1 /* 2 * This file contains ioremap and related functions for 64-bit machines. 3 * 4 * Derived from arch/ppc64/mm/init.c 5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 6 * 7 * Modifications by Paul Mackerras (PowerMac) (paulus@samba.org) 8 * and Cort Dougan (PReP) (cort@cs.nmt.edu) 9 * Copyright (C) 1996 Paul Mackerras 10 * 11 * Derived from "arch/i386/mm/init.c" 12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 13 * 14 * Dave Engebretsen <engebret@us.ibm.com> 15 * Rework for PPC64 port. 16 * 17 * This program is free software; you can redistribute it and/or 18 * modify it under the terms of the GNU General Public License 19 * as published by the Free Software Foundation; either version 20 * 2 of the License, or (at your option) any later version. 21 * 22 */ 23 24 #include <linux/signal.h> 25 #include <linux/sched.h> 26 #include <linux/kernel.h> 27 #include <linux/errno.h> 28 #include <linux/string.h> 29 #include <linux/export.h> 30 #include <linux/types.h> 31 #include <linux/mman.h> 32 #include <linux/mm.h> 33 #include <linux/swap.h> 34 #include <linux/stddef.h> 35 #include <linux/vmalloc.h> 36 #include <linux/memblock.h> 37 #include <linux/slab.h> 38 #include <linux/hugetlb.h> 39 40 #include <asm/pgalloc.h> 41 #include <asm/page.h> 42 #include <asm/prom.h> 43 #include <asm/io.h> 44 #include <asm/mmu_context.h> 45 #include <asm/pgtable.h> 46 #include <asm/mmu.h> 47 #include <asm/smp.h> 48 #include <asm/machdep.h> 49 #include <asm/tlb.h> 50 #include <asm/processor.h> 51 #include <asm/cputable.h> 52 #include <asm/sections.h> 53 #include <asm/firmware.h> 54 #include <asm/dma.h> 55 56 #include "mmu_decl.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/thp.h> 60 61 /* Some sanity checking */ 62 #if TASK_SIZE_USER64 > PGTABLE_RANGE 63 #error TASK_SIZE_USER64 exceeds pagetable range 64 #endif 65 66 #ifdef CONFIG_PPC_STD_MMU_64 67 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT)) 68 #error TASK_SIZE_USER64 exceeds user VSID range 69 #endif 70 #endif 71 72 unsigned long ioremap_bot = IOREMAP_BASE; 73 74 #ifdef CONFIG_PPC_MMU_NOHASH 75 static __ref void *early_alloc_pgtable(unsigned long size) 76 { 77 void *pt; 78 79 pt = __va(memblock_alloc_base(size, size, __pa(MAX_DMA_ADDRESS))); 80 memset(pt, 0, size); 81 82 return pt; 83 } 84 #endif /* CONFIG_PPC_MMU_NOHASH */ 85 86 /* 87 * map_kernel_page currently only called by __ioremap 88 * map_kernel_page adds an entry to the ioremap page table 89 * and adds an entry to the HPT, possibly bolting it 90 */ 91 int map_kernel_page(unsigned long ea, unsigned long pa, int flags) 92 { 93 pgd_t *pgdp; 94 pud_t *pudp; 95 pmd_t *pmdp; 96 pte_t *ptep; 97 98 if (slab_is_available()) { 99 pgdp = pgd_offset_k(ea); 100 pudp = pud_alloc(&init_mm, pgdp, ea); 101 if (!pudp) 102 return -ENOMEM; 103 pmdp = pmd_alloc(&init_mm, pudp, ea); 104 if (!pmdp) 105 return -ENOMEM; 106 ptep = pte_alloc_kernel(pmdp, ea); 107 if (!ptep) 108 return -ENOMEM; 109 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, 110 __pgprot(flags))); 111 } else { 112 #ifdef CONFIG_PPC_MMU_NOHASH 113 pgdp = pgd_offset_k(ea); 114 #ifdef PUD_TABLE_SIZE 115 if (pgd_none(*pgdp)) { 116 pudp = early_alloc_pgtable(PUD_TABLE_SIZE); 117 BUG_ON(pudp == NULL); 118 pgd_populate(&init_mm, pgdp, pudp); 119 } 120 #endif /* PUD_TABLE_SIZE */ 121 pudp = pud_offset(pgdp, ea); 122 if (pud_none(*pudp)) { 123 pmdp = early_alloc_pgtable(PMD_TABLE_SIZE); 124 BUG_ON(pmdp == NULL); 125 pud_populate(&init_mm, pudp, pmdp); 126 } 127 pmdp = pmd_offset(pudp, ea); 128 if (!pmd_present(*pmdp)) { 129 ptep = early_alloc_pgtable(PAGE_SIZE); 130 BUG_ON(ptep == NULL); 131 pmd_populate_kernel(&init_mm, pmdp, ptep); 132 } 133 ptep = pte_offset_kernel(pmdp, ea); 134 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, 135 __pgprot(flags))); 136 #else /* CONFIG_PPC_MMU_NOHASH */ 137 /* 138 * If the mm subsystem is not fully up, we cannot create a 139 * linux page table entry for this mapping. Simply bolt an 140 * entry in the hardware page table. 