xref: /openbmc/linux/arch/powerpc/mm/ptdump/ptdump.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  * Copyright 2016, Rashmica Gupta, IBM Corp.
3  *
4  * This traverses the kernel pagetables and dumps the
5  * information about the used sections of memory to
6  * /sys/kernel/debug/kernel_pagetables.
7  *
8  * Derived from the arm64 implementation:
9  * Copyright (c) 2014, The Linux Foundation, Laura Abbott.
10  * (C) Copyright 2008 Intel Corporation, Arjan van de Ven.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; version 2
15  * of the License.
16  */
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/hugetlb.h>
20 #include <linux/io.h>
21 #include <linux/mm.h>
22 #include <linux/highmem.h>
23 #include <linux/sched.h>
24 #include <linux/seq_file.h>
25 #include <asm/fixmap.h>
26 #include <asm/pgtable.h>
27 #include <linux/const.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 
31 #include "ptdump.h"
32 
33 #ifdef CONFIG_PPC32
34 #define KERN_VIRT_START	0
35 #endif
36 
37 /*
38  * To visualise what is happening,
39  *
40  *  - PTRS_PER_P** = how many entries there are in the corresponding P**
41  *  - P**_SHIFT = how many bits of the address we use to index into the
42  * corresponding P**
43  *  - P**_SIZE is how much memory we can access through the table - not the
44  * size of the table itself.
45  * P**={PGD, PUD, PMD, PTE}
46  *
47  *
48  * Each entry of the PGD points to a PUD. Each entry of a PUD points to a
49  * PMD. Each entry of a PMD points to a PTE. And every PTE entry points to
50  * a page.
51  *
52  * In the case where there are only 3 levels, the PUD is folded into the
53  * PGD: every PUD has only one entry which points to the PMD.
54  *
55  * The page dumper groups page table entries of the same type into a single
56  * description. It uses pg_state to track the range information while
57  * iterating over the PTE entries. When the continuity is broken it then
58  * dumps out a description of the range - ie PTEs that are virtually contiguous
59  * with the same PTE flags are chunked together. This is to make it clear how
60  * different areas of the kernel virtual memory are used.
61  *
62  */
63 struct pg_state {
64 	struct seq_file *seq;
65 	const struct addr_marker *marker;
66 	unsigned long start_address;
67 	unsigned long start_pa;
68 	unsigned long last_pa;
69 	unsigned int level;
70 	u64 current_flags;
71 };
72 
73 struct addr_marker {
74 	unsigned long start_address;
75 	const char *name;
76 };
77 
78 static struct addr_marker address_markers[] = {
79 	{ 0,	"Start of kernel VM" },
80 	{ 0,	"vmalloc() Area" },
81 	{ 0,	"vmalloc() End" },
82 #ifdef CONFIG_PPC64
83 	{ 0,	"isa I/O start" },
84 	{ 0,	"isa I/O end" },
85 	{ 0,	"phb I/O start" },
86 	{ 0,	"phb I/O end" },
87 	{ 0,	"I/O remap start" },
88 	{ 0,	"I/O remap end" },
89 	{ 0,	"vmemmap start" },
90 #else
91 	{ 0,	"Early I/O remap start" },
92 	{ 0,	"Early I/O remap end" },
93 #ifdef CONFIG_NOT_COHERENT_CACHE
94 	{ 0,	"Consistent mem start" },
95 	{ 0,	"Consistent mem end" },
96 #endif
97 #ifdef CONFIG_HIGHMEM
98 	{ 0,	"Highmem PTEs start" },
99 	{ 0,	"Highmem PTEs end" },
100 #endif
101 	{ 0,	"Fixmap start" },
102 	{ 0,	"Fixmap end" },
103 #endif
104 	{ -1,	NULL },
105 };
106 
107 static void dump_flag_info(struct pg_state *st, const struct flag_info
108 		*flag, u64 pte, int num)
109 {
110 	unsigned int i;
111 
112 	for (i = 0; i < num; i++, flag++) {
113 		const char *s = NULL;
114 		u64 val;
115 
116 		/* flag not defined so don't check it */
117 		if (flag->mask == 0)
118 			continue;
119 		/* Some 'flags' are actually values */
120 		if (flag->is_val) {
121 			val = pte & flag->val;
122 			if (flag->shift)
123 				val = val >> flag->shift;
124 			seq_printf(st->seq, "  %s:%llx", flag->set, val);
125 		} else {
126 			if ((pte & flag->mask) == flag->val)
127 				s = flag->set;
128 			else
129 				s = flag->clear;
130 			if (s)
131 				seq_printf(st->seq, "  %s", s);
132 		}
133 		st->current_flags &= ~flag->mask;
134 	}
135 	if (st->current_flags != 0)
136 		seq_printf(st->seq, "  unknown flags:%llx", st->current_flags);
137 }
138 
139 static void dump_addr(struct pg_state *st, unsigned long addr)
