xref: /openbmc/linux/arch/powerpc/mm/pgtable_64.c (revision 31b90347)
1 /*
2  *  This file contains ioremap and related functions for 64-bit machines.
3  *
4  *  Derived from arch/ppc64/mm/init.c
5  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6  *
7  *  Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
8  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
9  *    Copyright (C) 1996 Paul Mackerras
10  *
11  *  Derived from "arch/i386/mm/init.c"
12  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
13  *
14  *  Dave Engebretsen <engebret@us.ibm.com>
15  *      Rework for PPC64 port.
16  *
17  *  This program is free software; you can redistribute it and/or
18  *  modify it under the terms of the GNU General Public License
19  *  as published by the Free Software Foundation; either version
20  *  2 of the License, or (at your option) any later version.
21  *
22  */
23 
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/export.h>
30 #include <linux/types.h>
31 #include <linux/mman.h>
32 #include <linux/mm.h>
33 #include <linux/swap.h>
34 #include <linux/stddef.h>
35 #include <linux/vmalloc.h>
36 #include <linux/init.h>
37 #include <linux/bootmem.h>
38 #include <linux/memblock.h>
39 #include <linux/slab.h>
40 
41 #include <asm/pgalloc.h>
42 #include <asm/page.h>
43 #include <asm/prom.h>
44 #include <asm/io.h>
45 #include <asm/mmu_context.h>
46 #include <asm/pgtable.h>
47 #include <asm/mmu.h>
48 #include <asm/smp.h>
49 #include <asm/machdep.h>
50 #include <asm/tlb.h>
51 #include <asm/processor.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/firmware.h>
55 
56 #include "mmu_decl.h"
57 
58 /* Some sanity checking */
59 #if TASK_SIZE_USER64 > PGTABLE_RANGE
60 #error TASK_SIZE_USER64 exceeds pagetable range
61 #endif
62 
63 #ifdef CONFIG_PPC_STD_MMU_64
64 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
65 #error TASK_SIZE_USER64 exceeds user VSID range
66 #endif
67 #endif
68 
69 unsigned long ioremap_bot = IOREMAP_BASE;
70 
71 #ifdef CONFIG_PPC_MMU_NOHASH
72 static void *early_alloc_pgtable(unsigned long size)
73 {
74 	void *pt;
75 
76 	if (init_bootmem_done)
77 		pt = __alloc_bootmem(size, size, __pa(MAX_DMA_ADDRESS));
78 	else
79 		pt = __va(memblock_alloc_base(size, size,
80 					 __pa(MAX_DMA_ADDRESS)));
81 	memset(pt, 0, size);
82 
83 	return pt;
84 }
85 #endif /* CONFIG_PPC_MMU_NOHASH */
86 
87 /*
88  * map_kernel_page currently only called by __ioremap
89  * map_kernel_page adds an entry to the ioremap page table
90  * and adds an entry to the HPT, possibly bolting it
91  */
92 int map_kernel_page(unsigned long ea, unsigned long pa, int flags)
93 {
94 	pgd_t *pgdp;
95 	pud_t *pudp;
96 	pmd_t *pmdp;
97 	pte_t *ptep;
98 
99 	if (slab_is_available()) {
100 		pgdp = pgd_offset_k(ea);
101 		pudp = pud_alloc(&init_mm, pgdp, ea);
102 		if (!pudp)
103 			return -ENOMEM;
104 		pmdp = pmd_alloc(&init_mm, pudp, ea);
105 		if (!pmdp)
106 			return -ENOMEM;
107 		ptep = pte_alloc_kernel(pmdp, ea);
108 		if (!ptep)
109 			return -ENOMEM;
110 		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
111 							  __pgprot(flags)));
112 	} else {
113 #ifdef CONFIG_PPC_MMU_NOHASH
114 		/* Warning ! This will blow up if bootmem is not initialized
115 		 * which our ppc64 code is keen to do that, we'll need to
116 		 * fix it and/or be more careful
117 		 */
118 		pgdp = pgd_offset_k(ea);
119 #ifdef PUD_TABLE_SIZE
120 		if (pgd_none(*pgdp)) {
121 			pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
122 			BUG_ON(pudp == NULL);
123 			pgd_populate(&init_mm, pgdp, pudp);
124 		}
125 #endif /* PUD_TABLE_SIZE */
126 		pudp = pud_offset(pgdp, ea);
127 		if (pud_none(*pudp)) {
128 			pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
129 			BUG_ON(pmdp == NULL);
130 			pud_populate(&init_mm, pudp, pmdp);
131 		}
132 		pmdp = pmd_offset(pudp, ea);
133 		if (!pmd_present(*pmdp)) {
134 			ptep = early_alloc_pgtable(PAGE_SIZE);
135 			BUG_ON(ptep == NULL);
136 			pmd_populate_kernel(&init_mm, pmdp, ptep);
137 		}
138 		ptep = pte_offset_kernel(pmdp, ea);
139 		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
140 							  __pgprot(flags)));
141 #else /* CONFIG_PPC_MMU_NOHASH */
142 		/*
143 		 * If the mm subsystem is not fully up, we cannot create a
144 		 * linux page table entry for this mapping.  Simply bolt an
145 		 * entry in the hardware page table.
