xref: /openbmc/linux/arch/powerpc/net/bpf_jit_comp64.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 /*
2  * bpf_jit_comp64.c: eBPF JIT compiler
3  *
4  * Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
5  *		  IBM Corporation
6  *
7  * Based on the powerpc classic BPF JIT compiler by Matt Evans
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14 #include <linux/moduleloader.h>
15 #include <asm/cacheflush.h>
16 #include <asm/asm-compat.h>
17 #include <linux/netdevice.h>
18 #include <linux/filter.h>
19 #include <linux/if_vlan.h>
20 #include <asm/kprobes.h>
21 #include <linux/bpf.h>
22 
23 #include "bpf_jit64.h"
24 
25 static void bpf_jit_fill_ill_insns(void *area, unsigned int size)
26 {
27 	memset32(area, BREAKPOINT_INSTRUCTION, size/4);
28 }
29 
30 static inline void bpf_flush_icache(void *start, void *end)
31 {
32 	smp_wmb();
33 	flush_icache_range((unsigned long)start, (unsigned long)end);
34 }
35 
36 static inline bool bpf_is_seen_register(struct codegen_context *ctx, int i)
37 {
38 	return (ctx->seen & (1 << (31 - b2p[i])));
39 }
40 
41 static inline void bpf_set_seen_register(struct codegen_context *ctx, int i)
42 {
43 	ctx->seen |= (1 << (31 - b2p[i]));
44 }
45 
46 static inline bool bpf_has_stack_frame(struct codegen_context *ctx)
47 {
48 	/*
49 	 * We only need a stack frame if:
50 	 * - we call other functions (kernel helpers), or
51 	 * - the bpf program uses its stack area
52 	 * The latter condition is deduced from the usage of BPF_REG_FP
53 	 */
54 	return ctx->seen & SEEN_FUNC || bpf_is_seen_register(ctx, BPF_REG_FP);
55 }
56 
57 /*
58  * When not setting up our own stackframe, the redzone usage is:
59  *
60  *		[	prev sp		] <-------------
61  *		[	  ...       	] 		|
62  * sp (r1) --->	[    stack pointer	] --------------
63  *		[   nv gpr save area	] 6*8
64  *		[    tail_call_cnt	] 8
65  *		[    local_tmp_var	] 8
66  *		[   unused red zone	] 208 bytes protected
67  */
68 static int bpf_jit_stack_local(struct codegen_context *ctx)
69 {
70 	if (bpf_has_stack_frame(ctx))
71 		return STACK_FRAME_MIN_SIZE + ctx->stack_size;
72 	else
73 		return -(BPF_PPC_STACK_SAVE + 16);
74 }
75 
76 static int bpf_jit_stack_tailcallcnt(struct codegen_context *ctx)
77 {
78 	return bpf_jit_stack_local(ctx) + 8;
79 }
80 
81 static int bpf_jit_stack_offsetof(struct codegen_context *ctx, int reg)
82 {
83 	if (reg >= BPF_PPC_NVR_MIN && reg < 32)
84 		return (bpf_has_stack_frame(ctx) ?
85 			(BPF_PPC_STACKFRAME + ctx->stack_size) : 0)
86 				- (8 * (32 - reg));
87 
88 	pr_err("BPF JIT is asking about unknown registers");
89 	BUG();
90 }
91 
92 static void bpf_jit_build_prologue(u32 *image, struct codegen_context *ctx)
93 {
94 	int i;
95 
96 	/*
97 	 * Initialize tail_call_cnt if we do tail calls.
98 	 * Otherwise, put in NOPs so that it can be skipped when we are
99 	 * invoked through a tail call.
100 	 */
101 	if (ctx->seen & SEEN_TAILCALL) {
102 		PPC_LI(b2p[TMP_REG_1], 0);
103 		/* this goes in the redzone */
104 		PPC_BPF_STL(b2p[TMP_REG_1], 1, -(BPF_PPC_STACK_SAVE + 8));
105 	} else {
106 		PPC_NOP();
107 		PPC_NOP();
108 	}
109 
110 #define BPF_TAILCALL_PROLOGUE_SIZE	8
111 
112 	if (bpf_has_stack_frame(ctx)) {
113 		/*
114 		 * We need a stack frame, but we don't necessarily need to
115 		 * save/restore LR unless we call other functions
116 		 */
117 		if (ctx->seen & SEEN_FUNC) {
118 			EMIT(PPC_INST_MFLR | __PPC_RT(R0));
119 			PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
120 		}
121 
122 		PPC_BPF_STLU(1, 1, -(BPF_PPC_STACKFRAME + ctx->stack_size));
123 	}
124 
125 	/*
126 	 * Back up non-volatile regs -- BPF registers 6-10
127 	 * If we haven't created our own stack frame, we save these
128 	 * in the protected zone below the previous stack frame
129 	 */
130 	for (i = BPF_REG_6; i <= BPF_REG_10; i++)
131 		if (bpf_is_seen_register(ctx, i))
132 			PPC_BPF_STL(b2p[i], 1, bpf_jit_stack_offsetof(ctx, b2p[i]));
133 
134 	/* Setup frame pointer to point to the bpf stack area */
135 	if (bpf_is_seen_register(ctx, BPF_REG_FP))
136 		PPC_ADDI(b2p[BPF_REG_FP], 1,
137 				STACK_FRAME_MIN_SIZE + ctx->stack_size);
138 }
139 
140 static void bpf_jit_emit_common_epilogue(u32 *image, struct codegen_context *ctx)
141 {
142 	int i;
143 
144 	/* Restore NVRs */
145 	for (i = BPF_REG_6; i <= BPF_REG_10; i++)
146 		if (bpf_is_seen_register(ctx, i))
147 			PPC_BPF_LL(b2p[i], 1, bpf_jit_stack_offsetof(ctx, b2p[i]));
148 
149 	/* Tear down our stack frame */
150 	if (bpf_has_stack_frame(ctx)) {
151 		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME + ctx->stack_size);
152 		if (ctx->seen & SEEN_FUNC) {
153 			PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
154 			PPC_MTLR(0);
155 		}
156 	}
157 }
158 
159 static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
160 {
161 	bpf_jit_emit_common_epilogue(image, ctx);
162 
163 	/* Move result to r3 */
164 	PPC_MR(3, b2p[BPF_REG_0]);
165 
166 	PPC_BLR();
167 }
168 
169 static void bpf_jit_emit_func_call_hlp(u32 *image, struct codegen_context *ctx,
170 				       u64 func)
171 {
172 #ifdef PPC64_ELF_ABI_v1
173 	/* func points to the function descriptor */
174 	PPC_LI64(b2p[TMP_REG_2], func);
175 	/* Load actual entry point from function descriptor */
176 	PPC_BPF_LL(b2p[TMP_REG_1], b2p[TMP_REG_2], 0);
177 	/* ... and move it to LR */
178 	PPC_MTLR(b2p[TMP_REG_1]);
179 	/*
180 	 * Load TOC from function descriptor at offset 8.
