xref: /openbmc/linux/arch/powerpc/net/bpf_jit_comp64.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * bpf_jit_comp64.c: eBPF JIT compiler
4  *
5  * Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
6  *		  IBM Corporation
7  *
8  * Based on the powerpc classic BPF JIT compiler by Matt Evans
9  */
10 #include <linux/moduleloader.h>
11 #include <asm/cacheflush.h>
12 #include <asm/asm-compat.h>
13 #include <linux/netdevice.h>
14 #include <linux/filter.h>
15 #include <linux/if_vlan.h>
16 #include <asm/kprobes.h>
17 #include <linux/bpf.h>
18 
19 #include "bpf_jit64.h"
20 
21 static void bpf_jit_fill_ill_insns(void *area, unsigned int size)
22 {
23 	memset32(area, BREAKPOINT_INSTRUCTION, size/4);
24 }
25 
26 static inline void bpf_flush_icache(void *start, void *end)
27 {
28 	smp_wmb();
29 	flush_icache_range((unsigned long)start, (unsigned long)end);
30 }
31 
32 static inline bool bpf_is_seen_register(struct codegen_context *ctx, int i)
33 {
34 	return (ctx->seen & (1 << (31 - b2p[i])));
35 }
36 
37 static inline void bpf_set_seen_register(struct codegen_context *ctx, int i)
38 {
39 	ctx->seen |= (1 << (31 - b2p[i]));
40 }
41 
42 static inline bool bpf_has_stack_frame(struct codegen_context *ctx)
43 {
44 	/*
45 	 * We only need a stack frame if:
46 	 * - we call other functions (kernel helpers), or
47 	 * - the bpf program uses its stack area
48 	 * The latter condition is deduced from the usage of BPF_REG_FP
49 	 */
50 	return ctx->seen & SEEN_FUNC || bpf_is_seen_register(ctx, BPF_REG_FP);
51 }
52 
53 /*
54  * When not setting up our own stackframe, the redzone usage is:
55  *
56  *		[	prev sp		] <-------------
57  *		[	  ...       	] 		|
58  * sp (r1) --->	[    stack pointer	] --------------
59  *		[   nv gpr save area	] 6*8
60  *		[    tail_call_cnt	] 8
61  *		[    local_tmp_var	] 8
62  *		[   unused red zone	] 208 bytes protected
63  */
64 static int bpf_jit_stack_local(struct codegen_context *ctx)
65 {
66 	if (bpf_has_stack_frame(ctx))
67 		return STACK_FRAME_MIN_SIZE + ctx->stack_size;
68 	else
69 		return -(BPF_PPC_STACK_SAVE + 16);
70 }
71 
72 static int bpf_jit_stack_tailcallcnt(struct codegen_context *ctx)
73 {
74 	return bpf_jit_stack_local(ctx) + 8;
75 }
76 
77 static int bpf_jit_stack_offsetof(struct codegen_context *ctx, int reg)
78 {
79 	if (reg >= BPF_PPC_NVR_MIN && reg < 32)
80 		return (bpf_has_stack_frame(ctx) ?
81 			(BPF_PPC_STACKFRAME + ctx->stack_size) : 0)
82 				- (8 * (32 - reg));
83 
84 	pr_err("BPF JIT is asking about unknown registers");
85 	BUG();
86 }
87 
88 static void bpf_jit_build_prologue(u32 *image, struct codegen_context *ctx)
89 {
90 	int i;
91 
92 	/*
93 	 * Initialize tail_call_cnt if we do tail calls.
94 	 * Otherwise, put in NOPs so that it can be skipped when we are
95 	 * invoked through a tail call.
96 	 */
97 	if (ctx->seen & SEEN_TAILCALL) {
98 		PPC_LI(b2p[TMP_REG_1], 0);
99 		/* this goes in the redzone */
100 		PPC_BPF_STL(b2p[TMP_REG_1], 1, -(BPF_PPC_STACK_SAVE + 8));
101 	} else {
102 		PPC_NOP();
103 		PPC_NOP();
104 	}
105 
106 #define BPF_TAILCALL_PROLOGUE_SIZE	8
107 
108 	if (bpf_has_stack_frame(ctx)) {
109 		/*
110 		 * We need a stack frame, but we don't necessarily need to
111 		 * save/restore LR unless we call other functions
112 		 */
113 		if (ctx->seen & SEEN_FUNC) {
114 			EMIT(PPC_INST_MFLR | __PPC_RT(R0));
115 			PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
116 		}
117 
118 		PPC_BPF_STLU(1, 1, -(BPF_PPC_STACKFRAME + ctx->stack_size));
119 	}
120 
121 	/*
122 	 * Back up non-volatile regs -- BPF registers 6-10
123 	 * If we haven't created our own stack frame, we save these
124 	 * in the protected zone below the previous stack frame
125 	 */
126 	for (i = BPF_REG_6; i <= BPF_REG_10; i++)
127 		if (bpf_is_seen_register(ctx, i))
128 			PPC_BPF_STL(b2p[i], 1, bpf_jit_stack_offsetof(ctx, b2p[i]));
129 
130 	/* Setup frame pointer to point to the bpf stack area */
131 	if (bpf_is_seen_register(ctx, BPF_REG_FP))
132 		PPC_ADDI(b2p[BPF_REG_FP], 1,
133 				STACK_FRAME_MIN_SIZE + ctx->stack_size);
134 }
135 
136 static void bpf_jit_emit_common_epilogue(u32 *image, struct codegen_context *ctx)
137 {
138 	int i;
139 
140 	/* Restore NVRs */
141 	for (i = BPF_REG_6; i <= BPF_REG_10; i++)
142 		if (bpf_is_seen_register(ctx, i))
143 			PPC_BPF_LL(b2p[i], 1, bpf_jit_stack_offsetof(ctx, b2p[i]));
144 
145 	/* Tear down our stack frame */
146 	if (bpf_has_stack_frame(ctx)) {
147 		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME + ctx->stack_size);
148 		if (ctx->seen & SEEN_FUNC) {
149 			PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
150 			PPC_MTLR(0);
151 		}
152 	}
153 }
154 
155 static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
156 {
157 	bpf_jit_emit_common_epilogue(image, ctx);
158 
159 	/* Move result to r3 */
160 	PPC_MR(3, b2p[BPF_REG_0]);
161 
162 	PPC_BLR();
163 }
164 
165 static void bpf_jit_emit_func_call_hlp(u32 *image, struct codegen_context *ctx,
166 				       u64 func)
167 {
168 #ifdef PPC64_ELF_ABI_v1
169 	/* func points to the function descriptor */
170 	PPC_LI64(b2p[TMP_REG_2], func);
171 	/* Load actual entry point from function descriptor */
172 	PPC_BPF_LL(b2p[TMP_REG_1], b2p[TMP_REG_2], 0);
173 	/* ... and move it to LR */
174 	PPC_MTLR(b2p[TMP_REG_1]);
175 	/*
176 	 * Load TOC from function descriptor at offset 8.
177 	 * We can clobber r2 since we get called through a
178 	 * function pointer (so caller will save/restore r2)
179 	 * and since we don't use a TOC ourself.
