xref: /openbmc/linux/arch/powerpc/net/bpf_jit_comp.c (revision dce8efa0575c8d9b5f9f9ae41437200c6d3e0bf3)
1 /* bpf_jit_comp.c: BPF JIT compiler
2  *
3  * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
4  *
5  * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
6  * Ported to ppc32 by Denis Kirjanov <kda@linux-powerpc.org>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; version 2
11  * of the License.
12  */
13 #include <linux/moduleloader.h>
14 #include <asm/cacheflush.h>
15 #include <linux/netdevice.h>
16 #include <linux/filter.h>
17 #include <linux/if_vlan.h>
18 
19 #include "bpf_jit32.h"
20 
21 static inline void bpf_flush_icache(void *start, void *end)
22 {
23 	smp_wmb();
24 	flush_icache_range((unsigned long)start, (unsigned long)end);
25 }
26 
27 static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image,
28 				   struct codegen_context *ctx)
29 {
30 	int i;
31 	const struct sock_filter *filter = fp->insns;
32 
33 	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
34 		/* Make stackframe */
35 		if (ctx->seen & SEEN_DATAREF) {
36 			/* If we call any helpers (for loads), save LR */
37 			EMIT(PPC_INST_MFLR | __PPC_RT(R0));
38 			PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
39 
40 			/* Back up non-volatile regs. */
41 			PPC_BPF_STL(r_D, 1, -(REG_SZ*(32-r_D)));
42 			PPC_BPF_STL(r_HL, 1, -(REG_SZ*(32-r_HL)));
43 		}
44 		if (ctx->seen & SEEN_MEM) {
45 			/*
46 			 * Conditionally save regs r15-r31 as some will be used
47 			 * for M[] data.
48 			 */
49 			for (i = r_M; i < (r_M+16); i++) {
50 				if (ctx->seen & (1 << (i-r_M)))
51 					PPC_BPF_STL(i, 1, -(REG_SZ*(32-i)));
52 			}
53 		}
54 		PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME);
55 	}
56 
57 	if (ctx->seen & SEEN_DATAREF) {
58 		/*
59 		 * If this filter needs to access skb data,
60 		 * prepare r_D and r_HL:
61 		 *  r_HL = skb->len - skb->data_len
62 		 *  r_D	 = skb->data
63 		 */
64 		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
65 							 data_len));
66 		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
67 		PPC_SUB(r_HL, r_HL, r_scratch1);
68 		PPC_LL_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
69 	}
70 
71 	if (ctx->seen & SEEN_XREG) {
72 		/*
73 		 * TODO: Could also detect whether first instr. sets X and
74 		 * avoid this (as below, with A).
75 		 */
76 		PPC_LI(r_X, 0);
77 	}
78 
79 	/* make sure we dont leak kernel information to user */
80 	if (bpf_needs_clear_a(&filter[0]))
81 		PPC_LI(r_A, 0);
82 }
83 
84 static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
85 {
86 	int i;
87 
88 	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
89 		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
90 		if (ctx->seen & SEEN_DATAREF) {
91 			PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
92 			PPC_MTLR(0);
93 			PPC_BPF_LL(r_D, 1, -(REG_SZ*(32-r_D)));
94 			PPC_BPF_LL(r_HL, 1, -(REG_SZ*(32-r_HL)));
95 		}
96 		if (ctx->seen & SEEN_MEM) {
97 			/* Restore any saved non-vol registers */
98 			for (i = r_M; i < (r_M+16); i++) {
99 				if (ctx->seen & (1 << (i-r_M)))
100 					PPC_BPF_LL(i, 1, -(REG_SZ*(32-i)));
101 			}
102 		}
103 	}
104 	/* The RETs have left a return value in R3. */
105 
106 	PPC_BLR();
107 }
108 
109 #define CHOOSE_LOAD_FUNC(K, func) \
110 	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
111 
112 /* Assemble the body code between the prologue & epilogue. */
113 static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
114 			      struct codegen_context *ctx,
115 			      unsigned int *addrs)
116 {
117 	const struct sock_filter *filter = fp->insns;
118 	int flen = fp->len;
119 	u8 *func;
120 	unsigned int true_cond;
121 	int i;
122 
123 	/* Start of epilogue code */
124 	unsigned int exit_addr = addrs[flen];
125 
126 	for (i = 0; i < flen; i++) {
127 		unsigned int K = filter[i].k;
128 		u16 code = bpf_anc_helper(&filter[i]);
129 
130 		/*
131 		 * addrs[] maps a BPF bytecode address into a real offset from
132 		 * the start of the body code.