141 * 142 */ 143 if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags, 144 mmu_io_psize, mmu_kernel_ssize)) { 145 printk(KERN_ERR "Failed to do bolted mapping IO " 146 "memory at %016lx !\n", pa); 147 return -ENOMEM; 148 } 149 #endif /* !CONFIG_PPC_MMU_NOHASH */ 150 } 151 152 #ifdef CONFIG_PPC_BOOK3E_64 153 /* 154 * With hardware tablewalk, a sync is needed to ensure that 155 * subsequent accesses see the PTE we just wrote. Unlike userspace 156 * mappings, we can't tolerate spurious faults, so make sure 157 * the new PTE will be seen the first time. 158 */ 159 mb(); 160 #else 161 smp_wmb(); 162 #endif 163 return 0; 164 } 165 166 167 /** 168 * __ioremap_at - Low level function to establish the page tables 169 * for an IO mapping 170 */ 171 void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size, 172 unsigned long flags) 173 { 174 unsigned long i; 175 176 /* Make sure we have the base flags */ 177 if ((flags & _PAGE_PRESENT) == 0) 178 flags |= pgprot_val(PAGE_KERNEL); 179 180 /* Non-cacheable page cannot be coherent */ 181 if (flags & _PAGE_NO_CACHE) 182 flags &= ~_PAGE_COHERENT; 183 184 /* We don't support the 4K PFN hack with ioremap */ 185 if (flags & _PAGE_4K_PFN) 186 return NULL; 187 188 WARN_ON(pa & ~PAGE_MASK); 189 WARN_ON(((unsigned long)ea) & ~PAGE_MASK); 190 WARN_ON(size & ~PAGE_MASK); 191 192 for (i = 0; i < size; i += PAGE_SIZE) 193 if (map_kernel_page((unsigned long)ea+i, pa+i, flags)) 194 return NULL; 195 196 return (void __iomem *)ea; 197 } 198 199 /** 200 * __iounmap_from - Low level function to tear down the page tables 201 * for an IO mapping. This is used for mappings that 202 * are manipulated manually, like partial unmapping of 203 * PCI IOs or ISA space. 204 */ 205 void __iounmap_at(void *ea, unsigned long size) 206 { 207 WARN_ON(((unsigned long)ea) & ~PAGE_MASK); 208 WARN_ON(size & ~PAGE_MASK); 209 210 unmap_kernel_range((unsigned long)ea, size); 211 } 212 213 void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size, 214 unsigned long flags, void *caller) 215 { 216 phys_addr_t paligned; 217 void __iomem *ret; 218 219 /* 220 * Choose an address to map it to. 221 * Once the imalloc system is running, we use it. 222 * Before that, we map using addresses going 223 * up from ioremap_bot. imalloc will use 224 * the addresses from ioremap_bot through 225 * IMALLOC_END 226 * 227 */ 228 paligned = addr & PAGE_MASK; 229 size = PAGE_ALIGN(addr + size) - paligned; 230 231 if ((size == 0) || (paligned == 0)) 232 return NULL; 233 234 if (mem_init_done) { 235 struct vm_struct *area; 236 237 area = __get_vm_area_caller(size, VM_IOREMAP, 238 ioremap_bot, IOREMAP_END, 239 caller); 240 if (area == NULL) 241 return NULL; 242 243 area->phys_addr = paligned; 244 ret = __ioremap_at(paligned, area->addr, size, flags); 245 if (!ret) 246 vunmap(area->addr); 247 } else { 248 ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags); 249 if (ret) 250 ioremap_bot += size; 251 } 252 253 if (ret) 254 ret += addr & ~PAGE_MASK; 255 return ret; 256 } 257 258 void __iomem * __ioremap(phys_addr_t addr, unsigned long size, 259 unsigned long flags) 260 { 261 return __ioremap_caller(addr, size, flags, __builtin_return_address(0)); 262 } 263 264 void __iomem * ioremap(phys_addr_t addr, unsigned long size) 265 { 266 unsigned long flags = _PAGE_NO_CACHE | _PAGE_GUARDED; 267 void *caller = __builtin_return_address(0); 268 269 if (ppc_md.ioremap) 270 return ppc_md.ioremap(addr, size, flags, caller); 271 return __ioremap_caller(addr, size, flags, caller); 272 } 273 274 void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size) 275 { 276 unsigned long flags = _PAGE_NO_CACHE; 277 void *caller = __builtin_return_address(0); 278 279 if (ppc_md.ioremap) 280 return ppc_md.ioremap(addr, size, flags, caller); 281 return __ioremap_caller(addr, size, flags, caller); 282 } 283 284 void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size, 285 unsigned long flags) 286 { 287 void *caller = __builtin_return_address(0); 288 289 /* writeable implies dirty for kernel addresses */ 290 if (flags & _PAGE_RW) 291 flags |= _PAGE_DIRTY; 292 293 /* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */ 294 flags &= ~(_PAGE_USER | _PAGE_EXEC); 295 296 #ifdef _PAGE_BAP_SR 297 /* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format 298 * which means that we just cleared supervisor access... oops ;-) This 299 * restores it 300 */ 301 flags |= _PAGE_BAP_SR; 302 #endif 303 304 if (ppc_md.ioremap) 305 return ppc_md.ioremap(addr, size, flags, caller); 306 return __ioremap_caller(addr, size, flags, caller); 307 } 308 309 310 /* 311 * Unmap an IO region and remove it from imalloc'd list. 312 * Access to IO memory should be serialized by driver. 313 */ 314 void __iounmap(volatile void __iomem *token) 315 { 316 void *addr; 317 318 if (!mem_init_done) 319 return; 320 321 addr = (void *) ((unsigned long __force) 322 PCI_FIX_ADDR(token) & PAGE_MASK); 323 if ((unsigned long)addr < ioremap_bot) { 324 printk(KERN_WARNING "Attempt to iounmap early bolted mapping" 325 " at 0x%p\n", addr); 326 return; 327 } 328 vunmap(addr); 329 } 330 331 void iounmap(volatile void __iomem *token) 332 { 333 if (ppc_md.iounmap) 334 ppc_md.iounmap(token); 335 else 336 __iounmap(token); 337 } 338 339 EXPORT_SYMBOL(ioremap); 340 EXPORT_SYMBOL(ioremap_wc); 341 EXPORT_SYMBOL(ioremap_prot); 342 EXPORT_SYMBOL(__ioremap); 343 EXPORT_SYMBOL(__ioremap_at); 344 EXPORT_SYMBOL(iounmap); 345 EXPORT_SYMBOL(__iounmap); 346 EXPORT_SYMBOL(__iounmap_at); 347 348 #ifndef __PAGETABLE_PUD_FOLDED 349 /* 4 level page table */ 350 struct page *pgd_page(pgd_t pgd) 351 { 352 if (pgd_huge(pgd)) 353 return pte_page(pgd_pte(pgd)); 354 return virt_to_page(pgd_page_vaddr(pgd)); 355 } 356 #endif 357 358 struct page *pud_page(pud_t pud) 359 { 360 if (pud_huge(pud)) 361 return pte_page(pud_pte(pud)); 362 return virt_to_page(pud_page_vaddr(pud)); 363 } 364 365 /* 366 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags 367 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address. 