xref: /openbmc/linux/arch/powerpc/net/bpf_jit_comp.c (revision 176f011b)
1 /* bpf_jit_comp.c: BPF JIT compiler
2  *
3  * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
4  *
5  * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
6  * Ported to ppc32 by Denis Kirjanov <kda@linux-powerpc.org>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; version 2
11  * of the License.
12  */
13 #include <linux/moduleloader.h>
14 #include <asm/cacheflush.h>
15 #include <asm/asm-compat.h>
16 #include <linux/netdevice.h>
17 #include <linux/filter.h>
18 #include <linux/if_vlan.h>
19 
20 #include "bpf_jit32.h"
21 
22 static inline void bpf_flush_icache(void *start, void *end)
23 {
24 	smp_wmb();
25 	flush_icache_range((unsigned long)start, (unsigned long)end);
26 }
27 
28 static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image,
29 				   struct codegen_context *ctx)
30 {
31 	int i;
32 	const struct sock_filter *filter = fp->insns;
33 
34 	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
35 		/* Make stackframe */
36 		if (ctx->seen & SEEN_DATAREF) {
37 			/* If we call any helpers (for loads), save LR */
38 			EMIT(PPC_INST_MFLR | __PPC_RT(R0));
39 			PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
40 
41 			/* Back up non-volatile regs. */
42 			PPC_BPF_STL(r_D, 1, -(REG_SZ*(32-r_D)));
43 			PPC_BPF_STL(r_HL, 1, -(REG_SZ*(32-r_HL)));
44 		}
45 		if (ctx->seen & SEEN_MEM) {
46 			/*
47 			 * Conditionally save regs r15-r31 as some will be used
48 			 * for M[] data.
49 			 */
50 			for (i = r_M; i < (r_M+16); i++) {
51 				if (ctx->seen & (1 << (i-r_M)))
52 					PPC_BPF_STL(i, 1, -(REG_SZ*(32-i)));
53 			}
54 		}
55 		PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME);
56 	}
57 
58 	if (ctx->seen & SEEN_DATAREF) {
59 		/*
60 		 * If this filter needs to access skb data,
61 		 * prepare r_D and r_HL:
62 		 *  r_HL = skb->len - skb->data_len
63 		 *  r_D	 = skb->data
64 		 */
65 		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
66 							 data_len));
67 		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
68 		PPC_SUB(r_HL, r_HL, r_scratch1);
69 		PPC_LL_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
70 	}
71 
72 	if (ctx->seen & SEEN_XREG) {
73 		/*
74 		 * TODO: Could also detect whether first instr. sets X and
75 		 * avoid this (as below, with A).
76 		 */
77 		PPC_LI(r_X, 0);
78 	}
79 
80 	/* make sure we dont leak kernel information to user */
81 	if (bpf_needs_clear_a(&filter[0]))
82 		PPC_LI(r_A, 0);
83 }
84 
85 static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
86 {
87 	int i;
88 
89 	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
90 		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
91 		if (ctx->seen & SEEN_DATAREF) {
92 			PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
93 			PPC_MTLR(0);
94 			PPC_BPF_LL(r_D, 1, -(REG_SZ*(32-r_D)));
95 			PPC_BPF_LL(r_HL, 1, -(REG_SZ*(32-r_HL)));
96 		}
97 		if (ctx->seen & SEEN_MEM) {
98 			/* Restore any saved non-vol registers */
99 			for (i = r_M; i < (r_M+16); i++) {
100 				if (ctx->seen & (1 << (i-r_M)))
101 					PPC_BPF_LL(i, 1, -(REG_SZ*(32-i)));
102 			}
103 		}
104 	}
105 	/* The RETs have left a return value in R3. */
106 
107 	PPC_BLR();
108 }
109 
110 #define CHOOSE_LOAD_FUNC(K, func) \
111 	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
112 
113 /* Assemble the body code between the prologue & epilogue. */
114 static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
115 			      struct codegen_context *ctx,
116 			      unsigned int *addrs)
117 {
118 	const struct sock_filter *filter = fp->insns;
119 	int flen = fp->len;
120 	u8 *func;
121 	unsigned int true_cond;
122 	int i;
123 
124 	/* Start of epilogue code */
125 	unsigned int exit_addr = addrs[flen];
126 
127 	for (i = 0; i < flen; i++) {
128 		unsigned int K = filter[i].k;
129 		u16 code = bpf_anc_helper(&filter[i]);
130 
131 		/*
132 		 * addrs[] maps a BPF bytecode address into a real offset from
133 		 * the start of the body code.
