xref: /openbmc/linux/arch/powerpc/mm/pgtable_64.c (revision 8a10bc9d)
1 /*
2  *  This file contains ioremap and related functions for 64-bit machines.
3  *
4  *  Derived from arch/ppc64/mm/init.c
5  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6  *
7  *  Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
8  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
9  *    Copyright (C) 1996 Paul Mackerras
10  *
11  *  Derived from "arch/i386/mm/init.c"
12  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
13  *
14  *  Dave Engebretsen <engebret@us.ibm.com>
15  *      Rework for PPC64 port.
16  *
17  *  This program is free software; you can redistribute it and/or
18  *  modify it under the terms of the GNU General Public License
19  *  as published by the Free Software Foundation; either version
20  *  2 of the License, or (at your option) any later version.
21  *
22  */
23 
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/export.h>
30 #include <linux/types.h>
31 #include <linux/mman.h>
32 #include <linux/mm.h>
33 #include <linux/swap.h>
34 #include <linux/stddef.h>
35 #include <linux/vmalloc.h>
36 #include <linux/bootmem.h>
37 #include <linux/memblock.h>
38 #include <linux/slab.h>
39 
40 #include <asm/pgalloc.h>
41 #include <asm/page.h>
42 #include <asm/prom.h>
43 #include <asm/io.h>
44 #include <asm/mmu_context.h>
45 #include <asm/pgtable.h>
46 #include <asm/mmu.h>
47 #include <asm/smp.h>
48 #include <asm/machdep.h>
49 #include <asm/tlb.h>
50 #include <asm/processor.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/firmware.h>
54 
55 #include "mmu_decl.h"
56 
57 /* Some sanity checking */
58 #if TASK_SIZE_USER64 > PGTABLE_RANGE
59 #error TASK_SIZE_USER64 exceeds pagetable range
60 #endif
61 
62 #ifdef CONFIG_PPC_STD_MMU_64
63 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
64 #error TASK_SIZE_USER64 exceeds user VSID range
65 #endif
66 #endif
67 
68 unsigned long ioremap_bot = IOREMAP_BASE;
69 
70 #ifdef CONFIG_PPC_MMU_NOHASH
71 static void *early_alloc_pgtable(unsigned long size)
72 {
73 	void *pt;
74 
75 	if (init_bootmem_done)
76 		pt = __alloc_bootmem(size, size, __pa(MAX_DMA_ADDRESS));
77 	else
78 		pt = __va(memblock_alloc_base(size, size,
79 					 __pa(MAX_DMA_ADDRESS)));
80 	memset(pt, 0, size);
81 
82 	return pt;
83 }
84 #endif /* CONFIG_PPC_MMU_NOHASH */
85 
86 /*
87  * map_kernel_page currently only called by __ioremap
88  * map_kernel_page adds an entry to the ioremap page table
89  * and adds an entry to the HPT, possibly bolting it
90  */
91 int map_kernel_page(unsigned long ea, unsigned long pa, int flags)
92 {
93 	pgd_t *pgdp;
94 	pud_t *pudp;
95 	pmd_t *pmdp;
96 	pte_t *ptep;
97 
98 	if (slab_is_available()) {
99 		pgdp = pgd_offset_k(ea);
100 		pudp = pud_alloc(&init_mm, pgdp, ea);
101 		if (!pudp)
102 			return -ENOMEM;
103 		pmdp = pmd_alloc(&init_mm, pudp, ea);
104 		if (!pmdp)
105 			return -ENOMEM;
106 		ptep = pte_alloc_kernel(pmdp, ea);
107 		if (!ptep)
108 			return -ENOMEM;
109 		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
110 							  __pgprot(flags)));
111 	} else {
112 #ifdef CONFIG_PPC_MMU_NOHASH
113 		/* Warning ! This will blow up if bootmem is not initialized
114 		 * which our ppc64 code is keen to do that, we'll need to
115 		 * fix it and/or be more careful
116 		 */
117 		pgdp = pgd_offset_k(ea);
118 #ifdef PUD_TABLE_SIZE
119 		if (pgd_none(*pgdp)) {
120 			pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
121 			BUG_ON(pudp == NULL);
122 			pgd_populate(&init_mm, pgdp, pudp);
123 		}
124 #endif /* PUD_TABLE_SIZE */
125 		pudp = pud_offset(pgdp, ea);
126 		if (pud_none(*pudp)) {
127 			pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
128 			BUG_ON(pmdp == NULL);
129 			pud_populate(&init_mm, pudp, pmdp);
130 		}
131 		pmdp = pmd_offset(pudp, ea);
132 		if (!pmd_present(*pmdp)) {
133 			ptep = early_alloc_pgtable(PAGE_SIZE);
134 			BUG_ON(ptep == NULL);
135 			pmd_populate_kernel(&init_mm, pmdp, ptep);
136 		}
137 		ptep = pte_offset_kernel(pmdp, ea);
138 		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
139 							  __pgprot(flags)));
140 #else /* CONFIG_PPC_MMU_NOHASH */
141 		/*
142 		 * If the mm subsystem is not fully up, we cannot create a
143 		 * linux page table entry for this mapping.  Simply bolt an
144 		 * entry in the hardware page table.
