xref: /openbmc/linux/arch/powerpc/net/bpf_jit.h (revision 6ac0ba5a)
1 /*
2  * bpf_jit.h: BPF JIT compiler for PPC
3  *
4  * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; version 2
9  * of the License.
10  */
11 #ifndef _BPF_JIT_H
12 #define _BPF_JIT_H
13 
14 #ifndef __ASSEMBLY__
15 
16 #ifdef CONFIG_PPC64
17 #define FUNCTION_DESCR_SIZE	24
18 #else
19 #define FUNCTION_DESCR_SIZE	0
20 #endif
21 
22 /*
23  * 16-bit immediate helper macros: HA() is for use with sign-extending instrs
24  * (e.g. LD, ADDI).  If the bottom 16 bits is "-ve", add another bit into the
25  * top half to negate the effect (i.e. 0xffff + 1 = 0x(1)0000).
26  */
27 #define IMM_H(i)		((uintptr_t)(i)>>16)
28 #define IMM_HA(i)		(((uintptr_t)(i)>>16) +			      \
29 					(((uintptr_t)(i) & 0x8000) >> 15))
30 #define IMM_L(i)		((uintptr_t)(i) & 0xffff)
31 
32 #define PLANT_INSTR(d, idx, instr)					      \
33 	do { if (d) { (d)[idx] = instr; } idx++; } while (0)
34 #define EMIT(instr)		PLANT_INSTR(image, ctx->idx, instr)
35 
36 #define PPC_NOP()		EMIT(PPC_INST_NOP)
37 #define PPC_BLR()		EMIT(PPC_INST_BLR)
38 #define PPC_BLRL()		EMIT(PPC_INST_BLRL)
39 #define PPC_MTLR(r)		EMIT(PPC_INST_MTLR | ___PPC_RT(r))
40 #define PPC_ADDI(d, a, i)	EMIT(PPC_INST_ADDI | ___PPC_RT(d) |	      \
41 				     ___PPC_RA(a) | IMM_L(i))
42 #define PPC_MR(d, a)		PPC_OR(d, a, a)
43 #define PPC_LI(r, i)		PPC_ADDI(r, 0, i)
44 #define PPC_ADDIS(d, a, i)	EMIT(PPC_INST_ADDIS |			      \
45 				     ___PPC_RT(d) | ___PPC_RA(a) | IMM_L(i))
46 #define PPC_LIS(r, i)		PPC_ADDIS(r, 0, i)
47 #define PPC_STD(r, base, i)	EMIT(PPC_INST_STD | ___PPC_RS(r) |	      \
48 				     ___PPC_RA(base) | ((i) & 0xfffc))
49 #define PPC_STDU(r, base, i)	EMIT(PPC_INST_STDU | ___PPC_RS(r) |	      \
50 				     ___PPC_RA(base) | ((i) & 0xfffc))
51 #define PPC_STW(r, base, i)	EMIT(PPC_INST_STW | ___PPC_RS(r) |	      \
52 				     ___PPC_RA(base) | IMM_L(i))
53 #define PPC_STWU(r, base, i)	EMIT(PPC_INST_STWU | ___PPC_RS(r) |	      \
54 				     ___PPC_RA(base) | IMM_L(i))
55 
56 #define PPC_LBZ(r, base, i)	EMIT(PPC_INST_LBZ | ___PPC_RT(r) |	      \
57 				     ___PPC_RA(base) | IMM_L(i))
58 #define PPC_LD(r, base, i)	EMIT(PPC_INST_LD | ___PPC_RT(r) |	      \
59 				     ___PPC_RA(base) | IMM_L(i))
60 #define PPC_LWZ(r, base, i)	EMIT(PPC_INST_LWZ | ___PPC_RT(r) |	      \
61 				     ___PPC_RA(base) | IMM_L(i))
62 #define PPC_LHZ(r, base, i)	EMIT(PPC_INST_LHZ | ___PPC_RT(r) |	      \
63 				     ___PPC_RA(base) | IMM_L(i))
64 #define PPC_LHBRX(r, base, b)	EMIT(PPC_INST_LHBRX | ___PPC_RT(r) |	      \
65 				     ___PPC_RA(base) | ___PPC_RB(b))
66 
67 #ifdef CONFIG_PPC64
68 #define PPC_BPF_LL(r, base, i) do { PPC_LD(r, base, i); } while(0)
69 #define PPC_BPF_STL(r, base, i) do { PPC_STD(r, base, i); } while(0)
70 #define PPC_BPF_STLU(r, base, i) do { PPC_STDU(r, base, i); } while(0)
71 #else
72 #define PPC_BPF_LL(r, base, i) do { PPC_LWZ(r, base, i); } while(0)
73 #define PPC_BPF_STL(r, base, i) do { PPC_STW(r, base, i); } while(0)
74 #define PPC_BPF_STLU(r, base, i) do { PPC_STWU(r, base, i); } while(0)
75 #endif
76 
