xref: /openbmc/linux/arch/powerpc/net/bpf_jit_comp.c (revision d2168146)
1 /* bpf_jit_comp.c: BPF JIT compiler for PPC64
2  *
3  * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
4  *
5  * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 #include <linux/moduleloader.h>
13 #include <asm/cacheflush.h>
14 #include <linux/netdevice.h>
15 #include <linux/filter.h>
16 #include <linux/if_vlan.h>
17 
18 #include "bpf_jit.h"
19 
20 int bpf_jit_enable __read_mostly;
21 
22 static inline void bpf_flush_icache(void *start, void *end)
23 {
24 	smp_wmb();
25 	flush_icache_range((unsigned long)start, (unsigned long)end);
26 }
27 
28 static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image,
29 				   struct codegen_context *ctx)
30 {
31 	int i;
32 	const struct sock_filter *filter = fp->insns;
33 
34 	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
35 		/* Make stackframe */
36 		if (ctx->seen & SEEN_DATAREF) {
37 			/* If we call any helpers (for loads), save LR */
38 			EMIT(PPC_INST_MFLR | __PPC_RT(R0));
39 			PPC_STD(0, 1, 16);
40 
41 			/* Back up non-volatile regs. */
42 			PPC_STD(r_D, 1, -(8*(32-r_D)));
43 			PPC_STD(r_HL, 1, -(8*(32-r_HL)));
44 		}
45 		if (ctx->seen & SEEN_MEM) {
46 			/*
47 			 * Conditionally save regs r15-r31 as some will be used
48 			 * for M[] data.
49 			 */
50 			for (i = r_M; i < (r_M+16); i++) {
51 				if (ctx->seen & (1 << (i-r_M)))
52 					PPC_STD(i, 1, -(8*(32-i)));
53 			}
54 		}
55 		EMIT(PPC_INST_STDU | __PPC_RS(R1) | __PPC_RA(R1) |
56 		     (-BPF_PPC_STACKFRAME & 0xfffc));
57 	}
58 
59 	if (ctx->seen & SEEN_DATAREF) {
60 		/*
61 		 * If this filter needs to access skb data,
62 		 * prepare r_D and r_HL:
63 		 *  r_HL = skb->len - skb->data_len
64 		 *  r_D	 = skb->data
65 		 */
66 		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
67 							 data_len));
68 		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
69 		PPC_SUB(r_HL, r_HL, r_scratch1);
70 		PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
71 	}
72 
73 	if (ctx->seen & SEEN_XREG) {
74 		/*
75 		 * TODO: Could also detect whether first instr. sets X and
76 		 * avoid this (as below, with A).
77 		 */
78 		PPC_LI(r_X, 0);
79 	}
80 
81 	switch (filter[0].code) {
82 	case BPF_RET | BPF_K:
83 	case BPF_LD | BPF_W | BPF_LEN:
84 	case BPF_LD | BPF_W | BPF_ABS:
85 	case BPF_LD | BPF_H | BPF_ABS:
86 	case BPF_LD | BPF_B | BPF_ABS:
87 		/* first instruction sets A register (or is RET 'constant') */
88 		break;
89 	default:
90 		/* make sure we dont leak kernel information to user */
91 		PPC_LI(r_A, 0);
92 	}
93 }
94 
95 static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
96 {
97 	int i;
98 
99 	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
100 		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
101 		if (ctx->seen & SEEN_DATAREF) {
102 			PPC_LD(0, 1, 16);
103 			PPC_MTLR(0);
104 			PPC_LD(r_D, 1, -(8*(32-r_D)));
105 			PPC_LD(r_HL, 1, -(8*(32-r_HL)));
106 		}
107 		if (ctx->seen & SEEN_MEM) {
108 			/* Restore any saved non-vol registers */
109 			for (i = r_M; i < (r_M+16); i++) {
110 				if (ctx->seen & (1 << (i-r_M)))
111 					PPC_LD(i, 1, -(8*(32-i)));
112 			}
113 		}
114 	}
115 	/* The RETs have left a return value in R3. */
116 
117 	PPC_BLR();
118 }
119 
120 #define CHOOSE_LOAD_FUNC(K, func) \
121 	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
122 
123 /* Assemble the body code between the prologue & epilogue. */
124 static int bpf_jit_build_body(struct sk_filter *fp, u32 *image,
125 			      struct codegen_context *ctx,
126 			      unsigned int *addrs)
127 {
128 	const struct sock_filter *filter = fp->insns;
129 	int flen = fp->len;
130 	u8 *func;
131 	unsigned int true_cond;
132 	int i;
133 
134 	/* Start of epilogue code */
135 	unsigned int exit_addr = addrs[flen];
136 
137 	for (i = 0; i < flen; i++) {
138 		unsigned int K = filter[i].k;
139 		u16 code = bpf_anc_helper(&filter[i]);
140 
141 		/*
142 		 * addrs[] maps a BPF bytecode address into a real offset from
143 		 * the start of the body code.