181 	 * We can clobber r2 since we get called through a
182 	 * function pointer (so caller will save/restore r2)
183 	 * and since we don't use a TOC ourself.
184 	 */
185 	PPC_BPF_LL(2, b2p[TMP_REG_2], 8);
186 #else
187 	/* We can clobber r12 */
188 	PPC_FUNC_ADDR(12, func);
189 	PPC_MTLR(12);
190 #endif
191 	PPC_BLRL();
192 }
193 
194 static void bpf_jit_emit_func_call_rel(u32 *image, struct codegen_context *ctx,
195 				       u64 func)
196 {
197 	unsigned int i, ctx_idx = ctx->idx;
198 
199 	/* Load function address into r12 */
200 	PPC_LI64(12, func);
201 
202 	/* For bpf-to-bpf function calls, the callee's address is unknown
203 	 * until the last extra pass. As seen above, we use PPC_LI64() to
204 	 * load the callee's address, but this may optimize the number of
205 	 * instructions required based on the nature of the address.
206 	 *
207 	 * Since we don't want the number of instructions emitted to change,
208 	 * we pad the optimized PPC_LI64() call with NOPs to guarantee that
209 	 * we always have a five-instruction sequence, which is the maximum
210 	 * that PPC_LI64() can emit.
211 	 */
212 	for (i = ctx->idx - ctx_idx; i < 5; i++)
213 		PPC_NOP();
214 
215 #ifdef PPC64_ELF_ABI_v1
216 	/*
217 	 * Load TOC from function descriptor at offset 8.
218 	 * We can clobber r2 since we get called through a
219 	 * function pointer (so caller will save/restore r2)
220 	 * and since we don't use a TOC ourself.
221 	 */
222 	PPC_BPF_LL(2, 12, 8);
223 	/* Load actual entry point from function descriptor */
224 	PPC_BPF_LL(12, 12, 0);
225 #endif
226 
227 	PPC_MTLR(12);
228 	PPC_BLRL();
229 }
230 
231 static void bpf_jit_emit_tail_call(u32 *image, struct codegen_context *ctx, u32 out)
232 {
233 	/*
234 	 * By now, the eBPF program has already setup parameters in r3, r4 and r5
235 	 * r3/BPF_REG_1 - pointer to ctx -- passed as is to the next bpf program
236 	 * r4/BPF_REG_2 - pointer to bpf_array
237 	 * r5/BPF_REG_3 - index in bpf_array
238 	 */
239 	int b2p_bpf_array = b2p[BPF_REG_2];
240 	int b2p_index = b2p[BPF_REG_3];
241 
242 	/*
243 	 * if (index >= array->map.max_entries)
244 	 *   goto out;
245 	 */
246 	PPC_LWZ(b2p[TMP_REG_1], b2p_bpf_array, offsetof(struct bpf_array, map.max_entries));
247 	PPC_RLWINM(b2p_index, b2p_index, 0, 0, 31);
248 	PPC_CMPLW(b2p_index, b2p[TMP_REG_1]);
249 	PPC_BCC(COND_GE, out);
250 
251 	/*
252 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
253 	 *   goto out;
254 	 */
255 	PPC_LD(b2p[TMP_REG_1], 1, bpf_jit_stack_tailcallcnt(ctx));
256 	PPC_CMPLWI(b2p[TMP_REG_1], MAX_TAIL_CALL_CNT);
257 	PPC_BCC(COND_GT, out);
258 
259 	/*
260 	 * tail_call_cnt++;
261 	 */
262 	PPC_ADDI(b2p[TMP_REG_1], b2p[TMP_REG_1], 1);
263 	PPC_BPF_STL(b2p[TMP_REG_1], 1, bpf_jit_stack_tailcallcnt(ctx));
264 
265 	/* prog = array->ptrs[index]; */
266 	PPC_MULI(b2p[TMP_REG_1], b2p_index, 8);
267 	PPC_ADD(b2p[TMP_REG_1], b2p[TMP_REG_1], b2p_bpf_array);
268 	PPC_LD(b2p[TMP_REG_1], b2p[TMP_REG_1], offsetof(struct bpf_array, ptrs));
269 
270 	/*
271 	 * if (prog == NULL)
272 	 *   goto out;
273 	 */
274 	PPC_CMPLDI(b2p[TMP_REG_1], 0);
275 	PPC_BCC(COND_EQ, out);
276 
277 	/* goto *(prog->bpf_func + prologue_size); */
278 	PPC_LD(b2p[TMP_REG_1], b2p[TMP_REG_1], offsetof(struct bpf_prog, bpf_func));
279 #ifdef PPC64_ELF_ABI_v1
280 	/* skip past the function descriptor */
281 	PPC_ADDI(b2p[TMP_REG_1], b2p[TMP_REG_1],
282 			FUNCTION_DESCR_SIZE + BPF_TAILCALL_PROLOGUE_SIZE);
283 #else
284 	PPC_ADDI(b2p[TMP_REG_1], b2p[TMP_REG_1], BPF_TAILCALL_PROLOGUE_SIZE);
285 #endif
286 	PPC_MTCTR(b2p[TMP_REG_1]);
287 
288 	/* tear down stack, restore NVRs, ... */
289 	bpf_jit_emit_common_epilogue(image, ctx);
290 
291 	PPC_BCTR();
292 	/* out: */
293 }
294 
295 /* Assemble the body code between the prologue & epilogue */
296 static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
297 			      struct codegen_context *ctx,
298 			      u32 *addrs, bool extra_pass)
299 {
300 	const struct bpf_insn *insn = fp->insnsi;
301 	int flen = fp->len;
302 	int i, ret;
303 
304 	/* Start of epilogue code - will only be valid 2nd pass onwards */
305 	u32 exit_addr = addrs[flen];
306 
307 	for (i = 0; i < flen; i++) {
308 		u32 code = insn[i].code;
309 		u32 dst_reg = b2p[insn[i].dst_reg];
310 		u32 src_reg = b2p[insn[i].src_reg];
311 		s16 off = insn[i].off;
312 		s32 imm = insn[i].imm;
313 		bool func_addr_fixed;
314 		u64 func_addr;
315 		u64 imm64;
316 		u32 true_cond;
317 		u32 tmp_idx;
318 
319 		/*
320 		 * addrs[] maps a BPF bytecode address into a real offset from
321 		 * the start of the body code.
