xref: /openbmc/linux/arch/powerpc/mm/pgtable_64.c (revision e23feb16)
1 /*
2  *  This file contains ioremap and related functions for 64-bit machines.
3  *
4  *  Derived from arch/ppc64/mm/init.c
5  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6  *
7  *  Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
8  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
9  *    Copyright (C) 1996 Paul Mackerras
10  *
11  *  Derived from "arch/i386/mm/init.c"
12  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
13  *
14  *  Dave Engebretsen <engebret@us.ibm.com>
15  *      Rework for PPC64 port.
16  *
17  *  This program is free software; you can redistribute it and/or
18  *  modify it under the terms of the GNU General Public License
19  *  as published by the Free Software Foundation; either version
20  *  2 of the License, or (at your option) any later version.
21  *
22  */
23 
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/export.h>
30 #include <linux/types.h>
31 #include <linux/mman.h>
32 #include <linux/mm.h>
33 #include <linux/swap.h>
34 #include <linux/stddef.h>
35 #include <linux/vmalloc.h>
36 #include <linux/init.h>
37 #include <linux/bootmem.h>
38 #include <linux/memblock.h>
39 #include <linux/slab.h>
40 
41 #include <asm/pgalloc.h>
42 #include <asm/page.h>
43 #include <asm/prom.h>
44 #include <asm/io.h>
45 #include <asm/mmu_context.h>
46 #include <asm/pgtable.h>
47 #include <asm/mmu.h>
48 #include <asm/smp.h>
49 #include <asm/machdep.h>
50 #include <asm/tlb.h>
51 #include <asm/processor.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/firmware.h>
55 
56 #include "mmu_decl.h"
57 
58 /* Some sanity checking */
59 #if TASK_SIZE_USER64 > PGTABLE_RANGE
60 #error TASK_SIZE_USER64 exceeds pagetable range
61 #endif
62 
63 #ifdef CONFIG_PPC_STD_MMU_64
64 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
65 #error TASK_SIZE_USER64 exceeds user VSID range
66 #endif
67 #endif
68 
69 unsigned long ioremap_bot = IOREMAP_BASE;
70 
71 #ifdef CONFIG_PPC_MMU_NOHASH
72 static void *early_alloc_pgtable(unsigned long size)
73 {
74 	void *pt;
75 
76 	if (init_bootmem_done)
77 		pt = __alloc_bootmem(size, size, __pa(MAX_DMA_ADDRESS));
78 	else
79 		pt = __va(memblock_alloc_base(size, size,
80 					 __pa(MAX_DMA_ADDRESS)));
81 	memset(pt, 0, size);
82 
83 	return pt;
84 }
85 #endif /* CONFIG_PPC_MMU_NOHASH */
86 
87 /*
88  * map_kernel_page currently only called by __ioremap
89  * map_kernel_page adds an entry to the ioremap page table
90  * and adds an entry to the HPT, possibly bolting it
91  */
92 int map_kernel_page(unsigned long ea, unsigned long pa, int flags)
93 {
94 	pgd_t *pgdp;
95 	pud_t *pudp;
96 	pmd_t *pmdp;
97 	pte_t *ptep;
98 
99 	if (slab_is_available()) {
100 		pgdp = pgd_offset_k(ea);
101 		pudp = pud_alloc(&init_mm, pgdp, ea);
102 		if (!pudp)
103 			return -ENOMEM;
104 		pmdp = pmd_alloc(&init_mm, pudp, ea);
105 		if (!pmdp)
106 			return -ENOMEM;
107 		ptep = pte_alloc_kernel(pmdp, ea);
108 		if (!ptep)
109 			return -ENOMEM;
110 		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
111 							  __pgprot(flags)));
112 	} else {
113 #ifdef CONFIG_PPC_MMU_NOHASH
114 		/* Warning ! This will blow up if bootmem is not initialized
115 		 * which our ppc64 code is keen to do that, we'll need to
116 		 * fix it and/or be more careful
117 		 */
118 		pgdp = pgd_offset_k(ea);
119 #ifdef PUD_TABLE_SIZE
120 		if (pgd_none(*pgdp)) {
121 			pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
122 			BUG_ON(pudp == NULL);
123 			pgd_populate(&init_mm, pgdp, pudp);
124 		}
125 #endif /* PUD_TABLE_SIZE */
126 		pudp = pud_offset(pgdp, ea);
127 		if (pud_none(*pudp)) {
128 			pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
129 			BUG_ON(pmdp == NULL);
130 			pud_populate(&init_mm, pudp, pmdp);
131 		}
132 		pmdp = pmd_offset(pudp, ea);
133 		if (!pmd_present(*pmdp)) {
134 			ptep = early_alloc_pgtable(PAGE_SIZE);
135 			BUG_ON(ptep == NULL);
136 			pmd_populate_kernel(&init_mm, pmdp, ptep);
137 		}
138 		ptep = pte_offset_kernel(pmdp, ea);
139 		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
140 							  __pgprot(flags)));
141 #else /* CONFIG_PPC_MMU_NOHASH */
142 		/*
143 		 * If the mm subsystem is not fully up, we cannot create a
144 		 * linux page table entry for this mapping.  Simply bolt an
145 		 * entry in the hardware page table.
