1 /* bpf_jit_comp.c: BPF JIT compiler for PPC64 2 * 3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation 4 * 5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 */ 12 #include <linux/moduleloader.h> 13 #include <asm/cacheflush.h> 14 #include <linux/netdevice.h> 15 #include <linux/filter.h> 16 #include <linux/if_vlan.h> 17 18 #include "bpf_jit.h" 19 20 #ifndef __BIG_ENDIAN 21 /* There are endianness assumptions herein. */ 22 #error "Little-endian PPC not supported in BPF compiler" 23 #endif 24 25 int bpf_jit_enable __read_mostly; 26 27 28 static inline void bpf_flush_icache(void *start, void *end) 29 { 30 smp_wmb(); 31 flush_icache_range((unsigned long)start, (unsigned long)end); 32 } 33 34 static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image, 35 struct codegen_context *ctx) 36 { 37 int i; 38 const struct sock_filter *filter = fp->insns; 39 40 if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) { 41 /* Make stackframe */ 42 if (ctx->seen & SEEN_DATAREF) { 43 /* If we call any helpers (for loads), save LR */ 44 EMIT(PPC_INST_MFLR | __PPC_RT(R0)); 45 PPC_STD(0, 1, 16); 46 47 /* Back up non-volatile regs. */ 48 PPC_STD(r_D, 1, -(8*(32-r_D))); 49 PPC_STD(r_HL, 1, -(8*(32-r_HL))); 50 } 51 if (ctx->seen & SEEN_MEM) { 52 /* 53 * Conditionally save regs r15-r31 as some will be used 54 * for M[] data. 55 */ 56 for (i = r_M; i < (r_M+16); i++) { 57 if (ctx->seen & (1 << (i-r_M))) 58 PPC_STD(i, 1, -(8*(32-i))); 59 } 60 } 61 EMIT(PPC_INST_STDU | __PPC_RS(R1) | __PPC_RA(R1) | 62 (-BPF_PPC_STACKFRAME & 0xfffc)); 63 } 64 65 if (ctx->seen & SEEN_DATAREF) { 66 /* 67 * If this filter needs to access skb data, 68 * prepare r_D and r_HL: 69 * r_HL = skb->len - skb->data_len 70 * r_D = skb->data 71 */ 72 PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff, 73 data_len)); 74 PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len)); 75 PPC_SUB(r_HL, r_HL, r_scratch1); 76 PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data)); 77 } 78 79 if (ctx->seen & SEEN_XREG) { 80 /* 81 * TODO: Could also detect whether first instr. sets X and 82 * avoid this (as below, with A). 83 */ 84 PPC_LI(r_X, 0); 85 } 86 87 switch (filter[0].code) { 88 case BPF_S_RET_K: 89 case BPF_S_LD_W_LEN: 90 case BPF_S_ANC_PROTOCOL: 91 case BPF_S_ANC_IFINDEX: 92 case BPF_S_ANC_MARK: 93 case BPF_S_ANC_RXHASH: 94 case BPF_S_ANC_VLAN_TAG: 95 case BPF_S_ANC_VLAN_TAG_PRESENT: 96 case BPF_S_ANC_CPU: 97 case BPF_S_ANC_QUEUE: 98 case BPF_S_LD_W_ABS: 99 case BPF_S_LD_H_ABS: 100 case BPF_S_LD_B_ABS: 101 /* first instruction sets A register (or is RET 'constant') */ 102 break; 103 default: 104 /* make sure we dont leak kernel information to user */ 105 PPC_LI(r_A, 0); 106 } 107 } 108 109 static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx) 110 { 111 int i; 112 113 if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) { 114 PPC_ADDI(1, 1, BPF_PPC_STACKFRAME); 115 if (ctx->seen & SEEN_DATAREF) { 116 PPC_LD(0, 1, 16); 117 PPC_MTLR(0); 118 PPC_LD(r_D, 1, -(8*(32-r_D))); 119 PPC_LD(r_HL, 1, -(8*(32-r_HL))); 120 } 121 if (ctx->seen & SEEN_MEM) { 122 /* Restore any saved non-vol registers */ 123 for (i = r_M; i < (r_M+16); i++) { 124 if (ctx->seen & (1 << (i-r_M))) 125 PPC_LD(i, 1, -(8*(32-i))); 126 } 127 } 128 } 129 /* The RETs have left a return