAIN;
1745 
1746 	cpuhw = this_cpu_ptr(&cpu_hw_events);
1747 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1748 
1749 	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1750 		cpuhw->txn_flags = 0;
1751 		return 0;
1752 	}
1753 
1754 	n = cpuhw->n_events;
1755 	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1756 		return -EAGAIN;
1757 	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1758 	if (i < 0)
1759 		return -EAGAIN;
1760 
1761 	for (i = cpuhw->n_txn_start; i < n; ++i)
1762 		cpuhw->event[i]->hw.config = cpuhw->events[i];
1763 
1764 	cpuhw->txn_flags = 0;
1765 	perf_pmu_enable(pmu);
1766 	return 0;
1767 }
1768 
1769 /*
1770  * Return 1 if we might be able to put event on a limited PMC,
1771  * or 0 if not.
1772  * An event can only go on a limited PMC if it counts something
1773  * that a limited PMC can count, doesn't require interrupts, and
1774  * doesn't exclude any processor mode.
1775  */
1776 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1777 				 unsigned int flags)
1778 {
1779 	int n;
1780 	u64 alt[MAX_EVENT_ALTERNATIVES];
1781 
1782 	if (event->attr.exclude_user
1783 	    || event->attr.exclude_kernel
1784 	    || event->attr.exclude_hv
1785 	    || event->attr.sample_period)
1786 		return 0;
1787 
1788 	if (ppmu->limited_pmc_event(ev))
1789 		return 1;
1790 
1791 	/*
1792 	 * The requested event_id isn't on a limited PMC already;
1793 	 * see if any alternative code goes on a limited PMC.
1794 	 */
1795 	if (!ppmu->get_alternatives)
1796 		return 0;
1797 
1798 	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1799 	n = ppmu->get_alternatives(ev, flags, alt);
1800 
1801 	return n > 0;
1802 }
1803 
1804 /*
1805  * Find an alternative event_id that goes on a normal PMC, if possible,
1806  * and return the event_id code, or 0 if there is no such alternative.
1807  * (Note: event_id code 0 is "don't count" on all machines.)
1808  */
1809 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1810 {
1811 	u64 alt[MAX_EVENT_ALTERNATIVES];
1812 	int n;
1813 
1814 	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1815 	n = ppmu->get_alternatives(ev, flags, alt);
1816 	if (!n)
1817 		return 0;
1818 	return alt[0];
1819 }
1820 
1821 /* Number of perf_events counting hardware events */
1822 static atomic_t num_events;
1823 /* Used to avoid races in calling reserve/release_pmc_hardware */
1824 static DEFINE_MUTEX(pmc_reserve_mutex);
1825 
1826 /*
1827  * Release the PMU if this is the last perf_event.
1828  */
1829 static void hw_perf_event_destroy(struct perf_event *event)
1830 {
1831 	if (!atomic_add_unless(&num_events, -1, 1)) {
1832 		mutex_lock(&pmc_reserve_mutex);
1833 		if (atomic_dec_return(&num_events) == 0)
1834 			release_pmc_hardware();
1835 		mutex_unlock(&pmc_reserve_mutex);
1836 	}
1837 }
1838 
1839 /*
1840  * Translate a generic cache event_id config to a raw event_id code.
