1 /* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/threads.h> 12 #include <linux/bootmem.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/mmzone.h> 16 #include <linux/export.h> 17 #include <linux/nodemask.h> 18 #include <linux/cpu.h> 19 #include <linux/notifier.h> 20 #include <linux/memblock.h> 21 #include <linux/of.h> 22 #include <linux/pfn.h> 23 #include <linux/cpuset.h> 24 #include <linux/node.h> 25 #include <linux/stop_machine.h> 26 #include <linux/proc_fs.h> 27 #include <linux/seq_file.h> 28 #include <linux/uaccess.h> 29 #include <linux/slab.h> 30 #include <asm/sparsemem.h> 31 #include <asm/prom.h> 32 #include <asm/smp.h> 33 #include <asm/firmware.h> 34 #include <asm/paca.h> 35 #include <asm/hvcall.h> 36 #include <asm/setup.h> 37 #include <asm/vdso.h> 38 39 static int numa_enabled = 1; 40 41 static char *cmdline __initdata; 42 43 static int numa_debug; 44 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 45 46 int numa_cpu_lookup_table[NR_CPUS]; 47 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 48 struct pglist_data *node_data[MAX_NUMNODES]; 49 50 EXPORT_SYMBOL(numa_cpu_lookup_table); 51 EXPORT_SYMBOL(node_to_cpumask_map); 52 EXPORT_SYMBOL(node_data); 53 54 static int min_common_depth; 55 static int n_mem_addr_cells, n_mem_size_cells; 56 static int form1_affinity; 57 58 #define MAX_DISTANCE_REF_POINTS 4 59 static int distance_ref_points_depth; 60 static const unsigned int *distance_ref_points; 61 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 62 63 /* 64 * Allocate node_to_cpumask_map based on number of available nodes 65 * Requires node_possible_map to be valid. 66 * 67 * Note: cpumask_of_node() is not valid until after this is done. 68 */ 69 static void __init setup_node_to_cpumask_map(void) 70 { 71 unsigned int node; 72 73 /* setup nr_node_ids if not done yet */ 74 if (nr_node_ids == MAX_NUMNODES) 75 setup_nr_node_ids(); 76 77 /* allocate the map */ 78 for (node = 0; node < nr_node_ids; node++) 79 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 80 81 /* cpumask_of_node() will now work */ 82 dbg("Node to cpumask map for %d nodes\n", nr_node_ids); 83 } 84 85 static int __init fake_numa_create_new_node(unsigned long end_pfn, 86 unsigned int *nid) 87 { 88 unsigned long long mem; 89 char *p = cmdline; 90 static unsigned int fake_nid; 91 static unsigned long long curr_boundary; 92 93 /* 94 * Modify node id, iff we started creating NUMA nodes 95 * We want to continue from where we left of the last time 96 */ 97 if (fake_nid) 98 *nid = fake_nid; 99 /* 100 * In case there are no more arguments to parse, the 101 * node_id should be the same as the last fake node id 102 * (we've handled this above). 103 */ 104 if (!p) 105 return 0; 106 107 mem = memparse(p, &p); 108 if (!mem) 109 return 0; 110 111 if (mem < curr_boundary) 112 return 0; 113 114 curr_boundary = mem; 115 116 if ((end_pfn << PAGE_SHIFT) > mem) { 117 /* 118 * Skip commas and spaces 119 */ 120 while (*p == ',' || *p == ' ' || *p == '\t') 121 p++; 122 123 cmdline = p; 124 fake_nid++; 125 *nid = fake_nid; 126 dbg("created new fake_node with id %d\n", fake_nid); 127 return 1; 128 } 129 return 0; 130 } 131 132 /* 133 * get_node_active_region - Return active region containing pfn 134 * Active range returned is empty if none found. 135 * @pfn: The page to return the region for 136 * @node_ar: Returned set to the active region containing @pfn 137 */ 138 static void __init get_node_active_region(unsigned long pfn, 139 struct node_active_region *node_ar) 140 { 141 unsigned long start_pfn, end_pfn; 142 int i, nid; 143 144 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 145 if (pfn >= start_pfn && pfn < end_pfn) { 146 node_ar->nid = nid; 147 node_ar->start_pfn = start_pfn; 148 node_ar->end_pfn = end_pfn; 149 break; 150 } 151 } 152 } 153 154 static void map_cpu_to_node(int cpu, int node) 155 { 156 numa_cpu_lookup_table[cpu] = node; 157 158 dbg("adding cpu %d to node %d\n", cpu, node); 159 160 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) 161 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 162 } 163 164 