value in R3. */ 130 131 PPC_BLR(); 132 } 133 134 #define CHOOSE_LOAD_FUNC(K, func) \ 135 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset) 136 137 /* Assemble the body code between the prologue & epilogue. */ 138 static int bpf_jit_build_body(struct sk_filter *fp, u32 *image, 139 struct codegen_context *ctx, 140 unsigned int *addrs) 141 { 142 const struct sock_filter *filter = fp->insns; 143 int flen = fp->len; 144 u8 *func; 145 unsigned int true_cond; 146 int i; 147 148 /* Start of epilogue code */ 149 unsigned int exit_addr = addrs[flen]; 150 151 for (i = 0; i < flen; i++) { 152 unsigned int K = filter[i].k; 153 154 /* 155 * addrs[] maps a BPF bytecode address into a real offset from 156 * the start of the body code. 157 */ 158 addrs[i] = ctx->idx * 4; 159 160 switch (filter[i].code) { 161 /*** ALU ops ***/ 162 case BPF_S_ALU_ADD_X: /* A += X; */ 163 ctx->seen |= SEEN_XREG; 164 PPC_ADD(r_A, r_A, r_X); 165 break; 166 case BPF_S_ALU_ADD_K: /* A += K; */ 167 if (!K) 168 break; 169 PPC_ADDI(r_A, r_A, IMM_L(K)); 170 if (K >= 32768) 171 PPC_ADDIS(r_A, r_A, IMM_HA(K)); 172 break; 173 case BPF_S_ALU_SUB_X: /* A -= X; */ 174 ctx->seen |= SEEN_XREG; 175 PPC_SUB(r_A, r_A, r_X); 176 break; 177 case BPF_S_ALU_SUB_K: /* A -= K */ 178 if (!K) 179 break; 180 PPC_ADDI(r_A, r_A, IMM_L(-K)); 181 if (K >= 32768) 182 PPC_ADDIS(r_A, r_A, IMM_HA(-K)); 183 break; 184 case BPF_S_ALU_MUL_X: /* A *= X; */ 185 ctx->seen |= SEEN_XREG; 186 PPC_MUL(r_A, r_A, r_X); 187 break; 188 case BPF_S_ALU_MUL_K: /* A *= K */ 189 if (K < 32768) 190 PPC_MULI(r_A, r_A, K); 191 else { 192 PPC_LI32(r_scratch1, K); 193 PPC_MUL(r_A, r_A, r_scratch1); 194 } 195 break; 196 case BPF_S_ALU_DIV_X: /* A /= X; */ 197 ctx->seen |= SEEN_XREG; 198 PPC_CMPWI(r_X, 0); 199 if (ctx->pc_ret0 != -1) { 200 PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]); 201 } else { 202 /* 203 * Exit, returning 0; first pass hits here 204 * (longer worst-case code size). 205 */ 206 PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12); 207 PPC_LI(r_ret, 0); 208 PPC_JMP(exit_addr); 209 } 210 PPC_DIVWU(r_A, r_A, r_X); 211 break; 212 case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */ 213 PPC_LI32(r_scratch1, K); 214 /* Top 32 bits of 64bit result -> A */ 215 PPC_MULHWU(r_A, r_A, r_scratch1); 216 break; 217 case BPF_S_ALU_AND_X: 218 ctx->seen |= SEEN_XREG; 219 PPC_AND(r_A, r_A, r_X); 220 break; 221 case BPF_S_ALU_AND_K: 222 if (!IMM_H(K)) 223 PPC_ANDI(r_A, r_A, K); 224 else { 225 PPC_LI32(r_scratch1, K); 226 PPC_AND(r_A, r_A, r_scratch1); 227 } 228 break; 229 case BPF_S_ALU_OR_X: 230 ctx->seen |= SEEN_XREG; 231 PPC_OR(r_A, r_A, r_X); 232 break; 233 case BPF_S_ALU_OR_K: 234 if (IMM_L(K)) 235 PPC_ORI(r_A, r_A, IMM_L(K)); 236 if (K >= 65536) 237 PPC_ORIS(r_A, r_A, IMM_H(K)); 238 break; 239 case BPF_S_ANC_ALU_XOR_X: 240 case BPF_S_ALU_XOR_X: /* A ^= X */ 241 ctx->seen |= SEEN_XREG; 242 PPC_XOR(r_A, r_A, r_X); 243 break; 244 case BPF_S_ALU_XOR_K: /* A ^= K */ 245 if (IMM_L(K)) 246 PPC_XORI(r_A, r_A, IMM_L(K)); 247 if (K >= 65536) 248 PPC_XORIS(r_A, r_A, IMM_H(K)); 249 break; 250 case BPF_S_ALU_LSH_X: /* A <<= X; */ 251 ctx->seen |= SEEN_XREG; 252 PPC_SLW(r_A, r_A, r_X); 253 break; 254 case BPF_S_ALU_LSH_K: 255 if (K == 0) 256 break; 257 else 258 PPC_SLWI(r_A, r_A, K); 259 break; 