xref: /openbmc/linux/arch/powerpc/mm/ptdump/ptdump.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2016, Rashmica Gupta, IBM Corp.
4  *
5  * This traverses the kernel pagetables and dumps the
6  * information about the used sections of memory to
7  * /sys/kernel/debug/kernel_pagetables.
8  *
9  * Derived from the arm64 implementation:
10  * Copyright (c) 2014, The Linux Foundation, Laura Abbott.
11  * (C) Copyright 2008 Intel Corporation, Arjan van de Ven.
12  */
13 #include <linux/debugfs.h>
14 #include <linux/fs.h>
15 #include <linux/hugetlb.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/highmem.h>
19 #include <linux/sched.h>
20 #include <linux/seq_file.h>
21 #include <asm/fixmap.h>
22 #include <linux/const.h>
23 #include <asm/page.h>
24 #include <asm/hugetlb.h>
25 
26 #include <mm/mmu_decl.h>
27 
28 #include "ptdump.h"
29 
30 /*
31  * To visualise what is happening,
32  *
33  *  - PTRS_PER_P** = how many entries there are in the corresponding P**
34  *  - P**_SHIFT = how many bits of the address we use to index into the
35  * corresponding P**
36  *  - P**_SIZE is how much memory we can access through the table - not the
37  * size of the table itself.
38  * P**={PGD, PUD, PMD, PTE}
39  *
40  *
41  * Each entry of the PGD points to a PUD. Each entry of a PUD points to a
42  * PMD. Each entry of a PMD points to a PTE. And every PTE entry points to
43  * a page.
44  *
45  * In the case where there are only 3 levels, the PUD is folded into the
46  * PGD: every PUD has only one entry which points to the PMD.
47  *
48  * The page dumper groups page table entries of the same type into a single
49  * description. It uses pg_state to track the range information while
50  * iterating over the PTE entries. When the continuity is broken it then
51  * dumps out a description of the range - ie PTEs that are virtually contiguous
52  * with the same PTE flags are chunked together. This is to make it clear how
53  * different areas of the kernel virtual memory are used.
54  *
55  */
56 struct pg_state {
57 	struct seq_file *seq;
58 	const struct addr_marker *marker;
59 	unsigned long start_address;
60 	unsigned long start_pa;
61 	unsigned long last_pa;
62 	unsigned long page_size;
63 	unsigned int level;
64 	u64 current_flags;
65 	bool check_wx;
66 	unsigned long wx_pages;
67 };
68 
69 struct addr_marker {
70 	unsigned long start_address;
71 	const char *name;
72 };
73 
74 static struct addr_marker address_markers[] = {
75 	{ 0,	"Start of kernel VM" },
76 #ifdef MODULES_VADDR
77 	{ 0,	"modules start" },
78 	{ 0,	"modules end" },
79 #endif
80 	{ 0,	"vmalloc() Area" },
81 	{ 0,	"vmalloc() End" },
82 #ifdef CONFIG_PPC64
83 	{ 0,	"isa I/O start" },
84 	{ 0,	"isa I/O end" },
85 	{ 0,	"phb I/O start" },
86 	{ 0,	"phb I/O end" },
87 	{ 0,	"I/O remap start" },
88 	{ 0,	"I/O remap end" },
89 	{ 0,	"vmemmap start" },
90 #else
91 	{ 0,	"Early I/O remap start" },
92 	{ 0,	"Early I/O remap end" },
93 #ifdef CONFIG_HIGHMEM
94 	{ 0,	"Highmem PTEs start" },
95 	{ 0,	"Highmem PTEs end" },
96 #endif
97 	{ 0,	"Fixmap start" },
98 	{ 0,	"Fixmap end" },
99 #endif
100 #ifdef CONFIG_KASAN
101 	{ 0,	"kasan shadow mem start" },
102 	{ 0,	"kasan shadow mem end" },
103 #endif
104 	{ -1,	NULL },
105 };
106 
107 #define pt_dump_seq_printf(m, fmt, args...)	\
108 ({						\
109 	if (m)					\
110 		seq_printf(m, fmt, ##args);	\
111 })
112 
113 #define pt_dump_seq_putc(m, c)		\
114 ({					\
115 	if (m)				\
116 		seq_putc(m, c);		\
117 })
118 
119 void pt_dump_size(struct seq_file *m, unsigned long size)
120 {