146 		 *
147 		 */
148 		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
149 				      mmu_io_psize, mmu_kernel_ssize)) {
150 			printk(KERN_ERR "Failed to do bolted mapping IO "
151 			       "memory at %016lx !\n", pa);
152 			return -ENOMEM;
153 		}
154 #endif /* !CONFIG_PPC_MMU_NOHASH */
155 	}
156 	return 0;
157 }
158 
159 
160 /**
161  * __ioremap_at - Low level function to establish the page tables
162  *                for an IO mapping
163  */
164 void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
165 			    unsigned long flags)
166 {
167 	unsigned long i;
168 
169 	/* Make sure we have the base flags */
170 	if ((flags & _PAGE_PRESENT) == 0)
171 		flags |= pgprot_val(PAGE_KERNEL);
172 
173 	/* Non-cacheable page cannot be coherent */
174 	if (flags & _PAGE_NO_CACHE)
175 		flags &= ~_PAGE_COHERENT;
176 
177 	/* We don't support the 4K PFN hack with ioremap */
178 	if (flags & _PAGE_4K_PFN)
179 		return NULL;
180 
181 	WARN_ON(pa & ~PAGE_MASK);
182 	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
183 	WARN_ON(size & ~PAGE_MASK);
184 
185 	for (i = 0; i < size; i += PAGE_SIZE)
186 		if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
187 			return NULL;
188 
189 	return (void __iomem *)ea;
190 }
191 
192 /**
193  * __iounmap_from - Low level function to tear down the page tables
194  *                  for an IO mapping. This is used for mappings that
195  *                  are manipulated manually, like partial unmapping of
196  *                  PCI IOs or ISA space.
197  */
198 void __iounmap_at(void *ea, unsigned long size)
199 {
200 	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
201 	WARN_ON(size & ~PAGE_MASK);
202 
203 	unmap_kernel_range((unsigned long)ea, size);
204 }
205 
206 void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
207 				unsigned long flags, void *caller)
208 {
209 	phys_addr_t paligned;
210 	void __iomem *ret;
211 
212 	/*
213 	 * Choose an address to map it to.
214 	 * Once the imalloc system is running, we use it.