260 case BPF_S_ALU_RSH_X: /* A >>= X; */ 261 ctx->seen |= SEEN_XREG; 262 PPC_SRW(r_A, r_A, r_X); 263 break; 264 case BPF_S_ALU_RSH_K: /* A >>= K; */ 265 if (K == 0) 266 break; 267 else 268 PPC_SRWI(r_A, r_A, K); 269 break; 270 case BPF_S_ALU_NEG: 271 PPC_NEG(r_A, r_A); 272 break; 273 case BPF_S_RET_K: 274 PPC_LI32(r_ret, K); 275 if (!K) { 276 if (ctx->pc_ret0 == -1) 277 ctx->pc_ret0 = i; 278 } 279 /* 280 * If this isn't the very last instruction, branch to 281 * the epilogue if we've stuff to clean up. Otherwise, 282 * if there's nothing to tidy, just return. If we /are/ 283 * the last instruction, we're about to fall through to 284 * the epilogue to return. 285 */ 286 if (i != flen - 1) { 287 /* 288 * Note: 'seen' is properly valid only on pass 289 * #2. Both parts of this conditional are the 290 * same instruction size though, meaning the 291 * first pass will still correctly determine the 292 * code size/addresses. 293 */ 294 if (ctx->seen) 295 PPC_JMP(exit_addr); 296 else 297 PPC_BLR(); 298 } 299 break; 300 case BPF_S_RET_A: 301 PPC_MR(r_ret, r_A); 302 if (i != flen - 1) { 303 if (ctx->seen) 304 PPC_JMP(exit_addr); 305 else 306 PPC_BLR(); 307 } 308 break; 309 case BPF_S_MISC_TAX: /* X = A */ 310 PPC_MR(r_X, r_A); 311 break; 312 case BPF_S_MISC_TXA: /* A = X */ 313 ctx->seen |= SEEN_XREG; 314 PPC_MR(r_A, r_X); 315 break; 316 317 /*** Constant loads/M[] access ***/ 318 case BPF_S_LD_IMM: /* A = K */ 319 PPC_LI32(r_A, K); 320 break; 321 case BPF_S_LDX_IMM: /* X = K */ 322 PPC_LI32(r_X, K); 323 break; 324 case BPF_S_LD_MEM: /* A = mem[K] */ 325 PPC_MR(r_A, r_M + (K & 0xf)); 326 ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); 327 break; 328 case BPF_S_LDX_MEM: /* X = mem[K] */ 329 PPC_MR(r_X, r_M + (K & 0xf)); 330 ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); 331 break; 332 case BPF_S_ST: /* mem[K] = A */ 333 PPC_MR(r_M + (K & 0xf), r_A); 334 ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); 335 break; 336 case BPF_S_STX: /* mem[K] = X */ 337 PPC_MR(r_M + (K & 0xf), r_X); 338 ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf)); 339 break; 340 case BPF_S_LD_W_LEN: /* A = skb->len; */ 341 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4); 342 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len)); 343 break; 344 case BPF_S_LDX_W_LEN: /* X = skb->len; */ 345 PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len)); 346 break; 347 348 /*** Ancillary info loads ***/ 349 350 /* None of the BPF_S_ANC* codes appear to be passed by 351 * sk_chk_filter(). The interpreter and the x86 BPF 352 * compiler implement them so we do too -- they may be 353 * planted in future. 354 */ 355 case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */ 356 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, 357 protocol) != 2); 358 PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, 359 protocol)); 360 /* ntohs is a NOP with BE loads. */ 361 break; 362 case BPF_S_ANC_IFINDEX: 363 PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff, 364 dev)); 365 PPC_CMPDI(r_scratch1, 0); 366 if (ctx->pc_ret0 != -1) { 367 PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]); 368 } else { 369 /* Exit, returning 0; first pass hits here. */ 370 PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12); 371 