1 /* 2 * This file contains ioremap and related functions for 64-bit machines. 3 * 4 * Derived from arch/ppc64/mm/init.c 5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 6 * 7 * Modifications by Paul Mackerras (PowerMac) (paulus@samba.org) 8 * and Cort Dougan (PReP) (cort@cs.nmt.edu) 9 * Copyright (C) 1996 Paul Mackerras 10 * 11 * Derived from "arch/i386/mm/init.c" 12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 13 * 14 * Dave Engebretsen <engebret@us.ibm.com> 15 * Rework for PPC64 port. 16 * 17 * This program is free software; you can redistribute it and/or 18 * modify it under the terms of the GNU General Public License 19 * as published by the Free Software Foundation; either version 20 * 2 of the License, or (at your option) any later version. 21 * 22 */ 23 24 #include <linux/signal.h> 25 #include <linux/sched.h> 26 #include <linux/kernel.h> 27 #include <linux/errno.h> 28 #include <linux/string.h> 29 #include <linux/export.h> 30 #include <linux/types.h> 31 #include <linux/mman.h> 32 #include <linux/mm.h> 33 #include <linux/swap.h> 34 #include <linux/stddef.h> 35 #include <linux/vmalloc.h> 36 #include <linux/memblock.h> 37 #include <linux/slab.h> 38 #include <linux/hugetlb.h> 39 40 #include <asm/pgalloc.h> 41 #include <asm/page.h> 42 #include <asm/prom.h> 43 #include <asm/io.h> 44 #include <asm/mmu_context.h> 45 #include <asm/pgtable.h> 46 #include <asm/mmu.h> 47 #include <asm/smp.h> 48 #include <asm/machdep.h> 49 #include <asm/tlb.h> 50 #include <asm/trace.h> 51 #include <asm/processor.h> 52 #include <asm/cputable.h> 53 #include <asm/sections.h> 54 #include <asm/firmware.h> 55 #include <asm/dma.h> 56 #include <asm/powernv.h> 57 58 #include "mmu_decl.h" 59 60 #ifdef CONFIG_PPC_STD_MMU_64 61 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT)) 62 #error TASK_SIZE_USER64 exceeds user VSID range 63 #endif 64 #endif 65 66 #ifdef CONFIG_PPC_BOOK3S_64 67 /* 68 * partition table and process table for ISA 3.0 69 */ 70 struct prtb_entry *process_tb; 71 struct patb_entry *partition_tb; 72 /* 73 * page table size 74 */ 75 unsigned long __pte_index_size; 76 EXPORT_SYMBOL(__pte_index_size); 77 unsigned long __pmd_index_size; 78 EXPORT_SYMBOL(__pmd_index_size); 79 unsigned long __pud_index_size; 80 EXPORT_SYMBOL(__pud_index_size); 81 unsigned long __pgd_index_size; 82 EXPORT_SYMBOL(__pgd_index_size); 83 unsigned long __pmd_cache_index; 84 EXPORT_SYMBOL(__pmd_cache_index); 85 unsigned long __pte_table_size; 86 EXPORT_SYMBOL(__pte_table_size); 87 unsigned long __pmd_table_size; 88 EXPORT_SYMBOL(__pmd_table_size); 89 unsigned long __pud_table_size; 90 EXPORT_SYMBOL(__pud_table_size); 91 unsigned long __pgd_table_size; 92 EXPORT_SYMBOL(__pgd_table_size); 93 unsigned long __pmd_val_bits; 94 EXPORT_SYMBOL(__pmd_val_bits); 95 unsigned long __pud_val_bits; 96 EXPORT_SYMBOL(__pud_val_bits); 97 unsigned long __pgd_val_bits; 98 EXPORT_SYMBOL(__pgd_val_bits); 99 unsigned long __kernel_virt_start; 100 EXPORT_SYMBOL(__kernel_virt_start); 101 unsigned long __kernel_virt_size; 102 EXPORT_SYMBOL(__kernel_virt_size); 103 unsigned long __vmalloc_start; 104 EXPORT_SYMBOL(__vmalloc_start); 105 unsigned long __vmalloc_end; 106 EXPORT_SYMBOL(__vmalloc_end); 107 struct page *vmemmap; 108 EXPORT_SYMBOL(vmemmap); 109 unsigned long __pte_frag_nr; 110 EXPORT_SYMBOL(__pte_frag_nr); 111 unsigned long __pte_frag_size_shift; 112 EXPORT_SYMBOL(__pte_frag_size_shift); 113 unsigned long ioremap_bot; 114 #else /* !CONFIG_PPC_BOOK3S_64 */ 115 unsigned long ioremap_bot = IOREMAP_BASE; 116 #endif 117 