215 	 * Before that, we map using addresses going
216 	 * up from ioremap_bot.  imalloc will use
217 	 * the addresses from ioremap_bot through
218 	 * IMALLOC_END
219 	 *
220 	 */
221 	paligned = addr & PAGE_MASK;
222 	size = PAGE_ALIGN(addr + size) - paligned;
223 
224 	if ((size == 0) || (paligned == 0))
225 		return NULL;
226 
227 	if (mem_init_done) {
228 		struct vm_struct *area;
229 
230 		area = __get_vm_area_caller(size, VM_IOREMAP,
231 					    ioremap_bot, IOREMAP_END,
232 					    caller);
233 		if (area == NULL)
234 			return NULL;
235 
236 		area->phys_addr = paligned;
237 		ret = __ioremap_at(paligned, area->addr, size, flags);
238 		if (!ret)
239 			vunmap(area->addr);
240 	} else {
241 		ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
242 		if (ret)
243 			ioremap_bot += size;
244 	}
245 
246 	if (ret)
247 		ret += addr & ~PAGE_MASK;
248 	return ret;
249 }
250 
251 void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
252 			 unsigned long flags)
253 {
254 	return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
255 }
256 
257 void __iomem * ioremap(phys_addr_t addr, unsigned long size)
258 {
259 	unsigned long flags = _PAGE_NO_CACHE | _PAGE_GUARDED;
260 	void *caller = __builtin_return_address(0);
261 
262 	if (ppc_md.ioremap)
263 		return ppc_md.ioremap(addr, size, flags, caller);
264 	return __ioremap_caller(addr, size, flags, caller);
265 }
266 
267 void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
268 {
269 	unsigned long flags = _PAGE_NO_CACHE;
270 	void *caller = __builtin_return_address(0);
271 
272 	if (ppc_md.ioremap)
273 		return ppc_md.ioremap(addr, size, flags, caller);
274 	return __ioremap_caller(addr, size, flags, caller);
275 }
276 
277 void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
278 			     unsigned long flags)
279 {
280 	void *caller = __builtin_return_address(0);
281 
282 	/* writeable implies dirty for kernel addresses */
283 	if (flags & _PAGE_RW)
284 		flags |= _PAGE_DIRTY;
285 
286 	/* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
287 	flags &= ~(_PAGE_USER | _PAGE_EXEC);
288 
289 #ifdef _PAGE_BAP_SR
290 	/* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
291 	 * which means that we just cleared supervisor access... oops ;-) This
292 	 * restores it
293 	 */
294 	flags |= _PAGE_BAP_SR;
295 #endif
296 
297 	if (ppc_md.ioremap)
298 		return ppc_md.ioremap(addr, size, flags, caller);
299 	return __ioremap_caller(addr, size, flags, caller);
300 }
301 
302 
303 /*
304  * Unmap an IO region and remove it from imalloc'd list.
305  * Access to IO memory should be serialized by driver.
306  */
307 void __iounmap(volatile void __iomem *token)
308 {
309 	void *addr;
310 
311 	if (!mem_init_done)
312 		return;
313 
314 	addr = (void *) ((unsigned long __force)
315 			 PCI_FIX_ADDR(token) & PAGE_MASK);
316 	if ((unsigned long)addr < ioremap_bot) {
317 		printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
318 		       " at 0x%p\n", addr);
319 		return;
320 	}
321 	vunmap(addr);
322 }
323 
324 void iounmap(volatile void __iomem *token)
325 {
326 	if (ppc_md.iounmap)
327 		ppc_md.iounmap(token);
328 	else
329 		__iounmap(token);
330 }
331 
332 EXPORT_SYMBOL(ioremap);
333 EXPORT_SYMBOL(ioremap_wc);
334 EXPORT_SYMBOL(ioremap_prot);
335 EXPORT_SYMBOL(__ioremap);
336 EXPORT_SYMBOL(__ioremap_at);
337 EXPORT_SYMBOL(iounmap);
338 EXPORT_SYMBOL(__iounmap);
339 EXPORT_SYMBOL(__iounmap_at);
340 
341 /*
342  * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
343  * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
344  */
345 struct page *pmd_page(pmd_t pmd)
346 {
347 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
348 	if (pmd_trans_huge(pmd))
349 		return pfn_to_page(pmd_pfn(pmd));
350 #endif
351 	return virt_to_page(pmd_page_vaddr(pmd));
352 }
353 
354 #ifdef CONFIG_PPC_64K_PAGES
355 static pte_t *get_from_cache(struct mm_struct *mm)
356 {
357 	void *pte_frag, *ret;
358 
359 	spin_lock(&mm->page_table_lock);
360 	ret = mm->context.pte_frag;
361 	if (ret) {
362 		pte_frag = ret + PTE_FRAG_SIZE;
363 		/*
364 		 * If we have taken up all the fragments mark PTE page NULL
365 		 */
366 		if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
367 			pte_frag = NULL;
368 		mm->context.pte_frag = pte_frag;
369 	}
370 	spin_unlock(&mm->page_table_lock);
371 	return (pte_t *)ret;
372 }
373 
374 static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
375 {
376 	void *ret = NULL;
377 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
378 				       __GFP_REPEAT | __GFP_ZERO);
379 	if (!page)
380 		return NULL;
381 	if (!kernel && !pgtable_page_ctor(page)) {
382 		__free_page(page);
383 		return NULL;
384 	}
385 
386 	ret = page_address(page);
387 	spin_lock(&mm->page_table_lock);
388 	/*
389 	 * If we find pgtable_page set, we return
390 	 * the allocated page with single fragement
391 	 * count.