PPC_LI(r_ret, 0); 372 PPC_JMP(exit_addr); 373 } 374 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, 375 ifindex) != 4); 376 PPC_LWZ_OFFS(r_A, r_scratch1, 377 offsetof(struct net_device, ifindex)); 378 break; 379 case BPF_S_ANC_MARK: 380 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4); 381 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, 382 mark)); 383 break; 384 case BPF_S_ANC_RXHASH: 385 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4); 386 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, 387 rxhash)); 388 break; 389 case BPF_S_ANC_VLAN_TAG: 390 case BPF_S_ANC_VLAN_TAG_PRESENT: 391 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2); 392 PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, 393 vlan_tci)); 394 if (filter[i].code == BPF_S_ANC_VLAN_TAG) 395 PPC_ANDI(r_A, r_A, VLAN_VID_MASK); 396 else 397 PPC_ANDI(r_A, r_A, VLAN_TAG_PRESENT); 398 break; 399 case BPF_S_ANC_QUEUE: 400 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, 401 queue_mapping) != 2); 402 PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, 403 queue_mapping)); 404 break; 405 case BPF_S_ANC_CPU: 406 #ifdef CONFIG_SMP 407 /* 408 * PACA ptr is r13: 409 * raw_smp_processor_id() = local_paca->paca_index 410 */ 411 BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct, 412 paca_index) != 2); 413 PPC_LHZ_OFFS(r_A, 13, 414 offsetof(struct paca_struct, paca_index)); 415 #else 416 PPC_LI(r_A, 0); 417 #endif 418 break; 419 420 /*** Absolute loads from packet header/data ***/ 421 case BPF_S_LD_W_ABS: 422 func = CHOOSE_LOAD_FUNC(K, sk_load_word); 423 goto common_load; 424 case BPF_S_LD_H_ABS: 425 func = CHOOSE_LOAD_FUNC(K, sk_load_half); 426 goto common_load; 427 case BPF_S_LD_B_ABS: 428 func = CHOOSE_LOAD_FUNC(K, sk_load_byte); 429 common_load: 430 /* Load from [K]. */ 431 ctx->seen |= SEEN_DATAREF; 432 PPC_LI64(r_scratch1, func); 433 PPC_MTLR(r_scratch1); 434 PPC_LI32(r_addr, K); 435 PPC_BLRL(); 436 /* 437 * Helper returns 'lt' condition on error, and an 438 * appropriate return value in r3 439 */ 440 PPC_BCC(COND_LT, exit_addr); 441 break; 442 443 /*** Indirect loads from packet header/data ***/ 444 case BPF_S_LD_W_IND: 445 func = sk_load_word; 446 goto common_load_ind; 447 case BPF_S_LD_H_IND: 448 func = sk_load_half; 449 goto common_load_ind; 450 case BPF_S_LD_B_IND: 451 func = sk_load_byte; 452 common_load_ind: 453 /* 454 * Load from [X + K]. Negative offsets are tested for 455 * in the helper functions. 456 */ 457 ctx->seen |= SEEN_DATAREF | SEEN_XREG; 458 PPC_LI64(r_scratch1, func); 459 PPC_MTLR(r_scratch1); 460 PPC_ADDI(r_addr, r_X, IMM_L(K)); 461 if (K >= 32768) 462 PPC_ADDIS(r_addr, r_addr, IMM_HA(K)); 463 PPC_BLRL(); 464 /* If error, cr0.LT set */ 465 PPC_BCC(COND_LT, exit_addr); 466 break; 467 468 case BPF_S_LDX_B_MSH: 469 func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh); 470 goto common_load; 471 break; 472 473 /*** Jump and branches ***/ 474 case BPF_S_JMP_JA: 475 if (K != 0) 476 PPC_JMP(addrs[i + 1 + K]); 477 break; 478 479 case BPF_S_JMP_JGT_K: 480 case BPF_S_JMP_JGT_X: 481 true_cond = COND_GT; 482 goto cond_branch; 483 case BPF_S_JMP_JGE_K: 484 case BPF_S_JMP_JGE_X: 485 true_cond = COND_GE; 486 goto cond_branch; 487 case BPF_S_JMP_JEQ_K: 488 case BPF_S_JMP_JEQ_X: 489 true_cond = COND_EQ; 