1841  */
1842 static int hw_perf_cache_event(u64 config, u64 *eventp)
1843 {
1844 	unsigned long type, op, result;
1845 	u64 ev;
1846 
1847 	if (!ppmu->cache_events)
1848 		return -EINVAL;
1849 
1850 	/* unpack config */
1851 	type = config & 0xff;
1852 	op = (config >> 8) & 0xff;
1853 	result = (config >> 16) & 0xff;
1854 
1855 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1856 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1857 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1858 		return -EINVAL;
1859 
1860 	ev = (*ppmu->cache_events)[type][op][result];
1861 	if (ev == 0)
1862 		return -EOPNOTSUPP;
1863 	if (ev == -1)
1864 		return -EINVAL;
1865 	*eventp = ev;
1866 	return 0;
1867 }
1868 
1869 static bool is_event_blacklisted(u64 ev)
1870 {
1871 	int i;
1872 
1873 	for (i=0; i < ppmu->n_blacklist_ev; i++) {
1874 		if (ppmu->blacklist_ev[i] == ev)
1875 			return true;
1876 	}
1877 
1878 	return false;
1879 }
1880 
1881 static int power_pmu_event_init(struct perf_event *event)
1882 {
1883 	u64 ev;
1884 	unsigned long flags;
1885 	struct perf_event *ctrs[MAX_HWEVENTS];
1886 	u64 events[MAX_HWEVENTS];
1887 	unsigned int cflags[MAX_HWEVENTS];
1888 	int n;
1889 	int err;
1890 	struct cpu_hw_events *cpuhw;
1891 
1892 	if (!ppmu)
1893 		return -ENOENT;
1894 
1895 	if (has_branch_stack(event)) {
1896 	        /* PMU has BHRB enabled */
1897 		if (!(ppmu->flags & PPMU_ARCH_207S))
1898 			return -EOPNOTSUPP;
1899 	}
1900 
1901 	switch (event->attr.type) {
1902 	case PERF_TYPE_HARDWARE:
1903 		ev = event->attr.config;
1904 		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1905 			return -EOPNOTSUPP;
1906 
1907 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1908 			return -EINVAL;
1909 		ev = ppmu->generic_events[ev];
1910 		break;
1911 	case PERF_TYPE_HW_CACHE:
1912 		err = hw_perf_cache_event(event->attr.config, &ev);
1913 		if (err)
1914 			return err;
1915 
1916 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1917 			return -EINVAL;
1918 		break;
1919 	case PERF_TYPE_RAW:
1920 		ev = event->attr.config;
1921 
1922 		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1923 			return -EINVAL;
1924 		break;
1925 	default:
1926 		return -ENOENT;
1927 	}
1928 
1929 	event->hw.config_base = ev;
1930 	event->hw.idx = 0;
1931 
1932 	/*
1933 	 * If we are not running on a hypervisor, force the
1934 	 * exclude_hv bit to 0 so that we don't care what
1935 	 * the user set it to.
1936 	 */
1937 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1938 		event->attr.exclude_hv = 0;
1939 
1940 	/*
1941 	 * If this is a per-task event, then we can use
1942 	 * PM_RUN_* events interchangeably with their non RUN_*
1943 	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1944 	 * XXX we should check if the task is an idle task.
1945 	 */
1946 	flags = 0;
1947 	if (event->attach_state & PERF_ATTACH_TASK)
1948 		flags |= PPMU_ONLY_COUNT_RUN;
1949 
1950 	/*
1951 	 * If this machine has limited events, check whether this
1952 	 * event_id could go on a limited event.
1953 	 */
1954 	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1955 		if (can_go_on_limited_pmc(event, ev, flags)) {
1956 			flags |= PPMU_LIMITED_PMC_OK;
1957 		} else if (ppmu->limited_pmc_event(ev)) {
1958 			/*
1959 			 * The requested event_id is on a limited PMC,
1960 			 * but we can't use a limited PMC; see if any
1961 			 * alternative goes on a normal PMC.
1962 			 */
1963 			ev = normal_pmc_alternative(ev, flags);
1964 			if (!ev)
1965 				return -EINVAL;
1966 		}
1967 	}
1968 
1969 	/* Extra checks for EBB */
1970 	err = ebb_event_check(event);
1971 	if (err)
1972 		return err;
1973 
1974 	/*
1975 	 * If this is in a group, check if it can go on with all the
1976 	 * other hardware events in the group.  We assume the event
1977 	 * hasn't been linked into its leader's sibling list at this point.
1978 	 */
1979 	n = 0;
1980 	if (event->group_leader != event) {
1981 		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1982 				   ctrs, events, cflags);
1983 		if (n < 0)
1984 			return -EINVAL;
1985 	}
1986 	events[n] = ev;
1987 	ctrs[n] = event;
1988 	cflags[n] = flags;
1989 	if (check_excludes(ctrs, cflags, n, 1))
1990 		return -EINVAL;
1991 
1992 	cpuhw = &get_cpu_var(cpu_hw_events);
1993 	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1994 
1995 	if (has_branch_stack(event)) {
1996 		u64 bhrb_filter = -1;
1997 
1998 		if (ppmu->bhrb_filter_map)
1999 			bhrb_filter = ppmu->bhrb_filter_map(
2000 					event->attr.branch_sample_type);
2001 
2002 		if (bhrb_filter == -1) {
2003 			put_cpu_var(cpu_hw_events);
2004 			return -EOPNOTSUPP;
2005 		}
2006 		cpuhw->bhrb_filter = bhrb_filter;
2007 	}
2008 
2009 	put_cpu_var(cpu_hw_events);
2010 	if (err)
2011 		return -EINVAL;
2012 
2013 	event->hw.config = events[n];
2014 	event->hw.event_base = cflags[n];
2015 	event->hw.last_period = event->hw.sample_period;
2016 	local64_set(&event->hw.period_left, event->hw.last_period);
2017 
2018 	/*
2019 	 * For EBB events we just context switch the PMC value, we don't do any
2020 	 * of the sample_period logic. We use hw.prev_count for this.