140 {
141 	static const char units[] = "KMGTPE";
142 	const char *unit = units;
143 	unsigned long delta;
144 
145 #ifdef CONFIG_PPC64
146 #define REG		"0x%016lx"
147 #else
148 #define REG		"0x%08lx"
149 #endif
150 
151 	seq_printf(st->seq, REG "-" REG " ", st->start_address, addr - 1);
152 	if (st->start_pa == st->last_pa && st->start_address + PAGE_SIZE != addr) {
153 		seq_printf(st->seq, "[" REG "]", st->start_pa);
154 		delta = PAGE_SIZE >> 10;
155 	} else {
156 		seq_printf(st->seq, " " REG " ", st->start_pa);
157 		delta = (addr - st->start_address) >> 10;
158 	}
159 	/* Work out what appropriate unit to use */
160 	while (!(delta & 1023) && unit[1]) {
161 		delta >>= 10;
162 		unit++;
163 	}
164 	seq_printf(st->seq, "%9lu%c", delta, *unit);
165 
166 }
167 
168 static void note_page(struct pg_state *st, unsigned long addr,
169 	       unsigned int level, u64 val)
170 {
171 	u64 flag = val & pg_level[level].mask;
172 	u64 pa = val & PTE_RPN_MASK;
173 
174 	/* At first no level is set */
175 	if (!st->level) {
176 		st->level = level;
177 		st->current_flags = flag;
178 		st->start_address = addr;
179 		st->start_pa = pa;
180 		st->last_pa = pa;
181 		seq_printf(st->seq, "---[ %s ]---\n", st->marker->name);
182 	/*
183 	 * Dump the section of virtual memory when:
184 	 *   - the PTE flags from one entry to the next differs.
185 	 *   - we change levels in the tree.
186 	 *   - the address is in a different section of memory and is thus
187 	 *   used for a different purpose, regardless of the flags.
188 	 *   - the pa of this page is not adjacent to the last inspected page
189 	 */
190 	} else if (flag != st->current_flags || level != st->level ||
191 		   addr >= st->marker[1].start_address ||
192 		   (pa != st->last_pa + PAGE_SIZE &&
193 		    (pa != st->start_pa || st->start_pa != st->last_pa))) {
194 
195 		/* Check the PTE flags */
196 		if (st->current_flags) {
197 			dump_addr(st, addr);
198 
199 			/* Dump all the flags */
200 			if (pg_level[st->level].flag)
201 				dump_flag_info(st, pg_level[st->level].flag,
202 					  st->current_flags,
203 					  pg_level[st->level].num);
204 
205 			seq_putc(st->seq, '\n');
206 		}
207 
208 		/*
209 		 * Address indicates we have passed the end of the
210 		 * current section of virtual memory
211 		 */
212 		while (addr >= st->marker[1].start_address) {
213 			st->marker++;
214 			seq_printf(st->seq, "---[ %s ]---\n", st->marker->name);
215 		}
216 		st->start_address = addr;
217 		st->start_pa = pa;
218 		st->last_pa = pa;
219 		st->current_flags = flag;
220 		st->level = level;
221 	} else {
222 		st->last_pa = pa;
223 	}
224 }
225 
226 static void walk_pte(struct pg_state *st, pmd_t *pmd, unsigned long start)
227 {
228 	pte_t *pte = pte_offset_kernel(pmd, 0);
229 	unsigned long addr;
230 	unsigned int i;
231 
232 	for (i = 0; i < PTRS_PER_PTE; i++, pte++) {
233 		addr = start + i * PAGE_SIZE;
234 		note_page(st, addr, 4, pte_val(*pte));
235 
236 	}
237 }
238 
239 static void walk_pmd(struct pg_state *st, pud_t *pud, unsigned long start)
240 {
241 	pmd_t *pmd = pmd_offset(pud, 0);
242 	unsigned long addr;
243 	unsigned int i;
244 
245 	for (i = 0; i < PTRS_PER_PMD; i++, pmd++) {
246 		addr = start + i * PMD_SIZE;
247 		if (!pmd_none(*pmd) && !pmd_huge(*pmd))
248 			/* pmd exists */
249 			walk_pte(st, pmd, addr);
250 		else
251 			note_page(st, addr, 3, pmd_val(*pmd));
252 	}
253 }
254 
255 static void walk_pud(struct pg_state *st, pgd_t *pgd, unsigned long start)
256 {
257 	pud_t *pud = pud_offset(pgd, 0);
258 	unsigned long addr;
259 	unsigned int i;
260 
261 	for (i = 0; i < PTRS_PER_PUD; i++, pud++) {
262 		addr = start + i * PUD_SIZE;
263 		if (!pud_none(*pud) && !pud_huge(*pud))
264 			/* pud exists */
265 			walk_pmd(st, pud, addr);
266 		else
267 			note_page(st, addr, 2, pud_val(*pud));
268 	}
269 }
270 
271 static void walk_pagetables(struct pg_state *st)
272 {
273 	pgd_t *pgd = pgd_offset_k(0UL);
274 	unsigned int i;
275 	unsigned long addr;
276 
277 	addr = st->start_address;
278 
279 	/*
280 	 * Traverse the linux pagetable structure and dump pages that are in
281 	 * the hash pagetable.