490 goto cond_branch; 491 case BPF_S_JMP_JSET_K: 492 case BPF_S_JMP_JSET_X: 493 true_cond = COND_NE; 494 /* Fall through */ 495 cond_branch: 496 /* same targets, can avoid doing the test :) */ 497 if (filter[i].jt == filter[i].jf) { 498 if (filter[i].jt > 0) 499 PPC_JMP(addrs[i + 1 + filter[i].jt]); 500 break; 501 } 502 503 switch (filter[i].code) { 504 case BPF_S_JMP_JGT_X: 505 case BPF_S_JMP_JGE_X: 506 case BPF_S_JMP_JEQ_X: 507 ctx->seen |= SEEN_XREG; 508 PPC_CMPLW(r_A, r_X); 509 break; 510 case BPF_S_JMP_JSET_X: 511 ctx->seen |= SEEN_XREG; 512 PPC_AND_DOT(r_scratch1, r_A, r_X); 513 break; 514 case BPF_S_JMP_JEQ_K: 515 case BPF_S_JMP_JGT_K: 516 case BPF_S_JMP_JGE_K: 517 if (K < 32768) 518 PPC_CMPLWI(r_A, K); 519 else { 520 PPC_LI32(r_scratch1, K); 521 PPC_CMPLW(r_A, r_scratch1); 522 } 523 break; 524 case BPF_S_JMP_JSET_K: 525 if (K < 32768) 526 /* PPC_ANDI is /only/ dot-form */ 527 PPC_ANDI(r_scratch1, r_A, K); 528 else { 529 PPC_LI32(r_scratch1, K); 530 PPC_AND_DOT(r_scratch1, r_A, 531 r_scratch1); 532 } 533 break; 534 } 535 /* Sometimes branches are constructed "backward", with 536 * the false path being the branch and true path being 537 * a fallthrough to the next instruction. 538 */ 539 if (filter[i].jt == 0) 540 /* Swap the sense of the branch */ 541 PPC_BCC(true_cond ^ COND_CMP_TRUE, 542 addrs[i + 1 + filter[i].jf]); 543 else { 544 PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]); 545 if (filter[i].jf != 0) 546 PPC_JMP(addrs[i + 1 + filter[i].jf]); 547 } 548 break; 549 default: 550 /* The filter contains something cruel & unusual. 551 * We don't handle it, but also there shouldn't be 552 * anything missing from our list. 553 */ 554 if (printk_ratelimit()) 555 pr_err("BPF filter opcode %04x (@%d) unsupported\n", 556 filter[i].code, i); 557 return -ENOTSUPP; 558 } 559 560 } 561 /* Set end-of-body-code address for exit. */ 562 addrs[i] = ctx->idx * 4; 563 564 return 0; 565 } 566 567 void bpf_jit_compile(struct sk_filter *fp) 568 { 569 unsigned int proglen; 570 unsigned int alloclen; 571 u32 *image = NULL; 572 u32 *code_base; 573 unsigned int *addrs; 574 struct codegen_context cgctx; 575 int pass; 576 int flen = fp->len; 577 578 if (!bpf_jit_enable) 579 return; 580 581 addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL); 582 if (addrs == NULL) 583 return; 584 585 /* 586 * There are multiple assembly passes as the generated code will change 587 * size as it settles down, figuring out the max branch offsets/exit 588 * paths required. 589 * 590 * The range of standard conditional branches is +/- 32Kbytes. Since 591 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to 592 * finish with 8 bytes/instruction. Not feasible, so long jumps are 593 * used, distinct from short branches. 594 * 595 * Current: 596 * 597 * For now, both branch types assemble to 2 words (short branches padded 598 * with a NOP); this is less efficient, but assembly will always complete 599 * after exactly 3 passes: 600 * 601 * First pass: No code buffer; Program is "faux-generated" -- no code 602 * emitted but maximum size of output determined (and addrs[] filled 603 * in). Also, we note whether we use M[], whether we use skb data, etc. 604 * All generation choices assumed to be 'worst-case', e.g. branches all 605 * far (2 instructions), return path code reduction not available, etc. 606 * 607 * Second pass: Code buffer allocated with size determined previously. 