145 		 *
146 		 */
147 		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
148 				      mmu_io_psize, mmu_kernel_ssize)) {
149 			printk(KERN_ERR "Failed to do bolted mapping IO "
150 			       "memory at %016lx !\n", pa);
151 			return -ENOMEM;
152 		}
153 #endif /* !CONFIG_PPC_MMU_NOHASH */
154 	}
155 
156 #ifdef CONFIG_PPC_BOOK3E_64
157 	/*
158 	 * With hardware tablewalk, a sync is needed to ensure that
159 	 * subsequent accesses see the PTE we just wrote.  Unlike userspace
160 	 * mappings, we can't tolerate spurious faults, so make sure
161 	 * the new PTE will be seen the first time.
162 	 */
163 	mb();
164 #else
165 	smp_wmb();
166 #endif
167 	return 0;
168 }
169 
170 
171 /**
172  * __ioremap_at - Low level function to establish the page tables
173  *                for an IO mapping
174  */
175 void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
176 			    unsigned long flags)
177 {
178 	unsigned long i;
179 
180 	/* Make sure we have the base flags */
181 	if ((flags & _PAGE_PRESENT) == 0)
182 		flags |= pgprot_val(PAGE_KERNEL);
183 
184 	/* Non-cacheable page cannot be coherent */
185 	if (flags & _PAGE_NO_CACHE)
186 		flags &= ~_PAGE_COHERENT;
187 
188 	/* We don't support the 4K PFN hack with ioremap */
189 	if (flags & _PAGE_4K_PFN)
190 		return NULL;
191 
192 	WARN_ON(pa & ~PAGE_MASK);
193 	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
194 	WARN_ON(size & ~PAGE_MASK);
195 
196 	for (i = 0; i < size; i += PAGE_SIZE)
197 		if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
198 			return NULL;
199 
200 	return (void __iomem *)ea;
201 }
202 
203 /**
204  * __iounmap_from - Low level function to tear down the page tables
205  *                  for an IO mapping. This is used for mappings that
206  *                  are manipulated manually, like partial unmapping of
207  *                  PCI IOs or ISA space.
208  */
209 void __iounmap_at(void *ea, unsigned long size)
210 {
211 	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
212 	WARN_ON(size & ~PAGE_MASK);
213 
214 	unmap_kernel_range((unsigned long)ea, size);
215 }
216 
217 void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
218 				unsigned long flags, void *caller)
219 {
220 	phys_addr_t paligned;
221 	void __iomem *ret;
222 
223 	/*
224 	 * Choose an address to map it to.
225 	 * Once the imalloc system is running, we use it.
