xref: /openbmc/linux/arch/powerpc/mm/pgtable_64.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  *  This file contains ioremap and related functions for 64-bit machines.
3  *
4  *  Derived from arch/ppc64/mm/init.c
5  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6  *
7  *  Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
8  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
9  *    Copyright (C) 1996 Paul Mackerras
10  *
11  *  Derived from "arch/i386/mm/init.c"
12  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
13  *
14  *  Dave Engebretsen <engebret@us.ibm.com>
15  *      Rework for PPC64 port.
16  *
17  *  This program is free software; you can redistribute it and/or
18  *  modify it under the terms of the GNU General Public License
19  *  as published by the Free Software Foundation; either version
20  *  2 of the License, or (at your option) any later version.
21  *
22  */
23 
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/export.h>
30 #include <linux/types.h>
31 #include <linux/mman.h>
32 #include <linux/mm.h>
33 #include <linux/swap.h>
34 #include <linux/stddef.h>
35 #include <linux/vmalloc.h>
36 #include <linux/memblock.h>
37 #include <linux/slab.h>
38 #include <linux/hugetlb.h>
39 
40 #include <asm/pgalloc.h>
41 #include <asm/page.h>
42 #include <asm/prom.h>
43 #include <asm/io.h>
44 #include <asm/mmu_context.h>
45 #include <asm/pgtable.h>
46 #include <asm/mmu.h>
47 #include <asm/smp.h>
48 #include <asm/machdep.h>
49 #include <asm/tlb.h>
50 #include <asm/trace.h>
51 #include <asm/processor.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/firmware.h>
55 #include <asm/dma.h>
56 #include <asm/powernv.h>
57 
58 #include "mmu_decl.h"
59 
60 #ifdef CONFIG_PPC_STD_MMU_64
61 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
62 #error TASK_SIZE_USER64 exceeds user VSID range
63 #endif
64 #endif
65 
66 #ifdef CONFIG_PPC_BOOK3S_64
67 /*
68  * partition table and process table for ISA 3.0
69  */
70 struct prtb_entry *process_tb;
71 struct patb_entry *partition_tb;
72 /*
73  * page table size
74  */
75 unsigned long __pte_index_size;
76 EXPORT_SYMBOL(__pte_index_size);
77 unsigned long __pmd_index_size;
78 EXPORT_SYMBOL(__pmd_index_size);
79 unsigned long __pud_index_size;
80 EXPORT_SYMBOL(__pud_index_size);
81 unsigned long __pgd_index_size;
82 EXPORT_SYMBOL(__pgd_index_size);
83 unsigned long __pmd_cache_index;
84 EXPORT_SYMBOL(__pmd_cache_index);
85 unsigned long __pte_table_size;
86 EXPORT_SYMBOL(__pte_table_size);
87 unsigned long __pmd_table_size;
88 EXPORT_SYMBOL(__pmd_table_size);
89 unsigned long __pud_table_size;
90 EXPORT_SYMBOL(__pud_table_size);
91 unsigned long __pgd_table_size;
92 EXPORT_SYMBOL(__pgd_table_size);
93 unsigned long __pmd_val_bits;
94 EXPORT_SYMBOL(__pmd_val_bits);
95 unsigned long __pud_val_bits;
96 EXPORT_SYMBOL(__pud_val_bits);
97 unsigned long __pgd_val_bits;
98 EXPORT_SYMBOL(__pgd_val_bits);
99 unsigned long __kernel_virt_start;
100 EXPORT_SYMBOL(__kernel_virt_start);
101 unsigned long __kernel_virt_size;
102 EXPORT_SYMBOL(__kernel_virt_size);
103 unsigned long __vmalloc_start;
104 EXPORT_SYMBOL(__vmalloc_start);
105 unsigned long __vmalloc_end;
106 EXPORT_SYMBOL(__vmalloc_end);
107 unsigned long __kernel_io_start;
108 EXPORT_SYMBOL(__kernel_io_start);
109 struct page *vmemmap;
110 EXPORT_SYMBOL(vmemmap);
111 unsigned long __pte_frag_nr;
112 EXPORT_SYMBOL(__pte_frag_nr);
113 unsigned long __pte_frag_size_shift;
114 EXPORT_SYMBOL(__pte_frag_size_shift);
115 unsigned long ioremap_bot;
116 #else /* !CONFIG_PPC_BOOK3S_64 */
117 unsigned long ioremap_bot = IOREMAP_BASE;
118 #endif
119 
120 /**
121  * __ioremap_at - Low level function to establish the page tables