134 		 */
135 		addrs[i] = ctx->idx * 4;
136 
137 		switch (code) {
138 			/*** ALU ops ***/
139 		case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
140 			ctx->seen |= SEEN_XREG;
141 			PPC_ADD(r_A, r_A, r_X);
142 			break;
143 		case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
144 			if (!K)
145 				break;
146 			PPC_ADDI(r_A, r_A, IMM_L(K));
147 			if (K >= 32768)
148 				PPC_ADDIS(r_A, r_A, IMM_HA(K));
149 			break;
150 		case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
151 			ctx->seen |= SEEN_XREG;
152 			PPC_SUB(r_A, r_A, r_X);
153 			break;
154 		case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
155 			if (!K)
156 				break;
157 			PPC_ADDI(r_A, r_A, IMM_L(-K));
158 			if (K >= 32768)
159 				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
160 			break;
161 		case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
162 			ctx->seen |= SEEN_XREG;
163 			PPC_MULW(r_A, r_A, r_X);
164 			break;
165 		case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
166 			if (K < 32768)
167 				PPC_MULI(r_A, r_A, K);
168 			else {
169 				PPC_LI32(r_scratch1, K);
170 				PPC_MULW(r_A, r_A, r_scratch1);
171 			}
172 			break;
173 		case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */
174 		case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
175 			ctx->seen |= SEEN_XREG;
176 			PPC_CMPWI(r_X, 0);
177 			if (ctx->pc_ret0 != -1) {
178 				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
179 			} else {
180 				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
181 				PPC_LI(r_ret, 0);
182 				PPC_JMP(exit_addr);
183 			}
184 			if (code == (BPF_ALU | BPF_MOD | BPF_X)) {
185 				PPC_DIVWU(r_scratch1, r_A, r_X);
186 				PPC_MULW(r_scratch1, r_X, r_scratch1);
187 				PPC_SUB(r_A, r_A, r_scratch1);
188 			} else {
189 				PPC_DIVWU(r_A, r_A, r_X);
190 			}
191 			break;
192 		case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */
193 			PPC_LI32(r_scratch2, K);
194 			PPC_DIVWU(r_scratch1, r_A, r_scratch2);
195 			PPC_MULW(r_scratch1, r_scratch2, r_scratch1);
196 			PPC_SUB(r_A, r_A, r_scratch1);
197 			break;
198 		case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */
199 			if (K == 1)
200 				break;
201 			PPC_LI32(r_scratch1, K);
202 			PPC_DIVWU(r_A, r_A, r_scratch1);
203 			break;
204 		case BPF_ALU | BPF_AND | BPF_X:
205 			ctx->seen |= SEEN_XREG;
206 			PPC_AND(r_A, r_A, r_X);
207 			break;
208 		case BPF_ALU | BPF_AND | BPF_K:
209 			if (!IMM_H(K))
210 				PPC_ANDI(r_A, r_A, K);
211 			else {
212 				PPC_LI32(r_scratch1, K);
213 				PPC_AND(r_A, r_A, r_scratch1);
214 			}
215 			break;
216 		case BPF_ALU | BPF_OR | BPF_X:
217 			ctx->seen |= SEEN_XREG;
218 			PPC_OR(r_A, r_A, r_X);
219 			break;
220 		case BPF_ALU | BPF_OR | BPF_K:
221 			if (IMM_L(K))
222 				PPC_ORI(r_A, r_A, IMM_L(K));
223 			if (K >= 65536)
224 				PPC_ORIS(r_A, r_A, IMM_H(K));
225 			break;
226 		case BPF_ANC | SKF_AD_ALU_XOR_X:
227 		case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */
228 			ctx->seen |= SEEN_XREG;
229 			PPC_XOR(r_A, r_A, r_X);
230 			break;
231 		case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
232 			if (IMM_L(K))
233 				PPC_XORI(r_A, r_A, IMM_L(K));
234 			if (K >= 65536)
235 				PPC_XORIS(r_A, r_A, IMM_H(K));
236 			break;
237 		case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */
238 			ctx->seen |= SEEN_XREG;
239 			PPC_SLW(r_A, r_A, r_X);
240 			break;
241 		case BPF_ALU | BPF_LSH | BPF_K:
242 			if (K == 0)
243 				break;
244 			else
245 				PPC_SLWI(r_A, r_A, K);
246 			break;
247 		case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */
248 			ctx->seen |= SEEN_XREG;
249 			PPC_SRW(r_A, r_A, r_X);
250 			break;
251 		case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */
252 			if (K == 0)
253 				break;
254 			else
255 				PPC_SRWI(r_A, r_A, K);
256 			break;
257 		case BPF_ALU | BPF_NEG:
258 			PPC_NEG(r_A, r_A);
259 			break;
260 		case BPF_RET | BPF_K:
261 			PPC_LI32(r_ret, K);
262 			if (!K) {
263 				if (ctx->pc_ret0 == -1)
264 					ctx->pc_ret0 = i;
265 			}
266 			/*
267 			 * If this isn't the very last instruction, branch to
268 			 * the epilogue if we've stuff to clean up.  Otherwise,
269 			 * if there's nothing to tidy, just return.  If we /are/
270 			 * the last instruction, we're about to fall through to
271 			 * the epilogue to return.