133 		 */
134 		addrs[i] = ctx->idx * 4;
135 
136 		switch (code) {
137 			/*** ALU ops ***/
138 		case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
139 			ctx->seen |= SEEN_XREG;
140 			PPC_ADD(r_A, r_A, r_X);
141 			break;
142 		case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
143 			if (!K)
144 				break;
145 			PPC_ADDI(r_A, r_A, IMM_L(K));
146 			if (K >= 32768)
147 				PPC_ADDIS(r_A, r_A, IMM_HA(K));
148 			break;
149 		case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
150 			ctx->seen |= SEEN_XREG;
151 			PPC_SUB(r_A, r_A, r_X);
152 			break;
153 		case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
154 			if (!K)
155 				break;
156 			PPC_ADDI(r_A, r_A, IMM_L(-K));
157 			if (K >= 32768)
158 				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
159 			break;
160 		case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
161 			ctx->seen |= SEEN_XREG;
162 			PPC_MULW(r_A, r_A, r_X);
163 			break;
164 		case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
165 			if (K < 32768)
166 				PPC_MULI(r_A, r_A, K);
167 			else {
168 				PPC_LI32(r_scratch1, K);
169 				PPC_MULW(r_A, r_A, r_scratch1);
170 			}
171 			break;
172 		case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */
173 		case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
174 			ctx->seen |= SEEN_XREG;
175 			PPC_CMPWI(r_X, 0);
176 			if (ctx->pc_ret0 != -1) {
177 				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
178 			} else {
179 				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
180 				PPC_LI(r_ret, 0);
181 				PPC_JMP(exit_addr);
182 			}
183 			if (code == (BPF_ALU | BPF_MOD | BPF_X)) {
184 				PPC_DIVWU(r_scratch1, r_A, r_X);
185 				PPC_MULW(r_scratch1, r_X, r_scratch1);
186 				PPC_SUB(r_A, r_A, r_scratch1);
187 			} else {
188 				PPC_DIVWU(r_A, r_A, r_X);
189 			}
190 			break;
191 		case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */
192 			PPC_LI32(r_scratch2, K);
193 			PPC_DIVWU(r_scratch1, r_A, r_scratch2);
194 			PPC_MULW(r_scratch1, r_scratch2, r_scratch1);
195 			PPC_SUB(r_A, r_A, r_scratch1);
196 			break;
197 		case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */
198 			if (K == 1)
199 				break;
200 			PPC_LI32(r_scratch1, K);
201 			PPC_DIVWU(r_A, r_A, r_scratch1);
202 			break;
203 		case BPF_ALU | BPF_AND | BPF_X:
204 			ctx->seen |= SEEN_XREG;
205 			PPC_AND(r_A, r_A, r_X);
206 			break;
207 		case BPF_ALU | BPF_AND | BPF_K:
208 			if (!IMM_H(K))
209 				PPC_ANDI(r_A, r_A, K);
210 			else {
211 				PPC_LI32(r_scratch1, K);
212 				PPC_AND(r_A, r_A, r_scratch1);
213 			}
214 			break;
215 		case BPF_ALU | BPF_OR | BPF_X:
216 			ctx->seen |= SEEN_XREG;
217 			PPC_OR(r_A, r_A, r_X);
218 			break;
219 		case BPF_ALU | BPF_OR | BPF_K:
220 			if (IMM_L(K))
221 				PPC_ORI(r_A, r_A, IMM_L(K));
222 			if (K >= 65536)
223 				PPC_ORIS(r_A, r_A, IMM_H(K));
224 			break;
225 		case BPF_ANC | SKF_AD_ALU_XOR_X:
226 		case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */
227 			ctx->seen |= SEEN_XREG;
228 			PPC_XOR(r_A, r_A, r_X);
229 			break;
230 		case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
231 			if (IMM_L(K))
232 				PPC_XORI(r_A, r_A, IMM_L(K));
233 			if (K >= 65536)
234 				PPC_XORIS(r_A, r_A, IMM_H(K));
235 			break;
236 		case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */
237 			ctx->seen |= SEEN_XREG;
238 			PPC_SLW(r_A, r_A, r_X);
239 			break;
240 		case BPF_ALU | BPF_LSH | BPF_K:
241 			if (K == 0)
242 				break;
243 			else
244 				PPC_SLWI(r_A, r_A, K);
245 			break;
246 		case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */
247 			ctx->seen |= SEEN_XREG;
248 			PPC_SRW(r_A, r_A, r_X);
249 			break;
250 		case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */
251 			if (K == 0)
252 				break;
253 			else
254 				PPC_SRWI(r_A, r_A, K);
255 			break;
256 		case BPF_ALU | BPF_NEG:
257 			PPC_NEG(r_A, r_A);
258 			break;
259 		case BPF_RET | BPF_K:
260 			PPC_LI32(r_ret, K);
261 			if (!K) {
262 				if (ctx->pc_ret0 == -1)
263 					ctx->pc_ret0 = i;
264 			}
265 			/*
266 			 * If this isn't the very last instruction, branch to
267 			 * the epilogue if we've stuff to clean up.  Otherwise,
268 			 * if there's nothing to tidy, just return.  If we /are/
269 			 * the last instruction, we're about to fall through to
270 			 * the epilogue to return.