146 		 *
147 		 */
148 		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
149 				      mmu_io_psize, mmu_kernel_ssize)) {
150 			printk(KERN_ERR "Failed to do bolted mapping IO "
151 			       "memory at %016lx !\n", pa);
152 			return -ENOMEM;
153 		}
154 #endif /* !CONFIG_PPC_MMU_NOHASH */
155 	}
156 	return 0;
157 }
158 
159 
160 /**
161  * __ioremap_at - Low level function to establish the page tables
162  *                for an IO mapping
163  */
164 void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
165 			    unsigned long flags)
166 {
167 	unsigned long i;
168 
169 	/* Make sure we have the base flags */
170 	if ((flags & _PAGE_PRESENT) == 0)
171 		flags |= pgprot_val(PAGE_KERNEL);
172 
173 	/* Non-cacheable page cannot be coherent */
174 	if (flags & _PAGE_NO_CACHE)
175 		flags &= ~_PAGE_COHERENT;
176 
177 	/* We don't support the 4K PFN hack with ioremap */
178 	if (flags & _PAGE_4K_PFN)
179 		return NULL;
180 
181 	WARN_ON(pa & ~PAGE_MASK);
182 	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
183 	WARN_ON(size & ~PAGE_MASK);
184 
185 	for (i = 0; i < size; i += PAGE_SIZE)
186 		if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
187 			return NULL;
188 
189 	return (void __iomem *)ea;
190 }
191 
192 /**
193  * __iounmap_from - Low level function to tear down the page tables
194  *                  for an IO mapping. This is used for mappings that
195  *                  are manipulated manually, like partial unmapping of
196  *                  PCI IOs or ISA space.
197  */
198 void __iounmap_at(void *ea, unsigned long size)
199 {
200 	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
201 	WARN_ON(size & ~PAGE_MASK);
202 
203 	unmap_kernel_range((unsigned long)ea, size);
204 }
205 
206 void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
207 				unsigned long flags, void *caller)
208 {
209 	phys_addr_t paligned;
210 	void __iomem *ret;
211 
212 	/*
213 	 * Choose an address to map it to.
214 	 * Once the imalloc system is running, we use it.