272 			 */
273 			if (i != flen - 1) {
274 				/*
275 				 * Note: 'seen' is properly valid only on pass
276 				 * #2.	Both parts of this conditional are the
277 				 * same instruction size though, meaning the
278 				 * first pass will still correctly determine the
279 				 * code size/addresses.
280 				 */
281 				if (ctx->seen)
282 					PPC_JMP(exit_addr);
283 				else
284 					PPC_BLR();
285 			}
286 			break;
287 		case BPF_RET | BPF_A:
288 			PPC_MR(r_ret, r_A);
289 			if (i != flen - 1) {
290 				if (ctx->seen)
291 					PPC_JMP(exit_addr);
292 				else
293 					PPC_BLR();
294 			}
295 			break;
296 		case BPF_MISC | BPF_TAX: /* X = A */
297 			PPC_MR(r_X, r_A);
298 			break;
299 		case BPF_MISC | BPF_TXA: /* A = X */
300 			ctx->seen |= SEEN_XREG;
301 			PPC_MR(r_A, r_X);
302 			break;
303 
304 			/*** Constant loads/M[] access ***/
305 		case BPF_LD | BPF_IMM: /* A = K */
306 			PPC_LI32(r_A, K);
307 			break;
308 		case BPF_LDX | BPF_IMM: /* X = K */
309 			PPC_LI32(r_X, K);
310 			break;
311 		case BPF_LD | BPF_MEM: /* A = mem[K] */
312 			PPC_MR(r_A, r_M + (K & 0xf));
313 			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
314 			break;
315 		case BPF_LDX | BPF_MEM: /* X = mem[K] */
316 			PPC_MR(r_X, r_M + (K & 0xf));
317 			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
318 			break;
319 		case BPF_ST: /* mem[K] = A */
320 			PPC_MR(r_M + (K & 0xf), r_A);
321 			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
322 			break;
323 		case BPF_STX: /* mem[K] = X */
324 			PPC_MR(r_M + (K & 0xf), r_X);
325 			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
326 			break;
327 		case BPF_LD | BPF_W | BPF_LEN: /*	A = skb->len; */
328 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
329 			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
330 			break;
331 		case BPF_LDX | BPF_W | BPF_ABS: /* A = *((u32 *)(seccomp_data + K)); */
332 			PPC_LWZ_OFFS(r_A, r_skb, K);
333 			break;
334 		case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */
335 			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
336 			break;
337 
338 			/*** Ancillary info loads ***/
339 		case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */
340 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
341 						  protocol) != 2);
342 			PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
343 							    protocol));
344 			break;
345 		case BPF_ANC | SKF_AD_IFINDEX:
346 		case BPF_ANC | SKF_AD_HATYPE:
347 			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
348 						ifindex) != 4);
349 			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
350 						type) != 2);
351 			PPC_LL_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
352 								dev));
353 			PPC_CMPDI(r_scratch1, 0);
354 			if (ctx->pc_ret0 != -1) {
355 				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
356 			} else {
357 				/* Exit, returning 0; first pass hits here. */