226 	 * Before that, we map using addresses going
227 	 * up from ioremap_bot.  imalloc will use
228 	 * the addresses from ioremap_bot through
229 	 * IMALLOC_END
230 	 *
231 	 */
232 	paligned = addr & PAGE_MASK;
233 	size = PAGE_ALIGN(addr + size) - paligned;
234 
235 	if ((size == 0) || (paligned == 0))
236 		return NULL;
237 
238 	if (mem_init_done) {
239 		struct vm_struct *area;
240 
241 		area = __get_vm_area_caller(size, VM_IOREMAP,
242 					    ioremap_bot, IOREMAP_END,
243 					    caller);
244 		if (area == NULL)
245 			return NULL;
246 
247 		area->phys_addr = paligned;
248 		ret = __ioremap_at(paligned, area->addr, size, flags);
249 		if (!ret)
250 			vunmap(area->addr);
251 	} else {
252 		ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
253 		if (ret)
254 			ioremap_bot += size;
255 	}
256 
257 	if (ret)
258 		ret += addr & ~PAGE_MASK;
259 	return ret;
260 }
261 
262 void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
263 			 unsigned long flags)
264 {
265 	return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
266 }
267 
268 void __iomem * ioremap(phys_addr_t addr, unsigned long size)
269 {
270 	unsigned long flags = _PAGE_NO_CACHE | _PAGE_GUARDED;
271 	void *caller = __builtin_return_address(0);
272 
273 	if (ppc_md.ioremap)
274 		return ppc_md.ioremap(addr, size, flags, caller);
275 	return __ioremap_caller(addr, size, flags, caller);
276 }
277 
278 void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
279 {
280 	unsigned long flags = _PAGE_NO_CACHE;
281 	void *caller = __builtin_return_address(0);
282 
283 	if (ppc_md.ioremap)
284 		return ppc_md.ioremap(addr, size, flags, caller);
285 	return __ioremap_caller(addr, size, flags, caller);
286 }
287 
288 void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
289 			     unsigned long flags)
290 {
291 	void *caller = __builtin_return_address(0);
292 
293 	/* writeable implies dirty for kernel addresses */
294 	if (flags & _PAGE_RW)
295 		flags |= _PAGE_DIRTY;
296 
297 	/* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
298 	flags &= ~(_PAGE_USER | _PAGE_EXEC);
299 
300 #ifdef _PAGE_BAP_SR
301 	/* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
302 	 * which means that we just cleared supervisor access... oops ;-) This
303 	 * restores it
304 	 */
305 	flags |= _PAGE_BAP_SR;
306 #endif
307 
308 	if (ppc_md.ioremap)
309 		return ppc_md.ioremap(addr, size, flags, caller);
310 	return __ioremap_caller(addr, size, flags, caller);
311 }
312 
313 
314 /*
315  * Unmap an IO region and remove it from imalloc'd list.
316  * Access to IO memory should be serialized by driver.
317  */
318 void __iounmap(volatile void __iomem *token)
319 {
320 	void *addr;
321 
322 	if (!mem_init_done)
323 		return;
324 
325 	addr = (void *) ((unsigned long __force)
326 			 PCI_FIX_ADDR(token) & PAGE_MASK);
327 	if ((unsigned long)addr < ioremap_bot) {
328 		printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
329 		       " at 0x%p\n", addr);
330 		return;
331 	}
332 	vunmap(addr);
333 }
334 
335 void iounmap(volatile void __iomem *token)
336 {
337 	if (ppc_md.iounmap)
338 		ppc_md.iounmap(token);
339 	else
340 		__iounmap(token);
341 }
342 
343 EXPORT_SYMBOL(ioremap);
344 EXPORT_SYMBOL(ioremap_wc);
345 EXPORT_SYMBOL(ioremap_prot);
346 EXPORT_SYMBOL(__ioremap);
347 EXPORT_SYMBOL(__ioremap_at);
348 EXPORT_SYMBOL(iounmap);
349 EXPORT_SYMBOL(__iounmap);
350 EXPORT_SYMBOL(__iounmap_at);
351 
352 /*
353  * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
354  * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
355  */
356 struct page *pmd_page(pmd_t pmd)
357 {
358 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
359 	if (pmd_trans_huge(pmd))
360 		return pfn_to_page(pmd_pfn(pmd));
361 #endif
362 	return virt_to_page(pmd_page_vaddr(pmd));
363 }
364 
365 #ifdef CONFIG_PPC_64K_PAGES
366 static pte_t *get_from_cache(struct mm_struct *mm)
367 {
368 	void *pte_frag, *ret;
369 
370 	spin_lock(&mm->page_table_lock);
371 	ret = mm->context.pte_frag;
372 	if (ret) {
373 		pte_frag = ret + PTE_FRAG_SIZE;
374 		/*
375 		 * If we have taken up all the fragments mark PTE page NULL
376 		 */
377 		if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
378 			pte_frag = NULL;
379 		mm->context.pte_frag = pte_frag;
380 	}
381 	spin_unlock(&mm->page_table_lock);
382 	return (pte_t *)ret;
383 }
384 
385 static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
386 {
387 	void *ret = NULL;
388 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
389 				       __GFP_REPEAT | __GFP_ZERO);
390 	if (!page)
391 		return NULL;
392 	if (!kernel && !pgtable_page_ctor(page)) {
393 		__free_page(page);
394 		return NULL;
395 	}
396 
397 	ret = page_address(page);
398 	spin_lock(&mm->page_table_lock);
399 	/*
400 	 * If we find pgtable_page set, we return
401 	 * the allocated page with single fragement
402 	 * count.