322 		 */
323 		addrs[i] = ctx->idx * 4;
324 
325 		/*
326 		 * As an optimization, we note down which non-volatile registers
327 		 * are used so that we can only save/restore those in our
328 		 * prologue and epilogue. We do this here regardless of whether
329 		 * the actual BPF instruction uses src/dst registers or not
330 		 * (for instance, BPF_CALL does not use them). The expectation
331 		 * is that those instructions will have src_reg/dst_reg set to
332 		 * 0. Even otherwise, we just lose some prologue/epilogue
333 		 * optimization but everything else should work without
334 		 * any issues.
335 		 */
336 		if (dst_reg >= BPF_PPC_NVR_MIN && dst_reg < 32)
337 			bpf_set_seen_register(ctx, insn[i].dst_reg);
338 		if (src_reg >= BPF_PPC_NVR_MIN && src_reg < 32)
339 			bpf_set_seen_register(ctx, insn[i].src_reg);
340 
341 		switch (code) {
342 		/*
343 		 * Arithmetic operations: ADD/SUB/MUL/DIV/MOD/NEG
344 		 */
345 		case BPF_ALU | BPF_ADD | BPF_X: /* (u32) dst += (u32) src */
346 		case BPF_ALU64 | BPF_ADD | BPF_X: /* dst += src */
347 			PPC_ADD(dst_reg, dst_reg, src_reg);
348 			goto bpf_alu32_trunc;
349 		case BPF_ALU | BPF_SUB | BPF_X: /* (u32) dst -= (u32) src */
350 		case BPF_ALU64 | BPF_SUB | BPF_X: /* dst -= src */
351 			PPC_SUB(dst_reg, dst_reg, src_reg);
352 			goto bpf_alu32_trunc;
353 		case BPF_ALU | BPF_ADD | BPF_K: /* (u32) dst += (u32) imm */
354 		case BPF_ALU | BPF_SUB | BPF_K: /* (u32) dst -= (u32) imm */
355 		case BPF_ALU64 | BPF_ADD | BPF_K: /* dst += imm */
356 		case BPF_ALU64 | BPF_SUB | BPF_K: /* dst -= imm */
357 			if (BPF_OP(code) == BPF_SUB)
358 				imm = -imm;
359 			if (imm) {
360 				if (imm >= -32768 && imm < 32768)
361 					PPC_ADDI(dst_reg, dst_reg, IMM_L(imm));
362 				else {
363 					PPC_LI32(b2p[TMP_REG_1], imm);
364 					PPC_ADD(dst_reg, dst_reg, b2p[TMP_REG_1]);
365 				}
366 			}
367 			goto bpf_alu32_trunc;
368 		case BPF_ALU | BPF_MUL | BPF_X: /* (u32) dst *= (u32) src */
369 		case BPF_ALU64 | BPF_MUL | BPF_X: /* dst *= src */
370 			if (BPF_CLASS(code) == BPF_ALU)
371 				PPC_MULW(dst_reg, dst_reg, src_reg);
372 			else
373 				PPC_MULD(dst_reg, dst_reg, src_reg);
374 			goto bpf_alu32_trunc;
375 		case BPF_ALU | BPF_MUL | BPF_K: /* (u32) dst *= (u32) imm */
376 		case BPF_ALU64 | BPF_MUL | BPF_K: /* dst *= imm */
377 			if (imm >= -32768 && imm < 32768)
378 				PPC_MULI(dst_reg, dst_reg, IMM_L(imm));
379 			else {
380 				PPC_LI32(b2p[TMP_REG_1], imm);
381 				if (BPF_CLASS(code) == BPF_ALU)
382 					PPC_MULW(dst_reg, dst_reg,
383 							b2p[TMP_REG_1]);
384 				else
385 					PPC_MULD(dst_reg, dst_reg,
386 							b2p[TMP_REG_1]);
387 			}
388 			goto bpf_alu32_trunc;
389 		case BPF_ALU | BPF_DIV | BPF_X: /* (u32) dst /= (u32) src */
390 		case BPF_ALU | BPF_MOD | BPF_X: /* (u32) dst %= (u32) src */
391 			if (BPF_OP(code) == BPF_MOD) {
392 				PPC_DIVWU(b2p[TMP_REG_1], dst_reg, src_reg);
393 				PPC_MULW(b2p[TMP_REG_1], src_reg,
394 						b2p[TMP_REG_1]);
395 				PPC_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]);
396 			} else
397 				PPC_DIVWU(dst_reg, dst_reg, src_reg);
398 			goto bpf_alu32_trunc;
399 		case BPF_ALU64 | BPF_DIV | BPF_X: /* dst /= src */
400 		case BPF_ALU64 | BPF_MOD | BPF_X: /* dst %= src */
401 			if (BPF_OP(code) == BPF_MOD) {
402 				PPC_DIVD(b2p[TMP_REG_1], dst_reg, src_reg);
403 				PPC_MULD(b2p[TMP_REG_1], src_reg,
404 						b2p[TMP_REG_1]);
405 				PPC_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]);
406 			} else
407 				PPC_DIVD(dst_reg, dst_reg, src_reg);
408 			break;
409 		case BPF_ALU | BPF_MOD | BPF_K: /* (u32) dst %= (u32) imm */
410 		case BPF_ALU | BPF_DIV | BPF_K: /* (u32) dst /= (u32) imm */
411 		case BPF_ALU64 | BPF_MOD | BPF_K: /* dst %= imm */
412 		case BPF_ALU64 | BPF_DIV | BPF_K: /* dst /= imm */
413 			if (imm == 0)
414 				return -EINVAL;
415 			else if (imm == 1)
416 				goto bpf_alu32_trunc;
417 
418 			PPC_LI32(b2p[TMP_REG_1], imm);
419 			switch (BPF_CLASS(code)) {
420 			case BPF_ALU:
421 				if (BPF_OP(code) == BPF_MOD) {
422 					PPC_DIVWU(b2p[TMP_REG_2], dst_reg,
423 							b2p[TMP_REG_1]);
424 					PPC_MULW(b2p[TMP_REG_1],
425 							b2p[TMP_REG_1],
426 							b2p[TMP_REG_2]);
427 					PPC_SUB(dst_reg, dst_reg,