392 	 */
393 	if (likely(!mm->context.pte_frag)) {
394 		atomic_set(&page->_count, PTE_FRAG_NR);
395 		mm->context.pte_frag = ret + PTE_FRAG_SIZE;
396 	}
397 	spin_unlock(&mm->page_table_lock);
398 
399 	return (pte_t *)ret;
400 }
401 
402 pte_t *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
403 {
404 	pte_t *pte;
405 
406 	pte = get_from_cache(mm);
407 	if (pte)
408 		return pte;
409 
410 	return __alloc_for_cache(mm, kernel);
411 }
412 
413 void page_table_free(struct mm_struct *mm, unsigned long *table, int kernel)
414 {
415 	struct page *page = virt_to_page(table);
416 	if (put_page_testzero(page)) {
417 		if (!kernel)
418 			pgtable_page_dtor(page);
419 		free_hot_cold_page(page, 0);
420 	}
421 }
422 
423 #ifdef CONFIG_SMP
424 static void page_table_free_rcu(void *table)
425 {
426 	struct page *page = virt_to_page(table);
427 	if (put_page_testzero(page)) {
428 		pgtable_page_dtor(page);
429 		free_hot_cold_page(page, 0);
430 	}
431 }
432 
433 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
434 {
435 	unsigned long pgf = (unsigned long)table;
436 
437 	BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
438 	pgf |= shift;
439 	tlb_remove_table(tlb, (void *)pgf);
440 }
441 
442 void __tlb_remove_table(void *_table)
443 {
444 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
445 	unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
446 
447 	if (!shift)
448 		/* PTE page needs special handling */
449 		page_table_free_rcu(table);
450 	else {
451 		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
452 		kmem_cache_free(PGT_CACHE(shift), table);
453 	}
454 }
455 #else
456 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
457 {
458 	if (!shift) {
459 		/* PTE page needs special handling */
460 		struct page *page = virt_to_page(table);
461 		if (put_page_testzero(page)) {
462 			pgtable_page_dtor(page);
463 			free_hot_cold_page(page, 0);
464 		}
465 	} else {
466 		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
467 		kmem_cache_free(PGT_CACHE(shift), table);
468 	}
469 }
470 #endif
471 #endif /* CONFIG_PPC_64K_PAGES */
472 
473 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
474 
475 /*
476  * This is called when relaxing access to a hugepage. It's also called in the page
477  * fault path when we don't hit any of the major fault cases, ie, a minor
478  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
479  * handled those two for us, we additionally deal with missing execute
480  * permission here on some processors
481  */
482 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
483 			  pmd_t *pmdp, pmd_t entry, int dirty)
484 {
485 	int changed;
486 #ifdef CONFIG_DEBUG_VM
487 	WARN_ON(!pmd_trans_huge(*pmdp));
488 	assert_spin_locked(&vma->vm_mm->page_table_lock);
489 #endif
490 	changed = !pmd_same(*(pmdp), entry);
491 	if (changed) {
492 		__ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry));
493 		/*
494 		 * Since we are not supporting SW TLB systems, we don't
495 		 * have any thing similar to flush_tlb_page_nohash()
496 		 */
497 	}
498 	return changed;
499 }
500 
501 unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
502 				  pmd_t *pmdp, unsigned long clr)
503 {
504 
505 	unsigned long old, tmp;
506 
507 #ifdef CONFIG_DEBUG_VM
508 	WARN_ON(!pmd_trans_huge(*pmdp));
509 	assert_spin_locked(&mm->page_table_lock);
510 #endif
511 
512 #ifdef PTE_ATOMIC_UPDATES
513 	__asm__ __volatile__(
514 	"1:	ldarx	%0,0,%3\n\
515 		andi.	%1,%0,%6\n\
516 		bne-	1b \n\
517 		andc	%1,%0,%4 \n\
518 		stdcx.	%1,0,%3 \n\
519 		bne-	1b"
520 	: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
521 	: "r" (pmdp), "r" (clr), "m" (*pmdp), "i" (_PAGE_BUSY)