118 /** 119 * __ioremap_at - Low level function to establish the page tables 120 * for an IO mapping 121 */ 122 void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size, 123 unsigned long flags) 124 { 125 unsigned long i; 126 127 /* Make sure we have the base flags */ 128 if ((flags & _PAGE_PRESENT) == 0) 129 flags |= pgprot_val(PAGE_KERNEL); 130 131 /* We don't support the 4K PFN hack with ioremap */ 132 if (flags & H_PAGE_4K_PFN) 133 return NULL; 134 135 WARN_ON(pa & ~PAGE_MASK); 136 WARN_ON(((unsigned long)ea) & ~PAGE_MASK); 137 WARN_ON(size & ~PAGE_MASK); 138 139 for (i = 0; i < size; i += PAGE_SIZE) 140 if (map_kernel_page((unsigned long)ea+i, pa+i, flags)) 141 return NULL; 142 143 return (void __iomem *)ea; 144 } 145 146 /** 147 * __iounmap_from - Low level function to tear down the page tables 148 * for an IO mapping. This is used for mappings that 149 * are manipulated manually, like partial unmapping of 150 * PCI IOs or ISA space. 151 */ 152 void __iounmap_at(void *ea, unsigned long size) 153 { 154 WARN_ON(((unsigned long)ea) & ~PAGE_MASK); 155 WARN_ON(size & ~PAGE_MASK); 156 157 unmap_kernel_range((unsigned long)ea, size); 158 } 159 160 void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size, 161 unsigned long flags, void *caller) 162 { 163 phys_addr_t paligned; 164 void __iomem *ret; 165 166 /* 167 * Choose an address to map it to. 168 * Once the imalloc system is running, we use it. 169 * Before that, we map using addresses going 170 * up from ioremap_bot. imalloc will use 171 * the addresses from ioremap_bot through 172 * IMALLOC_END 173 * 174 */ 175 paligned = addr & PAGE_MASK; 176 size = PAGE_ALIGN(addr + size) - paligned; 177 178 if ((size == 0) || (paligned == 0)) 179 return NULL; 180 181 if (slab_is_available()) { 182 struct vm_struct *area; 183 184 area = __get_vm_area_caller(size, VM_IOREMAP, 185 ioremap_bot, IOREMAP_END, 186 caller); 187 if (area == NULL) 188 return NULL; 189 190 area->phys_addr = paligned; 191 ret = __ioremap_at(paligned, area->addr, size, flags); 192 if (!ret) 193 vunmap(area->addr); 194 } else { 195 ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags); 196 if (ret) 197 ioremap_bot += size; 198 } 199 200 if (ret) 201 ret += addr & ~PAGE_MASK; 202 return ret; 203 } 204 205 void __iomem * __ioremap(phys_addr_t addr, unsigned long size, 206 unsigned long flags) 207 { 208 return __ioremap_caller(addr, size, flags, __builtin_return_address(0)); 209 } 210 211 void __iomem * ioremap(phys_addr_t addr, unsigned long size) 212 { 213 unsigned long flags = pgprot_val(pgprot_noncached(__pgprot(0))); 214 void *caller = __builtin_return_address(0); 215 216 if (ppc_md.ioremap) 217 return ppc_md.ioremap(addr, size, flags, caller); 218 return __ioremap_caller(addr, size, flags, caller); 219 } 220 221 void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size) 222 { 223 unsigned long flags = pgprot_val(pgprot_noncached_wc(__pgprot(0))); 224 void *caller = __builtin_return_address(0); 225 226 if (ppc_md.ioremap) 227 return ppc_md.ioremap(addr, size, flags, caller); 228 return __ioremap_caller(addr, size, flags, caller); 229 } 230 231 void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size, 232 unsigned long flags) 233 { 234 void *caller = __builtin_return_address(0); 235 236 /* writeable implies dirty for kernel addresses */ 237 if (flags & _PAGE_WRITE) 238 flags |= _PAGE_DIRTY; 239 240 /* we don't want to let _PAGE_EXEC leak out */ 241 flags &= ~_PAGE_EXEC; 242 /* 243 * Force kernel mapping. 