180 	 */
181 	PPC_BPF_LL(2, b2p[TMP_REG_2], 8);
182 #else
183 	/* We can clobber r12 */
184 	PPC_FUNC_ADDR(12, func);
185 	PPC_MTLR(12);
186 #endif
187 	PPC_BLRL();
188 }
189 
190 static void bpf_jit_emit_func_call_rel(u32 *image, struct codegen_context *ctx,
191 				       u64 func)
192 {
193 	unsigned int i, ctx_idx = ctx->idx;
194 
195 	/* Load function address into r12 */
196 	PPC_LI64(12, func);
197 
198 	/* For bpf-to-bpf function calls, the callee's address is unknown
199 	 * until the last extra pass. As seen above, we use PPC_LI64() to
200 	 * load the callee's address, but this may optimize the number of
201 	 * instructions required based on the nature of the address.
202 	 *
203 	 * Since we don't want the number of instructions emitted to change,
204 	 * we pad the optimized PPC_LI64() call with NOPs to guarantee that
205 	 * we always have a five-instruction sequence, which is the maximum
206 	 * that PPC_LI64() can emit.
207 	 */
208 	for (i = ctx->idx - ctx_idx; i < 5; i++)
209 		PPC_NOP();
210 
211 #ifdef PPC64_ELF_ABI_v1
212 	/*
213 	 * Load TOC from function descriptor at offset 8.
214 	 * We can clobber r2 since we get called through a
215 	 * function pointer (so caller will save/restore r2)
216 	 * and since we don't use a TOC ourself.
217 	 */
218 	PPC_BPF_LL(2, 12, 8);
219 	/* Load actual entry point from function descriptor */
220 	PPC_BPF_LL(12, 12, 0);
221 #endif
222 
223 	PPC_MTLR(12);
224 	PPC_BLRL();
225 }
226 
227 static void bpf_jit_emit_tail_call(u32 *image, struct codegen_context *ctx, u32 out)
228 {
229 	/*
230 	 * By now, the eBPF program has already setup parameters in r3, r4 and r5
231 	 * r3/BPF_REG_1 - pointer to ctx -- passed as is to the next bpf program
232 	 * r4/BPF_REG_2 - pointer to bpf_array
233 	 * r5/BPF_REG_3 - index in bpf_array
234 	 */
235 	int b2p_bpf_array = b2p[BPF_REG_2];
236 	int b2p_index = b2p[BPF_REG_3];
237 
238 	/*
239 	 * if (index >= array->map.max_entries)
240 	 *   goto out;
241 	 */
242 	PPC_LWZ(b2p[TMP_REG_1], b2p_bpf_array, offsetof(struct bpf_array, map.max_entries));
243 	PPC_RLWINM(b2p_index, b2p_index, 0, 0, 31);
244 	PPC_CMPLW(b2p_index, b2p[TMP_REG_1]);
245 	PPC_BCC(COND_GE, out);
246 
247 	/*
248 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
249 	 *   goto out;
250 	 */
251 	PPC_BPF_LL(b2p[TMP_REG_1], 1, bpf_jit_stack_tailcallcnt(ctx));
252 	PPC_CMPLWI(b2p[TMP_REG_1], MAX_TAIL_CALL_CNT);
253 	PPC_BCC(COND_GT, out);
254 
255 	/*
256 	 * tail_call_cnt++;
257 	 */
258 	PPC_ADDI(b2p[TMP_REG_1], b2p[TMP_REG_1], 1);
259 	PPC_BPF_STL(b2p[TMP_REG_1], 1, bpf_jit_stack_tailcallcnt(ctx));
260 
261 	/* prog = array->ptrs[index]; */
262 	PPC_MULI(b2p[TMP_REG_1], b2p_index, 8);
263 	PPC_ADD(b2p[TMP_REG_1], b2p[TMP_REG_1], b2p_bpf_array);
264 	PPC_BPF_LL(b2p[TMP_REG_1], b2p[TMP_REG_1], offsetof(struct bpf_array, ptrs));
265 
266 	/*
267 	 * if (prog == NULL)
268 	 *   goto out;
269 	 */
270 	PPC_CMPLDI(b2p[TMP_REG_1], 0);
271 	PPC_BCC(COND_EQ, out);
272 
273 	/* goto *(prog->bpf_func + prologue_size); */
274 	PPC_BPF_LL(b2p[TMP_REG_1], b2p[TMP_REG_1], offsetof(struct bpf_prog, bpf_func));
275 #ifdef PPC64_ELF_ABI_v1
276 	/* skip past the function descriptor */
277 	PPC_ADDI(b2p[TMP_REG_1], b2p[TMP_REG_1],
278 			FUNCTION_DESCR_SIZE + BPF_TAILCALL_PROLOGUE_SIZE);
279 #else
280 	PPC_ADDI(b2p[TMP_REG_1], b2p[TMP_REG_1], BPF_TAILCALL_PROLOGUE_SIZE);
281 #endif
282 	PPC_MTCTR(b2p[TMP_REG_1]);
283 
284 	/* tear down stack, restore NVRs, ... */
285 	bpf_jit_emit_common_epilogue(image, ctx);
286 
287 	PPC_BCTR();
288 	/* out: */
289 }
290 
291 /* Assemble the body code between the prologue & epilogue */
292 static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
293 			      struct codegen_context *ctx,
294 			      u32 *addrs, bool extra_pass)
295 {
296 	const struct bpf_insn *insn = fp->insnsi;
297 	int flen = fp->len;
298 	int i, ret;
299 
300 	/* Start of epilogue code - will only be valid 2nd pass onwards */
301 	u32 exit_addr = addrs[flen];
302 
303 	for (i = 0; i < flen; i++) {
304 		u32 code = insn[i].code;
305 		u32 dst_reg = b2p[insn[i].dst_reg];
306 		u32 src_reg = b2p[insn[i].src_reg];
307 		s16 off = insn[i].off;
308 		s32 imm = insn[i].imm;
309 		bool func_addr_fixed;
310 		u64 func_addr;
311 		u64 imm64;
312 		u32 true_cond;
313 		u32 tmp_idx;
314 
315 		/*
316 		 * addrs[] maps a BPF bytecode address into a real offset from
317 		 * the start of the body code.
318 		 */
319 		addrs[i] = ctx->idx * 4;
320 
321 		/*
322 		 * As an optimization, we note down which non-volatile registers
323 		 * are used so that we can only save/restore those in our
324 		 * prologue and epilogue. We do this here regardless of whether
325 		 * the actual BPF instruction uses src/dst registers or not
326 		 * (for instance, BPF_CALL does not use them). The expectation
327 		 * is that those instructions will have src_reg/dst_reg set to
328 		 * 0. Even otherwise, we just lose some prologue/epilogue
329 		 * optimization but everything else should work without
330 		 * any issues.