77 #define PPC_CMPWI(a, i)		EMIT(PPC_INST_CMPWI | ___PPC_RA(a) | IMM_L(i))
78 #define PPC_CMPDI(a, i)		EMIT(PPC_INST_CMPDI | ___PPC_RA(a) | IMM_L(i))
79 #define PPC_CMPLWI(a, i)	EMIT(PPC_INST_CMPLWI | ___PPC_RA(a) | IMM_L(i))
80 #define PPC_CMPLW(a, b)		EMIT(PPC_INST_CMPLW | ___PPC_RA(a) |	      \
81 					___PPC_RB(b))
82 
83 #define PPC_SUB(d, a, b)	EMIT(PPC_INST_SUB | ___PPC_RT(d) |	      \
84 				     ___PPC_RB(a) | ___PPC_RA(b))
85 #define PPC_ADD(d, a, b)	EMIT(PPC_INST_ADD | ___PPC_RT(d) |	      \
86 				     ___PPC_RA(a) | ___PPC_RB(b))
87 #define PPC_MULW(d, a, b)	EMIT(PPC_INST_MULLW | ___PPC_RT(d) |	      \
88 				     ___PPC_RA(a) | ___PPC_RB(b))
89 #define PPC_MULHWU(d, a, b)	EMIT(PPC_INST_MULHWU | ___PPC_RT(d) |	      \
90 				     ___PPC_RA(a) | ___PPC_RB(b))
91 #define PPC_MULI(d, a, i)	EMIT(PPC_INST_MULLI | ___PPC_RT(d) |	      \
92 				     ___PPC_RA(a) | IMM_L(i))
93 #define PPC_DIVWU(d, a, b)	EMIT(PPC_INST_DIVWU | ___PPC_RT(d) |	      \
94 				     ___PPC_RA(a) | ___PPC_RB(b))
95 #define PPC_AND(d, a, b)	EMIT(PPC_INST_AND | ___PPC_RA(d) |	      \
96 				     ___PPC_RS(a) | ___PPC_RB(b))
97 #define PPC_ANDI(d, a, i)	EMIT(PPC_INST_ANDI | ___PPC_RA(d) |	      \
98 				     ___PPC_RS(a) | IMM_L(i))
99 #define PPC_AND_DOT(d, a, b)	EMIT(PPC_INST_ANDDOT | ___PPC_RA(d) |	      \
100 				     ___PPC_RS(a) | ___PPC_RB(b))
101 #define PPC_OR(d, a, b)		EMIT(PPC_INST_OR | ___PPC_RA(d) |	      \
102 				     ___PPC_RS(a) | ___PPC_RB(b))
103 #define PPC_ORI(d, a, i)	EMIT(PPC_INST_ORI | ___PPC_RA(d) |	      \
104 				     ___PPC_RS(a) | IMM_L(i))
105 #define PPC_ORIS(d, a, i)	EMIT(PPC_INST_ORIS | ___PPC_RA(d) |	      \
106 				     ___PPC_RS(a) | IMM_L(i))
107 #define PPC_XOR(d, a, b)	EMIT(PPC_INST_XOR | ___PPC_RA(d) |	      \
108 				     ___PPC_RS(a) | ___PPC_RB(b))
109 #define PPC_XORI(d, a, i)	EMIT(PPC_INST_XORI | ___PPC_RA(d) |	      \
110 				     ___PPC_RS(a) | IMM_L(i))
111 #define PPC_XORIS(d, a, i)	EMIT(PPC_INST_XORIS | ___PPC_RA(d) |	      \
112 				     ___PPC_RS(a) | IMM_L(i))
113 #define PPC_SLW(d, a, s)	EMIT(PPC_INST_SLW | ___PPC_RA(d) |	      \
114 				     ___PPC_RS(a) | ___PPC_RB(s))
115 #define PPC_SRW(d, a, s)	EMIT(PPC_INST_SRW | ___PPC_RA(d) |	      \
116 				     ___PPC_RS(a) | ___PPC_RB(s))
117 #define PPC_RLWINM(d, a, i, mb, me)	EMIT(PPC_INST_RLWINM | ___PPC_RA(d) | \
118 					___PPC_RS(a) | __PPC_SH(i) |	      \
119 					__PPC_MB(mb) | __PPC_ME(me))
120 #define PPC_RLDICR(d, a, i, me)		EMIT(PPC_INST_RLDICR | ___PPC_RA(d) | \
121 					___PPC_RS(a) | __PPC_SH(i) |	      \
122 					__PPC_ME64(me) | (((i) & 0x20) >> 4))
123 
124 /* slwi = rlwinm Rx, Ry, n, 0, 31-n */
125 #define PPC_SLWI(d, a, i)	PPC_RLWINM(d, a, i, 0, 31-(i))
126 /* srwi = rlwinm Rx, Ry, 32-n, n, 31 */
127 #define PPC_SRWI(d, a, i)	PPC_RLWINM(d, a, 32-(i), i, 31)
128 /* sldi = rldicr Rx, Ry, n, 63-n */
129 #define PPC_SLDI(d, a, i)	PPC_RLDICR(d, a, i, 63-(i))
130 
131 #define PPC_NEG(d, a)		EMIT(PPC_INST_NEG | ___PPC_RT(d) | ___PPC_RA(a))
132 
133 /* Long jump; (unconditional 'branch') */
134 #define PPC_JMP(dest)		EMIT(PPC_INST_BRANCH |			      \
135 				     (((dest) - (ctx->idx * 4)) & 0x03fffffc))