122  *                for an IO mapping
123  */
124 void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
125 			    unsigned long flags)
126 {
127 	unsigned long i;
128 
129 	/* Make sure we have the base flags */
130 	if ((flags & _PAGE_PRESENT) == 0)
131 		flags |= pgprot_val(PAGE_KERNEL);
132 
133 	/* We don't support the 4K PFN hack with ioremap */
134 	if (flags & H_PAGE_4K_PFN)
135 		return NULL;
136 
137 	WARN_ON(pa & ~PAGE_MASK);
138 	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
139 	WARN_ON(size & ~PAGE_MASK);
140 
141 	for (i = 0; i < size; i += PAGE_SIZE)
142 		if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
143 			return NULL;
144 
145 	return (void __iomem *)ea;
146 }
147 
148 /**
149  * __iounmap_from - Low level function to tear down the page tables
150  *                  for an IO mapping. This is used for mappings that
151  *                  are manipulated manually, like partial unmapping of
152  *                  PCI IOs or ISA space.
153  */
154 void __iounmap_at(void *ea, unsigned long size)
155 {
156 	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
157 	WARN_ON(size & ~PAGE_MASK);
158 
159 	unmap_kernel_range((unsigned long)ea, size);
160 }
161 
162 void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
163 				unsigned long flags, void *caller)
164 {
165 	phys_addr_t paligned;
166 	void __iomem *ret;
167 
168 	/*
169 	 * Choose an address to map it to.
170 	 * Once the imalloc system is running, we use it.
171 	 * Before that, we map using addresses going
172 	 * up from ioremap_bot.  imalloc will use
173 	 * the addresses from ioremap_bot through
174 	 * IMALLOC_END
175 	 *
176 	 */
177 	paligned = addr & PAGE_MASK;
178 	size = PAGE_ALIGN(addr + size) - paligned;
179 
180 	if ((size == 0) || (paligned == 0))
181 		return NULL;
182 
183 	if (slab_is_available()) {
184 		struct vm_struct *area;
185 
186 		area = __get_vm_area_caller(size, VM_IOREMAP,
187 					    ioremap_bot, IOREMAP_END,
188 					    caller);
189 		if (area == NULL)
190 			return NULL;
191 
192 		area->phys_addr = paligned;
193 		ret = __ioremap_at(paligned, area->addr, size, flags);
194 		if (!ret)
195 			vunmap(area->addr);
196 	} else {
197 		ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
198 		if (ret)
199 			ioremap_bot += size;
200 	}
201 
202 	if (ret)
203 		ret += addr & ~PAGE_MASK;
204 	return ret;
205 }
206 
207 void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
208 			 unsigned long flags)
209 {
210 	return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
211 }
212 
213 void __iomem * ioremap(phys_addr_t addr, unsigned long size)
214 {
215 	unsigned long flags = pgprot_val(pgprot_noncached(__pgprot(0)));
216 	void *caller = __builtin_return_address(0);
217 
218 	if (ppc_md.ioremap)
219 		return ppc_md.ioremap(addr, size, flags, caller);
220 	return __ioremap_caller(addr, size, flags, caller);
221 }
222 
223 void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
224 {
225 	unsigned long flags = pgprot_val(pgprot_noncached_wc(__pgprot(0)));
226 	void *caller = __builtin_return_address(0);
227 
228 	if (ppc_md.ioremap)
229 		return ppc_md.ioremap(addr, size, flags, caller);
230 	return __ioremap_caller(addr, size, flags, caller);
231 }
232 
233 void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
234 			     unsigned long flags)
235 {
236 	void *caller = __builtin_return_address(0);
237 
238 	/* writeable implies dirty for kernel addresses */
239 	if (flags & _PAGE_WRITE)
240 		flags |= _PAGE_DIRTY;
241 
242 	/* we don't want to let _PAGE_EXEC leak out */
243 	flags &= ~_PAGE_EXEC;
244 	/*
245 	 * Force kernel mapping.
