xref: /openbmc/linux/arch/powerpc/perf/callchain.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance counter callchain support - powerpc architecture code
4  *
5  * Copyright © 2009 Paul Mackerras, IBM Corporation.
6  */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/perf_event.h>
10 #include <linux/percpu.h>
11 #include <linux/uaccess.h>
12 #include <linux/mm.h>
13 #include <asm/ptrace.h>
14 #include <asm/pgtable.h>
15 #include <asm/sigcontext.h>
16 #include <asm/ucontext.h>
17 #include <asm/vdso.h>
18 #ifdef CONFIG_PPC64
19 #include "../kernel/ppc32.h"
20 #endif
21 #include <asm/pte-walk.h>
22 
23 
24 /*
25  * Is sp valid as the address of the next kernel stack frame after prev_sp?
26  * The next frame may be in a different stack area but should not go
27  * back down in the same stack area.
28  */
29 static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
30 {
31 	if (sp & 0xf)
32 		return 0;		/* must be 16-byte aligned */
33 	if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
34 		return 0;
35 	if (sp >= prev_sp + STACK_FRAME_MIN_SIZE)
36 		return 1;
37 	/*
38 	 * sp could decrease when we jump off an interrupt stack
39 	 * back to the regular process stack.
40 	 */
41 	if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
42 		return 1;
43 	return 0;
44 }
45 
46 void
47 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
48 {
49 	unsigned long sp, next_sp;
50 	unsigned long next_ip;
51 	unsigned long lr;
52 	long level = 0;
53 	unsigned long *fp;
54 
55 	lr = regs->link;
56 	sp = regs->gpr[1];
57 	perf_callchain_store(entry, perf_instruction_pointer(regs));
58 
59 	if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
60 		return;
61 
62 	for (;;) {
63 		fp = (unsigned long *) sp;
64 		next_sp = fp[0];
65 
66 		if (next_sp == sp + STACK_INT_FRAME_SIZE &&
67 		    fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
68 			/*
69 			 * This looks like an interrupt frame for an
70 			 * interrupt that occurred in the kernel
71 			 */
72 			regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
73 			next_ip = regs->nip;
74 			lr = regs->link;
75 			level = 0;
76 			perf_callchain_store_context(entry, PERF_CONTEXT_KERNEL);
77 
78 		} else {
79 			if (level == 0)
80 				next_ip = lr;
81 			else
82 				next_ip = fp[STACK_FRAME_LR_SAVE];
83 
84 			/*
85 			 * We can't tell which of the first two addresses
86 			 * we get are valid, but we can filter out the
87 			 * obviously bogus ones here.  We replace them
88 			 * with 0 rather than removing them entirely so
89 			 * that userspace can tell which is which.
90 			 */
91 			if ((level == 1 && next_ip == lr) ||
92 			    (level <= 1 && !kernel_text_address(next_ip)))
93 				next_ip = 0;
94 
95 			++level;
96 		}
97 
98 		perf_callchain_store(entry, next_ip);
99 		if (!valid_next_sp(next_sp, sp))
100 			return;
101 		sp = next_sp;
102 	}
103 }
104 
105 #ifdef CONFIG_PPC64
106 /*
107  * On 64-bit we don't want to invoke hash_page on user addresses from
108  * interrupt context, so if the access faults, we read the page tables
109  * to find which page (if any) is mapped and access it directly.
110  */
111 static int read_user_stack_slow(void __user *ptr, void *buf, int nb)
112 {
113 	int ret = -EFAULT;
114 	pgd_t *pgdir;
115 	pte_t *ptep, pte;
116 	unsigned shift;
117 	unsigned long addr = (unsigned long) ptr;
118 	unsigned long offset;
119 	unsigned long pfn, flags;
120 	void *kaddr;
121 
122 	pgdir = current->mm->pgd;
123 	if (!pgdir)
124 		return -EFAULT;
125 
126 	local_irq_save(flags);
127 	ptep = find_current_mm_pte(pgdir, addr, NULL, &shift);
128 	if (!ptep)
129 		goto err_out;
130 	if (!shift)
131 		shift = PAGE_SHIFT;
132 
133 	/* align address to page boundary */
134 	offset = addr & ((1UL << shift) - 1);
135 
136 	pte = READ_ONCE(*ptep);
137 	if (!pte_present(pte) || !pte_user(pte))
138 		goto err_out;
139 	pfn = pte_pfn(pte);
140 	if (!page_is_ram(pfn))
141 		goto err_out;
142 
143 	/* no highmem to worry about here */
144 	kaddr = pfn_to_kaddr(pfn);
145 	memcpy(buf, kaddr + offset, nb);
146 	ret = 0;
147 err_out:
148 	local_irq_restore(flags);
149 	return ret;
150 }
151 
152 static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
153 {
154 	if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
155 	    ((unsigned long)ptr & 7))
156 		return -EFAULT;
157 
158 	pagefault_disable();
159 	if (!__get_user_inatomic(*ret, ptr)) {
160 		pagefault_enable();
161 		return 0;
162 	}
163 	pagefault_enable();
164 
165 	return read_user_stack_slow(ptr, ret, 8);
166 }
167 
168 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
169 {
170 	if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
171 	    ((unsigned long)ptr & 3))
172 		return -EFAULT;
173 
174 	pagefault_disable();
175 	if (!__get_user_inatomic(*ret, ptr)) {
176 		pagefault_enable();
177 		return 0;
178 	}
179 	pagefault_enable();
180 
181 	return read_user_stack_slow(ptr, ret, 4);
182 }
183 
184 static inline int valid_user_sp(unsigned long sp, int is_64)
185 {
186 	if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
187 		return 0;
188 	return 1;
189 }
190 
191 /*
192  * 64-bit user processes use the same stack frame for RT and non-RT signals.