403 	 */
404 	if (likely(!mm->context.pte_frag)) {
405 		atomic_set(&page->_count, PTE_FRAG_NR);
406 		mm->context.pte_frag = ret + PTE_FRAG_SIZE;
407 	}
408 	spin_unlock(&mm->page_table_lock);
409 
410 	return (pte_t *)ret;
411 }
412 
413 pte_t *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
414 {
415 	pte_t *pte;
416 
417 	pte = get_from_cache(mm);
418 	if (pte)
419 		return pte;
420 
421 	return __alloc_for_cache(mm, kernel);
422 }
423 
424 void page_table_free(struct mm_struct *mm, unsigned long *table, int kernel)
425 {
426 	struct page *page = virt_to_page(table);
427 	if (put_page_testzero(page)) {
428 		if (!kernel)
429 			pgtable_page_dtor(page);
430 		free_hot_cold_page(page, 0);
431 	}
432 }
433 
434 #ifdef CONFIG_SMP
435 static void page_table_free_rcu(void *table)
436 {
437 	struct page *page = virt_to_page(table);
438 	if (put_page_testzero(page)) {
439 		pgtable_page_dtor(page);
440 		free_hot_cold_page(page, 0);
441 	}
442 }
443 
444 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
445 {
446 	unsigned long pgf = (unsigned long)table;
447 
448 	BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
449 	pgf |= shift;
450 	tlb_remove_table(tlb, (void *)pgf);
451 }
452 
453 void __tlb_remove_table(void *_table)
454 {
455 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
456 	unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
457 
458 	if (!shift)
459 		/* PTE page needs special handling */
460 		page_table_free_rcu(table);
461 	else {
462 		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
463 		kmem_cache_free(PGT_CACHE(shift), table);
464 	}
465 }
466 #else
467 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
468 {
469 	if (!shift) {
470 		/* PTE page needs special handling */
471 		struct page *page = virt_to_page(table);
472 		if (put_page_testzero(page)) {
473 			pgtable_page_dtor(page);
474 			free_hot_cold_page(page, 0);
475 		}
476 	} else {
477 		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
478 		kmem_cache_free(PGT_CACHE(shift), table);
479 	}
480 }
481 #endif
482 #endif /* CONFIG_PPC_64K_PAGES */
483 
484 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
485 
486 /*
487  * This is called when relaxing access to a hugepage. It's also called in the page
488  * fault path when we don't hit any of the major fault cases, ie, a minor
489  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
490  * handled those two for us, we additionally deal with missing execute
491  * permission here on some processors
492  */
493 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
494 			  pmd_t *pmdp, pmd_t entry, int dirty)
495 {
496 	int changed;
497 #ifdef CONFIG_DEBUG_VM
498 	WARN_ON(!pmd_trans_huge(*pmdp));
499 	assert_spin_locked(&vma->vm_mm->page_table_lock);
500 #endif
501 	changed = !pmd_same(*(pmdp), entry);
502 	if (changed) {
503 		__ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry));
504 		/*
505 		 * Since we are not supporting SW TLB systems, we don't
506 		 * have any thing similar to flush_tlb_page_nohash()
507 		 */
508 	}
509 	return changed;
510 }
511 
512 unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
513 				  pmd_t *pmdp, unsigned long clr)
514 {
515 
516 	unsigned long old, tmp;
517 
518 #ifdef CONFIG_DEBUG_VM
519 	WARN_ON(!pmd_trans_huge(*pmdp));
520 	assert_spin_locked(&mm->page_table_lock);
521 #endif
522 
523 #ifdef PTE_ATOMIC_UPDATES
524 	__asm__ __volatile__(
525 	"1:	ldarx	%0,0,%3\n\
526 		andi.	%1,%0,%6\n\
527 		bne-	1b \n\
528 		andc	%1,%0,%4 \n\
529 		stdcx.	%1,0,%3 \n\
530 		bne-	1b"
531 	: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
532 	: "r" (pmdp), "r" (clr), "m" (*pmdp), "i" (_PAGE_BUSY)