271 			 */
272 			if (i != flen - 1) {
273 				/*
274 				 * Note: 'seen' is properly valid only on pass
275 				 * #2.	Both parts of this conditional are the
276 				 * same instruction size though, meaning the
277 				 * first pass will still correctly determine the
278 				 * code size/addresses.
279 				 */
280 				if (ctx->seen)
281 					PPC_JMP(exit_addr);
282 				else
283 					PPC_BLR();
284 			}
285 			break;
286 		case BPF_RET | BPF_A:
287 			PPC_MR(r_ret, r_A);
288 			if (i != flen - 1) {
289 				if (ctx->seen)
290 					PPC_JMP(exit_addr);
291 				else
292 					PPC_BLR();
293 			}
294 			break;
295 		case BPF_MISC | BPF_TAX: /* X = A */
296 			PPC_MR(r_X, r_A);
297 			break;
298 		case BPF_MISC | BPF_TXA: /* A = X */
299 			ctx->seen |= SEEN_XREG;
300 			PPC_MR(r_A, r_X);
301 			break;
302 
303 			/*** Constant loads/M[] access ***/
304 		case BPF_LD | BPF_IMM: /* A = K */
305 			PPC_LI32(r_A, K);
306 			break;
307 		case BPF_LDX | BPF_IMM: /* X = K */
308 			PPC_LI32(r_X, K);
309 			break;
310 		case BPF_LD | BPF_MEM: /* A = mem[K] */
311 			PPC_MR(r_A, r_M + (K & 0xf));
312 			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
313 			break;
314 		case BPF_LDX | BPF_MEM: /* X = mem[K] */
315 			PPC_MR(r_X, r_M + (K & 0xf));
316 			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
317 			break;
318 		case BPF_ST: /* mem[K] = A */
319 			PPC_MR(r_M + (K & 0xf), r_A);
320 			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
321 			break;
322 		case BPF_STX: /* mem[K] = X */
323 			PPC_MR(r_M + (K & 0xf), r_X);
324 			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
325 			break;
326 		case BPF_LD | BPF_W | BPF_LEN: /*	A = skb->len; */
327 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
328 			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
329 			break;
330 		case BPF_LDX | BPF_W | BPF_ABS: /* A = *((u32 *)(seccomp_data + K)); */
331 			PPC_LWZ_OFFS(r_A, r_skb, K);
332 			break;
333 		case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */
334 			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
335 			break;
336 
337 			/*** Ancillary info loads ***/
338 		case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */
339 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
340 						  protocol) != 2);
341 			PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
342 							    protocol));
343 			break;
344 		case BPF_ANC | SKF_AD_IFINDEX:
345 		case BPF_ANC | SKF_AD_HATYPE:
346 			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
347 						ifindex) != 4);
348 			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
349 						type) != 2);
350 			PPC_LL_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
351 								dev));
352 			PPC_CMPDI(r_scratch1, 0);
353 			if (ctx->pc_ret0 != -1) {
354 				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
355 			} else {
356 				/* Exit, returning 0; first pass hits here. */
357 				PPC_BCC_SHORT(COND_NE, ctx->idx * 4 + 12);