193  */
194 struct signal_frame_64 {
195 	char		dummy[__SIGNAL_FRAMESIZE];
196 	struct ucontext	uc;
197 	unsigned long	unused[2];
198 	unsigned int	tramp[6];
199 	struct siginfo	*pinfo;
200 	void		*puc;
201 	struct siginfo	info;
202 	char		abigap[288];
203 };
204 
205 static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
206 {
207 	if (nip == fp + offsetof(struct signal_frame_64, tramp))
208 		return 1;
209 	if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
210 	    nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
211 		return 1;
212 	return 0;
213 }
214 
215 /*
216  * Do some sanity checking on the signal frame pointed to by sp.
217  * We check the pinfo and puc pointers in the frame.
218  */
219 static int sane_signal_64_frame(unsigned long sp)
220 {
221 	struct signal_frame_64 __user *sf;
222 	unsigned long pinfo, puc;
223 
224 	sf = (struct signal_frame_64 __user *) sp;
225 	if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
226 	    read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
227 		return 0;
228 	return pinfo == (unsigned long) &sf->info &&
229 		puc == (unsigned long) &sf->uc;
230 }
231 
232 static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
233 				   struct pt_regs *regs)
234 {
235 	unsigned long sp, next_sp;
236 	unsigned long next_ip;
237 	unsigned long lr;
238 	long level = 0;
239 	struct signal_frame_64 __user *sigframe;
240 	unsigned long __user *fp, *uregs;
241 
242 	next_ip = perf_instruction_pointer(regs);
243 	lr = regs->link;
244 	sp = regs->gpr[1];
245 	perf_callchain_store(entry, next_ip);
246 
247 	while (entry->nr < entry->max_stack) {
248 		fp = (unsigned long __user *) sp;
249 		if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
250 			return;
251 		if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
252 			return;
253 
254 		/*
255 		 * Note: the next_sp - sp >= signal frame size check
256 		 * is true when next_sp < sp, which can happen when
257 		 * transitioning from an alternate signal stack to the
258 		 * normal stack.
259 		 */
260 		if (next_sp - sp >= sizeof(struct signal_frame_64) &&
261 		    (is_sigreturn_64_address(next_ip, sp) ||
262 		     (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
263 		    sane_signal_64_frame(sp)) {
264 			/*
265 			 * This looks like an signal frame
266 			 */
267 			sigframe = (struct signal_frame_64 __user *) sp;
268 			uregs = sigframe->uc.uc_mcontext.gp_regs;
269 			if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
270 			    read_user_stack_64(&uregs[PT_LNK], &lr) ||
271 			    read_user_stack_64(&uregs[PT_R1], &sp))
272 				return;
273 			level = 0;
274 			perf_callchain_store_context(entry, PERF_CONTEXT_USER);
275 			perf_callchain_store(entry, next_ip);
276 			continue;
277 		}
278 
279 		if (level == 0)
280 			next_ip = lr;
281 		perf_callchain_store(entry, next_ip);
282 		++level;
283 		sp = next_sp;
284 	}
285 }
286 
287 #else  /* CONFIG_PPC64 */
288 /*
289  * On 32-bit we just access the address and let hash_page create a
290  * HPTE if necessary, so there is no need to fall back to reading
291  * the page tables.  Since this is called at interrupt level,
292  * do_page_fault() won't treat a DSI as a page fault.