368 */ 369 struct page *pmd_page(pmd_t pmd) 370 { 371 if (pmd_trans_huge(pmd) || pmd_huge(pmd)) 372 return pfn_to_page(pmd_pfn(pmd)); 373 return virt_to_page(pmd_page_vaddr(pmd)); 374 } 375 376 #ifdef CONFIG_PPC_64K_PAGES 377 static pte_t *get_from_cache(struct mm_struct *mm) 378 { 379 void *pte_frag, *ret; 380 381 spin_lock(&mm->page_table_lock); 382 ret = mm->context.pte_frag; 383 if (ret) { 384 pte_frag = ret + PTE_FRAG_SIZE; 385 /* 386 * If we have taken up all the fragments mark PTE page NULL 387 */ 388 if (((unsigned long)pte_frag & ~PAGE_MASK) == 0) 389 pte_frag = NULL; 390 mm->context.pte_frag = pte_frag; 391 } 392 spin_unlock(&mm->page_table_lock); 393 return (pte_t *)ret; 394 } 395 396 static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel) 397 { 398 void *ret = NULL; 399 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | 400 __GFP_REPEAT | __GFP_ZERO); 401 if (!page) 402 return NULL; 403 if (!kernel && !pgtable_page_ctor(page)) { 404 __free_page(page); 405 return NULL; 406 } 407 408 ret = page_address(page); 409 spin_lock(&mm->page_table_lock); 410 /* 411 * If we find pgtable_page set, we return 412 * the allocated page with single fragement 413 * count. 414 */ 415 if (likely(!mm->context.pte_frag)) { 416 atomic_set(&page->_count, PTE_FRAG_NR); 417 mm->context.pte_frag = ret + PTE_FRAG_SIZE; 418 } 419 spin_unlock(&mm->page_table_lock); 420 421 return (pte_t *)ret; 422 } 423 424 pte_t *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel) 425 { 426 pte_t *pte; 427 428 pte = get_from_cache(mm); 429 if (pte) 430 return pte; 431 432 return __alloc_for_cache(mm, kernel); 433 } 434 435 void page_table_free(struct mm_struct *mm, unsigned long *table, int kernel) 436 { 437 struct page *page = virt_to_page(table); 438 if (put_page_testzero(page)) { 439 if (!kernel) 440 pgtable_page_dtor(page); 441 free_hot_cold_page(page, 0); 442 } 443 } 444 445 #ifdef CONFIG_SMP 446 static void page_table_free_rcu(void *table) 447 { 448 struct page *page = virt_to_page(table); 449 if (put_page_testzero(page)) { 450 pgtable_page_dtor(page); 451 free_hot_cold_page(page, 0); 452 } 453 } 454 455 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift) 456 { 457 unsigned long pgf = (unsigned long)table; 458 459 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE); 460 pgf |= shift; 461 tlb_remove_table(tlb, (void *)pgf); 462 } 463 464 void __tlb_remove_table(void *_table) 465 { 466 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 467 unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 468 469 if (!shift) 470 /* PTE page needs special handling */ 471 page_table_free_rcu(table); 472 else { 473 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE); 474 kmem_cache_free(PGT_CACHE(shift), table); 475 } 476 } 477 #else 478 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift) 479 { 480 if (!shift) { 481 /* PTE page needs special handling */ 482 struct page *page = virt_to_page(table); 483 if (put_page_testzero(page)) { 484 pgtable_page_dtor(page); 485 free_hot_cold_page(page, 0); 486 } 487 } else { 488 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE); 489 kmem_cache_free(PGT_CACHE(shift), table); 490 } 491 } 492 #endif 493 #endif /* CONFIG_PPC_64K_PAGES */ 494 495 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 496 497 /* 498 * This is called when relaxing access to a hugepage. It's also called in the page 499 * fault path when we don't hit any of the major fault cases, ie, a minor 500 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have 501 * handled those two for us, we additionally deal with missing execute 502 * permission here on some processors 503 */ 504 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 505 pmd_t *pmdp, pmd_t entry, int dirty) 506 { 507 int changed; 508 #ifdef CONFIG_DEBUG_VM 509 WARN_ON(!pmd_trans_huge(*pmdp)); 510 assert_spin_locked(&vma->vm_mm->page_table_lock); 511 #endif 512 changed = !pmd_same(*(pmdp), entry); 513 if (changed) { 514 __ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry)); 515 /* 516 * Since we are not supporting SW TLB systems, we don't 517 * have any thing similar to flush_tlb_page_nohash() 518 */ 519 } 520 return changed; 521 } 522 523 unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, 524 pmd_t *pmdp, unsigned long clr, 525 unsigned long set) 526 { 527 528 unsigned long old, tmp; 529 530 #ifdef CONFIG_DEBUG_VM 531 WARN_ON(!pmd_trans_huge(*pmdp)); 532 assert_spin_locked(&mm->page_table_lock); 533 #endif 534 535 #ifdef PTE_ATOMIC_UPDATES 536 __asm__ __volatile__( 537 "1: ldarx %0,0,%3\n\ 538 andi. %1,%0,%6\n\ 539 bne- 1b \n\ 540 andc %1,%0,%4 \n\ 541 or %1,%1,%7\n\ 542 stdcx. %1,0,%3 \n\ 543 bne- 1b" 544 : "=&r" (old), "=&r" (tmp), "=m" (*pmdp) 545 : "r" (pmdp), "r" (clr), "m" (*pmdp), "i" (_PAGE_BUSY), "r" (set) 546 : "cc" ); 547 #else 548 old = pmd_val(*pmdp); 549 *pmdp = __pmd((old & ~clr) | set); 550 #endif 551 trace_hugepage_update(addr, old, clr, set); 552 if (old & _PAGE_HASHPTE) 553 hpte_do_hugepage_flush(mm, addr, pmdp, old); 554 return old; 555 } 556 557 pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address, 558 pmd_t *pmdp) 559 { 560 pmd_t pmd; 561 562 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 563 if (pmd_trans_huge(*pmdp)) { 564 pmd = pmdp_get_and_clear(vma->vm_mm, address, pmdp); 565 } else { 566 /* 567 * khugepaged calls this for normal pmd 568 */ 569 pmd = *pmdp; 570 pmd_clear(pmdp); 571 /* 572 * Wait for all pending hash_page to finish. This is needed 573 * in case of subpage collapse. When we collapse normal pages 574 * to hugepage, we first clear the pmd, then invalidate all 575 * the PTE entries. The assumption here is that any low level 576 * page fault will see a none pmd and take the slow path that 577 * will wait on mmap_sem. But we could very well be in a 578 * hash_page with local ptep pointer value. Such a hash page 579 * can result in adding new HPTE entries for normal subpages. 580 * That means we could be modifying the page content as we 581 * copy them to a huge page. So wait for parallel hash_page 582 * to finish before invalidating HPTE entries. We can do this 583 * by sending an IPI to all the cpus and executing a dummy 584 * function there. 585 */ 586 kick_all_cpus_sync(); 587 /* 588 * Now invalidate the hpte entries in the range 589 * covered by pmd. This make sure we take a 590 * fault and will find the pmd as none, which will 591 * result in a major fault which takes mmap_sem and 592 * hence wait for collapse to complete. Without this 593 * the __collapse_huge_page_copy can result in copying 594 * the old content. 595 */ 596 flush_tlb_pmd_range(vma->vm_mm, &pmd, address); 597 } 598 return pmd; 599 } 600 601 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 602 unsigned long address, pmd_t *pmdp) 603 { 604 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); 605 } 606 607 /* 608 * We currently remove entries from the hashtable regardless of whether 609 * the entry was young or dirty. The generic routines only flush if the 610 * entry was young or dirty which is not good enough. 611 * 612 * We should be more intelligent about this but for the moment we override 613 * these functions and force a tlb flush unconditionally 614 */ 615 int pmdp_clear_flush_young(struct vm_area_struct *vma, 616 unsigned long address, pmd_t *pmdp) 617 { 618 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); 619 } 620 621 /* 622 * We mark the pmd splitting and invalidate all the hpte 623 * entries for this hugepage. 