533 	: "cc" );
534 #else
535 	old = pmd_val(*pmdp);
536 	*pmdp = __pmd(old & ~clr);
537 #endif
538 	if (old & _PAGE_HASHPTE)
539 		hpte_do_hugepage_flush(mm, addr, pmdp);
540 	return old;
541 }
542 
543 pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
544 		       pmd_t *pmdp)
545 {
546 	pmd_t pmd;
547 
548 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
549 	if (pmd_trans_huge(*pmdp)) {
550 		pmd = pmdp_get_and_clear(vma->vm_mm, address, pmdp);
551 	} else {
552 		/*
553 		 * khugepaged calls this for normal pmd
554 		 */
555 		pmd = *pmdp;
556 		pmd_clear(pmdp);
557 		/*
558 		 * Wait for all pending hash_page to finish. This is needed
559 		 * in case of subpage collapse. When we collapse normal pages
560 		 * to hugepage, we first clear the pmd, then invalidate all
561 		 * the PTE entries. The assumption here is that any low level
562 		 * page fault will see a none pmd and take the slow path that
563 		 * will wait on mmap_sem. But we could very well be in a
564 		 * hash_page with local ptep pointer value. Such a hash page
565 		 * can result in adding new HPTE entries for normal subpages.
566 		 * That means we could be modifying the page content as we
567 		 * copy them to a huge page. So wait for parallel hash_page
568 		 * to finish before invalidating HPTE entries. We can do this
569 		 * by sending an IPI to all the cpus and executing a dummy
570 		 * function there.
571 		 */
572 		kick_all_cpus_sync();
573 		/*
574 		 * Now invalidate the hpte entries in the range
575 		 * covered by pmd. This make sure we take a
576 		 * fault and will find the pmd as none, which will
577 		 * result in a major fault which takes mmap_sem and
578 		 * hence wait for collapse to complete. Without this
579 		 * the __collapse_huge_page_copy can result in copying
580 		 * the old content.
581 		 */
582 		flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
583 	}
584 	return pmd;
585 }
586 
587 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
588 			      unsigned long address, pmd_t *pmdp)
589 {
590 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
591 }
592 
593 /*
594  * We currently remove entries from the hashtable regardless of whether
595  * the entry was young or dirty. The generic routines only flush if the
596  * entry was young or dirty which is not good enough.
597  *
598  * We should be more intelligent about this but for the moment we override
599  * these functions and force a tlb flush unconditionally
600  */
601 int pmdp_clear_flush_young(struct vm_area_struct *vma,
602 				  unsigned long address, pmd_t *pmdp)
603 {
604 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
605 }
606 
607 /*
608  * We mark the pmd splitting and invalidate all the hpte
609  * entries for this hugepage.
610  */
611 void pmdp_splitting_flush(struct vm_area_struct *vma,
612 			  unsigned long address, pmd_t *pmdp)
613 {
614 	unsigned long old, tmp;
615 
616 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
617 
618 #ifdef CONFIG_DEBUG_VM
619 	WARN_ON(!pmd_trans_huge(*pmdp));
620 	assert_spin_locked(&vma->vm_mm->page_table_lock);
621 #endif
622 
623 #ifdef PTE_ATOMIC_UPDATES
624 
625 	__asm__ __volatile__(
626 	"1:	ldarx	%0,0,%3\n\
627 		andi.	%1,%0,%6\n\
628 		bne-	1b \n\
629 		ori	%1,%0,%4 \n\
630 		stdcx.	%1,0,%3 \n\
631 		bne-	1b"
632 	: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
633 	: "r" (pmdp), "i" (_PAGE_SPLITTING), "m" (*pmdp), "i" (_PAGE_BUSY)
634 	: "cc" );
635 #else
636 	old = pmd_val(*pmdp);
637 	*pmdp = __pmd(old | _PAGE_SPLITTING);
638 #endif
639 	/*
640 	 * If we didn't had the splitting flag set, go and flush the
641 	 * HPTE entries.