144 		 */
145 		addrs[i] = ctx->idx * 4;
146 
147 		switch (code) {
148 			/*** ALU ops ***/
149 		case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
150 			ctx->seen |= SEEN_XREG;
151 			PPC_ADD(r_A, r_A, r_X);
152 			break;
153 		case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
154 			if (!K)
155 				break;
156 			PPC_ADDI(r_A, r_A, IMM_L(K));
157 			if (K >= 32768)
158 				PPC_ADDIS(r_A, r_A, IMM_HA(K));
159 			break;
160 		case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
161 			ctx->seen |= SEEN_XREG;
162 			PPC_SUB(r_A, r_A, r_X);
163 			break;
164 		case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
165 			if (!K)
166 				break;
167 			PPC_ADDI(r_A, r_A, IMM_L(-K));
168 			if (K >= 32768)
169 				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
170 			break;
171 		case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
172 			ctx->seen |= SEEN_XREG;
173 			PPC_MUL(r_A, r_A, r_X);
174 			break;
175 		case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
176 			if (K < 32768)
177 				PPC_MULI(r_A, r_A, K);
178 			else {
179 				PPC_LI32(r_scratch1, K);
180 				PPC_MUL(r_A, r_A, r_scratch1);
181 			}
182 			break;
183 		case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */
184 			ctx->seen |= SEEN_XREG;
185 			PPC_CMPWI(r_X, 0);
186 			if (ctx->pc_ret0 != -1) {
187 				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
188 			} else {
189 				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
190 				PPC_LI(r_ret, 0);
191 				PPC_JMP(exit_addr);
192 			}
193 			PPC_DIVWU(r_scratch1, r_A, r_X);
194 			PPC_MUL(r_scratch1, r_X, r_scratch1);
195 			PPC_SUB(r_A, r_A, r_scratch1);
196 			break;
197 		case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */
198 			PPC_LI32(r_scratch2, K);
199 			PPC_DIVWU(r_scratch1, r_A, r_scratch2);
200 			PPC_MUL(r_scratch1, r_scratch2, r_scratch1);
201 			PPC_SUB(r_A, r_A, r_scratch1);
202 			break;
203 		case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
204 			ctx->seen |= SEEN_XREG;
205 			PPC_CMPWI(r_X, 0);
206 			if (ctx->pc_ret0 != -1) {
207 				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
208 			} else {
209 				/*
210 				 * Exit, returning 0; first pass hits here
211 				 * (longer worst-case code size).