428 							b2p[TMP_REG_1]);
429 				} else
430 					PPC_DIVWU(dst_reg, dst_reg,
431 							b2p[TMP_REG_1]);
432 				break;
433 			case BPF_ALU64:
434 				if (BPF_OP(code) == BPF_MOD) {
435 					PPC_DIVD(b2p[TMP_REG_2], dst_reg,
436 							b2p[TMP_REG_1]);
437 					PPC_MULD(b2p[TMP_REG_1],
438 							b2p[TMP_REG_1],
439 							b2p[TMP_REG_2]);
440 					PPC_SUB(dst_reg, dst_reg,
441 							b2p[TMP_REG_1]);
442 				} else
443 					PPC_DIVD(dst_reg, dst_reg,
444 							b2p[TMP_REG_1]);
445 				break;
446 			}
447 			goto bpf_alu32_trunc;
448 		case BPF_ALU | BPF_NEG: /* (u32) dst = -dst */
449 		case BPF_ALU64 | BPF_NEG: /* dst = -dst */
450 			PPC_NEG(dst_reg, dst_reg);
451 			goto bpf_alu32_trunc;
452 
453 		/*
454 		 * Logical operations: AND/OR/XOR/[A]LSH/[A]RSH
455 		 */
456 		case BPF_ALU | BPF_AND | BPF_X: /* (u32) dst = dst & src */
457 		case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
458 			PPC_AND(dst_reg, dst_reg, src_reg);
459 			goto bpf_alu32_trunc;
460 		case BPF_ALU | BPF_AND | BPF_K: /* (u32) dst = dst & imm */
461 		case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
462 			if (!IMM_H(imm))
463 				PPC_ANDI(dst_reg, dst_reg, IMM_L(imm));
464 			else {
465 				/* Sign-extended */
466 				PPC_LI32(b2p[TMP_REG_1], imm);
467 				PPC_AND(dst_reg, dst_reg, b2p[TMP_REG_1]);
468 			}
469 			goto bpf_alu32_trunc;
470 		case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
471 		case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
472 			PPC_OR(dst_reg, dst_reg, src_reg);
473 			goto bpf_alu32_trunc;
474 		case BPF_ALU | BPF_OR | BPF_K:/* dst = (u32) dst | (u32) imm */
475 		case BPF_ALU64 | BPF_OR | BPF_K:/* dst = dst | imm */
476 			if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) {
477 				/* Sign-extended */
478 				PPC_LI32(b2p[TMP_REG_1], imm);
479 				PPC_OR(dst_reg, dst_reg, b2p[TMP_REG_1]);
480 			} else {
481 				if (IMM_L(imm))
482 					PPC_ORI(dst_reg, dst_reg, IMM_L(imm));
483 				if (IMM_H(imm))
484 					PPC_ORIS(dst_reg, dst_reg, IMM_H(imm));
485 			}
486 			goto bpf_alu32_trunc;
487 		case BPF_ALU | BPF_XOR | BPF_X: /* (u32) dst ^= src */
488 		case BPF_ALU64 | BPF_XOR | BPF_X: /* dst ^= src */
489 			PPC_XOR(dst_reg, dst_reg, src_reg);
490 			goto bpf_alu32_trunc;
491 		case BPF_ALU | BPF_XOR | BPF_K: /* (u32) dst ^= (u32) imm */
492 		case BPF_ALU64 | BPF_XOR | BPF_K: /* dst ^= imm */
493 			if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) {
494 				/* Sign-extended */
495 				PPC_LI32(b2p[TMP_REG_1], imm);
496 				PPC_XOR(dst_reg, dst_reg, b2p[TMP_REG_1]);
497 			} else {
498 				if (IMM_L(imm))
499 					PPC_XORI(dst_reg, dst_reg, IMM_L(imm));
500 				if (IMM_H(imm))
501 					PPC_XORIS(dst_reg, dst_reg, IMM_H(imm));
502 			}
503 			goto bpf_alu32_trunc;
504 		case BPF_ALU | BPF_LSH | BPF_X: /* (u32) dst <<= (u32) src */
505 			/* slw clears top 32 bits */
506 			PPC_SLW(dst_reg, dst_reg, src_reg);
507 			break;
508 		case BPF_ALU64 | BPF_LSH | BPF_X: /* dst <<= src; */
509 			PPC_SLD(dst_reg, dst_reg, src_reg);
510 			break;
511 		case BPF_ALU | BPF_LSH | BPF_K: /* (u32) dst <<== (u32) imm */
512 			/* with imm 0, we still need to clear top 32 bits */
513 			PPC_SLWI(dst_reg, dst_reg, imm);
514 			break;
515 		case BPF_ALU64 | BPF_LSH | BPF_K: /* dst <<== imm */
516 			if (imm != 0)
517 				PPC_SLDI(dst_reg, dst_reg, imm);
518 			break;
519 		case BPF_ALU | BPF_RSH | BPF_X: /* (u32) dst >>= (u32) src */
520 			PPC_SRW(dst_reg, dst_reg, src_reg);
521 			break;
522 		case BPF_ALU64 | BPF_RSH | BPF_X: /* dst >>= src */
523 			PPC_SRD(dst_reg, dst_reg, src_reg);
524 			break;
525 		case BPF_ALU | BPF_RSH | BPF_K: /* (u32) dst >>= (u32) imm */
526 			PPC_SRWI(dst_reg, dst_reg, imm);
527 			break;
528 		case BPF_ALU64 | BPF_RSH | BPF_K: /* dst >>= imm */
529 			if (imm != 0)
530 				PPC_SRDI(dst_reg, dst_reg, imm);
531 			break;
532 		case BPF_ALU64 | BPF_ARSH | BPF_X: /* (s64) dst >>= src */
533 			PPC_SRAD(dst_reg, dst_reg, src_reg);
534 			break;
535 		case BPF_ALU64 | BPF_ARSH | BPF_K: /* (s64) dst >>= imm */
536 			if (imm != 0)
537 				PPC_SRADI(dst_reg, dst_reg, imm);
538 			break;
539 
540 		/*
541 		 * MOV
542 		 */
543 		case BPF_ALU | BPF_MOV | BPF_X: /* (u32) dst = src */