215 	 * Before that, we map using addresses going
216 	 * up from ioremap_bot.  imalloc will use
217 	 * the addresses from ioremap_bot through
218 	 * IMALLOC_END
219 	 *
220 	 */
221 	paligned = addr & PAGE_MASK;
222 	size = PAGE_ALIGN(addr + size) - paligned;
223 
224 	if ((size == 0) || (paligned == 0))
225 		return NULL;
226 
227 	if (mem_init_done) {
228 		struct vm_struct *area;
229 
230 		area = __get_vm_area_caller(size, VM_IOREMAP,
231 					    ioremap_bot, IOREMAP_END,
232 					    caller);
233 		if (area == NULL)
234 			return NULL;
235 
236 		area->phys_addr = paligned;
237 		ret = __ioremap_at(paligned, area->addr, size, flags);
238 		if (!ret)
239 			vunmap(area->addr);
240 	} else {
241 		ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
242 		if (ret)
243 			ioremap_bot += size;
244 	}
245 
246 	if (ret)
247 		ret += addr & ~PAGE_MASK;
248 	return ret;
249 }
250 
251 void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
252 			 unsigned long flags)
253 {
254 	return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
255 }
256 
257 void __iomem * ioremap(phys_addr_t addr, unsigned long size)
258 {
259 	unsigned long flags = _PAGE_NO_CACHE | _PAGE_GUARDED;
260 	void *caller = __builtin_return_address(0);
261 
262 	if (ppc_md.ioremap)
263 		return ppc_md.ioremap(addr, size, flags, caller);
264 	return __ioremap_caller(addr, size, flags, caller);
265 }
266 
267 void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
268 {
269 	unsigned long flags = _PAGE_NO_CACHE;
270 	void *caller = __builtin_return_address(0);
271 
272 	if (ppc_md.ioremap)
273 		return ppc_md.ioremap(addr, size, flags, caller);
274 	return __ioremap_caller(addr, size, flags, caller);
275 }
276 
277 void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
278 			     unsigned long flags)
279 {
280 	void *caller = __builtin_return_address(0);
281 
282 	/* writeable implies dirty for kernel addresses */
283 	if (flags & _PAGE_RW)
284 		flags |= _PAGE_DIRTY;
285 
286 	/* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
287 	flags &= ~(_PAGE_USER | _PAGE_EXEC);
288 
289 #ifdef _PAGE_BAP_SR
290 	/* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
291 	 * which means that we just cleared supervisor access... oops ;-) This
292 	 * restores it
293 	 */
294 	flags |= _PAGE_BAP_SR;
295 #endif
296 
297 	if (ppc_md.ioremap)
298 		return ppc_md.ioremap(addr, size, flags, caller);
299 	return __ioremap_caller(addr, size, flags, caller);
300 }
301 
302 
303 /*
304  * Unmap an IO region and remove it from imalloc'd list.
305  * Access to IO memory should be serialized by driver.
306  */
307 void __iounmap(volatile void __iomem *token)
308 {
309 	void *addr;
310 
311 	if (!mem_init_done)
312 		return;
313 
314 	addr = (void *) ((unsigned long __force)
315 			 PCI_FIX_ADDR(token) & PAGE_MASK);
316 	if ((unsigned long)addr < ioremap_bot) {
317 		printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
318 		       " at 0x%p\n", addr);
319 		return;
320 	}
321 	vunmap(addr);
322 }
323 
324 void iounmap(volatile void __iomem *token)
325 {
326 	if (ppc_md.iounmap)
327 		ppc_md.iounmap(token);
328 	else
329 		__iounmap(token);
330 }
331 
332 EXPORT_SYMBOL(ioremap);
333 EXPORT_SYMBOL(ioremap_wc);
334 EXPORT_SYMBOL(ioremap_prot);
335 EXPORT_SYMBOL(__ioremap);
336 EXPORT_SYMBOL(__ioremap_at);
337 EXPORT_SYMBOL(iounmap);
338 EXPORT_SYMBOL(__iounmap);
339 EXPORT_SYMBOL(__iounmap_at);
340 
341 /*
342  * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
343  * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
344  */
345 struct page *pmd_page(pmd_t pmd)
346 {
347 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
348 	if (pmd_trans_huge(pmd))
349 		return pfn_to_page(pmd_pfn(pmd));
350 #endif
351 	return virt_to_page(pmd_page_vaddr(pmd));
352 }
353 
354 #ifdef CONFIG_PPC_64K_PAGES
355 static pte_t *get_from_cache(struct mm_struct *mm)
356 {
357 	void *pte_frag, *ret;
358 
359 	spin_lock(&mm->page_table_lock);
360 	ret = mm->context.pte_frag;
361 	if (ret) {
362 		pte_frag = ret + PTE_FRAG_SIZE;
363 		/*
364 		 * If we have taken up all the fragments mark PTE page NULL
365 		 */
366 		if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
367 			pte_frag = NULL;
368 		mm->context.pte_frag = pte_frag;
369 	}
370 	spin_unlock(&mm->page_table_lock);
371 	return (pte_t *)ret;
372 }
373 
374 static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
375 {
376 	void *ret = NULL;
377 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
378 				       __GFP_REPEAT | __GFP_ZERO);
379 	if (!page)
380 		return NULL;
381 
382 	ret = page_address(page);
383 	spin_lock(&mm->page_table_lock);
384 	/*
385 	 * If we find pgtable_page set, we return
386 	 * the allocated page with single fragement
387 	 * count.