358 				PPC_BCC_SHORT(COND_NE, ctx->idx * 4 + 12);
359 				PPC_LI(r_ret, 0);
360 				PPC_JMP(exit_addr);
361 			}
362 			if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
363 				PPC_LWZ_OFFS(r_A, r_scratch1,
364 				     offsetof(struct net_device, ifindex));
365 			} else {
366 				PPC_LHZ_OFFS(r_A, r_scratch1,
367 				     offsetof(struct net_device, type));
368 			}
369 
370 			break;
371 		case BPF_ANC | SKF_AD_MARK:
372 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
373 			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
374 							  mark));
375 			break;
376 		case BPF_ANC | SKF_AD_RXHASH:
377 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
378 			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
379 							  hash));
380 			break;
381 		case BPF_ANC | SKF_AD_VLAN_TAG:
382 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
383 
384 			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
385 							  vlan_tci));
386 			break;
387 		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
388 			PPC_LBZ_OFFS(r_A, r_skb, PKT_VLAN_PRESENT_OFFSET());
389 			if (PKT_VLAN_PRESENT_BIT)
390 				PPC_SRWI(r_A, r_A, PKT_VLAN_PRESENT_BIT);
391 			if (PKT_VLAN_PRESENT_BIT < 7)
392 				PPC_ANDI(r_A, r_A, 1);
393 			break;
394 		case BPF_ANC | SKF_AD_QUEUE:
395 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
396 						  queue_mapping) != 2);
397 			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
398 							  queue_mapping));
399 			break;
400 		case BPF_ANC | SKF_AD_PKTTYPE:
401 			PPC_LBZ_OFFS(r_A, r_skb, PKT_TYPE_OFFSET());
402 			PPC_ANDI(r_A, r_A, PKT_TYPE_MAX);
403 			PPC_SRWI(r_A, r_A, 5);
404 			break;
405 		case BPF_ANC | SKF_AD_CPU:
406 			PPC_BPF_LOAD_CPU(r_A);
407 			break;
408 			/*** Absolute loads from packet header/data ***/
409 		case BPF_LD | BPF_W | BPF_ABS:
410 			func = CHOOSE_LOAD_FUNC(K, sk_load_word);
411 			goto common_load;
412 		case BPF_LD | BPF_H | BPF_ABS:
413 			func = CHOOSE_LOAD_FUNC(K, sk_load_half);
414 			goto common_load;
415 		case BPF_LD | BPF_B | BPF_ABS:
416 			func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
417 		common_load:
418 			/* Load from [K]. */
419 			ctx->seen |= SEEN_DATAREF;
420 			PPC_FUNC_ADDR(r_scratch1, func);
421 			PPC_MTLR(r_scratch1);
422 			PPC_LI32(r_addr, K);
423 			PPC_BLRL();
424 			/*
425 			 * Helper returns 'lt' condition on error, and an
426 			 * appropriate return value in r3
427 			 */
428 			PPC_BCC(COND_LT, exit_addr);
429 			break;
430 
431 			/*** Indirect loads from packet header/data ***/
432 		case BPF_LD | BPF_W | BPF_IND:
433 			func = sk_load_word;
434 			goto common_load_ind;
435 		case BPF_LD | BPF_H | BPF_IND:
436 			func = sk_load_half;
437 			goto common_load_ind;
438 		case BPF_LD | BPF_B | BPF_IND:
439 			func = sk_load_byte;
440 		common_load_ind:
441 			/*
442 			 * Load from [X + K].  Negative offsets are tested for
443 			 * in the helper functions.