522 	: "cc" );
523 #else
524 	old = pmd_val(*pmdp);
525 	*pmdp = __pmd(old & ~clr);
526 #endif
527 	if (old & _PAGE_HASHPTE)
528 		hpte_do_hugepage_flush(mm, addr, pmdp);
529 	return old;
530 }
531 
532 pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
533 		       pmd_t *pmdp)
534 {
535 	pmd_t pmd;
536 
537 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
538 	if (pmd_trans_huge(*pmdp)) {
539 		pmd = pmdp_get_and_clear(vma->vm_mm, address, pmdp);
540 	} else {
541 		/*
542 		 * khugepaged calls this for normal pmd
543 		 */
544 		pmd = *pmdp;
545 		pmd_clear(pmdp);
546 		/*
547 		 * Wait for all pending hash_page to finish. This is needed
548 		 * in case of subpage collapse. When we collapse normal pages
549 		 * to hugepage, we first clear the pmd, then invalidate all
550 		 * the PTE entries. The assumption here is that any low level
551 		 * page fault will see a none pmd and take the slow path that
552 		 * will wait on mmap_sem. But we could very well be in a
553 		 * hash_page with local ptep pointer value. Such a hash page
554 		 * can result in adding new HPTE entries for normal subpages.
555 		 * That means we could be modifying the page content as we
556 		 * copy them to a huge page. So wait for parallel hash_page
557 		 * to finish before invalidating HPTE entries. We can do this
558 		 * by sending an IPI to all the cpus and executing a dummy
559 		 * function there.
560 		 */
561 		kick_all_cpus_sync();
562 		/*
563 		 * Now invalidate the hpte entries in the range
564 		 * covered by pmd. This make sure we take a
565 		 * fault and will find the pmd as none, which will
566 		 * result in a major fault which takes mmap_sem and
567 		 * hence wait for collapse to complete. Without this
568 		 * the __collapse_huge_page_copy can result in copying
569 		 * the old content.
570 		 */
571 		flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
572 	}
573 	return pmd;
574 }
575 
576 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
577 			      unsigned long address, pmd_t *pmdp)
578 {
579 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
580 }
581 
582 /*
583  * We currently remove entries from the hashtable regardless of whether
584  * the entry was young or dirty. The generic routines only flush if the
585  * entry was young or dirty which is not good enough.
586  *
587  * We should be more intelligent about this but for the moment we override
588  * these functions and force a tlb flush unconditionally
589  */
590 int pmdp_clear_flush_young(struct vm_area_struct *vma,
591 				  unsigned long address, pmd_t *pmdp)
592 {
593 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
594 }
595 
596 /*
597  * We mark the pmd splitting and invalidate all the hpte
598  * entries for this hugepage.
599  */
600 void pmdp_splitting_flush(struct vm_area_struct *vma,
601 			  unsigned long address, pmd_t *pmdp)
602 {
603 	unsigned long old, tmp;
604 
605 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
606 
607 #ifdef CONFIG_DEBUG_VM
608 	WARN_ON(!pmd_trans_huge(*pmdp));
609 	assert_spin_locked(&vma->vm_mm->page_table_lock);
610 #endif
611 
612 #ifdef PTE_ATOMIC_UPDATES
613 
614 	__asm__ __volatile__(
615 	"1:	ldarx	%0,0,%3\n\
616 		andi.	%1,%0,%6\n\
617 		bne-	1b \n\
618 		ori	%1,%0,%4 \n\
619 		stdcx.	%1,0,%3 \n\
620 		bne-	1b"
621 	: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
622 	: "r" (pmdp), "i" (_PAGE_SPLITTING), "m" (*pmdp), "i" (_PAGE_BUSY)
623 	: "cc" );
624 #else
625 	old = pmd_val(*pmdp);
626 	*pmdp = __pmd(old | _PAGE_SPLITTING);
627 #endif
628 	/*
629 	 * If we didn't had the splitting flag set, go and flush the
630 	 * HPTE entries.