331 		 */
332 		if (dst_reg >= BPF_PPC_NVR_MIN && dst_reg < 32)
333 			bpf_set_seen_register(ctx, insn[i].dst_reg);
334 		if (src_reg >= BPF_PPC_NVR_MIN && src_reg < 32)
335 			bpf_set_seen_register(ctx, insn[i].src_reg);
336 
337 		switch (code) {
338 		/*
339 		 * Arithmetic operations: ADD/SUB/MUL/DIV/MOD/NEG
340 		 */
341 		case BPF_ALU | BPF_ADD | BPF_X: /* (u32) dst += (u32) src */
342 		case BPF_ALU64 | BPF_ADD | BPF_X: /* dst += src */
343 			PPC_ADD(dst_reg, dst_reg, src_reg);
344 			goto bpf_alu32_trunc;
345 		case BPF_ALU | BPF_SUB | BPF_X: /* (u32) dst -= (u32) src */
346 		case BPF_ALU64 | BPF_SUB | BPF_X: /* dst -= src */
347 			PPC_SUB(dst_reg, dst_reg, src_reg);
348 			goto bpf_alu32_trunc;
349 		case BPF_ALU | BPF_ADD | BPF_K: /* (u32) dst += (u32) imm */
350 		case BPF_ALU | BPF_SUB | BPF_K: /* (u32) dst -= (u32) imm */
351 		case BPF_ALU64 | BPF_ADD | BPF_K: /* dst += imm */
352 		case BPF_ALU64 | BPF_SUB | BPF_K: /* dst -= imm */
353 			if (BPF_OP(code) == BPF_SUB)
354 				imm = -imm;
355 			if (imm) {
356 				if (imm >= -32768 && imm < 32768)
357 					PPC_ADDI(dst_reg, dst_reg, IMM_L(imm));
358 				else {
359 					PPC_LI32(b2p[TMP_REG_1], imm);
360 					PPC_ADD(dst_reg, dst_reg, b2p[TMP_REG_1]);
361 				}
362 			}
363 			goto bpf_alu32_trunc;
364 		case BPF_ALU | BPF_MUL | BPF_X: /* (u32) dst *= (u32) src */
365 		case BPF_ALU64 | BPF_MUL | BPF_X: /* dst *= src */
366 			if (BPF_CLASS(code) == BPF_ALU)
367 				PPC_MULW(dst_reg, dst_reg, src_reg);
368 			else
369 				PPC_MULD(dst_reg, dst_reg, src_reg);
370 			goto bpf_alu32_trunc;
371 		case BPF_ALU | BPF_MUL | BPF_K: /* (u32) dst *= (u32) imm */
372 		case BPF_ALU64 | BPF_MUL | BPF_K: /* dst *= imm */
373 			if (imm >= -32768 && imm < 32768)
374 				PPC_MULI(dst_reg, dst_reg, IMM_L(imm));
375 			else {
376 				PPC_LI32(b2p[TMP_REG_1], imm);
377 				if (BPF_CLASS(code) == BPF_ALU)
378 					PPC_MULW(dst_reg, dst_reg,
379 							b2p[TMP_REG_1]);
380 				else
381 					PPC_MULD(dst_reg, dst_reg,
382 							b2p[TMP_REG_1]);
383 			}
384 			goto bpf_alu32_trunc;
385 		case BPF_ALU | BPF_DIV | BPF_X: /* (u32) dst /= (u32) src */
386 		case BPF_ALU | BPF_MOD | BPF_X: /* (u32) dst %= (u32) src */
387 			if (BPF_OP(code) == BPF_MOD) {
388 				PPC_DIVWU(b2p[TMP_REG_1], dst_reg, src_reg);
389 				PPC_MULW(b2p[TMP_REG_1], src_reg,
390 						b2p[TMP_REG_1]);
391 				PPC_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]);
392 			} else
393 				PPC_DIVWU(dst_reg, dst_reg, src_reg);
394 			goto bpf_alu32_trunc;
395 		case BPF_ALU64 | BPF_DIV | BPF_X: /* dst /= src */
396 		case BPF_ALU64 | BPF_MOD | BPF_X: /* dst %= src */
397 			if (BPF_OP(code) == BPF_MOD) {
398 				PPC_DIVDU(b2p[TMP_REG_1], dst_reg, src_reg);
399 				PPC_MULD(b2p[TMP_REG_1], src_reg,
400 						b2p[TMP_REG_1]);
401 				PPC_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]);
402 			} else
403 				PPC_DIVDU(dst_reg, dst_reg, src_reg);
404 			break;
405 		case BPF_ALU | BPF_MOD | BPF_K: /* (u32) dst %= (u32) imm */
406 		case BPF_ALU | BPF_DIV | BPF_K: /* (u32) dst /= (u32) imm */
407 		case BPF_ALU64 | BPF_MOD | BPF_K: /* dst %= imm */
408 		case BPF_ALU64 | BPF_DIV | BPF_K: /* dst /= imm */
409 			if (imm == 0)
410 				return -EINVAL;
411 			else if (imm == 1)
412 				goto bpf_alu32_trunc;
413 
414 			PPC_LI32(b2p[TMP_REG_1], imm);
415 			switch (BPF_CLASS(code)) {
416 			case BPF_ALU:
417 				if (BPF_OP(code) == BPF_MOD) {
418 					PPC_DIVWU(b2p[TMP_REG_2], dst_reg,
419 							b2p[TMP_REG_1]);
420 					PPC_MULW(b2p[TMP_REG_1],
421 							b2p[TMP_REG_1],
422 							b2p[TMP_REG_2]);
423 					PPC_SUB(dst_reg, dst_reg,
424 							b2p[TMP_REG_1]);
425 				} else
426 					PPC_DIVWU(dst_reg, dst_reg,
427 							b2p[TMP_REG_1]);
428 				break;
429 			case BPF_ALU64:
430 				if (BPF_OP(code) == BPF_MOD) {
431 					PPC_DIVDU(b2p[TMP_REG_2], dst_reg,
432 							b2p[TMP_REG_1]);
433 					PPC_MULD(b2p[TMP_REG_1],
434 							b2p[TMP_REG_1],
435 							b2p[TMP_REG_2]);
436 					PPC_SUB(dst_reg, dst_reg,
437 							b2p[TMP_REG_1]);
438 				} else
439 					PPC_DIVDU(dst_reg, dst_reg,
440 							b2p[TMP_REG_1]);
441 				break;
442 			}
443 			goto bpf_alu32_trunc;
444 		case BPF_ALU | BPF_NEG: /* (u32) dst = -dst */
445 		case BPF_ALU64 | BPF_NEG: /* dst = -dst */
446 			PPC_NEG(dst_reg, dst_reg);
447 			goto bpf_alu32_trunc;
448 
449 		/*
450 		 * Logical operations: AND/OR/XOR/[A]LSH/[A]RSH
451 		 */
452 		case BPF_ALU | BPF_AND | BPF_X: /* (u32) dst = dst & src */
453 		case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
454 			PPC_AND(dst_reg, dst_reg, src_reg);
455 			goto bpf_alu32_trunc;
456 		case BPF_ALU | BPF_AND | BPF_K: /* (u32) dst = dst & imm */
457 		case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
458 			if (!IMM_H(imm))
459 				PPC_ANDI(dst_reg, dst_reg, IMM_L(imm));
460 			else {
461 				/* Sign-extended */
462 				PPC_LI32(b2p[TMP_REG_1], imm);
463 				PPC_AND(dst_reg, dst_reg, b2p[TMP_REG_1]);
464 			}
465 			goto bpf_alu32_trunc;
466 		case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
467 		case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