624 */ 625 void pmdp_splitting_flush(struct vm_area_struct *vma, 626 unsigned long address, pmd_t *pmdp) 627 { 628 unsigned long old, tmp; 629 630 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 631 632 #ifdef CONFIG_DEBUG_VM 633 WARN_ON(!pmd_trans_huge(*pmdp)); 634 assert_spin_locked(&vma->vm_mm->page_table_lock); 635 #endif 636 637 #ifdef PTE_ATOMIC_UPDATES 638 639 __asm__ __volatile__( 640 "1: ldarx %0,0,%3\n\ 641 andi. %1,%0,%6\n\ 642 bne- 1b \n\ 643 ori %1,%0,%4 \n\ 644 stdcx. %1,0,%3 \n\ 645 bne- 1b" 646 : "=&r" (old), "=&r" (tmp), "=m" (*pmdp) 647 : "r" (pmdp), "i" (_PAGE_SPLITTING), "m" (*pmdp), "i" (_PAGE_BUSY) 648 : "cc" ); 649 #else 650 old = pmd_val(*pmdp); 651 *pmdp = __pmd(old | _PAGE_SPLITTING); 652 #endif 653 /* 654 * If we didn't had the splitting flag set, go and flush the 655 * HPTE entries. 656 */ 657 trace_hugepage_splitting(address, old); 658 if (!(old & _PAGE_SPLITTING)) { 659 /* We need to flush the hpte */ 660 if (old & _PAGE_HASHPTE) 661 hpte_do_hugepage_flush(vma->vm_mm, address, pmdp, old); 662 } 663 /* 664 * This ensures that generic code that rely on IRQ disabling 665 * to prevent a parallel THP split work as expected. 666 */ 667 kick_all_cpus_sync(); 668 } 669 670 /* 671 * We want to put the pgtable in pmd and use pgtable for tracking 672 * the base page size hptes 673 */ 674 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 675 pgtable_t pgtable) 676 { 677 pgtable_t *pgtable_slot; 678 assert_spin_locked(&mm->page_table_lock); 679 /* 680 * we store the pgtable in the second half of PMD 681 */ 682 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD; 683 *pgtable_slot = pgtable; 684 /* 685 * expose the deposited pgtable to other cpus. 686 * before we set the hugepage PTE at pmd level 687 * hash fault code looks at the deposted pgtable 688 * to store hash index values. 689 */ 690 smp_wmb(); 691 } 692 693 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) 694 { 695 pgtable_t pgtable; 696 pgtable_t *pgtable_slot; 697 698 assert_spin_locked(&mm->page_table_lock); 699 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD; 700 pgtable = *pgtable_slot; 701 /* 702 * Once we withdraw, mark the entry NULL. 703 */ 704 *pgtable_slot = NULL; 705 /* 706 * We store HPTE information in the deposited PTE fragment. 707 * zero out the content on withdraw. 708 */ 709 memset(pgtable, 0, PTE_FRAG_SIZE); 710 return pgtable; 711 } 712 713 /* 714 * set a new huge pmd. We should not be called for updating 715 * an existing pmd entry. That should go via pmd_hugepage_update. 716 */ 717 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 718 pmd_t *pmdp, pmd_t pmd) 719 { 720 #ifdef CONFIG_DEBUG_VM 721 WARN_ON((pmd_val(*pmdp) & (_PAGE_PRESENT | _PAGE_USER)) == 722 (_PAGE_PRESENT | _PAGE_USER)); 723 assert_spin_locked(&mm->page_table_lock); 724 WARN_ON(!pmd_trans_huge(pmd)); 725 #endif 726 trace_hugepage_set_pmd(addr, pmd); 727 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); 728 } 729 730 void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 731 pmd_t *pmdp) 732 { 733 pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, 0); 734 } 735 736 /* 737 * A linux hugepage PMD was changed and the corresponding hash table entries 738 * neesd to be flushed. 