244 */ 245 #if defined(CONFIG_PPC_BOOK3S_64) 246 flags |= _PAGE_PRIVILEGED; 247 #else 248 flags &= ~_PAGE_USER; 249 #endif 250 251 252 #ifdef _PAGE_BAP_SR 253 /* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format 254 * which means that we just cleared supervisor access... oops ;-) This 255 * restores it 256 */ 257 flags |= _PAGE_BAP_SR; 258 #endif 259 260 if (ppc_md.ioremap) 261 return ppc_md.ioremap(addr, size, flags, caller); 262 return __ioremap_caller(addr, size, flags, caller); 263 } 264 265 266 /* 267 * Unmap an IO region and remove it from imalloc'd list. 268 * Access to IO memory should be serialized by driver. 269 */ 270 void __iounmap(volatile void __iomem *token) 271 { 272 void *addr; 273 274 if (!slab_is_available()) 275 return; 276 277 addr = (void *) ((unsigned long __force) 278 PCI_FIX_ADDR(token) & PAGE_MASK); 279 if ((unsigned long)addr < ioremap_bot) { 280 printk(KERN_WARNING "Attempt to iounmap early bolted mapping" 281 " at 0x%p\n", addr); 282 return; 283 } 284 vunmap(addr); 285 } 286 287 void iounmap(volatile void __iomem *token) 288 { 289 if (ppc_md.iounmap) 290 ppc_md.iounmap(token); 291 else 292 __iounmap(token); 293 } 294 295 EXPORT_SYMBOL(ioremap); 296 EXPORT_SYMBOL(ioremap_wc); 297 EXPORT_SYMBOL(ioremap_prot); 298 EXPORT_SYMBOL(__ioremap); 299 EXPORT_SYMBOL(__ioremap_at); 300 EXPORT_SYMBOL(iounmap); 301 EXPORT_SYMBOL(__iounmap); 302 EXPORT_SYMBOL(__iounmap_at); 303 304 #ifndef __PAGETABLE_PUD_FOLDED 305 /* 4 level page table */ 306 struct page *pgd_page(pgd_t pgd) 307 { 308 if (pgd_huge(pgd)) 309 return pte_page(pgd_pte(pgd)); 310 return virt_to_page(pgd_page_vaddr(pgd)); 311 } 312 #endif 313 314 struct page *pud_page(pud_t pud) 315 { 316 if (pud_huge(pud)) 317 return pte_page(pud_pte(pud)); 318 return virt_to_page(pud_page_vaddr(pud)); 319 } 320 321 /* 322 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags 323 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address. 324 */ 325 struct page *pmd_page(pmd_t pmd) 326 { 327 if (pmd_trans_huge(pmd) || pmd_huge(pmd) || pmd_devmap(pmd)) 328 return pte_page(pmd_pte(pmd)); 329 return virt_to_page(pmd_page_vaddr(pmd)); 330 } 331 332 #ifdef CONFIG_PPC_64K_PAGES 333 static pte_t *get_from_cache(struct mm_struct *mm) 334 { 335 void *pte_frag, *ret; 336 337 spin_lock(&mm->page_table_lock); 338 ret = mm->context.pte_frag; 339 if (ret) { 340 pte_frag = ret + PTE_FRAG_SIZE; 341 /* 342 * If we have taken up all the fragments mark PTE page NULL 343 */ 344 if (((unsigned long)pte_frag & ~PAGE_MASK) == 0) 345 pte_frag = NULL; 346 mm->context.pte_frag = pte_frag; 347 } 348 spin_unlock(&mm->page_table_lock); 349 return (pte_t *)ret; 350 } 351 352 static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel) 353 { 354 void *ret = NULL; 355 struct page *page; 356 357 if (!kernel) { 358 page = alloc_page(PGALLOC_GFP | __GFP_ACCOUNT); 359 if (!page) 360 return NULL; 361 if (!pgtable_page_ctor(page)) { 362 __free_page(page); 363 return NULL; 364 } 365 } else { 366 page = alloc_page(PGALLOC_GFP); 367 if (!page) 368 return NULL; 369 } 370 371 ret = page_address(page); 372 spin_lock(&mm->page_table_lock); 373 /* 374 * If we find pgtable_page set, we return 375 * the allocated page with single fragement 376 * count. 