631 	 */
632 	if (!(old & _PAGE_SPLITTING)) {
633 		/* We need to flush the hpte */
634 		if (old & _PAGE_HASHPTE)
635 			hpte_do_hugepage_flush(vma->vm_mm, address, pmdp);
636 	}
637 }
638 
639 /*
640  * We want to put the pgtable in pmd and use pgtable for tracking
641  * the base page size hptes
642  */
643 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
644 				pgtable_t pgtable)
645 {
646 	pgtable_t *pgtable_slot;
647 	assert_spin_locked(&mm->page_table_lock);
648 	/*
649 	 * we store the pgtable in the second half of PMD
650 	 */
651 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
652 	*pgtable_slot = pgtable;
653 	/*
654 	 * expose the deposited pgtable to other cpus.
655 	 * before we set the hugepage PTE at pmd level
656 	 * hash fault code looks at the deposted pgtable
657 	 * to store hash index values.
658 	 */
659 	smp_wmb();
660 }
661 
662 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
663 {
664 	pgtable_t pgtable;
665 	pgtable_t *pgtable_slot;
666 
667 	assert_spin_locked(&mm->page_table_lock);
668 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
669 	pgtable = *pgtable_slot;
670 	/*
671 	 * Once we withdraw, mark the entry NULL.
672 	 */
673 	*pgtable_slot = NULL;
674 	/*
675 	 * We store HPTE information in the deposited PTE fragment.
676 	 * zero out the content on withdraw.
677 	 */
678 	memset(pgtable, 0, PTE_FRAG_SIZE);
679 	return pgtable;
680 }
681 
682 /*
683  * set a new huge pmd. We should not be called for updating
684  * an existing pmd entry. That should go via pmd_hugepage_update.
685  */
686 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
687 		pmd_t *pmdp, pmd_t pmd)
688 {
689 #ifdef CONFIG_DEBUG_VM
690 	WARN_ON(!pmd_none(*pmdp));
691 	assert_spin_locked(&mm->page_table_lock);
692 	WARN_ON(!pmd_trans_huge(pmd));
693 #endif
694 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
695 }
696 
697 void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
698 		     pmd_t *pmdp)
699 {
700 	pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT);
701 }
702 
703 /*
704  * A linux hugepage PMD was changed and the corresponding hash table entries
705  * neesd to be flushed.
706  */
707 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
708 			    pmd_t *pmdp)
709 {
710 	int ssize, i;
711 	unsigned long s_addr;
712 	int max_hpte_count;
713 	unsigned int psize, valid;
714 	unsigned char *hpte_slot_array;
715 	unsigned long hidx, vpn, vsid, hash, shift, slot;
716 
717 	/*
718 	 * Flush all the hptes mapping this hugepage
719 	 */
720 	s_addr = addr & HPAGE_PMD_MASK;
721 	hpte_slot_array = get_hpte_slot_array(pmdp);
722 	/*
723 	 * IF we try to do a HUGE PTE update after a withdraw is done.