136 /* "cond" here covers BO:BI fields. */
137 #define PPC_BCC_SHORT(cond, dest)	EMIT(PPC_INST_BRANCH_COND |	      \
138 					     (((cond) & 0x3ff) << 16) |	      \
139 					     (((dest) - (ctx->idx * 4)) &     \
140 					      0xfffc))
141 /* Sign-extended 32-bit immediate load */
142 #define PPC_LI32(d, i)		do {					      \
143 		if ((int)(uintptr_t)(i) >= -32768 &&			      \
144 				(int)(uintptr_t)(i) < 32768)		      \
145 			PPC_LI(d, i);					      \
146 		else {							      \
147 			PPC_LIS(d, IMM_H(i));				      \
148 			if (IMM_L(i))					      \
149 				PPC_ORI(d, d, IMM_L(i));		      \
150 		} } while(0)
151 
152 #define PPC_LI64(d, i)		do {					      \
153 		if ((long)(i) >= -2147483648 &&				      \
154 				(long)(i) < 2147483648)			      \
155 			PPC_LI32(d, i);					      \
156 		else {							      \
157 			if (!((uintptr_t)(i) & 0xffff800000000000ULL))	      \
158 				PPC_LI(d, ((uintptr_t)(i) >> 32) & 0xffff);   \
159 			else {						      \
160 				PPC_LIS(d, ((uintptr_t)(i) >> 48));	      \
161 				if ((uintptr_t)(i) & 0x0000ffff00000000ULL)   \
162 					PPC_ORI(d, d,			      \
163 					  ((uintptr_t)(i) >> 32) & 0xffff);   \
164 			}						      \
165 			PPC_SLDI(d, d, 32);				      \
166 			if ((uintptr_t)(i) & 0x00000000ffff0000ULL)	      \
167 				PPC_ORIS(d, d,				      \
168 					 ((uintptr_t)(i) >> 16) & 0xffff);    \
169 			if ((uintptr_t)(i) & 0x000000000000ffffULL)	      \
170 				PPC_ORI(d, d, (uintptr_t)(i) & 0xffff);	      \
171 		} } while (0)
172 
173 #ifdef CONFIG_PPC64
174 #define PPC_FUNC_ADDR(d,i) do { PPC_LI64(d, i); } while(0)
175 #else
176 #define PPC_FUNC_ADDR(d,i) do { PPC_LI32(d, i); } while(0)
177 #endif
178 
179 static inline bool is_nearbranch(int offset)
180 {
181 	return (offset < 32768) && (offset >= -32768);
182 }
183 
184 /*
185  * The fly in the ointment of code size changing from pass to pass is
186  * avoided by padding the short branch case with a NOP.	 If code size differs
187  * with different branch reaches we will have the issue of code moving from
188  * one pass to the next and will need a few passes to converge on a stable
189  * state.
190  */
191 #define PPC_BCC(cond, dest)	do {					      \
192 		if (is_nearbranch((dest) - (ctx->idx * 4))) {		      \
193 			PPC_BCC_SHORT(cond, dest);			      \
194 			PPC_NOP();					      \
195 		} else {						      \
196 			/* Flip the 'T or F' bit to invert comparison */      \
197 			PPC_BCC_SHORT(cond ^ COND_CMP_TRUE, (ctx->idx+2)*4);  \
198 			PPC_JMP(dest);					      \
199 		} } while(0)
200 
201 /* To create a branch condition, select a bit of cr0... */
202 #define CR0_LT		0
203 #define CR0_GT		1
204 #define CR0_EQ		2
205 /* ...and modify BO[3] */
206 #define COND_CMP_TRUE	0x100
207 #define COND_CMP_FALSE	0x000
208 /* Together, they make all required comparisons: */
209 #define COND_GT		(CR0_GT | COND_CMP_TRUE)
210 #define COND_GE		(CR0_LT | COND_CMP_FALSE)
211 #define COND_EQ		(CR0_EQ | COND_CMP_TRUE)
212 #define COND_NE		(CR0_EQ | COND_CMP_FALSE)
213 #define COND_LT		(CR0_LT | COND_CMP_TRUE)
214 
215 #endif
216 
217 #endif
218