121 	static const char units[] = "KMGTPE";
122 	const char *unit = units;
123 
124 	/* Work out what appropriate unit to use */
125 	while (!(size & 1023) && unit[1]) {
126 		size >>= 10;
127 		unit++;
128 	}
129 	pt_dump_seq_printf(m, "%9lu%c ", size, *unit);
130 }
131 
132 static void dump_flag_info(struct pg_state *st, const struct flag_info
133 		*flag, u64 pte, int num)
134 {
135 	unsigned int i;
136 
137 	for (i = 0; i < num; i++, flag++) {
138 		const char *s = NULL;
139 		u64 val;
140 
141 		/* flag not defined so don't check it */
142 		if (flag->mask == 0)
143 			continue;
144 		/* Some 'flags' are actually values */
145 		if (flag->is_val) {
146 			val = pte & flag->val;
147 			if (flag->shift)
148 				val = val >> flag->shift;
149 			pt_dump_seq_printf(st->seq, "  %s:%llx", flag->set, val);
150 		} else {
151 			if ((pte & flag->mask) == flag->val)
152 				s = flag->set;
153 			else
154 				s = flag->clear;
155 			if (s)
156 				pt_dump_seq_printf(st->seq, "  %s", s);
157 		}
158 		st->current_flags &= ~flag->mask;
159 	}
160 	if (st->current_flags != 0)
161 		pt_dump_seq_printf(st->seq, "  unknown flags:%llx", st->current_flags);
162 }
163 
164 static void dump_addr(struct pg_state *st, unsigned long addr)
165 {
166 	unsigned long delta;
167 
168 #ifdef CONFIG_PPC64
169 #define REG		"0x%016lx"
170 #else
171 #define REG		"0x%08lx"
172 #endif
173 
174 	pt_dump_seq_printf(st->seq, REG "-" REG " ", st->start_address, addr - 1);
175 	if (st->start_pa == st->last_pa && st->start_address + st->page_size != addr) {
176 		pt_dump_seq_printf(st->seq, "[" REG "]", st->start_pa);
177 		delta = st->page_size >> 10;
178 	} else {
179 		pt_dump_seq_printf(st->seq, " " REG " ", st->start_pa);
180 		delta = (addr - st->start_address) >> 10;
181 	}
182 	pt_dump_size(st->seq, delta);
183 }
184 
185 static void note_prot_wx(struct pg_state *st, unsigned long addr)
186 {
187 	pte_t pte = __pte(st->current_flags);
188 
189 	if (!IS_ENABLED(CONFIG_PPC_DEBUG_WX) || !st->check_wx)
190 		return;
191 
192 	if (!pte_write(pte) || !pte_exec(pte))
193 		return;
194 
195 	WARN_ONCE(1, "powerpc/mm: Found insecure W+X mapping at address %p/%pS\n",
196 		  (void *)st->start_address, (void *)st->start_address);
197 
198 	st->wx_pages += (addr - st->start_address) / PAGE_SIZE;
199 }
200 
201 static void note_page_update_state(struct pg_state *st, unsigned long addr,
202 				   unsigned int level, u64 val, unsigned long page_size)
203 {
204 	u64 flag = val & pg_level[level].mask;
205 	u64 pa = val & PTE_RPN_MASK;
206 
207 	st->level = level;
208 	st->current_flags = flag;
209 	st->start_address = addr;
210 	st->start_pa = pa;
211 	st->page_size = page_size;
212 
213 	while (addr >= st->marker[1].start_address) {
214 		st->marker++;
215 		pt_dump_seq_printf(st->seq, "---[ %s ]---\n", st->marker->name);
216 	}
217 }
218 
219 static void note_page(struct pg_state *st, unsigned long addr,
220 	       unsigned int level, u64 val, unsigned long page_size)
221 {
222 	u64 flag = val & pg_level[level].mask;
223 	u64 pa = val & PTE_RPN_MASK;
224 
225 	/* At first no level is set */
226 	if (!st->level) {
227 		pt_dump_seq_printf(st->seq, "---[ %s ]---\n", st->marker->name);
228 		note_page_update_state(st, addr, level, val, page_size);
229 	/*
230 	 * Dump the section of virtual memory when:
231 	 *   - the PTE flags from one entry to the next differs.
232 	 *   - we change levels in the tree.
233 	 *   - the address is in a different section of memory and is thus
234 	 *   used for a different purpose, regardless of the flags.