388 	 */
389 	if (likely(!mm->context.pte_frag)) {
390 		atomic_set(&page->_count, PTE_FRAG_NR);
391 		mm->context.pte_frag = ret + PTE_FRAG_SIZE;
392 	}
393 	spin_unlock(&mm->page_table_lock);
394 
395 	if (!kernel)
396 		pgtable_page_ctor(page);
397 
398 	return (pte_t *)ret;
399 }
400 
401 pte_t *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
402 {
403 	pte_t *pte;
404 
405 	pte = get_from_cache(mm);
406 	if (pte)
407 		return pte;
408 
409 	return __alloc_for_cache(mm, kernel);
410 }
411 
412 void page_table_free(struct mm_struct *mm, unsigned long *table, int kernel)
413 {
414 	struct page *page = virt_to_page(table);
415 	if (put_page_testzero(page)) {
416 		if (!kernel)
417 			pgtable_page_dtor(page);
418 		free_hot_cold_page(page, 0);
419 	}
420 }
421 
422 #ifdef CONFIG_SMP
423 static void page_table_free_rcu(void *table)
424 {
425 	struct page *page = virt_to_page(table);
426 	if (put_page_testzero(page)) {
427 		pgtable_page_dtor(page);
428 		free_hot_cold_page(page, 0);
429 	}
430 }
431 
432 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
433 {
434 	unsigned long pgf = (unsigned long)table;
435 
436 	BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
437 	pgf |= shift;
438 	tlb_remove_table(tlb, (void *)pgf);
439 }
440 
441 void __tlb_remove_table(void *_table)
442 {
443 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
444 	unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
445 
446 	if (!shift)
447 		/* PTE page needs special handling */
448 		page_table_free_rcu(table);
449 	else {
450 		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
451 		kmem_cache_free(PGT_CACHE(shift), table);
452 	}
453 }
454 #else
455 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
456 {
457 	if (!shift) {
458 		/* PTE page needs special handling */
459 		struct page *page = virt_to_page(table);
460 		if (put_page_testzero(page)) {
461 			pgtable_page_dtor(page);
462 			free_hot_cold_page(page, 0);
463 		}
464 	} else {
465 		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
466 		kmem_cache_free(PGT_CACHE(shift), table);
467 	}
468 }
469 #endif
470 #endif /* CONFIG_PPC_64K_PAGES */
471 
472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
473 
474 /*
475  * This is called when relaxing access to a hugepage. It's also called in the page
476  * fault path when we don't hit any of the major fault cases, ie, a minor
477  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
478  * handled those two for us, we additionally deal with missing execute
479  * permission here on some processors
480  */
481 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
482 			  pmd_t *pmdp, pmd_t entry, int dirty)
483 {
484 	int changed;
485 #ifdef CONFIG_DEBUG_VM
486 	WARN_ON(!pmd_trans_huge(*pmdp));
487 	assert_spin_locked(&vma->vm_mm->page_table_lock);
488 #endif
489 	changed = !pmd_same(*(pmdp), entry);
490 	if (changed) {
491 		__ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry));
492 		/*
493 		 * Since we are not supporting SW TLB systems, we don't
494 		 * have any thing similar to flush_tlb_page_nohash()
495 		 */
496 	}
497 	return changed;
498 }
499 
500 unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
501 				  pmd_t *pmdp, unsigned long clr)
502 {
503 
504 	unsigned long old, tmp;
505 
506 #ifdef CONFIG_DEBUG_VM
507 	WARN_ON(!pmd_trans_huge(*pmdp));
508 	assert_spin_locked(&mm->page_table_lock);
509 #endif
510 
511 #ifdef PTE_ATOMIC_UPDATES
512 	__asm__ __volatile__(
513 	"1:	ldarx	%0,0,%3\n\
514 		andi.	%1,%0,%6\n\
515 		bne-	1b \n\
516 		andc	%1,%0,%4 \n\
517 		stdcx.	%1,0,%3 \n\
518 		bne-	1b"
519 	: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