2021 	 */
2022 	if (is_ebb_event(event))
2023 		local64_set(&event->hw.prev_count, 0);
2024 
2025 	/*
2026 	 * See if we need to reserve the PMU.
2027 	 * If no events are currently in use, then we have to take a
2028 	 * mutex to ensure that we don't race with another task doing
2029 	 * reserve_pmc_hardware or release_pmc_hardware.
2030 	 */
2031 	err = 0;
2032 	if (!atomic_inc_not_zero(&num_events)) {
2033 		mutex_lock(&pmc_reserve_mutex);
2034 		if (atomic_read(&num_events) == 0 &&
2035 		    reserve_pmc_hardware(perf_event_interrupt))
2036 			err = -EBUSY;
2037 		else
2038 			atomic_inc(&num_events);
2039 		mutex_unlock(&pmc_reserve_mutex);
2040 	}
2041 	event->destroy = hw_perf_event_destroy;
2042 
2043 	return err;
2044 }
2045 
2046 static int power_pmu_event_idx(struct perf_event *event)
2047 {
2048 	return event->hw.idx;
2049 }
2050 
2051 ssize_t power_events_sysfs_show(struct device *dev,
2052 				struct device_attribute *attr, char *page)
2053 {
2054 	struct perf_pmu_events_attr *pmu_attr;
2055 
2056 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2057 
2058 	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2059 }
2060 
2061 static struct pmu power_pmu = {
2062 	.pmu_enable	= power_pmu_enable,
2063 	.pmu_disable	= power_pmu_disable,
2064 	.event_init	= power_pmu_event_init,
2065 	.add		= power_pmu_add,
2066 	.del		= power_pmu_del,
2067 	.start		= power_pmu_start,
2068 	.stop		= power_pmu_stop,
2069 	.read		= power_pmu_read,
2070 	.start_txn	= power_pmu_start_txn,
2071 	.cancel_txn	= power_pmu_cancel_txn,
2072 	.commit_txn	= power_pmu_commit_txn,
2073 	.event_idx	= power_pmu_event_idx,
2074 	.sched_task	= power_pmu_sched_task,
2075 };
2076 
2077 /*
2078  * A counter has overflowed; update its count and record
2079  * things if requested.  Note that interrupts are hard-disabled
2080  * here so there is no possibility of being interrupted.
2081  */
2082 static void record_and_restart(struct perf_event *event, unsigned long val,
2083 			       struct pt_regs *regs)
2084 {
2085 	u64 period = event->hw.sample_period;
2086 	s64 prev, delta, left;
2087 	int record = 0;
2088 
2089 	if (event->hw.state & PERF_HES_STOPPED) {
2090 		write_pmc(event->hw.idx, 0);
2091 		return;
2092 	}
2093 
2094 	/* we don't have to worry about interrupts here */
2095 	prev = local64_read(&event->hw.prev_count);
2096 	delta = check_and_compute_delta(prev, val);
2097 	local64_add(delta, &event->count);
2098 
2099 	/*
2100 	 * See if the total period for this event has expired,
2101 	 * and update for the next period.
2102 	 */
2103 	val = 0;
2104 	left = local64_read(&event->hw.period_left) - delta;
2105 	if (delta == 0)
2106 		left++;
2107 	if (period) {
2108 		if (left <= 0) {
2109 			left += period;
2110 			if (left <= 0)
2111 				left = period;
2112 			record = siar_valid(regs);
2113 			event->hw.last_period = event->hw.sample_period;
2114 		}
2115 		if (left < 0x80000000LL)
2116 			val = 0x80000000LL - left;
2117 	}
2118 
2119 	write_pmc(event->hw.idx, val);
2120 	local64_set(&event->hw.prev_count, val);
2121 	local64_set(&event->hw.period_left, left);
2122 	perf_event_update_userpage(event);
2123 
2124 	/*
2125 	 * Finally record data if requested.