739 */ 740 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr, 741 pmd_t *pmdp, unsigned long old_pmd) 742 { 743 int ssize; 744 unsigned int psize; 745 unsigned long vsid; 746 unsigned long flags = 0; 747 const struct cpumask *tmp; 748 749 /* get the base page size,vsid and segment size */ 750 #ifdef CONFIG_DEBUG_VM 751 psize = get_slice_psize(mm, addr); 752 BUG_ON(psize == MMU_PAGE_16M); 753 #endif 754 if (old_pmd & _PAGE_COMBO) 755 psize = MMU_PAGE_4K; 756 else 757 psize = MMU_PAGE_64K; 758 759 if (!is_kernel_addr(addr)) { 760 ssize = user_segment_size(addr); 761 vsid = get_vsid(mm->context.id, addr, ssize); 762 WARN_ON(vsid == 0); 763 } else { 764 vsid = get_kernel_vsid(addr, mmu_kernel_ssize); 765 ssize = mmu_kernel_ssize; 766 } 767 768 tmp = cpumask_of(smp_processor_id()); 769 if (cpumask_equal(mm_cpumask(mm), tmp)) 770 flags |= HPTE_LOCAL_UPDATE; 771 772 return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags); 773 } 774 775 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) 776 { 777 pmd_val(pmd) |= pgprot_val(pgprot); 778 return pmd; 779 } 780 781 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 782 { 783 pmd_t pmd; 784 /* 785 * For a valid pte, we would have _PAGE_PRESENT always 786 * set. We use this to check THP page at pmd level. 787 * leaf pte for huge page, bottom two bits != 00 788 */ 789 pmd_val(pmd) = pfn << PTE_RPN_SHIFT; 790 pmd_val(pmd) |= _PAGE_THP_HUGE; 791 pmd = pmd_set_protbits(pmd, pgprot); 792 return pmd; 793 } 794 795 pmd_t mk_pmd(struct page *page, pgprot_t pgprot) 796 { 797 return pfn_pmd(page_to_pfn(page), pgprot); 798 } 799 800 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 801 { 802 803 pmd_val(pmd) &= _HPAGE_CHG_MASK; 804 pmd = pmd_set_protbits(pmd, newprot); 805 return pmd; 806 } 807 808 /* 809 * This is called at the end of handling a user page fault, when the 810 * fault has been handled by updating a HUGE PMD entry in the linux page tables. 811 * We use it to preload an HPTE into the hash table corresponding to 812 * the updated linux HUGE PMD entry. 813 */ 814 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, 815 pmd_t *pmd) 816 { 817 return; 818 } 819 820 pmd_t pmdp_get_and_clear(struct mm_struct *mm, 821 unsigned long addr, pmd_t *pmdp) 822 { 823 pmd_t old_pmd; 824 pgtable_t pgtable; 825 unsigned long old; 826 pgtable_t *pgtable_slot; 827 828 old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0); 829 old_pmd = __pmd(old); 830 /* 831 * We have pmd == none and we are holding page_table_lock. 832 * So we can safely go and clear the pgtable hash 833 * index info. 834 */ 835 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD; 836 pgtable = *pgtable_slot; 837 /* 838 * Let's zero out old valid and hash index details 839 * hash fault look at them. 840 */ 841 memset(pgtable, 0, PTE_FRAG_SIZE); 842 return old_pmd; 843 } 844 845 int has_transparent_hugepage(void) 846 { 847 if (!mmu_has_feature(MMU_FTR_16M_PAGE)) 848 return 0; 849 /* 850 * We support THP only if PMD_SIZE is 16MB. 851 */ 852 if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT) 853 return 0; 854 /* 855 * We need to make sure that we support 16MB hugepage in a segement 856 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE 857 * of 64K. 858 */ 859 /* 860 * If we have 64K HPTE, we will be using that by default 861 */ 862 if (mmu_psize_defs[MMU_PAGE_64K].shift && 863 (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1)) 864 return 0; 865 /* 866 * Ok we only have 4K HPTE 867 */ 868 if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1) 869 return 0; 870 871 return 1; 872 } 873 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 874