358 				PPC_LI(r_ret, 0);
359 				PPC_JMP(exit_addr);
360 			}
361 			if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
362 				PPC_LWZ_OFFS(r_A, r_scratch1,
363 				     offsetof(struct net_device, ifindex));
364 			} else {
365 				PPC_LHZ_OFFS(r_A, r_scratch1,
366 				     offsetof(struct net_device, type));
367 			}
368 
369 			break;
370 		case BPF_ANC | SKF_AD_MARK:
371 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
372 			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
373 							  mark));
374 			break;
375 		case BPF_ANC | SKF_AD_RXHASH:
376 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
377 			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
378 							  hash));
379 			break;
380 		case BPF_ANC | SKF_AD_VLAN_TAG:
381 		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
382 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
383 			BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
384 
385 			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
386 							  vlan_tci));
387 			if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) {
388 				PPC_ANDI(r_A, r_A, ~VLAN_TAG_PRESENT);
389 			} else {
390 				PPC_ANDI(r_A, r_A, VLAN_TAG_PRESENT);
391 				PPC_SRWI(r_A, r_A, 12);
392 			}
393 			break;
394 		case BPF_ANC | SKF_AD_QUEUE:
395 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
396 						  queue_mapping) != 2);
397 			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
398 							  queue_mapping));
399 			break;
400 		case BPF_ANC | SKF_AD_PKTTYPE:
401 			PPC_LBZ_OFFS(r_A, r_skb, PKT_TYPE_OFFSET());
402 			PPC_ANDI(r_A, r_A, PKT_TYPE_MAX);
403 			PPC_SRWI(r_A, r_A, 5);
404 			break;
405 		case BPF_ANC | SKF_AD_CPU:
406 			PPC_BPF_LOAD_CPU(r_A);
407 			break;
408 			/*** Absolute loads from packet header/data ***/
409 		case BPF_LD | BPF_W | BPF_ABS:
410 			func = CHOOSE_LOAD_FUNC(K, sk_load_word);
411 			goto common_load;
412 		case BPF_LD | BPF_H | BPF_ABS:
413 			func = CHOOSE_LOAD_FUNC(K, sk_load_half);
414 			goto common_load;
415 		case BPF_LD | BPF_B | BPF_ABS:
416 			func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
417 		common_load:
418 			/* Load from [K]. */
419 			ctx->seen |= SEEN_DATAREF;
420 			PPC_FUNC_ADDR(r_scratch1, func);
421 			PPC_MTLR(r_scratch1);
422 			PPC_LI32(r_addr, K);
423 			PPC_BLRL();
424 			/*
425 			 * Helper returns 'lt' condition on error, and an
426 			 * appropriate return value in r3
427 			 */
428 			PPC_BCC(COND_LT, exit_addr);
429 			break;
430 
431 			/*** Indirect loads from packet header/data ***/
432 		case BPF_LD | BPF_W | BPF_IND:
433 			func = sk_load_word;
434 			goto common_load_ind;
435 		case BPF_LD | BPF_H | BPF_IND:
436 			func = sk_load_half;
437 			goto common_load_ind;
438 		case BPF_LD | BPF_B | BPF_IND:
439 			func = sk_load_byte;
440 		common_load_ind:
441 			/*
442 			 * Load from [X + K].  Negative offsets are tested for
443 			 * in the helper functions.