544 		case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
545 			PPC_MR(dst_reg, src_reg);
546 			goto bpf_alu32_trunc;
547 		case BPF_ALU | BPF_MOV | BPF_K: /* (u32) dst = imm */
548 		case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = (s64) imm */
549 			PPC_LI32(dst_reg, imm);
550 			if (imm < 0)
551 				goto bpf_alu32_trunc;
552 			break;
553 
554 bpf_alu32_trunc:
555 		/* Truncate to 32-bits */
556 		if (BPF_CLASS(code) == BPF_ALU)
557 			PPC_RLWINM(dst_reg, dst_reg, 0, 0, 31);
558 		break;
559 
560 		/*
561 		 * BPF_FROM_BE/LE
562 		 */
563 		case BPF_ALU | BPF_END | BPF_FROM_LE:
564 		case BPF_ALU | BPF_END | BPF_FROM_BE:
565 #ifdef __BIG_ENDIAN__
566 			if (BPF_SRC(code) == BPF_FROM_BE)
567 				goto emit_clear;
568 #else /* !__BIG_ENDIAN__ */
569 			if (BPF_SRC(code) == BPF_FROM_LE)
570 				goto emit_clear;
571 #endif
572 			switch (imm) {
573 			case 16:
574 				/* Rotate 8 bits left & mask with 0x0000ff00 */
575 				PPC_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 16, 23);
576 				/* Rotate 8 bits right & insert LSB to reg */
577 				PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 24, 31);
578 				/* Move result back to dst_reg */
579 				PPC_MR(dst_reg, b2p[TMP_REG_1]);
580 				break;
581 			case 32:
582 				/*
583 				 * Rotate word left by 8 bits:
584 				 * 2 bytes are already in their final position
585 				 * -- byte 2 and 4 (of bytes 1, 2, 3 and 4)
586 				 */
587 				PPC_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 0, 31);
588 				/* Rotate 24 bits and insert byte 1 */
589 				PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 0, 7);
590 				/* Rotate 24 bits and insert byte 3 */
591 				PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 16, 23);
592 				PPC_MR(dst_reg, b2p[TMP_REG_1]);
593 				break;
594 			case 64:
595 				/*
596 				 * Way easier and faster(?) to store the value
597 				 * into stack and then use ldbrx
598 				 *
599 				 * ctx->seen will be reliable in pass2, but
600 				 * the instructions generated will remain the
601 				 * same across all passes
602 				 */
603 				PPC_STD(dst_reg, 1, bpf_jit_stack_local(ctx));
604 				PPC_ADDI(b2p[TMP_REG_1], 1, bpf_jit_stack_local(ctx));
605 				PPC_LDBRX(dst_reg, 0, b2p[TMP_REG_1]);
606 				break;
607 			}
608 			break;
609 
610 emit_clear:
611 			switch (imm) {
612 			case 16:
613 				/* zero-extend 16 bits into 64 bits */
614 				PPC_RLDICL(dst_reg, dst_reg, 0, 48);
615 				break;
616 			case 32:
617 				/* zero-extend 32 bits into 64 bits */
618 				PPC_RLDICL(dst_reg, dst_reg, 0, 32);
619 				break;
620 			case 64:
621 				/* nop */
622 				break;
623 			}
624 			break;
625 
626 		/*
627 		 * BPF_ST(X)
628 		 */
629 		case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src */
630 		case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
631 			if (BPF_CLASS(code) == BPF_ST) {
632 				PPC_LI(b2p[TMP_REG_1], imm);
633 				src_reg = b2p[TMP_REG_1];
634 			}
635 			PPC_STB(src_reg, dst_reg, off);
636 			break;
637 		case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
638 		case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
639 			if (BPF_CLASS(code) == BPF_ST) {
640 				PPC_LI(b2p[TMP_REG_1], imm);
641 				src_reg = b2p[TMP_REG_1];
642 			}
643 			PPC_STH(src_reg, dst_reg, off);
644 			break;
645 		case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
646 		case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
647 			if (BPF_CLASS(code) == BPF_ST) {
648 				PPC_LI32(b2p[TMP_REG_1], imm);
649 				src_reg = b2p[TMP_REG_1];
650 			}
651 			PPC_STW(src_reg, dst_reg, off);
652 			break;
653 		case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
654 		case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
655 			if (BPF_CLASS(code) == BPF_ST) {
656 				PPC_LI32(b2p[TMP_REG_1], imm);
657 				src_reg = b2p[TMP_REG_1];
658 			}
659 			PPC_STD(src_reg, dst_reg, off);
660 			break;
661 
662 		/*
663 		 * BPF_STX XADD (atomic_add)
664 		 */
665 		/* *(u32 *)(dst + off) += src */
666 		case BPF_STX | BPF_XADD | BPF_W:
667 			/* Get EA into TMP_REG_1 */
668 			PPC_ADDI(b2p[TMP_REG_1], dst_reg, off);
669 			tmp_idx = ctx->idx * 4;
670 			/* load value from memory into TMP_REG_2 */