282 	 */
283 	for (i = 0; i < PTRS_PER_PGD; i++, pgd++, addr += PGDIR_SIZE) {
284 		if (!pgd_none(*pgd) && !pgd_huge(*pgd))
285 			/* pgd exists */
286 			walk_pud(st, pgd, addr);
287 		else
288 			note_page(st, addr, 1, pgd_val(*pgd));
289 	}
290 }
291 
292 static void populate_markers(void)
293 {
294 	int i = 0;
295 
296 	address_markers[i++].start_address = PAGE_OFFSET;
297 	address_markers[i++].start_address = VMALLOC_START;
298 	address_markers[i++].start_address = VMALLOC_END;
299 #ifdef CONFIG_PPC64
300 	address_markers[i++].start_address = ISA_IO_BASE;
301 	address_markers[i++].start_address = ISA_IO_END;
302 	address_markers[i++].start_address = PHB_IO_BASE;
303 	address_markers[i++].start_address = PHB_IO_END;
304 	address_markers[i++].start_address = IOREMAP_BASE;
305 	address_markers[i++].start_address = IOREMAP_END;
306 #ifdef CONFIG_PPC_BOOK3S_64
307 	address_markers[i++].start_address =  H_VMEMMAP_BASE;
308 #else
309 	address_markers[i++].start_address =  VMEMMAP_BASE;
310 #endif
311 #else /* !CONFIG_PPC64 */
312 	address_markers[i++].start_address = ioremap_bot;
313 	address_markers[i++].start_address = IOREMAP_TOP;
314 #ifdef CONFIG_NOT_COHERENT_CACHE
315 	address_markers[i++].start_address = IOREMAP_TOP;
316 	address_markers[i++].start_address = IOREMAP_TOP +
317 					     CONFIG_CONSISTENT_SIZE;
318 #endif
319 #ifdef CONFIG_HIGHMEM
320 	address_markers[i++].start_address = PKMAP_BASE;
321 	address_markers[i++].start_address = PKMAP_ADDR(LAST_PKMAP);
322 #endif
323 	address_markers[i++].start_address = FIXADDR_START;
324 	address_markers[i++].start_address = FIXADDR_TOP;
325 #endif /* CONFIG_PPC64 */
326 }
327 
328 static int ptdump_show(struct seq_file *m, void *v)
329 {
330 	struct pg_state st = {
331 		.seq = m,
332 		.marker = address_markers,
333 	};
334 
335 	if (radix_enabled())
336 		st.start_address = PAGE_OFFSET;
337 	else
338 		st.start_address = KERN_VIRT_START;
339 
340 	/* Traverse kernel page tables */
341 	walk_pagetables(&st);
342 	note_page(&st, 0, 0, 0);
343 	return 0;
344 }
345 
346 
347 static int ptdump_open(struct inode *inode, struct file *file)
348 {
349 	return single_open(file, ptdump_show, NULL);
350 }
351 
352 static const struct file_operations ptdump_fops = {
353 	.open		= ptdump_open,
354 	.read		= seq_read,
355 	.llseek		= seq_lseek,
356 	.release	= single_release,
357 };
358 
359 static void build_pgtable_complete_mask(void)
360 {
361 	unsigned int i, j;
362 
363 	for (i = 0; i < ARRAY_SIZE(pg_level); i++)
364 		if (pg_level[i].flag)
365 			for (j = 0; j < pg_level[i].num; j++)
366 				pg_level[i].mask |= pg_level[i].flag[j].mask;
367 }
368 
369 static int ptdump_init(void)
370 {
371 	struct dentry *debugfs_file;
372 
373 	populate_markers();
374 	build_pgtable_complete_mask();
375 	debugfs_file = debugfs_create_file("kernel_page_tables", 0400, NULL,
376 			NULL, &ptdump_fops);
377 	return debugfs_file ? 0 : -ENOMEM;
378 }
379 device_initcall(ptdump_init);
380