1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Handling Page Tables through page fragments 5 * 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/gfp.h> 10 #include <linux/mm.h> 11 #include <linux/percpu.h> 12 #include <linux/hardirq.h> 13 #include <linux/hugetlb.h> 14 #include <asm/pgalloc.h> 15 #include <asm/tlbflush.h> 16 #include <asm/tlb.h> 17 18 void pte_frag_destroy(void *pte_frag) 19 { 20 int count; 21 struct page *page; 22 23 page = virt_to_page(pte_frag); 24 /* drop all the pending references */ 25 count = ((unsigned long)pte_frag & ~PAGE_MASK) >> PTE_FRAG_SIZE_SHIFT; 26 /* We allow PTE_FRAG_NR fragments from a PTE page */ 27 if (atomic_sub_and_test(PTE_FRAG_NR - count, &page->pt_frag_refcount)) { 28 pgtable_pte_page_dtor(page); 29 __free_page(page); 30 } 31 } 32 33 static pte_t *get_pte_from_cache(struct mm_struct *mm) 34 { 35 void *pte_frag, *ret; 36 37 if (PTE_FRAG_NR == 1) 38 return NULL; 39 40 spin_lock(&mm->page_table_lock); 41 ret = pte_frag_get(&mm->context); 42 if (ret) { 43 pte_frag = ret + PTE_FRAG_SIZE; 44 /* 45 * If we have taken up all the fragments mark PTE page NULL 46 */ 47 if (((unsigned long)pte_frag & ~PAGE_MASK) == 0) 48 pte_frag = NULL; 49 pte_frag_set(&mm->context, pte_frag); 50 } 51 spin_unlock(&mm->page_table_lock); 52 return (pte_t *)ret; 53 } 54 55 static pte_t *__alloc_for_ptecache(struct mm_struct *mm, int kernel) 56 { 57 void *ret = NULL; 58 struct page *page; 59 60 if (!kernel) { 61 page = alloc_page(PGALLOC_GFP | __GFP_ACCOUNT); 62 if (!page) 63 return NULL; 64 if (!pgtable_pte_page_ctor(page)) { 65 __free_page(page); 66 return NULL; 67 } 68 } else { 69 page = alloc_page(PGALLOC_GFP); 70 if (!page) 71 return NULL; 72 } 73 74 atomic_set(&page->pt_frag_refcount, 1); 75 76 ret = page_address(page); 77 /* 78 * if we support only one fragment just return the 79 * allocated page. 80 */ 81 if (PTE_FRAG_NR == 1) 82 return ret; 83 spin_lock(&mm->page_table_lock); 84 /* 85 * If we find pgtable_page set, we return 86 * the allocated page with single fragment 87 * count. 88 */ 89 if (likely(!pte_frag_get(&mm->context))) { 90 atomic_set(&page->pt_frag_refcount, PTE_FRAG_NR); 91 pte_frag_set(&mm->context, ret + PTE_FRAG_SIZE); 92 } 93 spin_unlock(&mm->page_table_lock); 94 95 return (pte_t *)ret; 96 } 97 98 pte_t *pte_fragment_alloc(struct mm_struct *mm, int kernel) 99 { 100 pte_t *pte; 101 102 pte = get_pte_from_cache(mm); 103 if (pte) 104 return pte; 105 106 return __alloc_for_ptecache(mm, kernel); 107 } 108 109 static void pte_free_now(struct rcu_head *head) 110 { 111 struct page *page; 112 113 page = container_of(head, struct page, rcu_head); 114 pgtable_pte_page_dtor(page); 115 __free_page(page); 116 } 117 118 void pte_fragment_free(unsigned long *table, int kernel) 119 { 120 struct page *page = virt_to_page(table); 121 122 if (PageReserved(page)) 123 return free_reserved_page(page); 124 125 BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0); 126 if (atomic_dec_and_test(&page->pt_frag_refcount)) { 127 if (kernel) 128 __free_page(page); 129 else if (TestClearPageActive(page)) 130 call_rcu(&page->rcu_head, pte_free_now); 131 else 132 pte_free_now(&page->rcu_head); 133 } 134 } 135 136 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 137 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable) 138 { 139 struct page *page; 140 141 page = virt_to_page(pgtable); 142 SetPageActive(page); 143 pte_fragment_free((unsigned long *)pgtable, 0); 144 } 145 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 146