671 			PPC_BPF_LWARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0);
672 			/* add value from src_reg into this */
673 			PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg);
674 			/* store result back */
675 			PPC_BPF_STWCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]);
676 			/* we're done if this succeeded */
677 			PPC_BCC_SHORT(COND_NE, tmp_idx);
678 			break;
679 		/* *(u64 *)(dst + off) += src */
680 		case BPF_STX | BPF_XADD | BPF_DW:
681 			PPC_ADDI(b2p[TMP_REG_1], dst_reg, off);
682 			tmp_idx = ctx->idx * 4;
683 			PPC_BPF_LDARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0);
684 			PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg);
685 			PPC_BPF_STDCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]);
686 			PPC_BCC_SHORT(COND_NE, tmp_idx);
687 			break;
688 
689 		/*
690 		 * BPF_LDX
691 		 */
692 		/* dst = *(u8 *)(ul) (src + off) */
693 		case BPF_LDX | BPF_MEM | BPF_B:
694 			PPC_LBZ(dst_reg, src_reg, off);
695 			break;
696 		/* dst = *(u16 *)(ul) (src + off) */
697 		case BPF_LDX | BPF_MEM | BPF_H:
698 			PPC_LHZ(dst_reg, src_reg, off);
699 			break;
700 		/* dst = *(u32 *)(ul) (src + off) */
701 		case BPF_LDX | BPF_MEM | BPF_W:
702 			PPC_LWZ(dst_reg, src_reg, off);
703 			break;
704 		/* dst = *(u64 *)(ul) (src + off) */
705 		case BPF_LDX | BPF_MEM | BPF_DW:
706 			PPC_LD(dst_reg, src_reg, off);
707 			break;
708 
709 		/*
710 		 * Doubleword load
711 		 * 16 byte instruction that uses two 'struct bpf_insn'
712 		 */
713 		case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
714 			imm64 = ((u64)(u32) insn[i].imm) |
715 				    (((u64)(u32) insn[i+1].imm) << 32);
716 			/* Adjust for two bpf instructions */
717 			addrs[++i] = ctx->idx * 4;
718 			PPC_LI64(dst_reg, imm64);
719 			break;
720 
721 		/*
722 		 * Return/Exit
723 		 */
724 		case BPF_JMP | BPF_EXIT:
725 			/*
726 			 * If this isn't the very last instruction, branch to
727 			 * the epilogue. If we _are_ the last instruction,
728 			 * we'll just fall through to the epilogue.
729 			 */
730 			if (i != flen - 1)
731 				PPC_JMP(exit_addr);
732 			/* else fall through to the epilogue */
733 			break;
734 
735 		/*
736 		 * Call kernel helper or bpf function
737 		 */
738 		case BPF_JMP | BPF_CALL:
739 			ctx->seen |= SEEN_FUNC;
740 
741 			ret = bpf_jit_get_func_addr(fp, &insn[i], extra_pass,
742 						    &func_addr, &func_addr_fixed);
743 			if (ret < 0)
744 				return ret;
745 
746 			if (func_addr_fixed)
747 				bpf_jit_emit_func_call_hlp(image, ctx, func_addr);
748 			else
749 				bpf_jit_emit_func_call_rel(image, ctx, func_addr);
750 			/* move return value from r3 to BPF_REG_0 */
751 			PPC_MR(b2p[BPF_REG_0], 3);
752 			break;
753 
754 		/*
755 		 * Jumps and branches
756 		 */
757 		case BPF_JMP | BPF_JA:
758 			PPC_JMP(addrs[i + 1 + off]);
759 			break;
760 
761 		case BPF_JMP | BPF_JGT | BPF_K:
762 		case BPF_JMP | BPF_JGT | BPF_X:
763 		case BPF_JMP | BPF_JSGT | BPF_K:
764 		case BPF_JMP | BPF_JSGT | BPF_X:
765 			true_cond = COND_GT;
766 			goto cond_branch;
767 		case BPF_JMP | BPF_JLT | BPF_K:
768 		case BPF_JMP | BPF_JLT | BPF_X:
769 		case BPF_JMP | BPF_JSLT | BPF_K:
770 		case BPF_JMP | BPF_JSLT | BPF_X:
771 			true_cond = COND_LT;
772 			goto cond_branch;
773 		case BPF_JMP | BPF_JGE | BPF_K:
774 		case BPF_JMP | BPF_JGE | BPF_X:
775 		case BPF_JMP | BPF_JSGE | BPF_K:
776 		case BPF_JMP | BPF_JSGE | BPF_X:
777 			true_cond = COND_GE;
778 			goto cond_branch;
779 		case BPF_JMP | BPF_JLE | BPF_K:
780 		case BPF_JMP | BPF_JLE | BPF_X:
781 		case BPF_JMP | BPF_JSLE | BPF_K:
782 		case BPF_JMP | BPF_JSLE | BPF_X:
783 			true_cond = COND_LE;
784 			goto cond_branch;
785 		case BPF_JMP | BPF_JEQ | BPF_K:
786 		case BPF_JMP | BPF_JEQ | BPF_X:
787 			true_cond = COND_EQ;
788 			goto cond_branch;
789 		case BPF_JMP | BPF_JNE | BPF_K:
790 		case BPF_JMP | BPF_JNE | BPF_X:
791 			true_cond = COND_NE;
792 			goto cond_branch;
793 		case BPF_JMP | BPF_JSET | BPF_K:
794 		case BPF_JMP | BPF_JSET | BPF_X:
795 			true_cond = COND_NE;
796 			/* Fall through */
797 
798 cond_branch:
799 			switch (code) {
800 			case BPF_JMP | BPF_JGT | BPF_X:
801 			case BPF_JMP | BPF_JLT | BPF_X:
802 			case BPF_JMP | BPF_JGE | BPF_X:
803 			case BPF_JMP | BPF_JLE | BPF_X:
804 			case BPF_JMP | BPF_JEQ | BPF_X:
805 			case BPF_JMP | BPF_JNE | BPF_X:
806 				/* unsigned comparison */
807 				PPC_CMPLD(dst_reg, src_reg);
808 				break;
809 			case BPF_JMP | BPF_JSGT | BPF_X:
810 			case BPF_JMP | BPF_JSLT | BPF_X:
811 			case BPF_JMP | BPF_JSGE | BPF_X:
812 			case BPF_JMP | BPF_JSLE | BPF_X:
813 				/* signed comparison */
814 				PPC_CMPD(dst_reg, src_reg);
815 				break;
816 			case BPF_JMP | BPF_JSET | BPF_X:
817 				PPC_AND_DOT(b2p[TMP_REG_1], dst_reg, src_reg);
818 				break;
819 			case BPF_JMP | BPF_JNE | BPF_K:
820 			case BPF_JMP | BPF_JEQ | BPF_K:
821 			case BPF_JMP | BPF_JGT | BPF_K:
822 			case BPF_JMP | BPF_JLT | BPF_K:
823 			case BPF_JMP | BPF_JGE | BPF_K:
824 			case BPF_JMP | BPF_JLE | BPF_K:
825 				/*
826 				 * Need sign-extended load, so only positive
827 				 * values can be used as imm in cmpldi
828 				 */
829 				if (imm >= 0 && imm < 32768)
830 					PPC_CMPLDI(dst_reg, imm);
831 				else {
832 					/* sign-extending load */
833 					PPC_LI32(b2p[TMP_REG_1], imm);
834 					/* ... but unsigned comparison */
835 					PPC_CMPLD(dst_reg, b2p[TMP_REG_1]);
836 				}
837 				break;
838 			case BPF_JMP | BPF_JSGT | BPF_K:
839 			case BPF_JMP | BPF_JSLT | BPF_K:
840 			case BPF_JMP | BPF_JSGE | BPF_K:
841 			case BPF_JMP | BPF_JSLE | BPF_K:
842 				/*
843 				 * signed comparison, so any 16-bit value
844 				 * can be used in cmpdi
845 				 */
846 				if (imm >= -32768 && imm < 32768)
847 					PPC_CMPDI(dst_reg, imm);
848 				else {
849 					PPC_LI32(b2p[TMP_REG_1], imm);
850 					PPC_CMPD(dst_reg, b2p[TMP_REG_1]);
851 				}
852 				break;
853 			case BPF_JMP | BPF_JSET | BPF_K:
854 				/* andi does not sign-extend the immediate */
855 				if (imm >= 0 && imm < 32768)
856 					/* PPC_ANDI is _only/always_ dot-form */
857 					PPC_ANDI(b2p[TMP_REG_1], dst_reg, imm);
858 				else {
859 					PPC_LI32(b2p[TMP_REG_1], imm);
860 					PPC_AND_DOT(b2p[TMP_REG_1], dst_reg,
861 						    b2p[TMP_REG_1]);
862 				}
863 				break;
864 			}
865 			PPC_BCC(true_cond, addrs[i + 1 + off]);
866 			break;
867 
868 		/*
869 		 * Tail call
870 		 */
871 		case BPF_JMP | BPF_TAIL_CALL:
872 			ctx->seen |= SEEN_TAILCALL;
873 			bpf_jit_emit_tail_call(image, ctx, addrs[i + 1]);
874 			break;
875 
876 		default:
877 			/*
878 			 * The filter contains something cruel & unusual.
879 			 * We don't handle it, but also there shouldn't be
880 			 * anything missing from our list.
881 			 */
882 			pr_err_ratelimited("eBPF filter opcode %04x (@%d) unsupported\n",
883 					code, i);
884 			return -ENOTSUPP;
885 		}
886 	}
887 
888 	/* Set end-of-body-code address for exit. */
889 	addrs[i] = ctx->idx * 4;
890 
891 	return 0;
892 }
893 
894 /* Fix the branch target addresses for subprog calls */
895 static int bpf_jit_fixup_subprog_calls(struct bpf_prog *fp, u32 *image,
896 				       struct codegen_context *ctx, u32 *addrs)
897 {
898 	const struct bpf_insn *insn = fp->insnsi;
899 	bool func_addr_fixed;
900 	u64 func_addr;
901 	u32 tmp_idx;
902 	int i, ret;
903 
904 	for (i = 0; i < fp->len; i++) {
905 		/*
906 		 * During the extra pass, only the branch target addresses for
907 		 * the subprog calls need to be fixed. All other instructions
908 		 * can left untouched.
909 		 *
910 		 * The JITed image length does not change because we already
911 		 * ensure that the JITed instruction sequence for these calls
912 		 * are of fixed length by padding them with NOPs.
913 		 */
914 		if (insn[i].code == (BPF_JMP | BPF_CALL) &&
915 		    insn[i].src_reg == BPF_PSEUDO_CALL) {
916 			ret = bpf_jit_get_func_addr(fp, &insn[i], true,
917 						    &func_addr,
918 						    &func_addr_fixed);
919 			if (ret < 0)
920 				return ret;
921 
922 			/*
923 			 * Save ctx->idx as this would currently point to the
924 			 * end of the JITed image and set it to the offset of
925 			 * the instruction sequence corresponding to the
926 			 * subprog call temporarily.
927 			 */
928 			tmp_idx = ctx->idx;
929 			ctx->idx = addrs[i] / 4;
930 			bpf_jit_emit_func_call_rel(image, ctx, func_addr);
931 
932 			/*
933 			 * Restore ctx->idx here. This is safe as the length
934 			 * of the JITed sequence remains unchanged.