444 			 */
445 			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
446 			PPC_FUNC_ADDR(r_scratch1, func);
447 			PPC_MTLR(r_scratch1);
448 			PPC_ADDI(r_addr, r_X, IMM_L(K));
449 			if (K >= 32768)
450 				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
451 			PPC_BLRL();
452 			/* If error, cr0.LT set */
453 			PPC_BCC(COND_LT, exit_addr);
454 			break;
455 
456 		case BPF_LDX | BPF_B | BPF_MSH:
457 			func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
458 			goto common_load;
459 			break;
460 
461 			/*** Jump and branches ***/
462 		case BPF_JMP | BPF_JA:
463 			if (K != 0)
464 				PPC_JMP(addrs[i + 1 + K]);
465 			break;
466 
467 		case BPF_JMP | BPF_JGT | BPF_K:
468 		case BPF_JMP | BPF_JGT | BPF_X:
469 			true_cond = COND_GT;
470 			goto cond_branch;
471 		case BPF_JMP | BPF_JGE | BPF_K:
472 		case BPF_JMP | BPF_JGE | BPF_X:
473 			true_cond = COND_GE;
474 			goto cond_branch;
475 		case BPF_JMP | BPF_JEQ | BPF_K:
476 		case BPF_JMP | BPF_JEQ | BPF_X:
477 			true_cond = COND_EQ;
478 			goto cond_branch;
479 		case BPF_JMP | BPF_JSET | BPF_K:
480 		case BPF_JMP | BPF_JSET | BPF_X:
481 			true_cond = COND_NE;
482 			/* Fall through */
483 		cond_branch:
484 			/* same targets, can avoid doing the test :) */
485 			if (filter[i].jt == filter[i].jf) {
486 				if (filter[i].jt > 0)
487 					PPC_JMP(addrs[i + 1 + filter[i].jt]);
488 				break;
489 			}
490 
491 			switch (code) {
492 			case BPF_JMP | BPF_JGT | BPF_X:
493 			case BPF_JMP | BPF_JGE | BPF_X:
494 			case BPF_JMP | BPF_JEQ | BPF_X:
495 				ctx->seen |= SEEN_XREG;
496 				PPC_CMPLW(r_A, r_X);
497 				break;
498 			case BPF_JMP | BPF_JSET | BPF_X:
499 				ctx->seen |= SEEN_XREG;
500 				PPC_AND_DOT(r_scratch1, r_A, r_X);
501 				break;
502 			case BPF_JMP | BPF_JEQ | BPF_K:
503 			case BPF_JMP | BPF_JGT | BPF_K:
504 			case BPF_JMP | BPF_JGE | BPF_K:
505 				if (K < 32768)
506 					PPC_CMPLWI(r_A, K);
507 				else {
508 					PPC_LI32(r_scratch1, K);
509 					PPC_CMPLW(r_A, r_scratch1);
510 				}
511 				break;
512 			case BPF_JMP | BPF_JSET | BPF_K:
513 				if (K < 32768)
514 					/* PPC_ANDI is /only/ dot-form */
515 					PPC_ANDI(r_scratch1, r_A, K);
516 				else {
517 					PPC_LI32(r_scratch1, K);
518 					PPC_AND_DOT(r_scratch1, r_A,
519 						    r_scratch1);
520 				}
521 				break;
522 			}
523 			/* Sometimes branches are constructed "backward", with
524 			 * the false path being the branch and true path being
525 			 * a fallthrough to the next instruction.
526 			 */
527 			if (filter[i].jt == 0)
528 				/* Swap the sense of the branch */
529 				PPC_BCC(true_cond ^ COND_CMP_TRUE,
530 					addrs[i + 1 + filter[i].jf]);
531 			else {
532 				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
533 				if (filter[i].jf != 0)
534 					PPC_JMP(addrs[i + 1 + filter[i].jf]);
535 			}
536 			break;
537 		default:
538 			/* The filter contains something cruel & unusual.
539 			 * We don't handle it, but also there shouldn't be
540 			 * anything missing from our list.
541 			 */
542 			if (printk_ratelimit())
543 				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
544 				       filter[i].code, i);
545 			return -ENOTSUPP;
546 		}
547 
548 	}
549 	/* Set end-of-body-code address for exit. */
550 	addrs[i] = ctx->idx * 4;
551 
552 	return 0;
553 }
554 
555 void bpf_jit_compile(struct bpf_prog *fp)
556 {
557 	unsigned int proglen;
558 	unsigned int alloclen;
559 	u32 *image = NULL;
560 	u32 *code_base;
561 	unsigned int *addrs;
562 	struct codegen_context cgctx;
563 	int pass;
564 	int flen = fp->len;
565 
566 	if (!bpf_jit_enable)
567 		return;
568 
569 	addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
570 	if (addrs == NULL)
571 		return;
572 
573 	/*
574 	 * There are multiple assembly passes as the generated code will change
575 	 * size as it settles down, figuring out the max branch offsets/exit
576 	 * paths required.
577 	 *
578 	 * The range of standard conditional branches is +/- 32Kbytes.	Since
579 	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
580 	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
581 	 * used, distinct from short branches.