212 				 */
213 				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
214 				PPC_LI(r_ret, 0);
215 				PPC_JMP(exit_addr);
216 			}
217 			PPC_DIVWU(r_A, r_A, r_X);
218 			break;
219 		case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */
220 			if (K == 1)
221 				break;
222 			PPC_LI32(r_scratch1, K);
223 			PPC_DIVWU(r_A, r_A, r_scratch1);
224 			break;
225 		case BPF_ALU | BPF_AND | BPF_X:
226 			ctx->seen |= SEEN_XREG;
227 			PPC_AND(r_A, r_A, r_X);
228 			break;
229 		case BPF_ALU | BPF_AND | BPF_K:
230 			if (!IMM_H(K))
231 				PPC_ANDI(r_A, r_A, K);
232 			else {
233 				PPC_LI32(r_scratch1, K);
234 				PPC_AND(r_A, r_A, r_scratch1);
235 			}
236 			break;
237 		case BPF_ALU | BPF_OR | BPF_X:
238 			ctx->seen |= SEEN_XREG;
239 			PPC_OR(r_A, r_A, r_X);
240 			break;
241 		case BPF_ALU | BPF_OR | BPF_K:
242 			if (IMM_L(K))
243 				PPC_ORI(r_A, r_A, IMM_L(K));
244 			if (K >= 65536)
245 				PPC_ORIS(r_A, r_A, IMM_H(K));
246 			break;
247 		case BPF_ANC | SKF_AD_ALU_XOR_X:
248 		case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */
249 			ctx->seen |= SEEN_XREG;
250 			PPC_XOR(r_A, r_A, r_X);
251 			break;
252 		case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
253 			if (IMM_L(K))
254 				PPC_XORI(r_A, r_A, IMM_L(K));
255 			if (K >= 65536)
256 				PPC_XORIS(r_A, r_A, IMM_H(K));
257 			break;
258 		case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */
259 			ctx->seen |= SEEN_XREG;
260 			PPC_SLW(r_A, r_A, r_X);
261 			break;
262 		case BPF_ALU | BPF_LSH | BPF_K:
263 			if (K == 0)
264 				break;
265 			else
266 				PPC_SLWI(r_A, r_A, K);
267 			break;
268 		case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */
269 			ctx->seen |= SEEN_XREG;
270 			PPC_SRW(r_A, r_A, r_X);
271 			break;
272 		case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */
273 			if (K == 0)
274 				break;
275 			else
276 				PPC_SRWI(r_A, r_A, K);
277 			break;
278 		case BPF_ALU | BPF_NEG:
279 			PPC_NEG(r_A, r_A);
280 			break;
281 		case BPF_RET | BPF_K:
282 			PPC_LI32(r_ret, K);
283 			if (!K) {
284 				if (ctx->pc_ret0 == -1)
285 					ctx->pc_ret0 = i;
286 			}
287 			/*
288 			 * If this isn't the very last instruction, branch to
289 			 * the epilogue if we've stuff to clean up.  Otherwise,
290 			 * if there's nothing to tidy, just return.  If we /are/
291 			 * the last instruction, we're about to fall through to
292 			 * the epilogue to return.
293 			 */
294 			if (i != flen - 1) {
295 				/*
296 				 * Note: 'seen' is properly valid only on pass
297 				 * #2.	Both parts of this conditional are the
298 				 * same instruction size though, meaning the
299 				 * first pass will still correctly determine the
300 				 * code size/addresses.
301 				 */
302 				if (ctx->seen)
303 					PPC_JMP(exit_addr);
304 				else
305 					PPC_BLR();
306 			}
307 			break;
308 		case BPF_RET | BPF_A:
309 			PPC_MR(r_ret, r_A);
310 			if (i != flen - 1) {
311 				if (ctx->seen)
312 					PPC_JMP(exit_addr);
313 				else
314 					PPC_BLR();
315 			}
316 			break;
317 		case BPF_MISC | BPF_TAX: /* X = A */
318 			PPC_MR(r_X, r_A);
319 			break;
320 		case BPF_MISC | BPF_TXA: /* A = X */
321 			ctx->seen |= SEEN_XREG;
322 			PPC_MR(r_A, r_X);
323 			break;
324 
325 			/*** Constant loads/M[] access ***/
326 		case BPF_LD | BPF_IMM: /* A = K */
327 			PPC_LI32(r_A, K);
328 			break;
329 		case BPF_LDX | BPF_IMM: /* X = K */
330 			PPC_LI32(r_X, K);
331 			break;
332 		case BPF_LD | BPF_MEM: /* A = mem[K] */
333 			PPC_MR(r_A, r_M + (K & 0xf));
334 			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
335 			break;
336 		case BPF_LDX | BPF_MEM: /* X = mem[K] */
337 			PPC_MR(r_X, r_M + (K & 0xf));
338 			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
339 			break;
340 		case BPF_ST: /* mem[K] = A */
341 			PPC_MR(r_M + (K & 0xf), r_A);
342 			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
343 			break;
344 		case BPF_STX: /* mem[K] = X */
345 			PPC_MR(r_M + (K & 0xf), r_X);
346 			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