246 	 */
247 #if defined(CONFIG_PPC_BOOK3S_64)
248 	flags |= _PAGE_PRIVILEGED;
249 #else
250 	flags &= ~_PAGE_USER;
251 #endif
252 
253 
254 #ifdef _PAGE_BAP_SR
255 	/* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
256 	 * which means that we just cleared supervisor access... oops ;-) This
257 	 * restores it
258 	 */
259 	flags |= _PAGE_BAP_SR;
260 #endif
261 
262 	if (ppc_md.ioremap)
263 		return ppc_md.ioremap(addr, size, flags, caller);
264 	return __ioremap_caller(addr, size, flags, caller);
265 }
266 
267 
268 /*
269  * Unmap an IO region and remove it from imalloc'd list.
270  * Access to IO memory should be serialized by driver.
271  */
272 void __iounmap(volatile void __iomem *token)
273 {
274 	void *addr;
275 
276 	if (!slab_is_available())
277 		return;
278 
279 	addr = (void *) ((unsigned long __force)
280 			 PCI_FIX_ADDR(token) & PAGE_MASK);
281 	if ((unsigned long)addr < ioremap_bot) {
282 		printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
283 		       " at 0x%p\n", addr);
284 		return;
285 	}
286 	vunmap(addr);
287 }
288 
289 void iounmap(volatile void __iomem *token)
290 {
291 	if (ppc_md.iounmap)
292 		ppc_md.iounmap(token);
293 	else
294 		__iounmap(token);
295 }
296 
297 EXPORT_SYMBOL(ioremap);
298 EXPORT_SYMBOL(ioremap_wc);
299 EXPORT_SYMBOL(ioremap_prot);
300 EXPORT_SYMBOL(__ioremap);
301 EXPORT_SYMBOL(__ioremap_at);
302 EXPORT_SYMBOL(iounmap);
303 EXPORT_SYMBOL(__iounmap);
304 EXPORT_SYMBOL(__iounmap_at);
305 
306 #ifndef __PAGETABLE_PUD_FOLDED
307 /* 4 level page table */
308 struct page *pgd_page(pgd_t pgd)
309 {
310 	if (pgd_huge(pgd))
311 		return pte_page(pgd_pte(pgd));
312 	return virt_to_page(pgd_page_vaddr(pgd));
313 }
314 #endif
315 
316 struct page *pud_page(pud_t pud)
317 {
318 	if (pud_huge(pud))
319 		return pte_page(pud_pte(pud));
320 	return virt_to_page(pud_page_vaddr(pud));
321 }
322 
323 /*
324  * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
325  * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
326  */
327 struct page *pmd_page(pmd_t pmd)
328 {
329 	if (pmd_trans_huge(pmd) || pmd_huge(pmd) || pmd_devmap(pmd))
330 		return pte_page(pmd_pte(pmd));
331 	return virt_to_page(pmd_page_vaddr(pmd));
332 }
333 
334 #ifdef CONFIG_PPC_64K_PAGES
335 static pte_t *get_from_cache(struct mm_struct *mm)
336 {
337 	void *pte_frag, *ret;
338 
339 	spin_lock(&mm->page_table_lock);
340 	ret = mm->context.pte_frag;
341 	if (ret) {
342 		pte_frag = ret + PTE_FRAG_SIZE;
343 		/*
344 		 * If we have taken up all the fragments mark PTE page NULL
345 		 */
346 		if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
347 			pte_frag = NULL;
348 		mm->context.pte_frag = pte_frag;
349 	}
350 	spin_unlock(&mm->page_table_lock);
351 	return (pte_t *)ret;
352 }
353 
354 static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
355 {
356 	void *ret = NULL;
357 	struct page *page;
358 
359 	if (!kernel) {
360 		page = alloc_page(PGALLOC_GFP | __GFP_ACCOUNT);
361 		if (!page)
362 			return NULL;
363 		if (!pgtable_page_ctor(page)) {
364 			__free_page(page);
365 			return NULL;
366 		}
367 	} else {
368 		page = alloc_page(PGALLOC_GFP);
369 		if (!page)
370 			return NULL;
371 	}
372 
373 	ret = page_address(page);
374 	spin_lock(&mm->page_table_lock);
375 	/*
376 	 * If we find pgtable_page set, we return
377 	 * the allocated page with single fragement
378 	 * count.