377 */ 378 if (likely(!mm->context.pte_frag)) { 379 set_page_count(page, PTE_FRAG_NR); 380 mm->context.pte_frag = ret + PTE_FRAG_SIZE; 381 } 382 spin_unlock(&mm->page_table_lock); 383 384 return (pte_t *)ret; 385 } 386 387 pte_t *pte_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel) 388 { 389 pte_t *pte; 390 391 pte = get_from_cache(mm); 392 if (pte) 393 return pte; 394 395 return __alloc_for_cache(mm, kernel); 396 } 397 #endif /* CONFIG_PPC_64K_PAGES */ 398 399 void pte_fragment_free(unsigned long *table, int kernel) 400 { 401 struct page *page = virt_to_page(table); 402 if (put_page_testzero(page)) { 403 if (!kernel) 404 pgtable_page_dtor(page); 405 free_hot_cold_page(page, 0); 406 } 407 } 408 409 #ifdef CONFIG_SMP 410 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift) 411 { 412 unsigned long pgf = (unsigned long)table; 413 414 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE); 415 pgf |= shift; 416 tlb_remove_table(tlb, (void *)pgf); 417 } 418 419 void __tlb_remove_table(void *_table) 420 { 421 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 422 unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 423 424 if (!shift) 425 /* PTE page needs special handling */ 426 pte_fragment_free(table, 0); 427 else { 428 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE); 429 kmem_cache_free(PGT_CACHE(shift), table); 430 } 431 } 432 #else 433 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift) 434 { 435 if (!shift) { 436 /* PTE page needs special handling */ 437 pte_fragment_free(table, 0); 438 } else { 439 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE); 440 kmem_cache_free(PGT_CACHE(shift), table); 441 } 442 } 443 #endif 444 445 #ifdef CONFIG_PPC_BOOK3S_64 446 void __init mmu_partition_table_init(void) 447 { 448 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; 449 unsigned long ptcr; 450 451 BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large."); 452 partition_tb = __va(memblock_alloc_base(patb_size, patb_size, 453 MEMBLOCK_ALLOC_ANYWHERE)); 454 455 /* Initialize the Partition Table with no entries */ 456 memset((void *)partition_tb, 0, patb_size); 457 458 /* 459 * update partition table control register, 460 * 64 K size. 461 */ 462 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); 463 mtspr(SPRN_PTCR, ptcr); 464 powernv_set_nmmu_ptcr(ptcr); 465 } 466 467 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, 468 unsigned long dw1) 469 { 470 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); 471 472 partition_tb[lpid].patb0 = cpu_to_be64(dw0); 473 partition_tb[lpid].patb1 = cpu_to_be64(dw1); 474 475 /* 476 * Global flush of TLBs and partition table caches for this lpid. 477 * The type of flush (hash or radix) depends on what the previous 478 * use of this partition ID was, not the new use. 479 */ 480 asm volatile("ptesync" : : : "memory"); 481 if (old & PATB_HR) { 482 asm volatile(PPC_TLBIE_5(%0,%1,2,0,1) : : 483 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 484 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 1); 485 } else { 486 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : 487 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 488 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); 489 } 490 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 491 } 492 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); 493 #endif /* CONFIG_PPC_BOOK3S_64 */ 494 495 #ifdef CONFIG_STRICT_KERNEL_RWX 496 void mark_rodata_ro(void) 497 { 498 if (!mmu_has_feature(MMU_FTR_KERNEL_RO)) { 499 pr_warn("Warning: Unable to mark rodata read only on this CPU.\n"); 500 return; 501 } 502 503 if (radix_enabled()) 504 radix__mark_rodata_ro(); 505 else 506 hash__mark_rodata_ro(); 507 } 508 509 void mark_initmem_nx(void) 510 { 511 if (radix_enabled()) 512 radix__mark_initmem_nx(); 513 else 514 hash__mark_initmem_nx(); 515 } 516 #endif 517