347 			break;
348 		case BPF_LD | BPF_W | BPF_LEN: /*	A = skb->len; */
349 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
350 			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
351 			break;
352 		case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */
353 			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
354 			break;
355 
356 			/*** Ancillary info loads ***/
357 		case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */
358 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
359 						  protocol) != 2);
360 			PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
361 							    protocol));
362 			break;
363 		case BPF_ANC | SKF_AD_IFINDEX:
364 			PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
365 								dev));
366 			PPC_CMPDI(r_scratch1, 0);
367 			if (ctx->pc_ret0 != -1) {
368 				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
369 			} else {
370 				/* Exit, returning 0; first pass hits here. */
371 				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
372 				PPC_LI(r_ret, 0);
373 				PPC_JMP(exit_addr);
374 			}
375 			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
376 						  ifindex) != 4);
377 			PPC_LWZ_OFFS(r_A, r_scratch1,
378 				     offsetof(struct net_device, ifindex));
379 			break;
380 		case BPF_ANC | SKF_AD_MARK:
381 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
382 			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
383 							  mark));
384 			break;
385 		case BPF_ANC | SKF_AD_RXHASH:
386 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
387 			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
388 							  hash));
389 			break;
390 		case BPF_ANC | SKF_AD_VLAN_TAG:
391 		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
392 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
393 			BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
394 
395 			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
396 							  vlan_tci));
397 			if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) {
398 				PPC_ANDI(r_A, r_A, ~VLAN_TAG_PRESENT);
399 			} else {
400 				PPC_ANDI(r_A, r_A, VLAN_TAG_PRESENT);
401 				PPC_SRWI(r_A, r_A, 12);
402 			}
403 			break;
404 		case BPF_ANC | SKF_AD_QUEUE:
405 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
406 						  queue_mapping) != 2);
407 			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
408 							  queue_mapping));
409 			break;
410 		case BPF_ANC | SKF_AD_CPU:
411 #ifdef CONFIG_SMP
412 			/*
413 			 * PACA ptr is r13:
414 			 * raw_smp_processor_id() = local_paca->paca_index
415 			 */
416 			BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct,
417 						  paca_index) != 2);
418 			PPC_LHZ_OFFS(r_A, 13,
419 				     offsetof(struct paca_struct, paca_index));
420 #else
421 			PPC_LI(r_A, 0);
422 #endif
423 			break;
424 
425 			/*** Absolute loads from packet header/data ***/
426 		case BPF_LD | BPF_W | BPF_ABS:
427 			func = CHOOSE_LOAD_FUNC(K, sk_load_word);
428 			goto common_load;
429 		case BPF_LD | BPF_H | BPF_ABS:
430 			func = CHOOSE_LOAD_FUNC(K, sk_load_half);
431 			goto common_load;
432 		case BPF_LD | BPF_B | BPF_ABS:
433 			func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
434 		common_load:
435 			/* Load from [K]. */
436 			ctx->seen |= SEEN_DATAREF;
437 			PPC_LI64(r_scratch1, func);
438 			PPC_MTLR(r_scratch1);
439 			PPC_LI32(r_addr, K);
440 			PPC_BLRL();
441 			/*
442 			 * Helper returns 'lt' condition on error, and an
443 			 * appropriate return value in r3
444 			 */
445 			PPC_BCC(COND_LT, exit_addr);
446 			break;
447 
448 			/*** Indirect loads from packet header/data ***/
449 		case BPF_LD | BPF_W | BPF_IND:
450 			func = sk_load_word;
451 			goto common_load_ind;
452 		case BPF_LD | BPF_H | BPF_IND:
453 			func = sk_load_half;
454 			goto common_load_ind;
455 		case BPF_LD | BPF_B | BPF_IND:
456 			func = sk_load_byte;
457 		common_load_ind:
458 			/*
459 			 * Load from [X + K].  Negative offsets are tested for
460 			 * in the helper functions.