642 	 */
643 	if (!(old & _PAGE_SPLITTING)) {
644 		/* We need to flush the hpte */
645 		if (old & _PAGE_HASHPTE)
646 			hpte_do_hugepage_flush(vma->vm_mm, address, pmdp);
647 	}
648 }
649 
650 /*
651  * We want to put the pgtable in pmd and use pgtable for tracking
652  * the base page size hptes
653  */
654 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
655 				pgtable_t pgtable)
656 {
657 	pgtable_t *pgtable_slot;
658 	assert_spin_locked(&mm->page_table_lock);
659 	/*
660 	 * we store the pgtable in the second half of PMD
661 	 */
662 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
663 	*pgtable_slot = pgtable;
664 	/*
665 	 * expose the deposited pgtable to other cpus.
666 	 * before we set the hugepage PTE at pmd level
667 	 * hash fault code looks at the deposted pgtable
668 	 * to store hash index values.
669 	 */
670 	smp_wmb();
671 }
672 
673 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
674 {
675 	pgtable_t pgtable;
676 	pgtable_t *pgtable_slot;
677 
678 	assert_spin_locked(&mm->page_table_lock);
679 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
680 	pgtable = *pgtable_slot;
681 	/*
682 	 * Once we withdraw, mark the entry NULL.
683 	 */
684 	*pgtable_slot = NULL;
685 	/*
686 	 * We store HPTE information in the deposited PTE fragment.
687 	 * zero out the content on withdraw.
688 	 */
689 	memset(pgtable, 0, PTE_FRAG_SIZE);
690 	return pgtable;
691 }
692 
693 /*
694  * set a new huge pmd. We should not be called for updating
695  * an existing pmd entry. That should go via pmd_hugepage_update.
696  */
697 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
698 		pmd_t *pmdp, pmd_t pmd)
699 {
700 #ifdef CONFIG_DEBUG_VM
701 	WARN_ON(pmd_val(*pmdp) & _PAGE_PRESENT);
702 	assert_spin_locked(&mm->page_table_lock);
703 	WARN_ON(!pmd_trans_huge(pmd));
704 #endif
705 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
706 }
707 
708 void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
709 		     pmd_t *pmdp)
710 {
711 	pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT);
712 }
713 
714 /*
715  * A linux hugepage PMD was changed and the corresponding hash table entries
716  * neesd to be flushed.
717  */
718 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
719 			    pmd_t *pmdp)
720 {
721 	int ssize, i;
722 	unsigned long s_addr;
723 	int max_hpte_count;
724 	unsigned int psize, valid;
725 	unsigned char *hpte_slot_array;
726 	unsigned long hidx, vpn, vsid, hash, shift, slot;
727 
728 	/*
729 	 * Flush all the hptes mapping this hugepage
730 	 */
731 	s_addr = addr & HPAGE_PMD_MASK;
732 	hpte_slot_array = get_hpte_slot_array(pmdp);
733 	/*
734 	 * IF we try to do a HUGE PTE update after a withdraw is done.