582 	 *
583 	 * Current:
584 	 *
585 	 * For now, both branch types assemble to 2 words (short branches padded
586 	 * with a NOP); this is less efficient, but assembly will always complete
587 	 * after exactly 3 passes:
588 	 *
589 	 * First pass: No code buffer; Program is "faux-generated" -- no code
590 	 * emitted but maximum size of output determined (and addrs[] filled
591 	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
592 	 * All generation choices assumed to be 'worst-case', e.g. branches all
593 	 * far (2 instructions), return path code reduction not available, etc.
594 	 *
595 	 * Second pass: Code buffer allocated with size determined previously.
596 	 * Prologue generated to support features we have seen used.  Exit paths
597 	 * determined and addrs[] is filled in again, as code may be slightly
598 	 * smaller as a result.
599 	 *
600 	 * Third pass: Code generated 'for real', and branch destinations
601 	 * determined from now-accurate addrs[] map.
602 	 *
603 	 * Ideal:
604 	 *
605 	 * If we optimise this, near branches will be shorter.	On the
606 	 * first assembly pass, we should err on the side of caution and
607 	 * generate the biggest code.  On subsequent passes, branches will be
608 	 * generated short or long and code size will reduce.  With smaller
609 	 * code, more branches may fall into the short category, and code will
610 	 * reduce more.
611 	 *
612 	 * Finally, if we see one pass generate code the same size as the
613 	 * previous pass we have converged and should now generate code for
614 	 * real.  Allocating at the end will also save the memory that would
615 	 * otherwise be wasted by the (small) current code shrinkage.
616 	 * Preferably, we should do a small number of passes (e.g. 5) and if we
617 	 * haven't converged by then, get impatient and force code to generate
618 	 * as-is, even if the odd branch would be left long.  The chances of a
619 	 * long jump are tiny with all but the most enormous of BPF filter
620 	 * inputs, so we should usually converge on the third pass.
621 	 */
622 
623 	cgctx.idx = 0;
624 	cgctx.seen = 0;
625 	cgctx.pc_ret0 = -1;
626 	/* Scouting faux-generate pass 0 */
627 	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
628 		/* We hit something illegal or unsupported. */
629 		goto out;
630 
631 	/*
632 	 * Pretend to build prologue, given the features we've seen.  This will
633 	 * update ctgtx.idx as it pretends to output instructions, then we can
634 	 * calculate total size from idx.
635 	 */
636 	bpf_jit_build_prologue(fp, 0, &cgctx);
637 	bpf_jit_build_epilogue(0, &cgctx);
638 
639 	proglen = cgctx.idx * 4;
640 	alloclen = proglen + FUNCTION_DESCR_SIZE;
641 	image = module_alloc(alloclen);
642 	if (!image)
643 		goto out;
644 
645 	code_base = image + (FUNCTION_DESCR_SIZE/4);
646 
647 	/* Code generation passes 1-2 */
648 	for (pass = 1; pass < 3; pass++) {
649 		/* Now build the prologue, body code & epilogue for real. */
650 		cgctx.idx = 0;
651 		bpf_jit_build_prologue(fp, code_base, &cgctx);
652 		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
653 		bpf_jit_build_epilogue(code_base, &cgctx);
654 
655 		if (bpf_jit_enable > 1)
656 			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
657 				proglen - (cgctx.idx * 4), cgctx.seen);
658 	}
659 
660 	if (bpf_jit_enable > 1)
661 		/* Note that we output the base address of the code_base
662 		 * rather than image, since opcodes are in code_base.
663 		 */
664 		bpf_jit_dump(flen, proglen, pass, code_base);
665 
666 	bpf_flush_icache(code_base, code_base + (proglen/4));
667 
668 #ifdef CONFIG_PPC64
669 	/* Function descriptor nastiness: Address + TOC */
670 	((u64 *)image)[0] = (u64)code_base;
671 	((u64 *)image)[1] = local_paca->kernel_toc;
672 #endif
673 
674 	fp->bpf_func = (void *)image;
675 	fp->jited = 1;
676 
677 out:
678 	kfree(addrs);
679 	return;
680 }
681 
682 void bpf_jit_free(struct bpf_prog *fp)
683 {
684 	if (fp->jited)
685 		module_memfree(fp->bpf_func);
686 
687 	bpf_prog_unlock_free(fp);
688 }
689