379 	 */
380 	if (likely(!mm->context.pte_frag)) {
381 		set_page_count(page, PTE_FRAG_NR);
382 		mm->context.pte_frag = ret + PTE_FRAG_SIZE;
383 	}
384 	spin_unlock(&mm->page_table_lock);
385 
386 	return (pte_t *)ret;
387 }
388 
389 pte_t *pte_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
390 {
391 	pte_t *pte;
392 
393 	pte = get_from_cache(mm);
394 	if (pte)
395 		return pte;
396 
397 	return __alloc_for_cache(mm, kernel);
398 }
399 #endif /* CONFIG_PPC_64K_PAGES */
400 
401 void pte_fragment_free(unsigned long *table, int kernel)
402 {
403 	struct page *page = virt_to_page(table);
404 	if (put_page_testzero(page)) {
405 		if (!kernel)
406 			pgtable_page_dtor(page);
407 		free_hot_cold_page(page, 0);
408 	}
409 }
410 
411 #ifdef CONFIG_SMP
412 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
413 {
414 	unsigned long pgf = (unsigned long)table;
415 
416 	BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
417 	pgf |= shift;
418 	tlb_remove_table(tlb, (void *)pgf);
419 }
420 
421 void __tlb_remove_table(void *_table)
422 {
423 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
424 	unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
425 
426 	if (!shift)
427 		/* PTE page needs special handling */
428 		pte_fragment_free(table, 0);
429 	else {
430 		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
431 		kmem_cache_free(PGT_CACHE(shift), table);
432 	}
433 }
434 #else
435 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
436 {
437 	if (!shift) {
438 		/* PTE page needs special handling */
439 		pte_fragment_free(table, 0);
440 	} else {
441 		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
442 		kmem_cache_free(PGT_CACHE(shift), table);
443 	}
444 }
445 #endif
446 
447 #ifdef CONFIG_PPC_BOOK3S_64
448 void __init mmu_partition_table_init(void)
449 {
450 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
451 	unsigned long ptcr;
452 
453 	BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
454 	partition_tb = __va(memblock_alloc_base(patb_size, patb_size,
455 						MEMBLOCK_ALLOC_ANYWHERE));
456 
457 	/* Initialize the Partition Table with no entries */
458 	memset((void *)partition_tb, 0, patb_size);
459 
460 	/*
461 	 * update partition table control register,
462 	 * 64 K size.
463 	 */
464 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
465 	mtspr(SPRN_PTCR, ptcr);
466 	powernv_set_nmmu_ptcr(ptcr);
467 }
468 
469 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
470 				   unsigned long dw1)
471 {
472 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
473 
474 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
475 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
476 
477 	/*
478 	 * Global flush of TLBs and partition table caches for this lpid.
479 	 * The type of flush (hash or radix) depends on what the previous
480 	 * use of this partition ID was, not the new use.
481 	 */
482 	asm volatile("ptesync" : : : "memory");
483 	if (old & PATB_HR) {
484 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
485 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
486 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 1);
487 	} else {
488 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
489 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
490 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
491 	}
492 	asm volatile("eieio; tlbsync; ptesync" : : : "memory");
493 }
494 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
495 #endif /* CONFIG_PPC_BOOK3S_64 */
496 
497 #ifdef CONFIG_STRICT_KERNEL_RWX
498 void mark_rodata_ro(void)
499 {
500 	if (!mmu_has_feature(MMU_FTR_KERNEL_RO)) {
501 		pr_warn("Warning: Unable to mark rodata read only on this CPU.\n");
502 		return;
503 	}
504 
505 	if (radix_enabled())
506 		radix__mark_rodata_ro();
507 	else
508 		hash__mark_rodata_ro();
509 }
510 
511 void mark_initmem_nx(void)
512 {
513 	if (radix_enabled())
514 		radix__mark_initmem_nx();
515 	else
516 		hash__mark_initmem_nx();
517 }
518 #endif
519