468 			PPC_OR(dst_reg, dst_reg, src_reg);
469 			goto bpf_alu32_trunc;
470 		case BPF_ALU | BPF_OR | BPF_K:/* dst = (u32) dst | (u32) imm */
471 		case BPF_ALU64 | BPF_OR | BPF_K:/* dst = dst | imm */
472 			if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) {
473 				/* Sign-extended */
474 				PPC_LI32(b2p[TMP_REG_1], imm);
475 				PPC_OR(dst_reg, dst_reg, b2p[TMP_REG_1]);
476 			} else {
477 				if (IMM_L(imm))
478 					PPC_ORI(dst_reg, dst_reg, IMM_L(imm));
479 				if (IMM_H(imm))
480 					PPC_ORIS(dst_reg, dst_reg, IMM_H(imm));
481 			}
482 			goto bpf_alu32_trunc;
483 		case BPF_ALU | BPF_XOR | BPF_X: /* (u32) dst ^= src */
484 		case BPF_ALU64 | BPF_XOR | BPF_X: /* dst ^= src */
485 			PPC_XOR(dst_reg, dst_reg, src_reg);
486 			goto bpf_alu32_trunc;
487 		case BPF_ALU | BPF_XOR | BPF_K: /* (u32) dst ^= (u32) imm */
488 		case BPF_ALU64 | BPF_XOR | BPF_K: /* dst ^= imm */
489 			if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) {
490 				/* Sign-extended */
491 				PPC_LI32(b2p[TMP_REG_1], imm);
492 				PPC_XOR(dst_reg, dst_reg, b2p[TMP_REG_1]);
493 			} else {
494 				if (IMM_L(imm))
495 					PPC_XORI(dst_reg, dst_reg, IMM_L(imm));
496 				if (IMM_H(imm))
497 					PPC_XORIS(dst_reg, dst_reg, IMM_H(imm));
498 			}
499 			goto bpf_alu32_trunc;
500 		case BPF_ALU | BPF_LSH | BPF_X: /* (u32) dst <<= (u32) src */
501 			/* slw clears top 32 bits */
502 			PPC_SLW(dst_reg, dst_reg, src_reg);
503 			/* skip zero extension move, but set address map. */
504 			if (insn_is_zext(&insn[i + 1]))
505 				addrs[++i] = ctx->idx * 4;
506 			break;
507 		case BPF_ALU64 | BPF_LSH | BPF_X: /* dst <<= src; */
508 			PPC_SLD(dst_reg, dst_reg, src_reg);
509 			break;
510 		case BPF_ALU | BPF_LSH | BPF_K: /* (u32) dst <<== (u32) imm */
511 			/* with imm 0, we still need to clear top 32 bits */
512 			PPC_SLWI(dst_reg, dst_reg, imm);
513 			if (insn_is_zext(&insn[i + 1]))
514 				addrs[++i] = ctx->idx * 4;
515 			break;
516 		case BPF_ALU64 | BPF_LSH | BPF_K: /* dst <<== imm */
517 			if (imm != 0)
518 				PPC_SLDI(dst_reg, dst_reg, imm);
519 			break;
520 		case BPF_ALU | BPF_RSH | BPF_X: /* (u32) dst >>= (u32) src */
521 			PPC_SRW(dst_reg, dst_reg, src_reg);
522 			if (insn_is_zext(&insn[i + 1]))
523 				addrs[++i] = ctx->idx * 4;
524 			break;
525 		case BPF_ALU64 | BPF_RSH | BPF_X: /* dst >>= src */
526 			PPC_SRD(dst_reg, dst_reg, src_reg);
527 			break;
528 		case BPF_ALU | BPF_RSH | BPF_K: /* (u32) dst >>= (u32) imm */
529 			PPC_SRWI(dst_reg, dst_reg, imm);
530 			if (insn_is_zext(&insn[i + 1]))
531 				addrs[++i] = ctx->idx * 4;
532 			break;
533 		case BPF_ALU64 | BPF_RSH | BPF_K: /* dst >>= imm */
534 			if (imm != 0)
535 				PPC_SRDI(dst_reg, dst_reg, imm);
536 			break;
537 		case BPF_ALU | BPF_ARSH | BPF_X: /* (s32) dst >>= src */
538 			PPC_SRAW(dst_reg, dst_reg, src_reg);
539 			goto bpf_alu32_trunc;
540 		case BPF_ALU64 | BPF_ARSH | BPF_X: /* (s64) dst >>= src */
541 			PPC_SRAD(dst_reg, dst_reg, src_reg);
542 			break;
543 		case BPF_ALU | BPF_ARSH | BPF_K: /* (s32) dst >>= imm */
544 			PPC_SRAWI(dst_reg, dst_reg, imm);
545 			goto bpf_alu32_trunc;
546 		case BPF_ALU64 | BPF_ARSH | BPF_K: /* (s64) dst >>= imm */
547 			if (imm != 0)
548 				PPC_SRADI(dst_reg, dst_reg, imm);
549 			break;
550 
551 		/*
552 		 * MOV
553 		 */
554 		case BPF_ALU | BPF_MOV | BPF_X: /* (u32) dst = src */
555 		case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
556 			if (imm == 1) {
557 				/* special mov32 for zext */
558 				PPC_RLWINM(dst_reg, dst_reg, 0, 0, 31);
559 				break;
560 			}
561 			PPC_MR(dst_reg, src_reg);
562 			goto bpf_alu32_trunc;
563 		case BPF_ALU | BPF_MOV | BPF_K: /* (u32) dst = imm */
564 		case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = (s64) imm */
565 			PPC_LI32(dst_reg, imm);
566 			if (imm < 0)
567 				goto bpf_alu32_trunc;
568 			else if (insn_is_zext(&insn[i + 1]))
569 				addrs[++i] = ctx->idx * 4;
570 			break;
571 
572 bpf_alu32_trunc:
573 		/* Truncate to 32-bits */
574 		if (BPF_CLASS(code) == BPF_ALU && !fp->aux->verifier_zext)
575 			PPC_RLWINM(dst_reg, dst_reg, 0, 0, 31);
576 		break;
577 
578 		/*
579 		 * BPF_FROM_BE/LE
580 		 */
581 		case BPF_ALU | BPF_END | BPF_FROM_LE:
582 		case BPF_ALU | BPF_END | BPF_FROM_BE:
583 #ifdef __BIG_ENDIAN__
584 			if (BPF_SRC(code) == BPF_FROM_BE)
585 				goto emit_clear;
586 #else /* !__BIG_ENDIAN__ */
587 			if (BPF_SRC(code) == BPF_FROM_LE)
588 				goto emit_clear;
589 #endif
590 			switch (imm) {
591 			case 16:
592 				/* Rotate 8 bits left & mask with 0x0000ff00 */
593 				PPC_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 16, 23);
594 				/* Rotate 8 bits right & insert LSB to reg */
595 				PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 24, 31);
596 				/* Move result back to dst_reg */
597 				PPC_MR(dst_reg, b2p[TMP_REG_1]);
598 				break;
599 			case 32:
600 				/*
601 				 * Rotate word left by 8 bits:
602 				 * 2 bytes are already in their final position
603 				 * -- byte 2 and 4 (of bytes 1, 2, 3 and 4)
604 				 */
605 				PPC_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 0, 31);