735 	 * we will find the below NULL. This happens when we do
736 	 * split_huge_page_pmd
737 	 */
738 	if (!hpte_slot_array)
739 		return;
740 
741 	/* get the base page size */
742 	psize = get_slice_psize(mm, s_addr);
743 
744 	if (ppc_md.hugepage_invalidate)
745 		return ppc_md.hugepage_invalidate(mm, hpte_slot_array,
746 						  s_addr, psize);
747 	/*
748 	 * No bluk hpte removal support, invalidate each entry
749 	 */
750 	shift = mmu_psize_defs[psize].shift;
751 	max_hpte_count = HPAGE_PMD_SIZE >> shift;
752 	for (i = 0; i < max_hpte_count; i++) {
753 		/*
754 		 * 8 bits per each hpte entries
755 		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
756 		 */
757 		valid = hpte_valid(hpte_slot_array, i);
758 		if (!valid)
759 			continue;
760 		hidx =  hpte_hash_index(hpte_slot_array, i);
761 
762 		/* get the vpn */
763 		addr = s_addr + (i * (1ul << shift));
764 		if (!is_kernel_addr(addr)) {
765 			ssize = user_segment_size(addr);
766 			vsid = get_vsid(mm->context.id, addr, ssize);
767 			WARN_ON(vsid == 0);
768 		} else {
769 			vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
770 			ssize = mmu_kernel_ssize;
771 		}
772 
773 		vpn = hpt_vpn(addr, vsid, ssize);
774 		hash = hpt_hash(vpn, shift, ssize);
775 		if (hidx & _PTEIDX_SECONDARY)
776 			hash = ~hash;
777 
778 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
779 		slot += hidx & _PTEIDX_GROUP_IX;
780 		ppc_md.hpte_invalidate(slot, vpn, psize,
781 				       MMU_PAGE_16M, ssize, 0);
782 	}
783 }
784 
785 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
786 {
787 	pmd_val(pmd) |= pgprot_val(pgprot);
788 	return pmd;
789 }
790 
791 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
792 {
793 	pmd_t pmd;
794 	/*
795 	 * For a valid pte, we would have _PAGE_PRESENT or _PAGE_FILE always
796 	 * set. We use this to check THP page at pmd level.
797 	 * leaf pte for huge page, bottom two bits != 00
798 	 */
799 	pmd_val(pmd) = pfn << PTE_RPN_SHIFT;
800 	pmd_val(pmd) |= _PAGE_THP_HUGE;
801 	pmd = pmd_set_protbits(pmd, pgprot);
802 	return pmd;
803 }
804 
805 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
806 {
807 	return pfn_pmd(page_to_pfn(page), pgprot);
808 }
809 
810 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
811 {
812 
813 	pmd_val(pmd) &= _HPAGE_CHG_MASK;
814 	pmd = pmd_set_protbits(pmd, newprot);
815 	return pmd;
816 }
817 
818 /*
819  * This is called at the end of handling a user page fault, when the
820  * fault has been handled by updating a HUGE PMD entry in the linux page tables.
821  * We use it to preload an HPTE into the hash table corresponding to
822  * the updated linux HUGE PMD entry.
823  */
824 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
825 			  pmd_t *pmd)
826 {
827 	return;
828 }
829 
830 pmd_t pmdp_get_and_clear(struct mm_struct *mm,
831 			 unsigned long addr, pmd_t *pmdp)
832 {
833 	pmd_t old_pmd;
834 	pgtable_t pgtable;
835 	unsigned long old;
836 	pgtable_t *pgtable_slot;
837 
838 	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL);
839 	old_pmd = __pmd(old);
840 	/*
841 	 * We have pmd == none and we are holding page_table_lock.
842 	 * So we can safely go and clear the pgtable hash
843 	 * index info.
844 	 */
845 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
846 	pgtable = *pgtable_slot;
847 	/*
848 	 * Let's zero out old valid and hash index details
849 	 * hash fault look at them.
850 	 */
851 	memset(pgtable, 0, PTE_FRAG_SIZE);
852 	return old_pmd;
853 }
854 
855 int has_transparent_hugepage(void)
856 {
857 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
858 		return 0;
859 	/*
860 	 * We support THP only if PMD_SIZE is 16MB.
861 	 */
862 	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
863 		return 0;
864 	/*
865 	 * We need to make sure that we support 16MB hugepage in a segement
866 	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
867 	 * of 64K.
868 	 */
869 	/*
870 	 * If we have 64K HPTE, we will be using that by default
871 	 */
872 	if (mmu_psize_defs[MMU_PAGE_64K].shift &&
873 	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
874 		return 0;
875 	/*
876 	 * Ok we only have 4K HPTE
877 	 */
878 	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
879 		return 0;
880 
881 	return 1;
882 }
883 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
884