520 	: "r" (pmdp), "r" (clr), "m" (*pmdp), "i" (_PAGE_BUSY)
521 	: "cc" );
522 #else
523 	old = pmd_val(*pmdp);
524 	*pmdp = __pmd(old & ~clr);
525 #endif
526 	if (old & _PAGE_HASHPTE)
527 		hpte_do_hugepage_flush(mm, addr, pmdp);
528 	return old;
529 }
530 
531 pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
532 		       pmd_t *pmdp)
533 {
534 	pmd_t pmd;
535 
536 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
537 	if (pmd_trans_huge(*pmdp)) {
538 		pmd = pmdp_get_and_clear(vma->vm_mm, address, pmdp);
539 	} else {
540 		/*
541 		 * khugepaged calls this for normal pmd
542 		 */
543 		pmd = *pmdp;
544 		pmd_clear(pmdp);
545 		/*
546 		 * Wait for all pending hash_page to finish. This is needed
547 		 * in case of subpage collapse. When we collapse normal pages
548 		 * to hugepage, we first clear the pmd, then invalidate all
549 		 * the PTE entries. The assumption here is that any low level
550 		 * page fault will see a none pmd and take the slow path that
551 		 * will wait on mmap_sem. But we could very well be in a
552 		 * hash_page with local ptep pointer value. Such a hash page
553 		 * can result in adding new HPTE entries for normal subpages.
554 		 * That means we could be modifying the page content as we
555 		 * copy them to a huge page. So wait for parallel hash_page
556 		 * to finish before invalidating HPTE entries. We can do this
557 		 * by sending an IPI to all the cpus and executing a dummy
558 		 * function there.
559 		 */
560 		kick_all_cpus_sync();
561 		/*
562 		 * Now invalidate the hpte entries in the range
563 		 * covered by pmd. This make sure we take a
564 		 * fault and will find the pmd as none, which will
565 		 * result in a major fault which takes mmap_sem and
566 		 * hence wait for collapse to complete. Without this
567 		 * the __collapse_huge_page_copy can result in copying
568 		 * the old content.
569 		 */
570 		flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
571 	}
572 	return pmd;
573 }
574 
575 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
576 			      unsigned long address, pmd_t *pmdp)
577 {
578 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
579 }
580 
581 /*
582  * We currently remove entries from the hashtable regardless of whether
583  * the entry was young or dirty. The generic routines only flush if the
584  * entry was young or dirty which is not good enough.
585  *
586  * We should be more intelligent about this but for the moment we override
587  * these functions and force a tlb flush unconditionally
588  */
589 int pmdp_clear_flush_young(struct vm_area_struct *vma,
590 				  unsigned long address, pmd_t *pmdp)
591 {
592 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
593 }
594 
595 /*
596  * We mark the pmd splitting and invalidate all the hpte
597  * entries for this hugepage.
598  */
599 void pmdp_splitting_flush(struct vm_area_struct *vma,
600 			  unsigned long address, pmd_t *pmdp)
601 {
602 	unsigned long old, tmp;
603 
604 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
605 
606 #ifdef CONFIG_DEBUG_VM
607 	WARN_ON(!pmd_trans_huge(*pmdp));
608 	assert_spin_locked(&vma->vm_mm->page_table_lock);
609 #endif
610 
611 #ifdef PTE_ATOMIC_UPDATES
612 
613 	__asm__ __volatile__(
614 	"1:	ldarx	%0,0,%3\n\
615 		andi.	%1,%0,%6\n\
616 		bne-	1b \n\
617 		ori	%1,%0,%4 \n\
618 		stdcx.	%1,0,%3 \n\
619 		bne-	1b"
620 	: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
621 	: "r" (pmdp), "i" (_PAGE_SPLITTING), "m" (*pmdp), "i" (_PAGE_BUSY)
622 	: "cc" );
623 #else
624 	old = pmd_val(*pmdp);
625 	*pmdp = __pmd(old | _PAGE_SPLITTING);
626 #endif
627 	/*
628 	 * If we didn't had the splitting flag set, go and flush the
629 	 * HPTE entries.