444 			 */
445 			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
446 			PPC_FUNC_ADDR(r_scratch1, func);
447 			PPC_MTLR(r_scratch1);
448 			PPC_ADDI(r_addr, r_X, IMM_L(K));
449 			if (K >= 32768)
450 				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
451 			PPC_BLRL();
452 			/* If error, cr0.LT set */
453 			PPC_BCC(COND_LT, exit_addr);
454 			break;
455 
456 		case BPF_LDX | BPF_B | BPF_MSH:
457 			func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
458 			goto common_load;
459 			break;
460 
461 			/*** Jump and branches ***/
462 		case BPF_JMP | BPF_JA:
463 			if (K != 0)
464 				PPC_JMP(addrs[i + 1 + K]);
465 			break;
466 
467 		case BPF_JMP | BPF_JGT | BPF_K:
468 		case BPF_JMP | BPF_JGT | BPF_X:
469 			true_cond = COND_GT;
470 			goto cond_branch;
471 		case BPF_JMP | BPF_JGE | BPF_K:
472 		case BPF_JMP | BPF_JGE | BPF_X:
473 			true_cond = COND_GE;
474 			goto cond_branch;
475 		case BPF_JMP | BPF_JEQ | BPF_K:
476 		case BPF_JMP | BPF_JEQ | BPF_X:
477 			true_cond = COND_EQ;
478 			goto cond_branch;
479 		case BPF_JMP | BPF_JSET | BPF_K:
480 		case BPF_JMP | BPF_JSET | BPF_X:
481 			true_cond = COND_NE;
482 			/* Fall through */
483 		cond_branch:
484 			/* same targets, can avoid doing the test :) */
485 			if (filter[i].jt == filter[i].jf) {
486 				if (filter[i].jt > 0)
487 					PPC_JMP(addrs[i + 1 + filter[i].jt]);
488 				break;
489 			}
490 
491 			switch (code) {
492 			case BPF_JMP | BPF_JGT | BPF_X:
493 			case BPF_JMP | BPF_JGE | BPF_X:
494 			case BPF_JMP | BPF_JEQ | BPF_X:
495 				ctx->seen |= SEEN_XREG;
496 				PPC_CMPLW(r_A, r_X);
497 				break;
498 			case BPF_JMP | BPF_JSET | BPF_X:
499 				ctx->seen |= SEEN_XREG;
500 				PPC_AND_DOT(r_scratch1, r_A, r_X);
501 				break;
502 			case BPF_JMP | BPF_JEQ | BPF_K:
503 			case BPF_JMP | BPF_JGT | BPF_K:
504 			case BPF_JMP | BPF_JGE | BPF_K:
505 				if (K < 32768)
506 					PPC_CMPLWI(r_A, K);
507 				else {
508 					PPC_LI32(r_scratch1, K);
509 					PPC_CMPLW(r_A, r_scratch1);
510 				}
511 				break;
512 			case BPF_JMP | BPF_JSET | BPF_K:
513 				if (K < 32768)
514 					/* PPC_ANDI is /only/ dot-form */
515 					PPC_ANDI(r_scratch1, r_A, K);
516 				else {
517 					PPC_LI32(r_scratch1, K);
518 					PPC_AND_DOT(r_scratch1, r_A,
519 						    r_scratch1);
520 				}
521 				break;
522 			}
523 			/* Sometimes branches are constructed "backward", with
524 			 * the false path being the branch and true path being
525 			 * a fallthrough to the next instruction.
526 			 */
527 			if (filter[i].jt == 0)
528 				/* Swap the sense of the branch */
529 				PPC_BCC(true_cond ^ COND_CMP_TRUE,
530 					addrs[i + 1 + filter[i].jf]);
531 			else {
532 				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
533 				if (filter[i].jf != 0)
534 					PPC_JMP(addrs[i + 1 + filter[i].jf]);
535 			}
536 			break;
537 		default:
538 			/* The filter contains something cruel & unusual.
539 			 * We don't handle it, but also there shouldn't be
540 			 * anything missing from our list.
541 			 */
542 			if (printk_ratelimit())
543 				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
544 				       filter[i].code, i);
545 			return -ENOTSUPP;
546 		}
547 
548 	}
549 	/* Set end-of-body-code address for exit. */
550 	addrs[i] = ctx->idx * 4;
551 
552 	return 0;
553 }
554 
555 void bpf_jit_compile(struct bpf_prog *fp)
556 {
557 	unsigned int proglen;
558 	unsigned int alloclen;
559 	u32 *image = NULL;
560 	u32 *code_base;
561 	unsigned int *addrs;
562 	struct codegen_context cgctx;
563 	int pass;
564 	int flen = fp->len;
565 
566 	if (!bpf_jit_enable)
567 		return;
568 
569 	addrs = kcalloc(flen + 1, sizeof(*addrs), GFP_KERNEL);
570 	if (addrs == NULL)
571 		return;
572 
573 	/*
574 	 * There are multiple assembly passes as the generated code will change
575 	 * size as it settles down, figuring out the max branch offsets/exit
576 	 * paths required.
577 	 *
578 	 * The range of standard conditional branches is +/- 32Kbytes.	Since
579 	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
580 	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
581 	 * used, distinct from short branches.