2126 	 */
2127 	if (record) {
2128 		struct perf_sample_data data;
2129 
2130 		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2131 
2132 		if (event->attr.sample_type &
2133 		    (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2134 			perf_get_data_addr(event, regs, &data.addr);
2135 
2136 		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2137 			struct cpu_hw_events *cpuhw;
2138 			cpuhw = this_cpu_ptr(&cpu_hw_events);
2139 			power_pmu_bhrb_read(event, cpuhw);
2140 			data.br_stack = &cpuhw->bhrb_stack;
2141 		}
2142 
2143 		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2144 						ppmu->get_mem_data_src)
2145 			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2146 
2147 		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2148 						ppmu->get_mem_weight)
2149 			ppmu->get_mem_weight(&data.weight);
2150 
2151 		if (perf_event_overflow(event, &data, regs))
2152 			power_pmu_stop(event, 0);
2153 	} else if (period) {
2154 		/* Account for interrupt in case of invalid SIAR */
2155 		if (perf_event_account_interrupt(event))
2156 			power_pmu_stop(event, 0);
2157 	}
2158 }
2159 
2160 /*
2161  * Called from generic code to get the misc flags (i.e. processor mode)
2162  * for an event_id.
2163  */
2164 unsigned long perf_misc_flags(struct pt_regs *regs)
2165 {
2166 	u32 flags = perf_get_misc_flags(regs);
2167 
2168 	if (flags)
2169 		return flags;
2170 	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2171 		PERF_RECORD_MISC_KERNEL;
2172 }
2173 
2174 /*
2175  * Called from generic code to get the instruction pointer
2176  * for an event_id.
2177  */
2178 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2179 {
2180 	bool use_siar = regs_use_siar(regs);
2181 
2182 	if (use_siar && siar_valid(regs))
2183 		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2184 	else if (use_siar)
2185 		return 0;		// no valid instruction pointer
2186 	else
2187 		return regs->nip;
2188 }
2189 
2190 static bool pmc_overflow_power7(unsigned long val)
2191 {
2192 	/*
2193 	 * Events on POWER7 can roll back if a speculative event doesn't
2194 	 * eventually complete. Unfortunately in some rare cases they will
2195 	 * raise a performance monitor exception. We need to catch this to
2196 	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2197 	 * cycles from overflow.
2198 	 *
2199 	 * We only do this if the first pass fails to find any overflowing
2200 	 * PMCs because a user might set a period of less than 256 and we
2201 	 * don't want to mistakenly reset them.
2202 	 */
2203 	if ((0x80000000 - val) <= 256)
2204 		return true;
2205 
2206 	return false;
2207 }
2208 
2209 static bool pmc_overflow(unsigned long val)
2210 {
2211 	if ((int)val < 0)
2212 		return true;
2213 
2214 	return false;
2215 }
2216 
2217 /*
2218  * Performance monitor interrupt stuff
2219  */
2220 static void __perf_event_interrupt(struct pt_regs *regs)
2221 {
2222 	int i, j;
2223 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2224 	struct perf_event *event;
2225 	unsigned long val[8];
2226 	int found, active;
2227 	int nmi;
2228 
2229 	if (cpuhw->n_limited)
2230 		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2231 					mfspr(SPRN_PMC6));
2232 
2233 	perf_read_regs(regs);
2234 
2235 	/*
2236 	 * If perf interrupts hit in a local_irq_disable (soft-masked) region,
2237 	 * we consider them as NMIs. This is required to prevent hash faults on
2238 	 * user addresses when reading callchains. See the NMI test in
2239 	 * do_hash_page.