630 	 */
631 	if (!(old & _PAGE_SPLITTING)) {
632 		/* We need to flush the hpte */
633 		if (old & _PAGE_HASHPTE)
634 			hpte_do_hugepage_flush(vma->vm_mm, address, pmdp);
635 	}
636 }
637 
638 /*
639  * We want to put the pgtable in pmd and use pgtable for tracking
640  * the base page size hptes
641  */
642 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
643 				pgtable_t pgtable)
644 {
645 	pgtable_t *pgtable_slot;
646 	assert_spin_locked(&mm->page_table_lock);
647 	/*
648 	 * we store the pgtable in the second half of PMD
649 	 */
650 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
651 	*pgtable_slot = pgtable;
652 	/*
653 	 * expose the deposited pgtable to other cpus.
654 	 * before we set the hugepage PTE at pmd level
655 	 * hash fault code looks at the deposted pgtable
656 	 * to store hash index values.
657 	 */
658 	smp_wmb();
659 }
660 
661 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
662 {
663 	pgtable_t pgtable;
664 	pgtable_t *pgtable_slot;
665 
666 	assert_spin_locked(&mm->page_table_lock);
667 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
668 	pgtable = *pgtable_slot;
669 	/*
670 	 * Once we withdraw, mark the entry NULL.
671 	 */
672 	*pgtable_slot = NULL;
673 	/*
674 	 * We store HPTE information in the deposited PTE fragment.
675 	 * zero out the content on withdraw.
676 	 */
677 	memset(pgtable, 0, PTE_FRAG_SIZE);
678 	return pgtable;
679 }
680 
681 /*
682  * set a new huge pmd. We should not be called for updating
683  * an existing pmd entry. That should go via pmd_hugepage_update.
684  */
685 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
686 		pmd_t *pmdp, pmd_t pmd)
687 {
688 #ifdef CONFIG_DEBUG_VM
689 	WARN_ON(!pmd_none(*pmdp));
690 	assert_spin_locked(&mm->page_table_lock);
691 	WARN_ON(!pmd_trans_huge(pmd));
692 #endif
693 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
694 }
695 
696 void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
697 		     pmd_t *pmdp)
698 {
699 	pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT);
700 }
701 
702 /*
703  * A linux hugepage PMD was changed and the corresponding hash table entries
704  * neesd to be flushed.
705  */
706 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
707 			    pmd_t *pmdp)
708 {
709 	int ssize, i;
710 	unsigned long s_addr;
711 	int max_hpte_count;
712 	unsigned int psize, valid;
713 	unsigned char *hpte_slot_array;
714 	unsigned long hidx, vpn, vsid, hash, shift, slot;
715 
716 	/*
717 	 * Flush all the hptes mapping this hugepage
718 	 */
719 	s_addr = addr & HPAGE_PMD_MASK;
720 	hpte_slot_array = get_hpte_slot_array(pmdp);
721 	/*
722 	 * IF we try to do a HUGE PTE update after a withdraw is done.