235 	 *   - the pa of this page is not adjacent to the last inspected page
236 	 */
237 	} else if (flag != st->current_flags || level != st->level ||
238 		   addr >= st->marker[1].start_address ||
239 		   (pa != st->last_pa + st->page_size &&
240 		    (pa != st->start_pa || st->start_pa != st->last_pa))) {
241 
242 		/* Check the PTE flags */
243 		if (st->current_flags) {
244 			note_prot_wx(st, addr);
245 			dump_addr(st, addr);
246 
247 			/* Dump all the flags */
248 			if (pg_level[st->level].flag)
249 				dump_flag_info(st, pg_level[st->level].flag,
250 					  st->current_flags,
251 					  pg_level[st->level].num);
252 
253 			pt_dump_seq_putc(st->seq, '\n');
254 		}
255 
256 		/*
257 		 * Address indicates we have passed the end of the
258 		 * current section of virtual memory
259 		 */
260 		note_page_update_state(st, addr, level, val, page_size);
261 	}
262 	st->last_pa = pa;
263 }
264 
265 static void walk_pte(struct pg_state *st, pmd_t *pmd, unsigned long start)
266 {
267 	pte_t *pte = pte_offset_kernel(pmd, 0);
268 	unsigned long addr;
269 	unsigned int i;
270 
271 	for (i = 0; i < PTRS_PER_PTE; i++, pte++) {
272 		addr = start + i * PAGE_SIZE;
273 		note_page(st, addr, 4, pte_val(*pte), PAGE_SIZE);
274 
275 	}
276 }
277 
278 static void walk_hugepd(struct pg_state *st, hugepd_t *phpd, unsigned long start,
279 			int pdshift, int level)
280 {
281 #ifdef CONFIG_ARCH_HAS_HUGEPD
282 	unsigned int i;
283 	int shift = hugepd_shift(*phpd);
284 	int ptrs_per_hpd = pdshift - shift > 0 ? 1 << (pdshift - shift) : 1;
285 
286 	if (start & ((1 << shift) - 1))
287 		return;
288 
289 	for (i = 0; i < ptrs_per_hpd; i++) {
290 		unsigned long addr = start + (i << shift);
291 		pte_t *pte = hugepte_offset(*phpd, addr, pdshift);
292 
293 		note_page(st, addr, level + 1, pte_val(*pte), 1 << shift);
294 	}
295 #endif
296 }
297 
298 static void walk_pmd(struct pg_state *st, pud_t *pud, unsigned long start)
299 {
300 	pmd_t *pmd = pmd_offset(pud, 0);
301 	unsigned long addr;
302 	unsigned int i;
303 
304 	for (i = 0; i < PTRS_PER_PMD; i++, pmd++) {
305 		addr = start + i * PMD_SIZE;
306 		if (!pmd_none(*pmd) && !pmd_is_leaf(*pmd))
307 			/* pmd exists */
308 			walk_pte(st, pmd, addr);
309 		else
310 			note_page(st, addr, 3, pmd_val(*pmd), PMD_SIZE);
311 	}
312 }
313 
314 static void walk_pud(struct pg_state *st, p4d_t *p4d, unsigned long start)
315 {
316 	pud_t *pud = pud_offset(p4d, 0);
317 	unsigned long addr;
318 	unsigned int i;
319 
320 	for (i = 0; i < PTRS_PER_PUD; i++, pud++) {
321 		addr = start + i * PUD_SIZE;
322 		if (!pud_none(*pud) && !pud_is_leaf(*pud))
323 			/* pud exists */
324 			walk_pmd(st, pud, addr);
325 		else
326 			note_page(st, addr, 2, pud_val(*pud), PUD_SIZE);
327 	}
328 }
329 
330 static void walk_pagetables(struct pg_state *st)
331 {
332 	unsigned int i;
333 	unsigned long addr = st->start_address & PGDIR_MASK;
334 	pgd_t *pgd = pgd_offset_k(addr);
335 
336 	/*
337 	 * Traverse the linux pagetable structure and dump pages that are in
338 	 * the hash pagetable.