724 	 * we will find the below NULL. This happens when we do
725 	 * split_huge_page_pmd
726 	 */
727 	if (!hpte_slot_array)
728 		return;
729 
730 	/* get the base page size */
731 	psize = get_slice_psize(mm, s_addr);
732 
733 	if (ppc_md.hugepage_invalidate)
734 		return ppc_md.hugepage_invalidate(mm, hpte_slot_array,
735 						  s_addr, psize);
736 	/*
737 	 * No bluk hpte removal support, invalidate each entry
738 	 */
739 	shift = mmu_psize_defs[psize].shift;
740 	max_hpte_count = HPAGE_PMD_SIZE >> shift;
741 	for (i = 0; i < max_hpte_count; i++) {
742 		/*
743 		 * 8 bits per each hpte entries
744 		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
745 		 */
746 		valid = hpte_valid(hpte_slot_array, i);
747 		if (!valid)
748 			continue;
749 		hidx =  hpte_hash_index(hpte_slot_array, i);
750 
751 		/* get the vpn */
752 		addr = s_addr + (i * (1ul << shift));
753 		if (!is_kernel_addr(addr)) {
754 			ssize = user_segment_size(addr);
755 			vsid = get_vsid(mm->context.id, addr, ssize);
756 			WARN_ON(vsid == 0);
757 		} else {
758 			vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
759 			ssize = mmu_kernel_ssize;
760 		}
761 
762 		vpn = hpt_vpn(addr, vsid, ssize);
763 		hash = hpt_hash(vpn, shift, ssize);
764 		if (hidx & _PTEIDX_SECONDARY)
765 			hash = ~hash;
766 
767 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
768 		slot += hidx & _PTEIDX_GROUP_IX;
769 		ppc_md.hpte_invalidate(slot, vpn, psize,
770 				       MMU_PAGE_16M, ssize, 0);
771 	}
772 }
773 
774 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
775 {
776 	pmd_val(pmd) |= pgprot_val(pgprot);
777 	return pmd;
778 }
779 
780 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
781 {
782 	pmd_t pmd;
783 	/*
784 	 * For a valid pte, we would have _PAGE_PRESENT or _PAGE_FILE always
785 	 * set. We use this to check THP page at pmd level.
786 	 * leaf pte for huge page, bottom two bits != 00
787 	 */
788 	pmd_val(pmd) = pfn << PTE_RPN_SHIFT;
789 	pmd_val(pmd) |= _PAGE_THP_HUGE;
790 	pmd = pmd_set_protbits(pmd, pgprot);
791 	return pmd;
792 }
793 
794 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
795 {
796 	return pfn_pmd(page_to_pfn(page), pgprot);
797 }
798 
799 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
800 {
801 
802 	pmd_val(pmd) &= _HPAGE_CHG_MASK;
803 	pmd = pmd_set_protbits(pmd, newprot);
804 	return pmd;
805 }
806 
807 /*
808  * This is called at the end of handling a user page fault, when the
809  * fault has been handled by updating a HUGE PMD entry in the linux page tables.
810  * We use it to preload an HPTE into the hash table corresponding to
811  * the updated linux HUGE PMD entry.
812  */
813 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
814 			  pmd_t *pmd)
815 {
816 	return;
817 }
818 
819 pmd_t pmdp_get_and_clear(struct mm_struct *mm,
820 			 unsigned long addr, pmd_t *pmdp)
821 {
822 	pmd_t old_pmd;
823 	pgtable_t pgtable;
824 	unsigned long old;
825 	pgtable_t *pgtable_slot;
826 
827 	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL);
828 	old_pmd = __pmd(old);
829 	/*
830 	 * We have pmd == none and we are holding page_table_lock.
831 	 * So we can safely go and clear the pgtable hash
832 	 * index info.
833 	 */
834 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
835 	pgtable = *pgtable_slot;
836 	/*
837 	 * Let's zero out old valid and hash index details
838 	 * hash fault look at them.
839 	 */
840 	memset(pgtable, 0, PTE_FRAG_SIZE);
841 	return old_pmd;
842 }
843 
844 int has_transparent_hugepage(void)
845 {
846 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
847 		return 0;
848 	/*
849 	 * We support THP only if PMD_SIZE is 16MB.
850 	 */
851 	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
852 		return 0;
853 	/*
854 	 * We need to make sure that we support 16MB hugepage in a segement
855 	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
856 	 * of 64K.
857 	 */
858 	/*
859 	 * If we have 64K HPTE, we will be using that by default
860 	 */
861 	if (mmu_psize_defs[MMU_PAGE_64K].shift &&
862 	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
863 		return 0;
864 	/*
865 	 * Ok we only have 4K HPTE
866 	 */
867 	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
868 		return 0;
869 
870 	return 1;
871 }
872 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
873