723 	 * we will find the below NULL. This happens when we do
724 	 * split_huge_page_pmd
725 	 */
726 	if (!hpte_slot_array)
727 		return;
728 
729 	/* get the base page size */
730 	psize = get_slice_psize(mm, s_addr);
731 
732 	if (ppc_md.hugepage_invalidate)
733 		return ppc_md.hugepage_invalidate(mm, hpte_slot_array,
734 						  s_addr, psize);
735 	/*
736 	 * No bluk hpte removal support, invalidate each entry
737 	 */
738 	shift = mmu_psize_defs[psize].shift;
739 	max_hpte_count = HPAGE_PMD_SIZE >> shift;
740 	for (i = 0; i < max_hpte_count; i++) {
741 		/*
742 		 * 8 bits per each hpte entries
743 		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
744 		 */
745 		valid = hpte_valid(hpte_slot_array, i);
746 		if (!valid)
747 			continue;
748 		hidx =  hpte_hash_index(hpte_slot_array, i);
749 
750 		/* get the vpn */
751 		addr = s_addr + (i * (1ul << shift));
752 		if (!is_kernel_addr(addr)) {
753 			ssize = user_segment_size(addr);
754 			vsid = get_vsid(mm->context.id, addr, ssize);
755 			WARN_ON(vsid == 0);
756 		} else {
757 			vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
758 			ssize = mmu_kernel_ssize;
759 		}
760 
761 		vpn = hpt_vpn(addr, vsid, ssize);
762 		hash = hpt_hash(vpn, shift, ssize);
763 		if (hidx & _PTEIDX_SECONDARY)
764 			hash = ~hash;
765 
766 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
767 		slot += hidx & _PTEIDX_GROUP_IX;
768 		ppc_md.hpte_invalidate(slot, vpn, psize,
769 				       MMU_PAGE_16M, ssize, 0);
770 	}
771 }
772 
773 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
774 {
775 	pmd_val(pmd) |= pgprot_val(pgprot);
776 	return pmd;
777 }
778 
779 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
780 {
781 	pmd_t pmd;
782 	/*
783 	 * For a valid pte, we would have _PAGE_PRESENT or _PAGE_FILE always
784 	 * set. We use this to check THP page at pmd level.
785 	 * leaf pte for huge page, bottom two bits != 00
786 	 */
787 	pmd_val(pmd) = pfn << PTE_RPN_SHIFT;
788 	pmd_val(pmd) |= _PAGE_THP_HUGE;
789 	pmd = pmd_set_protbits(pmd, pgprot);
790 	return pmd;
791 }
792 
793 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
794 {
795 	return pfn_pmd(page_to_pfn(page), pgprot);
796 }
797 
798 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
799 {
800 
801 	pmd_val(pmd) &= _HPAGE_CHG_MASK;
802 	pmd = pmd_set_protbits(pmd, newprot);
803 	return pmd;
804 }
805 
806 /*
807  * This is called at the end of handling a user page fault, when the
808  * fault has been handled by updating a HUGE PMD entry in the linux page tables.
809  * We use it to preload an HPTE into the hash table corresponding to
810  * the updated linux HUGE PMD entry.
811  */
812 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
813 			  pmd_t *pmd)
814 {
815 	return;
816 }
817 
818 pmd_t pmdp_get_and_clear(struct mm_struct *mm,
819 			 unsigned long addr, pmd_t *pmdp)
820 {
821 	pmd_t old_pmd;
822 	pgtable_t pgtable;
823 	unsigned long old;
824 	pgtable_t *pgtable_slot;
825 
826 	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL);
827 	old_pmd = __pmd(old);
828 	/*
829 	 * We have pmd == none and we are holding page_table_lock.
830 	 * So we can safely go and clear the pgtable hash
831 	 * index info.
832 	 */
833 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
834 	pgtable = *pgtable_slot;
835 	/*
836 	 * Let's zero out old valid and hash index details
837 	 * hash fault look at them.
838 	 */
839 	memset(pgtable, 0, PTE_FRAG_SIZE);
840 	return old_pmd;
841 }
842 
843 int has_transparent_hugepage(void)
844 {
845 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
846 		return 0;
847 	/*
848 	 * We support THP only if PMD_SIZE is 16MB.
849 	 */
850 	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
851 		return 0;
852 	/*
853 	 * We need to make sure that we support 16MB hugepage in a segement
854 	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
855 	 * of 64K.
856 	 */
857 	/*
858 	 * If we have 64K HPTE, we will be using that by default
859 	 */
860 	if (mmu_psize_defs[MMU_PAGE_64K].shift &&
861 	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
862 		return 0;
863 	/*
864 	 * Ok we only have 4K HPTE
865 	 */
866 	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
867 		return 0;
868 
869 	return 1;
870 }
871 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
872