606 				/* Rotate 24 bits and insert byte 1 */
607 				PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 0, 7);
608 				/* Rotate 24 bits and insert byte 3 */
609 				PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 16, 23);
610 				PPC_MR(dst_reg, b2p[TMP_REG_1]);
611 				break;
612 			case 64:
613 				/*
614 				 * Way easier and faster(?) to store the value
615 				 * into stack and then use ldbrx
616 				 *
617 				 * ctx->seen will be reliable in pass2, but
618 				 * the instructions generated will remain the
619 				 * same across all passes
620 				 */
621 				PPC_BPF_STL(dst_reg, 1, bpf_jit_stack_local(ctx));
622 				PPC_ADDI(b2p[TMP_REG_1], 1, bpf_jit_stack_local(ctx));
623 				PPC_LDBRX(dst_reg, 0, b2p[TMP_REG_1]);
624 				break;
625 			}
626 			break;
627 
628 emit_clear:
629 			switch (imm) {
630 			case 16:
631 				/* zero-extend 16 bits into 64 bits */
632 				PPC_RLDICL(dst_reg, dst_reg, 0, 48);
633 				if (insn_is_zext(&insn[i + 1]))
634 					addrs[++i] = ctx->idx * 4;
635 				break;
636 			case 32:
637 				if (!fp->aux->verifier_zext)
638 					/* zero-extend 32 bits into 64 bits */
639 					PPC_RLDICL(dst_reg, dst_reg, 0, 32);
640 				break;
641 			case 64:
642 				/* nop */
643 				break;
644 			}
645 			break;
646 
647 		/*
648 		 * BPF_ST(X)
649 		 */
650 		case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src */
651 		case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
652 			if (BPF_CLASS(code) == BPF_ST) {
653 				PPC_LI(b2p[TMP_REG_1], imm);
654 				src_reg = b2p[TMP_REG_1];
655 			}
656 			PPC_STB(src_reg, dst_reg, off);
657 			break;
658 		case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
659 		case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
660 			if (BPF_CLASS(code) == BPF_ST) {
661 				PPC_LI(b2p[TMP_REG_1], imm);
662 				src_reg = b2p[TMP_REG_1];
663 			}
664 			PPC_STH(src_reg, dst_reg, off);
665 			break;
666 		case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
667 		case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
668 			if (BPF_CLASS(code) == BPF_ST) {
669 				PPC_LI32(b2p[TMP_REG_1], imm);
670 				src_reg = b2p[TMP_REG_1];
671 			}
672 			PPC_STW(src_reg, dst_reg, off);
673 			break;
674 		case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
675 		case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
676 			if (BPF_CLASS(code) == BPF_ST) {
677 				PPC_LI32(b2p[TMP_REG_1], imm);
678 				src_reg = b2p[TMP_REG_1];
679 			}
680 			PPC_BPF_STL(src_reg, dst_reg, off);
681 			break;
682 
683 		/*
684 		 * BPF_STX XADD (atomic_add)
685 		 */
686 		/* *(u32 *)(dst + off) += src */
687 		case BPF_STX | BPF_XADD | BPF_W:
688 			/* Get EA into TMP_REG_1 */
689 			PPC_ADDI(b2p[TMP_REG_1], dst_reg, off);
690 			tmp_idx = ctx->idx * 4;
691 			/* load value from memory into TMP_REG_2 */
692 			PPC_BPF_LWARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0);
693 			/* add value from src_reg into this */
694 			PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg);
695 			/* store result back */
696 			PPC_BPF_STWCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]);
697 			/* we're done if this succeeded */
698 			PPC_BCC_SHORT(COND_NE, tmp_idx);
699 			break;
700 		/* *(u64 *)(dst + off) += src */
701 		case BPF_STX | BPF_XADD | BPF_DW:
702 			PPC_ADDI(b2p[TMP_REG_1], dst_reg, off);
703 			tmp_idx = ctx->idx * 4;
704 			PPC_BPF_LDARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0);
705 			PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg);
706 			PPC_BPF_STDCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]);
707 			PPC_BCC_SHORT(COND_NE, tmp_idx);
708 			break;
709 
710 		/*
711 		 * BPF_LDX
712 		 */
713 		/* dst = *(u8 *)(ul) (src + off) */
714 		case BPF_LDX | BPF_MEM | BPF_B:
715 			PPC_LBZ(dst_reg, src_reg, off);
716 			if (insn_is_zext(&insn[i + 1]))
717 				addrs[++i] = ctx->idx * 4;
718 			break;
719 		/* dst = *(u16 *)(ul) (src + off) */
720 		case BPF_LDX | BPF_MEM | BPF_H:
721 			PPC_LHZ(dst_reg, src_reg, off);
722 			if (insn_is_zext(&insn[i + 1]))
723 				addrs[++i] = ctx->idx * 4;
724 			break;
725 		/* dst = *(u32 *)(ul) (src + off) */
726 		case BPF_LDX | BPF_MEM | BPF_W:
727 			PPC_LWZ(dst_reg, src_reg, off);
728 			if (insn_is_zext(&insn[i + 1]))
729 				addrs[++i] = ctx->idx * 4;
730 			break;
731 		/* dst = *(u64 *)(ul) (src + off) */
732 		case BPF_LDX | BPF_MEM | BPF_DW:
733 			PPC_BPF_LL(dst_reg, src_reg, off);
734 			break;
735 
736 		/*
737 		 * Doubleword load
738 		 * 16 byte instruction that uses two 'struct bpf_insn'
739 		 */
740 		case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
741 			imm64 = ((u64)(u32) insn[i].imm) |
742 				    (((u64)(u32) insn[i+1].imm) << 32);
743 			/* Adjust for two bpf instructions */
744 			addrs[++i] = ctx->idx * 4;
745 			PPC_LI64(dst_reg, imm64);
746 			break;
747 
748 		/*
749 		 * Return/Exit
750 		 */
751 		case BPF_JMP | BPF_EXIT:
752 			/*
753 			 * If this isn't the very last instruction, branch to
754 			 * the epilogue. If we _are_ the last instruction,
755 			 * we'll just fall through to the epilogue.