935 			 */
936 			ctx->idx = tmp_idx;
937 		}
938 	}
939 
940 	return 0;
941 }
942 
943 struct powerpc64_jit_data {
944 	struct bpf_binary_header *header;
945 	u32 *addrs;
946 	u8 *image;
947 	u32 proglen;
948 	struct codegen_context ctx;
949 };
950 
951 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
952 {
953 	u32 proglen;
954 	u32 alloclen;
955 	u8 *image = NULL;
956 	u32 *code_base;
957 	u32 *addrs;
958 	struct powerpc64_jit_data *jit_data;
959 	struct codegen_context cgctx;
960 	int pass;
961 	int flen;
962 	struct bpf_binary_header *bpf_hdr;
963 	struct bpf_prog *org_fp = fp;
964 	struct bpf_prog *tmp_fp;
965 	bool bpf_blinded = false;
966 	bool extra_pass = false;
967 
968 	if (!fp->jit_requested)
969 		return org_fp;
970 
971 	tmp_fp = bpf_jit_blind_constants(org_fp);
972 	if (IS_ERR(tmp_fp))
973 		return org_fp;
974 
975 	if (tmp_fp != org_fp) {
976 		bpf_blinded = true;
977 		fp = tmp_fp;
978 	}
979 
980 	jit_data = fp->aux->jit_data;
981 	if (!jit_data) {
982 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
983 		if (!jit_data) {
984 			fp = org_fp;
985 			goto out;
986 		}
987 		fp->aux->jit_data = jit_data;
988 	}
989 
990 	flen = fp->len;
991 	addrs = jit_data->addrs;
992 	if (addrs) {
993 		cgctx = jit_data->ctx;
994 		image = jit_data->image;
995 		bpf_hdr = jit_data->header;
996 		proglen = jit_data->proglen;
997 		alloclen = proglen + FUNCTION_DESCR_SIZE;
998 		extra_pass = true;
999 		goto skip_init_ctx;
1000 	}
1001 
1002 	addrs = kcalloc(flen + 1, sizeof(*addrs), GFP_KERNEL);
1003 	if (addrs == NULL) {
1004 		fp = org_fp;
1005 		goto out_addrs;
1006 	}
1007 
1008 	memset(&cgctx, 0, sizeof(struct codegen_context));
1009 
1010 	/* Make sure that the stack is quadword aligned. */
1011 	cgctx.stack_size = round_up(fp->aux->stack_depth, 16);
1012 
1013 	/* Scouting faux-generate pass 0 */
1014 	if (bpf_jit_build_body(fp, 0, &cgctx, addrs, false)) {
1015 		/* We hit something illegal or unsupported. */
1016 		fp = org_fp;
1017 		goto out_addrs;
1018 	}
1019 
1020 	/*
1021 	 * Pretend to build prologue, given the features we've seen.  This will
1022 	 * update ctgtx.idx as it pretends to output instructions, then we can
1023 	 * calculate total size from idx.
1024 	 */
1025 	bpf_jit_build_prologue(0, &cgctx);
1026 	bpf_jit_build_epilogue(0, &cgctx);
1027 
1028 	proglen = cgctx.idx * 4;
1029 	alloclen = proglen + FUNCTION_DESCR_SIZE;
1030 
1031 	bpf_hdr = bpf_jit_binary_alloc(alloclen, &image, 4,
1032 			bpf_jit_fill_ill_insns);
1033 	if (!bpf_hdr) {
1034 		fp = org_fp;
1035 		goto out_addrs;
1036 	}
1037 
1038 skip_init_ctx:
1039 	code_base = (u32 *)(image + FUNCTION_DESCR_SIZE);
1040 
1041 	if (extra_pass) {
1042 		/*
1043 		 * Do not touch the prologue and epilogue as they will remain
1044 		 * unchanged. Only fix the branch target address for subprog
1045 		 * calls in the body.
1046 		 *
1047 		 * This does not change the offsets and lengths of the subprog
1048 		 * call instruction sequences and hence, the size of the JITed
1049 		 * image as well.
1050 		 */
1051 		bpf_jit_fixup_subprog_calls(fp, code_base, &cgctx, addrs);
1052 
1053 		/* There is no need to perform the usual passes. */
1054 		goto skip_codegen_passes;
1055 	}
1056 
1057 	/* Code generation passes 1-2 */
1058 	for (pass = 1; pass < 3; pass++) {
1059 		/* Now build the prologue, body code & epilogue for real. */
1060 		cgctx.idx = 0;
1061 		bpf_jit_build_prologue(code_base, &cgctx);
1062 		bpf_jit_build_body(fp, code_base, &cgctx, addrs, extra_pass);
1063 		bpf_jit_build_epilogue(code_base, &cgctx);
1064 
1065 		if (bpf_jit_enable > 1)
1066 			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
1067 				proglen - (cgctx.idx * 4), cgctx.seen);
1068 	}
1069 
1070 skip_codegen_passes:
1071 	if (bpf_jit_enable > 1)
1072 		/*
1073 		 * Note that we output the base address of the code_base
1074 		 * rather than image, since opcodes are in code_base.
1075 		 */
1076 		bpf_jit_dump(flen, proglen, pass, code_base);
1077 
1078 #ifdef PPC64_ELF_ABI_v1
1079 	/* Function descriptor nastiness: Address + TOC */
1080 	((u64 *)image)[0] = (u64)code_base;
1081 	((u64 *)image)[1] = local_paca->kernel_toc;
1082 #endif
1083 
1084 	fp->bpf_func = (void *)image;
1085 	fp->jited = 1;
1086 	fp->jited_len = alloclen;
1087 
1088 	bpf_flush_icache(bpf_hdr, (u8 *)bpf_hdr + (bpf_hdr->pages * PAGE_SIZE));
1089 	if (!fp->is_func || extra_pass) {
1090 out_addrs:
1091 		kfree(addrs);
1092 		kfree(jit_data);
1093 		fp->aux->jit_data = NULL;
1094 	} else {
1095 		jit_data->addrs = addrs;
1096 		jit_data->ctx = cgctx;
1097 		jit_data->proglen = proglen;
1098 		jit_data->image = image;
1099 		jit_data->header = bpf_hdr;
1100 	}
1101 
1102 out:
1103 	if (bpf_blinded)
1104 		bpf_jit_prog_release_other(fp, fp == org_fp ? tmp_fp : org_fp);
1105 
1106 	return fp;
1107 }
1108 
1109 /* Overriding bpf_jit_free() as we don't set images read-only. */
1110 void bpf_jit_free(struct bpf_prog *fp)
1111 {
1112 	unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1113 	struct bpf_binary_header *bpf_hdr = (void *)addr;
1114 
1115 	if (fp->jited)
1116 		bpf_jit_binary_free(bpf_hdr);
1117 
1118 	bpf_prog_unlock_free(fp);
1119 }
1120