461 			 */
462 			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
463 			PPC_LI64(r_scratch1, func);
464 			PPC_MTLR(r_scratch1);
465 			PPC_ADDI(r_addr, r_X, IMM_L(K));
466 			if (K >= 32768)
467 				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
468 			PPC_BLRL();
469 			/* If error, cr0.LT set */
470 			PPC_BCC(COND_LT, exit_addr);
471 			break;
472 
473 		case BPF_LDX | BPF_B | BPF_MSH:
474 			func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
475 			goto common_load;
476 			break;
477 
478 			/*** Jump and branches ***/
479 		case BPF_JMP | BPF_JA:
480 			if (K != 0)
481 				PPC_JMP(addrs[i + 1 + K]);
482 			break;
483 
484 		case BPF_JMP | BPF_JGT | BPF_K:
485 		case BPF_JMP | BPF_JGT | BPF_X:
486 			true_cond = COND_GT;
487 			goto cond_branch;
488 		case BPF_JMP | BPF_JGE | BPF_K:
489 		case BPF_JMP | BPF_JGE | BPF_X:
490 			true_cond = COND_GE;
491 			goto cond_branch;
492 		case BPF_JMP | BPF_JEQ | BPF_K:
493 		case BPF_JMP | BPF_JEQ | BPF_X:
494 			true_cond = COND_EQ;
495 			goto cond_branch;
496 		case BPF_JMP | BPF_JSET | BPF_K:
497 		case BPF_JMP | BPF_JSET | BPF_X:
498 			true_cond = COND_NE;
499 			/* Fall through */
500 		cond_branch:
501 			/* same targets, can avoid doing the test :) */
502 			if (filter[i].jt == filter[i].jf) {
503 				if (filter[i].jt > 0)
504 					PPC_JMP(addrs[i + 1 + filter[i].jt]);
505 				break;
506 			}
507 
508 			switch (code) {
509 			case BPF_JMP | BPF_JGT | BPF_X:
510 			case BPF_JMP | BPF_JGE | BPF_X:
511 			case BPF_JMP | BPF_JEQ | BPF_X:
512 				ctx->seen |= SEEN_XREG;
513 				PPC_CMPLW(r_A, r_X);
514 				break;
515 			case BPF_JMP | BPF_JSET | BPF_X:
516 				ctx->seen |= SEEN_XREG;
517 				PPC_AND_DOT(r_scratch1, r_A, r_X);
518 				break;
519 			case BPF_JMP | BPF_JEQ | BPF_K:
520 			case BPF_JMP | BPF_JGT | BPF_K:
521 			case BPF_JMP | BPF_JGE | BPF_K:
522 				if (K < 32768)
523 					PPC_CMPLWI(r_A, K);
524 				else {
525 					PPC_LI32(r_scratch1, K);
526 					PPC_CMPLW(r_A, r_scratch1);
527 				}
528 				break;
529 			case BPF_JMP | BPF_JSET | BPF_K:
530 				if (K < 32768)
531 					/* PPC_ANDI is /only/ dot-form */
532 					PPC_ANDI(r_scratch1, r_A, K);
533 				else {
534 					PPC_LI32(r_scratch1, K);
535 					PPC_AND_DOT(r_scratch1, r_A,
536 						    r_scratch1);
537 				}
538 				break;
539 			}
540 			/* Sometimes branches are constructed "backward", with
541 			 * the false path being the branch and true path being
542 			 * a fallthrough to the next instruction.
543 			 */
544 			if (filter[i].jt == 0)
545 				/* Swap the sense of the branch */
546 				PPC_BCC(true_cond ^ COND_CMP_TRUE,
547 					addrs[i + 1 + filter[i].jf]);
548 			else {
549 				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
550 				if (filter[i].jf != 0)
551 					PPC_JMP(addrs[i + 1 + filter[i].jf]);
552 			}
553 			break;
554 		default:
555 			/* The filter contains something cruel & unusual.
556 			 * We don't handle it, but also there shouldn't be
557 			 * anything missing from our list.
558 			 */
559 			if (printk_ratelimit())
560 				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
561 				       filter[i].code, i);
562 			return -ENOTSUPP;
563 		}
564 
565 	}
566 	/* Set end-of-body-code address for exit. */
567 	addrs[i] = ctx->idx * 4;
568 
569 	return 0;
570 }
571 
572 void bpf_jit_compile(struct sk_filter *fp)
573 {
574 	unsigned int proglen;
575 	unsigned int alloclen;
576 	u32 *image = NULL;
577 	u32 *code_base;
578 	unsigned int *addrs;
579 	struct codegen_context cgctx;
580 	int pass;
581 	int flen = fp->len;
582 
583 	if (!bpf_jit_enable)
584 		return;
585 
586 	addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
587 	if (addrs == NULL)
588 		return;
589 
590 	/*
591 	 * There are multiple assembly passes as the generated code will change
592 	 * size as it settles down, figuring out the max branch offsets/exit
593 	 * paths required.
594 	 *
595 	 * The range of standard conditional branches is +/- 32Kbytes.	Since
596 	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
597 	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
598 	 * used, distinct from short branches.