756 			 */
757 			if (i != flen - 1)
758 				PPC_JMP(exit_addr);
759 			/* else fall through to the epilogue */
760 			break;
761 
762 		/*
763 		 * Call kernel helper or bpf function
764 		 */
765 		case BPF_JMP | BPF_CALL:
766 			ctx->seen |= SEEN_FUNC;
767 
768 			ret = bpf_jit_get_func_addr(fp, &insn[i], extra_pass,
769 						    &func_addr, &func_addr_fixed);
770 			if (ret < 0)
771 				return ret;
772 
773 			if (func_addr_fixed)
774 				bpf_jit_emit_func_call_hlp(image, ctx, func_addr);
775 			else
776 				bpf_jit_emit_func_call_rel(image, ctx, func_addr);
777 			/* move return value from r3 to BPF_REG_0 */
778 			PPC_MR(b2p[BPF_REG_0], 3);
779 			break;
780 
781 		/*
782 		 * Jumps and branches
783 		 */
784 		case BPF_JMP | BPF_JA:
785 			PPC_JMP(addrs[i + 1 + off]);
786 			break;
787 
788 		case BPF_JMP | BPF_JGT | BPF_K:
789 		case BPF_JMP | BPF_JGT | BPF_X:
790 		case BPF_JMP | BPF_JSGT | BPF_K:
791 		case BPF_JMP | BPF_JSGT | BPF_X:
792 		case BPF_JMP32 | BPF_JGT | BPF_K:
793 		case BPF_JMP32 | BPF_JGT | BPF_X:
794 		case BPF_JMP32 | BPF_JSGT | BPF_K:
795 		case BPF_JMP32 | BPF_JSGT | BPF_X:
796 			true_cond = COND_GT;
797 			goto cond_branch;
798 		case BPF_JMP | BPF_JLT | BPF_K:
799 		case BPF_JMP | BPF_JLT | BPF_X:
800 		case BPF_JMP | BPF_JSLT | BPF_K:
801 		case BPF_JMP | BPF_JSLT | BPF_X:
802 		case BPF_JMP32 | BPF_JLT | BPF_K:
803 		case BPF_JMP32 | BPF_JLT | BPF_X:
804 		case BPF_JMP32 | BPF_JSLT | BPF_K:
805 		case BPF_JMP32 | BPF_JSLT | BPF_X:
806 			true_cond = COND_LT;
807 			goto cond_branch;
808 		case BPF_JMP | BPF_JGE | BPF_K:
809 		case BPF_JMP | BPF_JGE | BPF_X:
810 		case BPF_JMP | BPF_JSGE | BPF_K:
811 		case BPF_JMP | BPF_JSGE | BPF_X:
812 		case BPF_JMP32 | BPF_JGE | BPF_K:
813 		case BPF_JMP32 | BPF_JGE | BPF_X:
814 		case BPF_JMP32 | BPF_JSGE | BPF_K:
815 		case BPF_JMP32 | BPF_JSGE | BPF_X:
816 			true_cond = COND_GE;
817 			goto cond_branch;
818 		case BPF_JMP | BPF_JLE | BPF_K:
819 		case BPF_JMP | BPF_JLE | BPF_X:
820 		case BPF_JMP | BPF_JSLE | BPF_K:
821 		case BPF_JMP | BPF_JSLE | BPF_X:
822 		case BPF_JMP32 | BPF_JLE | BPF_K:
823 		case BPF_JMP32 | BPF_JLE | BPF_X:
824 		case BPF_JMP32 | BPF_JSLE | BPF_K:
825 		case BPF_JMP32 | BPF_JSLE | BPF_X:
826 			true_cond = COND_LE;
827 			goto cond_branch;
828 		case BPF_JMP | BPF_JEQ | BPF_K:
829 		case BPF_JMP | BPF_JEQ | BPF_X:
830 		case BPF_JMP32 | BPF_JEQ | BPF_K:
831 		case BPF_JMP32 | BPF_JEQ | BPF_X:
832 			true_cond = COND_EQ;
833 			goto cond_branch;
834 		case BPF_JMP | BPF_JNE | BPF_K:
835 		case BPF_JMP | BPF_JNE | BPF_X:
836 		case BPF_JMP32 | BPF_JNE | BPF_K:
837 		case BPF_JMP32 | BPF_JNE | BPF_X:
838 			true_cond = COND_NE;
839 			goto cond_branch;
840 		case BPF_JMP | BPF_JSET | BPF_K:
841 		case BPF_JMP | BPF_JSET | BPF_X:
842 		case BPF_JMP32 | BPF_JSET | BPF_K:
843 		case BPF_JMP32 | BPF_JSET | BPF_X:
844 			true_cond = COND_NE;
845 			/* Fall through */
846 
847 cond_branch:
848 			switch (code) {
849 			case BPF_JMP | BPF_JGT | BPF_X:
850 			case BPF_JMP | BPF_JLT | BPF_X:
851 			case BPF_JMP | BPF_JGE | BPF_X:
852 			case BPF_JMP | BPF_JLE | BPF_X:
853 			case BPF_JMP | BPF_JEQ | BPF_X:
854 			case BPF_JMP | BPF_JNE | BPF_X:
855 			case BPF_JMP32 | BPF_JGT | BPF_X:
856 			case BPF_JMP32 | BPF_JLT | BPF_X:
857 			case BPF_JMP32 | BPF_JGE | BPF_X:
858 			case BPF_JMP32 | BPF_JLE | BPF_X:
859 			case BPF_JMP32 | BPF_JEQ | BPF_X:
860 			case BPF_JMP32 | BPF_JNE | BPF_X:
861 				/* unsigned comparison */
862 				if (BPF_CLASS(code) == BPF_JMP32)
863 					PPC_CMPLW(dst_reg, src_reg);
864 				else
865 					PPC_CMPLD(dst_reg, src_reg);
866 				break;
867 			case BPF_JMP | BPF_JSGT | BPF_X:
868 			case BPF_JMP | BPF_JSLT | BPF_X:
869 			case BPF_JMP | BPF_JSGE | BPF_X:
870 			case BPF_JMP | BPF_JSLE | BPF_X:
871 			case BPF_JMP32 | BPF_JSGT | BPF_X:
872 			case BPF_JMP32 | BPF_JSLT | BPF_X:
873 			case BPF_JMP32 | BPF_JSGE | BPF_X:
874 			case BPF_JMP32 | BPF_JSLE | BPF_X:
875 				/* signed comparison */
876 				if (BPF_CLASS(code) == BPF_JMP32)
877 					PPC_CMPW(dst_reg, src_reg);
878 				else
879 					PPC_CMPD(dst_reg, src_reg);
880 				break;
881 			case BPF_JMP | BPF_JSET | BPF_X:
882 			case BPF_JMP32 | BPF_JSET | BPF_X:
883 				if (BPF_CLASS(code) == BPF_JMP) {
884 					PPC_AND_DOT(b2p[TMP_REG_1], dst_reg,
885 						    src_reg);
886 				} else {
887 					int tmp_reg = b2p[TMP_REG_1];
888 
889 					PPC_AND(tmp_reg, dst_reg, src_reg);
890 					PPC_RLWINM_DOT(tmp_reg, tmp_reg, 0, 0,
891 						       31);
892 				}
893 				break;
894 			case BPF_JMP | BPF_JNE | BPF_K:
895 			case BPF_JMP | BPF_JEQ | BPF_K:
896 			case BPF_JMP | BPF_JGT | BPF_K:
897 			case BPF_JMP | BPF_JLT | BPF_K:
898 			case BPF_JMP | BPF_JGE | BPF_K:
899 			case BPF_JMP | BPF_JLE | BPF_K:
900 			case BPF_JMP32 | BPF_JNE | BPF_K:
901 			case BPF_JMP32 | BPF_JEQ | BPF_K:
902 			case BPF_JMP32 | BPF_JGT | BPF_K:
903 			case BPF_JMP32 | BPF_JLT | BPF_K:
904 			case BPF_JMP32 | BPF_JGE | BPF_K:
905 			case BPF_JMP32 | BPF_JLE | BPF_K:
906 			{
907 				bool is_jmp32 = BPF_CLASS(code) == BPF_JMP32;
908 
909 				/*
910 				 * Need sign-extended load, so only positive
911 				 * values can be used as imm in cmpldi
912 				 */
913 				if (imm >= 0 && imm < 32768) {
914 					if (is_jmp32)
915 						PPC_CMPLWI(dst_reg, imm);
916 					else
917 						PPC_CMPLDI(dst_reg, imm);
918 				} else {
919 					/* sign-extending load */
920 					PPC_LI32(b2p[TMP_REG_1], imm);
921 					/* ... but unsigned comparison */
922 					if (is_jmp32)
923 						PPC_CMPLW(dst_reg,
924 							  b2p[TMP_REG_1]);
925 					else
926 						PPC_CMPLD(dst_reg,
927 							  b2p[TMP_REG_1]);
928 				}
929 				break;
930 			}
931 			case BPF_JMP | BPF_JSGT | BPF_K:
932 			case BPF_JMP | BPF_JSLT | BPF_K:
933 			case BPF_JMP | BPF_JSGE | BPF_K:
934 			case BPF_JMP | BPF_JSLE | BPF_K:
935 			case BPF_JMP32 | BPF_JSGT | BPF_K:
936 			case BPF_JMP32 | BPF_JSLT | BPF_K:
937 			case BPF_JMP32 | BPF_JSGE | BPF_K:
938 			case BPF_JMP32 | BPF_JSLE | BPF_K:
939 			{
940 				bool is_jmp32 = BPF_CLASS(code) == BPF_JMP32;
941 
942 				/*
943 				 * signed comparison, so any 16-bit value
944 				 * can be used in cmpdi
945 				 */
946 				if (imm >= -32768 && imm < 32768) {
947 					if (is_jmp32)
948 						PPC_CMPWI(dst_reg, imm);
949 					else
950 						PPC_CMPDI(dst_reg, imm);
951 				} else {
952 					PPC_LI32(b2p[TMP_REG_1], imm);
953 					if (is_jmp32)
954 						PPC_CMPW(dst_reg,
955 							 b2p[TMP_REG_1]);
956 					else
957 						PPC_CMPD(dst_reg,
958 							 b2p[TMP_REG_1]);
959 				}
960 				break;
961 			}
962 			case BPF_JMP | BPF_JSET | BPF_K:
963 			case BPF_JMP32 | BPF_JSET | BPF_K:
964 				/* andi does not sign-extend the immediate */
965 				if (imm >= 0 && imm < 32768)
966 					/* PPC_ANDI is _only/always_ dot-form */
967 					PPC_ANDI(b2p[TMP_REG_1], dst_reg, imm);
968 				else {
969 					int tmp_reg = b2p[TMP_REG_1];
970 
971 					PPC_LI32(tmp_reg, imm);
972 					if (BPF_CLASS(code) == BPF_JMP) {
973 						PPC_AND_DOT(tmp_reg, dst_reg,
974 							    tmp_reg);
975 					} else {
976 						PPC_AND(tmp_reg, dst_reg,
977 							tmp_reg);
978 						PPC_RLWINM_DOT(tmp_reg, tmp_reg,
979 							       0, 0, 31);
980 					}
981 				}
982 				break;
983 			}
984 			PPC_BCC(true_cond, addrs[i + 1 + off]);
985 			break;
986 
987 		/*
988 		 * Tail call
989 		 */
990 		case BPF_JMP | BPF_TAIL_CALL:
991 			ctx->seen |= SEEN_TAILCALL;
992 			bpf_jit_emit_tail_call(image, ctx, addrs[i + 1]);
993 			break;
994 
995 		default:
996 			/*
997 			 * The filter contains something cruel & unusual.
998 			 * We don't handle it, but also there shouldn't be
999 			 * anything missing from our list.
1000 			 */
1001 			pr_err_ratelimited("eBPF filter opcode %04x (@%d) unsupported\n",
1002 					code, i);
1003 			return -ENOTSUPP;
1004 		}
1005 	}
1006 
1007 	/* Set end-of-body-code address for exit. */
1008 	addrs[i] = ctx->idx * 4;
1009 
1010 	return 0;
1011 }
1012 
1013 /* Fix the branch target addresses for subprog calls */
1014 static int bpf_jit_fixup_subprog_calls(struct bpf_prog *fp, u32 *image,
1015 				       struct codegen_context *ctx, u32 *addrs)
1016 {
1017 	const struct bpf_insn *insn = fp->insnsi;
1018 	bool func_addr_fixed;
1019 	u64 func_addr;
1020 	u32 tmp_idx;
1021 	int i, ret;
1022 
1023 	for (i = 0; i < fp->len; i++) {
1024 		/*
1025 		 * During the extra pass, only the branch target addresses for
1026 		 * the subprog calls need to be fixed. All other instructions
1027 		 * can left untouched.
1028 		 *
1029 		 * The JITed image length does not change because we already
1030 		 * ensure that the JITed instruction sequence for these calls
1031 		 * are of fixed length by padding them with NOPs.
1032 		 */
1033 		if (insn[i].code == (BPF_JMP | BPF_CALL) &&
1034 		    insn[i].src_reg == BPF_PSEUDO_CALL) {
1035 			ret = bpf_jit_get_func_addr(fp, &insn[i], true,
1036 						    &func_addr,
1037 						    &func_addr_fixed);
1038 			if (ret < 0)
1039 				return ret;
1040 
1041 			/*
1042 			 * Save ctx->idx as this would currently point to the
1043 			 * end of the JITed image and set it to the offset of
1044 			 * the instruction sequence corresponding to the
1045 			 * subprog call temporarily.
1046 			 */
1047 			tmp_idx = ctx->idx;
1048 			ctx->idx = addrs[i] / 4;
1049 			bpf_jit_emit_func_call_rel(image, ctx, func_addr);
1050 
1051 			/*
1052 			 * Restore ctx->idx here. This is safe as the length
1053 			 * of the JITed sequence remains unchanged.