608 * Prologue generated to support features we have seen used. Exit paths 609 * determined and addrs[] is filled in again, as code may be slightly 610 * smaller as a result. 611 * 612 * Third pass: Code generated 'for real', and branch destinations 613 * determined from now-accurate addrs[] map. 614 * 615 * Ideal: 616 * 617 * If we optimise this, near branches will be shorter. On the 618 * first assembly pass, we should err on the side of caution and 619 * generate the biggest code. On subsequent passes, branches will be 620 * generated short or long and code size will reduce. With smaller 621 * code, more branches may fall into the short category, and code will 622 * reduce more. 623 * 624 * Finally, if we see one pass generate code the same size as the 625 * previous pass we have converged and should now generate code for 626 * real. Allocating at the end will also save the memory that would 627 * otherwise be wasted by the (small) current code shrinkage. 628 * Preferably, we should do a small number of passes (e.g. 5) and if we 629 * haven't converged by then, get impatient and force code to generate 630 * as-is, even if the odd branch would be left long. The chances of a 631 * long jump are tiny with all but the most enormous of BPF filter 632 * inputs, so we should usually converge on the third pass. 633 */ 634 635 cgctx.idx = 0; 636 cgctx.seen = 0; 637 cgctx.pc_ret0 = -1; 638 /* Scouting faux-generate pass 0 */ 639 if (bpf_jit_build_body(fp, 0, &cgctx, addrs)) 640 /* We hit something illegal or unsupported. */ 641 goto out; 642 643 /* 644 * Pretend to build prologue, given the features we've seen. This will 645 * update ctgtx.idx as it pretends to output instructions, then we can 646 * calculate total size from idx. 647 */ 648 bpf_jit_build_prologue(fp, 0, &cgctx); 649 bpf_jit_build_epilogue(0, &cgctx); 650 651 proglen = cgctx.idx * 4; 652 alloclen = proglen + FUNCTION_DESCR_SIZE; 653 image = module_alloc(alloclen); 654 if (!image) 655 goto out; 656 657 code_base = image + (FUNCTION_DESCR_SIZE/4); 658 659 /* Code generation passes 1-2 */ 660 for (pass = 1; pass < 3; pass++) { 661 /* Now build the prologue, body code & epilogue for real. */ 662 cgctx.idx = 0; 663 bpf_jit_build_prologue(fp, code_base, &cgctx); 664 bpf_jit_build_body(fp, code_base, &cgctx, addrs); 665 bpf_jit_build_epilogue(code_base, &cgctx); 666 667 if (bpf_jit_enable > 1) 668 pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass, 669 proglen - (cgctx.idx * 4), cgctx.seen); 670 } 671 672 if (bpf_jit_enable > 1) 673 /* Note that we output the base address of the code_base 674 * rather than image, since opcodes are in code_base. 675 */ 676 bpf_jit_dump(flen, proglen, pass, code_base); 677 678 if (image) { 679 bpf_flush_icache(code_base, code_base + (proglen/4)); 680 /* Function descriptor nastiness: Address + TOC */ 681 ((u64 *)image)[0] = (u64)code_base; 682 ((u64 *)image)[1] = local_paca->kernel_toc; 683 fp->bpf_func = (void *)image; 684 } 685 out: 686 kfree(addrs); 687 return; 688 } 689 690 void bpf_jit_free(struct sk_filter *fp) 691 { 692 if (fp->bpf_func != sk_run_filter) 693 module_free(NULL, fp->bpf_func); 694 } 695