599 	 *
600 	 * Current:
601 	 *
602 	 * For now, both branch types assemble to 2 words (short branches padded
603 	 * with a NOP); this is less efficient, but assembly will always complete
604 	 * after exactly 3 passes:
605 	 *
606 	 * First pass: No code buffer; Program is "faux-generated" -- no code
607 	 * emitted but maximum size of output determined (and addrs[] filled
608 	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
609 	 * All generation choices assumed to be 'worst-case', e.g. branches all
610 	 * far (2 instructions), return path code reduction not available, etc.
611 	 *
612 	 * Second pass: Code buffer allocated with size determined previously.
613 	 * Prologue generated to support features we have seen used.  Exit paths
614 	 * determined and addrs[] is filled in again, as code may be slightly
615 	 * smaller as a result.
616 	 *
617 	 * Third pass: Code generated 'for real', and branch destinations
618 	 * determined from now-accurate addrs[] map.
619 	 *
620 	 * Ideal:
621 	 *
622 	 * If we optimise this, near branches will be shorter.	On the
623 	 * first assembly pass, we should err on the side of caution and
624 	 * generate the biggest code.  On subsequent passes, branches will be
625 	 * generated short or long and code size will reduce.  With smaller
626 	 * code, more branches may fall into the short category, and code will
627 	 * reduce more.
628 	 *
629 	 * Finally, if we see one pass generate code the same size as the
630 	 * previous pass we have converged and should now generate code for
631 	 * real.  Allocating at the end will also save the memory that would
632 	 * otherwise be wasted by the (small) current code shrinkage.
633 	 * Preferably, we should do a small number of passes (e.g. 5) and if we
634 	 * haven't converged by then, get impatient and force code to generate
635 	 * as-is, even if the odd branch would be left long.  The chances of a
636 	 * long jump are tiny with all but the most enormous of BPF filter
637 	 * inputs, so we should usually converge on the third pass.
638 	 */
639 
640 	cgctx.idx = 0;
641 	cgctx.seen = 0;
642 	cgctx.pc_ret0 = -1;
643 	/* Scouting faux-generate pass 0 */
644 	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
645 		/* We hit something illegal or unsupported. */
646 		goto out;
647 
648 	/*
649 	 * Pretend to build prologue, given the features we've seen.  This will
650 	 * update ctgtx.idx as it pretends to output instructions, then we can
651 	 * calculate total size from idx.
652 	 */
653 	bpf_jit_build_prologue(fp, 0, &cgctx);
654 	bpf_jit_build_epilogue(0, &cgctx);
655 
656 	proglen = cgctx.idx * 4;
657 	alloclen = proglen + FUNCTION_DESCR_SIZE;
658 	image = module_alloc(alloclen);
659 	if (!image)
660 		goto out;
661 
662 	code_base = image + (FUNCTION_DESCR_SIZE/4);
663 
664 	/* Code generation passes 1-2 */
665 	for (pass = 1; pass < 3; pass++) {
666 		/* Now build the prologue, body code & epilogue for real. */
667 		cgctx.idx = 0;
668 		bpf_jit_build_prologue(fp, code_base, &cgctx);
669 		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
670 		bpf_jit_build_epilogue(code_base, &cgctx);
671 
672 		if (bpf_jit_enable > 1)
673 			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
674 				proglen - (cgctx.idx * 4), cgctx.seen);
675 	}
676 
677 	if (bpf_jit_enable > 1)
678 		/* Note that we output the base address of the code_base
679 		 * rather than image, since opcodes are in code_base.
680 		 */
681 		bpf_jit_dump(flen, proglen, pass, code_base);
682 
683 	if (image) {
684 		bpf_flush_icache(code_base, code_base + (proglen/4));
685 		/* Function descriptor nastiness: Address + TOC */
686 		((u64 *)image)[0] = (u64)code_base;
687 		((u64 *)image)[1] = local_paca->kernel_toc;
688 		fp->bpf_func = (void *)image;
689 		fp->jited = 1;
690 	}
691 out:
692 	kfree(addrs);
693 	return;
694 }
695 
696 void bpf_jit_free(struct sk_filter *fp)
697 {
698 	if (fp->jited)
699 		module_free(NULL, fp->bpf_func);
700 	kfree(fp);
701 }
702