1054 			 */
1055 			ctx->idx = tmp_idx;
1056 		}
1057 	}
1058 
1059 	return 0;
1060 }
1061 
1062 struct powerpc64_jit_data {
1063 	struct bpf_binary_header *header;
1064 	u32 *addrs;
1065 	u8 *image;
1066 	u32 proglen;
1067 	struct codegen_context ctx;
1068 };
1069 
1070 bool bpf_jit_needs_zext(void)
1071 {
1072 	return true;
1073 }
1074 
1075 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1076 {
1077 	u32 proglen;
1078 	u32 alloclen;
1079 	u8 *image = NULL;
1080 	u32 *code_base;
1081 	u32 *addrs;
1082 	struct powerpc64_jit_data *jit_data;
1083 	struct codegen_context cgctx;
1084 	int pass;
1085 	int flen;
1086 	struct bpf_binary_header *bpf_hdr;
1087 	struct bpf_prog *org_fp = fp;
1088 	struct bpf_prog *tmp_fp;
1089 	bool bpf_blinded = false;
1090 	bool extra_pass = false;
1091 
1092 	if (!fp->jit_requested)
1093 		return org_fp;
1094 
1095 	tmp_fp = bpf_jit_blind_constants(org_fp);
1096 	if (IS_ERR(tmp_fp))
1097 		return org_fp;
1098 
1099 	if (tmp_fp != org_fp) {
1100 		bpf_blinded = true;
1101 		fp = tmp_fp;
1102 	}
1103 
1104 	jit_data = fp->aux->jit_data;
1105 	if (!jit_data) {
1106 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1107 		if (!jit_data) {
1108 			fp = org_fp;
1109 			goto out;
1110 		}
1111 		fp->aux->jit_data = jit_data;
1112 	}
1113 
1114 	flen = fp->len;
1115 	addrs = jit_data->addrs;
1116 	if (addrs) {
1117 		cgctx = jit_data->ctx;
1118 		image = jit_data->image;
1119 		bpf_hdr = jit_data->header;
1120 		proglen = jit_data->proglen;
1121 		alloclen = proglen + FUNCTION_DESCR_SIZE;
1122 		extra_pass = true;
1123 		goto skip_init_ctx;
1124 	}
1125 
1126 	addrs = kcalloc(flen + 1, sizeof(*addrs), GFP_KERNEL);
1127 	if (addrs == NULL) {
1128 		fp = org_fp;
1129 		goto out_addrs;
1130 	}
1131 
1132 	memset(&cgctx, 0, sizeof(struct codegen_context));
1133 
1134 	/* Make sure that the stack is quadword aligned. */
1135 	cgctx.stack_size = round_up(fp->aux->stack_depth, 16);
1136 
1137 	/* Scouting faux-generate pass 0 */
1138 	if (bpf_jit_build_body(fp, 0, &cgctx, addrs, false)) {
1139 		/* We hit something illegal or unsupported. */
1140 		fp = org_fp;
1141 		goto out_addrs;
1142 	}
1143 
1144 	/*
1145 	 * If we have seen a tail call, we need a second pass.
1146 	 * This is because bpf_jit_emit_common_epilogue() is called
1147 	 * from bpf_jit_emit_tail_call() with a not yet stable ctx->seen.
1148 	 */
1149 	if (cgctx.seen & SEEN_TAILCALL) {
1150 		cgctx.idx = 0;
1151 		if (bpf_jit_build_body(fp, 0, &cgctx, addrs, false)) {
1152 			fp = org_fp;
1153 			goto out_addrs;
1154 		}
1155 	}
1156 
1157 	/*
1158 	 * Pretend to build prologue, given the features we've seen.  This will
1159 	 * update ctgtx.idx as it pretends to output instructions, then we can
1160 	 * calculate total size from idx.
1161 	 */
1162 	bpf_jit_build_prologue(0, &cgctx);
1163 	bpf_jit_build_epilogue(0, &cgctx);
1164 
1165 	proglen = cgctx.idx * 4;
1166 	alloclen = proglen + FUNCTION_DESCR_SIZE;
1167 
1168 	bpf_hdr = bpf_jit_binary_alloc(alloclen, &image, 4,
1169 			bpf_jit_fill_ill_insns);
1170 	if (!bpf_hdr) {
1171 		fp = org_fp;
1172 		goto out_addrs;
1173 	}
1174 
1175 skip_init_ctx:
1176 	code_base = (u32 *)(image + FUNCTION_DESCR_SIZE);
1177 
1178 	if (extra_pass) {
1179 		/*
1180 		 * Do not touch the prologue and epilogue as they will remain
1181 		 * unchanged. Only fix the branch target address for subprog
1182 		 * calls in the body.
1183 		 *
1184 		 * This does not change the offsets and lengths of the subprog
1185 		 * call instruction sequences and hence, the size of the JITed
1186 		 * image as well.
1187 		 */
1188 		bpf_jit_fixup_subprog_calls(fp, code_base, &cgctx, addrs);
1189 
1190 		/* There is no need to perform the usual passes. */
1191 		goto skip_codegen_passes;
1192 	}
1193 
1194 	/* Code generation passes 1-2 */
1195 	for (pass = 1; pass < 3; pass++) {
1196 		/* Now build the prologue, body code & epilogue for real. */
1197 		cgctx.idx = 0;
1198 		bpf_jit_build_prologue(code_base, &cgctx);
1199 		bpf_jit_build_body(fp, code_base, &cgctx, addrs, extra_pass);
1200 		bpf_jit_build_epilogue(code_base, &cgctx);
1201 
1202 		if (bpf_jit_enable > 1)
1203 			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
1204 				proglen - (cgctx.idx * 4), cgctx.seen);
1205 	}
1206 
1207 skip_codegen_passes:
1208 	if (bpf_jit_enable > 1)
1209 		/*
1210 		 * Note that we output the base address of the code_base
1211 		 * rather than image, since opcodes are in code_base.
1212 		 */
1213 		bpf_jit_dump(flen, proglen, pass, code_base);
1214 
1215 #ifdef PPC64_ELF_ABI_v1
1216 	/* Function descriptor nastiness: Address + TOC */
1217 	((u64 *)image)[0] = (u64)code_base;
1218 	((u64 *)image)[1] = local_paca->kernel_toc;
1219 #endif
1220 
1221 	fp->bpf_func = (void *)image;
1222 	fp->jited = 1;
1223 	fp->jited_len = alloclen;
1224 
1225 	bpf_flush_icache(bpf_hdr, (u8 *)bpf_hdr + (bpf_hdr->pages * PAGE_SIZE));
1226 	if (!fp->is_func || extra_pass) {
1227 		bpf_prog_fill_jited_linfo(fp, addrs);
1228 out_addrs:
1229 		kfree(addrs);
1230 		kfree(jit_data);
1231 		fp->aux->jit_data = NULL;
1232 	} else {
1233 		jit_data->addrs = addrs;
1234 		jit_data->ctx = cgctx;
1235 		jit_data->proglen = proglen;
1236 		jit_data->image = image;
1237 		jit_data->header = bpf_hdr;
1238 	}
1239 
1240 out:
1241 	if (bpf_blinded)
1242 		bpf_jit_prog_release_other(fp, fp == org_fp ? tmp_fp : org_fp);
1243 
1244 	return fp;
1245 }
1246 
1247 /* Overriding bpf_jit_free() as we don't set images read-only. */
1248 void bpf_jit_free(struct bpf_prog *fp)
1249 {
1250 	unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1251 	struct bpf_binary_header *bpf_hdr = (void *)addr;
1252 
1253 	if (fp->jited)
1254 		bpf_jit_binary_free(bpf_hdr);
1255 
1256 	bpf_prog_unlock_free(fp);
1257 }
1258