293  */
294 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
295 {
296 	int rc;
297 
298 	if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
299 	    ((unsigned long)ptr & 3))
300 		return -EFAULT;
301 
302 	pagefault_disable();
303 	rc = __get_user_inatomic(*ret, ptr);
304 	pagefault_enable();
305 
306 	return rc;
307 }
308 
309 static inline void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
310 					  struct pt_regs *regs)
311 {
312 }
313 
314 static inline int valid_user_sp(unsigned long sp, int is_64)
315 {
316 	if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
317 		return 0;
318 	return 1;
319 }
320 
321 #define __SIGNAL_FRAMESIZE32	__SIGNAL_FRAMESIZE
322 #define sigcontext32		sigcontext
323 #define mcontext32		mcontext
324 #define ucontext32		ucontext
325 #define compat_siginfo_t	struct siginfo
326 
327 #endif /* CONFIG_PPC64 */
328 
329 /*
330  * Layout for non-RT signal frames
331  */
332 struct signal_frame_32 {
333 	char			dummy[__SIGNAL_FRAMESIZE32];
334 	struct sigcontext32	sctx;
335 	struct mcontext32	mctx;
336 	int			abigap[56];
337 };
338 
339 /*
340  * Layout for RT signal frames
341  */
342 struct rt_signal_frame_32 {
343 	char			dummy[__SIGNAL_FRAMESIZE32 + 16];
344 	compat_siginfo_t	info;
345 	struct ucontext32	uc;
346 	int			abigap[56];
347 };
348 
349 static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
350 {
351 	if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
352 		return 1;
353 	if (vdso32_sigtramp && current->mm->context.vdso_base &&
354 	    nip == current->mm->context.vdso_base + vdso32_sigtramp)
355 		return 1;
356 	return 0;
357 }
358 
359 static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
360 {
361 	if (nip == fp + offsetof(struct rt_signal_frame_32,
362 				 uc.uc_mcontext.mc_pad))
363 		return 1;
364 	if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
365 	    nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
366 		return 1;
367 	return 0;
368 }
369 
370 static int sane_signal_32_frame(unsigned int sp)
371 {
372 	struct signal_frame_32 __user *sf;
373 	unsigned int regs;
374 
375 	sf = (struct signal_frame_32 __user *) (unsigned long) sp;
376 	if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
377 		return 0;
378 	return regs == (unsigned long) &sf->mctx;
379 }
380 
381 static int sane_rt_signal_32_frame(unsigned int sp)
382 {
383 	struct rt_signal_frame_32 __user *sf;
384 	unsigned int regs;
385 
386 	sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
387 	if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
388 		return 0;
389 	return regs == (unsigned long) &sf->uc.uc_mcontext;
390 }
391 
392 static unsigned int __user *signal_frame_32_regs(unsigned int sp,
393 				unsigned int next_sp, unsigned int next_ip)
394 {
395 	struct mcontext32 __user *mctx = NULL;
396 	struct signal_frame_32 __user *sf;
397 	struct rt_signal_frame_32 __user *rt_sf;
398 
399 	/*
400 	 * Note: the next_sp - sp >= signal frame size check
401 	 * is true when next_sp < sp, for example, when
402 	 * transitioning from an alternate signal stack to the
403 	 * normal stack.
404 	 */
405 	if (next_sp - sp >= sizeof(struct signal_frame_32) &&
406 	    is_sigreturn_32_address(next_ip, sp) &&
407 	    sane_signal_32_frame(sp)) {
408 		sf = (struct signal_frame_32 __user *) (unsigned long) sp;
409 		mctx = &sf->mctx;
410 	}
411 
412 	if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
413 	    is_rt_sigreturn_32_address(next_ip, sp) &&
414 	    sane_rt_signal_32_frame(sp)) {
415 		rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
416 		mctx = &rt_sf->uc.uc_mcontext;
417 	}
418 
419 	if (!mctx)
420 		return NULL;
421 	return mctx->mc_gregs;
422 }
423 
424 static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
425 				   struct pt_regs *regs)
426 {
427 	unsigned int sp, next_sp;
428 	unsigned int next_ip;
429 	unsigned int lr;
430 	long level = 0;
431 	unsigned int __user *fp, *uregs;
432 
433 	next_ip = perf_instruction_pointer(regs);
434 	lr = regs->link;
435 	sp = regs->gpr[1];
436 	perf_callchain_store(entry, next_ip);
437 
438 	while (entry->nr < entry->max_stack) {
439 		fp = (unsigned int __user *) (unsigned long) sp;
440 		if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
441 			return;
442 		if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
443 			return;
444 
445 		uregs = signal_frame_32_regs(sp, next_sp, next_ip);
446 		if (!uregs && level <= 1)
447 			uregs = signal_frame_32_regs(sp, next_sp, lr);
448 		if (uregs) {
449 			/*
450 			 * This looks like an signal frame, so restart
451 			 * the stack trace with the values in it.
452 			 */
453 			if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
454 			    read_user_stack_32(&uregs[PT_LNK], &lr) ||
455 			    read_user_stack_32(&uregs[PT_R1], &sp))
456 				return;
457 			level = 0;
458 			perf_callchain_store_context(entry, PERF_CONTEXT_USER);
459 			perf_callchain_store(entry, next_ip);
460 			continue;
461 		}
462 
463 		if (level == 0)
464 			next_ip = lr;
465 		perf_callchain_store(entry, next_ip);
466 		++level;
467 		sp = next_sp;
468 	}
469 }
470 
471 void
472 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
473 {
474 	if (!is_32bit_task())
475 		perf_callchain_user_64(entry, regs);
476 	else
477 		perf_callchain_user_32(entry, regs);
478 }
479