2240 	 */
2241 	nmi = perf_intr_is_nmi(regs);
2242 	if (nmi)
2243 		nmi_enter();
2244 	else
2245 		irq_enter();
2246 
2247 	/* Read all the PMCs since we'll need them a bunch of times */
2248 	for (i = 0; i < ppmu->n_counter; ++i)
2249 		val[i] = read_pmc(i + 1);
2250 
2251 	/* Try to find what caused the IRQ */
2252 	found = 0;
2253 	for (i = 0; i < ppmu->n_counter; ++i) {
2254 		if (!pmc_overflow(val[i]))
2255 			continue;
2256 		if (is_limited_pmc(i + 1))
2257 			continue; /* these won't generate IRQs */
2258 		/*
2259 		 * We've found one that's overflowed.  For active
2260 		 * counters we need to log this.  For inactive
2261 		 * counters, we need to reset it anyway
2262 		 */
2263 		found = 1;
2264 		active = 0;
2265 		for (j = 0; j < cpuhw->n_events; ++j) {
2266 			event = cpuhw->event[j];
2267 			if (event->hw.idx == (i + 1)) {
2268 				active = 1;
2269 				record_and_restart(event, val[i], regs);
2270 				break;
2271 			}
2272 		}
2273 		if (!active)
2274 			/* reset non active counters that have overflowed */
2275 			write_pmc(i + 1, 0);
2276 	}
2277 	if (!found && pvr_version_is(PVR_POWER7)) {
2278 		/* check active counters for special buggy p7 overflow */
2279 		for (i = 0; i < cpuhw->n_events; ++i) {
2280 			event = cpuhw->event[i];
2281 			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2282 				continue;
2283 			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2284 				/* event has overflowed in a buggy way*/
2285 				found = 1;
2286 				record_and_restart(event,
2287 						   val[event->hw.idx - 1],
2288 						   regs);
2289 			}
2290 		}
2291 	}
2292 	if (!found && !nmi && printk_ratelimit())
2293 		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2294 
2295 	/*
2296 	 * Reset MMCR0 to its normal value.  This will set PMXE and
2297 	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2298 	 * and thus allow interrupts to occur again.
2299 	 * XXX might want to use MSR.PM to keep the events frozen until
2300 	 * we get back out of this interrupt.
2301 	 */
2302 	write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0);
2303 
2304 	if (nmi)
2305 		nmi_exit();
2306 	else
2307 		irq_exit();
2308 }
2309 
2310 static void perf_event_interrupt(struct pt_regs *regs)
2311 {
2312 	u64 start_clock = sched_clock();
2313 
2314 	__perf_event_interrupt(regs);
2315 	perf_sample_event_took(sched_clock() - start_clock);
2316 }
2317 
2318 static int power_pmu_prepare_cpu(unsigned int cpu)
2319 {
2320 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2321 
2322 	if (ppmu) {
2323 		memset(cpuhw, 0, sizeof(*cpuhw));
2324 		cpuhw->mmcr.mmcr0 = MMCR0_FC;
2325 	}
2326 	return 0;
2327 }
2328 
2329 int register_power_pmu(struct power_pmu *pmu)
2330 {
2331 	if (ppmu)
2332 		return -EBUSY;		/* something's already registered */
2333 
2334 	ppmu = pmu;
2335 	pr_info("%s performance monitor hardware support registered\n",
2336 		pmu->name);
2337 
2338 	power_pmu.attr_groups = ppmu->attr_groups;
2339 	power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);
2340 
2341 #ifdef MSR_HV
2342 	/*
2343 	 * Use FCHV to ignore kernel events if MSR.HV is set.
2344 	 */
2345 	if (mfmsr() & MSR_HV)
2346 		freeze_events_kernel = MMCR0_FCHV;
2347 #endif /* CONFIG_PPC64 */
2348 
2349 	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2350 	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2351 			  power_pmu_prepare_cpu, NULL);
2352 	return 0;
2353 }
2354 
2355 #ifdef CONFIG_PPC64
2356 static int __init init_ppc64_pmu(void)
2357 {
2358 	/* run through all the pmu drivers one at a time */
2359 	if (!init_power5_pmu())
2360 		return 0;
2361 	else if (!init_power5p_pmu())
2362 		return 0;
2363 	else if (!init_power6_pmu())
2364 		return 0;
2365 	else if (!init_power7_pmu())
2366 		return 0;
2367 	else if (!init_power8_pmu())
2368 		return 0;
2369 	else if (!init_power9_pmu())
2370 		return 0;
2371 	else if (!init_power10_pmu())
2372 		return 0;
2373 	else if (!init_ppc970_pmu())
2374 		return 0;
2375 	else
2376 		return init_generic_compat_pmu();
2377 }
2378 early_initcall(init_ppc64_pmu);
2379 #endif
2380