339 	 */
340 	for (i = pgd_index(addr); i < PTRS_PER_PGD; i++, pgd++, addr += PGDIR_SIZE) {
341 		p4d_t *p4d = p4d_offset(pgd, 0);
342 
343 		if (p4d_none(*p4d) || p4d_is_leaf(*p4d))
344 			note_page(st, addr, 1, p4d_val(*p4d), PGDIR_SIZE);
345 		else if (is_hugepd(__hugepd(p4d_val(*p4d))))
346 			walk_hugepd(st, (hugepd_t *)p4d, addr, PGDIR_SHIFT, 1);
347 		else
348 			/* p4d exists */
349 			walk_pud(st, p4d, addr);
350 	}
351 }
352 
353 static void populate_markers(void)
354 {
355 	int i = 0;
356 
357 #ifdef CONFIG_PPC64
358 	address_markers[i++].start_address = PAGE_OFFSET;
359 #else
360 	address_markers[i++].start_address = TASK_SIZE;
361 #endif
362 #ifdef MODULES_VADDR
363 	address_markers[i++].start_address = MODULES_VADDR;
364 	address_markers[i++].start_address = MODULES_END;
365 #endif
366 	address_markers[i++].start_address = VMALLOC_START;
367 	address_markers[i++].start_address = VMALLOC_END;
368 #ifdef CONFIG_PPC64
369 	address_markers[i++].start_address = ISA_IO_BASE;
370 	address_markers[i++].start_address = ISA_IO_END;
371 	address_markers[i++].start_address = PHB_IO_BASE;
372 	address_markers[i++].start_address = PHB_IO_END;
373 	address_markers[i++].start_address = IOREMAP_BASE;
374 	address_markers[i++].start_address = IOREMAP_END;
375 	/* What is the ifdef about? */
376 #ifdef CONFIG_PPC_BOOK3S_64
377 	address_markers[i++].start_address =  H_VMEMMAP_START;
378 #else
379 	address_markers[i++].start_address =  VMEMMAP_BASE;
380 #endif
381 #else /* !CONFIG_PPC64 */
382 	address_markers[i++].start_address = ioremap_bot;
383 	address_markers[i++].start_address = IOREMAP_TOP;
384 #ifdef CONFIG_HIGHMEM
385 	address_markers[i++].start_address = PKMAP_BASE;
386 	address_markers[i++].start_address = PKMAP_ADDR(LAST_PKMAP);
387 #endif
388 	address_markers[i++].start_address = FIXADDR_START;
389 	address_markers[i++].start_address = FIXADDR_TOP;
390 #ifdef CONFIG_KASAN
391 	address_markers[i++].start_address = KASAN_SHADOW_START;
392 	address_markers[i++].start_address = KASAN_SHADOW_END;
393 #endif
394 #endif /* CONFIG_PPC64 */
395 }
396 
397 static int ptdump_show(struct seq_file *m, void *v)
398 {
399 	struct pg_state st = {
400 		.seq = m,
401 		.marker = address_markers,
402 		.start_address = IS_ENABLED(CONFIG_PPC64) ? PAGE_OFFSET : TASK_SIZE,
403 	};
404 
405 #ifdef CONFIG_PPC64
406 	if (!radix_enabled())
407 		st.start_address = KERN_VIRT_START;
408 #endif
409 
410 	/* Traverse kernel page tables */
411 	walk_pagetables(&st);
412 	note_page(&st, 0, 0, 0, 0);
413 	return 0;
414 }
415 
416 
417 static int ptdump_open(struct inode *inode, struct file *file)
418 {
419 	return single_open(file, ptdump_show, NULL);
420 }
421 
422 static const struct file_operations ptdump_fops = {
423 	.open		= ptdump_open,
424 	.read		= seq_read,
425 	.llseek		= seq_lseek,
426 	.release	= single_release,
427 };
428 
429 static void build_pgtable_complete_mask(void)
430 {
431 	unsigned int i, j;
432 
433 	for (i = 0; i < ARRAY_SIZE(pg_level); i++)
434 		if (pg_level[i].flag)
435 			for (j = 0; j < pg_level[i].num; j++)
436 				pg_level[i].mask |= pg_level[i].flag[j].mask;
437 }
438 
439 #ifdef CONFIG_PPC_DEBUG_WX
440 void ptdump_check_wx(void)
441 {
442 	struct pg_state st = {
443 		.seq = NULL,
444 		.marker = address_markers,
445 		.check_wx = true,
446 		.start_address = IS_ENABLED(CONFIG_PPC64) ? PAGE_OFFSET : TASK_SIZE,
447 	};
448 
449 #ifdef CONFIG_PPC64
450 	if (!radix_enabled())
451 		st.start_address = KERN_VIRT_START;
452 #endif
453 
454 	walk_pagetables(&st);
455 
456 	if (st.wx_pages)
457 		pr_warn("Checked W+X mappings: FAILED, %lu W+X pages found\n",
458 			st.wx_pages);
459 	else
460 		pr_info("Checked W+X mappings: passed, no W+X pages found\n");
461 }
462 #endif
463 
464 static int ptdump_init(void)
465 {
466 	populate_markers();
467 	build_pgtable_complete_mask();
468 	debugfs_create_file("kernel_page_tables", 0400, NULL, NULL,
469 			    &ptdump_fops);
470 	return 0;
471 }
472 device_initcall(ptdump_init);
473