582 	 *
583 	 * Current:
584 	 *
585 	 * For now, both branch types assemble to 2 words (short branches padded
586 	 * with a NOP); this is less efficient, but assembly will always complete
587 	 * after exactly 3 passes:
588 	 *
589 	 * First pass: No code buffer; Program is "faux-generated" -- no code
590 	 * emitted but maximum size of output determined (and addrs[] filled
591 	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
592 	 * All generation choices assumed to be 'worst-case', e.g. branches all
593 	 * far (2 instructions), return path code reduction not available, etc.
594 	 *
595 	 * Second pass: Code buffer allocated with size determined previously.
596 	 * Prologue generated to support features we have seen used.  Exit paths
597 	 * determined and addrs[] is filled in again, as code may be slightly
598 	 * smaller as a result.
599 	 *
600 	 * Third pass: Code generated 'for real', and branch destinations
601 	 * determined from now-accurate addrs[] map.
602 	 *
603 	 * Ideal:
604 	 *
605 	 * If we optimise this, near branches will be shorter.	On the
606 	 * first assembly pass, we should err on the side of caution and
607 	 * generate the biggest code.  On subsequent passes, branches will be
608 	 * generated short or long and code size will reduce.  With smaller
609 	 * code, more branches may fall into the short category, and code will
610 	 * reduce more.
611 	 *
612 	 * Finally, if we see one pass generate code the same size as the
613 	 * previous pass we have converged and should now generate code for
614 	 * real.  Allocating at the end will also save the memory that would
615 	 * otherwise be wasted by the (small) current code shrinkage.
616 	 * Preferably, we should do a small number of passes (e.g. 5) and if we
617 	 * haven't converged by then, get impatient and force code to generate
618 	 * as-is, even if the odd branch would be left long.  The chances of a
619 	 * long jump are tiny with all but the most enormous of BPF filter
620 	 * inputs, so we should usually converge on the third pass.
621 	 */
622 
623 	cgctx.idx = 0;
624 	cgctx.seen = 0;
625 	cgctx.pc_ret0 = -1;
626 	/* Scouting faux-generate pass 0 */
627 	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
628 		/* We hit something illegal or unsupported. */
629 		goto out;
630 
631 	/*
632 	 * Pretend to build prologue, given the features we've seen.  This will
633 	 * update ctgtx.idx as it pretends to output instructions, then we can
634 	 * calculate total size from idx.
635 	 */
636 	bpf_jit_build_prologue(fp, 0, &cgctx);
637 	bpf_jit_build_epilogue(0, &cgctx);
638 
639 	proglen = cgctx.idx * 4;
640 	alloclen = proglen + FUNCTION_DESCR_SIZE;
641 	image = module_alloc(alloclen);
642 	if (!image)
643 		goto out;
644 
645 	code_base = image + (FUNCTION_DESCR_SIZE/4);
646 
647 	/* Code generation passes 1-2 */
648 	for (pass = 1; pass < 3; pass++) {
649 		/* Now build the prologue, body code & epilogue for real. */
650 		cgctx.idx = 0;
651 		bpf_jit_build_prologue(fp, code_base, &cgctx);
652 		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
653 		bpf_jit_build_epilogue(code_base, &cgctx);
654 
655 		if (bpf_jit_enable > 1)
656 			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
657 				proglen - (cgctx.idx * 4), cgctx.seen);
658 	}
659 
660 	if (bpf_jit_enable > 1)
661 		/* Note that we output the base address of the code_base
662 		 * rather than image, since opcodes are in code_base.
663 		 */
664 		bpf_jit_dump(flen, proglen, pass, code_base);
665 
666 	bpf_flush_icache(code_base, code_base + (proglen/4));
667 
668 #ifdef CONFIG_PPC64
669 	/* Function descriptor nastiness: Address + TOC */
670 	((u64 *)image)[0] = (u64)code_base;
671 	((u64 *)image)[1] = local_paca->kernel_toc;
672 #endif
673 
674 	fp->bpf_func = (void *)image;
675 	fp->jited = 1;
676 
677 out:
678 	kfree(addrs);
679 	return;
680 }
681 
682 void bpf_jit_free(struct bpf_prog *fp)
683 {
684 	if (fp->jited)
685 		module_memfree(fp->bpf_func);
686 
687 	bpf_prog_unlock_free(fp);
688 }
689