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 165 static void unmap_cpu_from_node(unsigned long cpu) 166 { 167 int node = numa_cpu_lookup_table[cpu]; 168 169 dbg("removing cpu %lu from node %d\n", cpu, node); 170 171 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 172 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 173 } else { 174 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 175 cpu, node); 176 } 177 } 178 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 179 180 /* must hold reference to node during call */ 181 static const int *of_get_associativity(struct device_node *dev) 182 { 183 return of_get_property(dev, "ibm,associativity", NULL); 184 } 185 186 /* 187 * Returns the property linux,drconf-usable-memory if 188 * it exists (the property exists only in kexec/kdump kernels, 189 * added by kexec-tools) 190 */ 191 static const u32 *of_get_usable_memory(struct device_node *memory) 192 { 193 const u32 *prop; 194 u32 len; 195 prop = of_get_property(memory, "linux,drconf-usable-memory", &len); 196 if (!prop || len < sizeof(unsigned int)) 197 return 0; 198 return prop; 199 } 200 201 int __node_distance(int a, int b) 202 { 203 int i; 204 int distance = LOCAL_DISTANCE; 205 206 if (!form1_affinity) 207 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); 208 209 for (i = 0; i < distance_ref_points_depth; i++) { 210 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 211 break; 212 213 /* Double the distance for each NUMA level */ 214 distance *= 2; 215 } 216 217 return distance; 218 } 219 220 static void initialize_distance_lookup_table(int nid, 221 const unsigned int *associativity) 222 { 223 int i; 224 225 if (!form1_affinity) 226 return; 227 228 for (i = 0; i < distance_ref_points_depth; i++) { 229 distance_lookup_table[nid][i] = 230 associativity[distance_ref_points[i]]; 231 } 232 } 233 234 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa 235 * info is found. 236 */ 237 static int associativity_to_nid(const unsigned int *associativity) 238 { 239 int nid = -1; 240 241 if (min_common_depth == -1) 242 goto out; 243 244 if (associativity[0] >= min_common_depth) 245 nid = associativity[min_common_depth]; 246 247 /* POWER4 LPAR uses 0xffff as invalid node */ 248 if (nid == 0xffff || nid >= MAX_NUMNODES) 249 nid = -1; 250 251 if (nid > 0 && associativity[0] >= distance_ref_points_depth) 252 initialize_distance_lookup_table(nid, associativity); 253 254 out: 255 return nid; 256 } 257 258 /* Returns the nid associated with the given device tree node, 259 * or -1 if not found. 260 */ 261 static int of_node_to_nid_single(struct device_node *device) 262 { 263 int nid = -1; 264 const unsigned int *tmp; 265 266 tmp = of_get_associativity(device); 267 if (tmp) 268 nid = associativity_to_nid(tmp); 269 return nid; 270 } 271 272 /* Walk the device tree upwards, looking for an associativity id */ 273 int of_node_to_nid(struct device_node *device) 274 { 275 struct device_node *tmp; 276 int nid = -1; 277 278 of_node_get(device); 279 while (device) { 280 nid = of_node_to_nid_single(device); 281 if (nid != -1) 282 break; 283 284 tmp = device; 285 device = of_get_parent(tmp); 286 of_node_put(tmp); 287 } 288 of_node_put(device); 289 290 return nid; 291 } 292 EXPORT_SYMBOL_GPL(of_node_to_nid); 293 294 static int __init find_min_common_depth(void) 295 { 296 int depth; 297 struct device_node *root; 298 299 if (firmware_has_feature(FW_FEATURE_OPAL)) 300 root = of_find_node_by_path("/ibm,opal"); 301 else 302 root = of_find_node_by_path("/rtas"); 303 if (!root) 304 root = of_find_node_by_path("/"); 305 306 /* 307 * This property is a set of 32-bit integers, each representing 308 * an index into the ibm,associativity nodes. 309 * 310 * With form 0 affinity the first integer is for an SMP configuration 311 * (should be all 0's) and the second is for a normal NUMA 312 * configuration. We have only one level of NUMA. 313 * 314 * With form 1 affinity the first integer is the most significant 315 * NUMA boundary and the following are progressively less significant 316 * boundaries. There can be more than one level of NUMA. 317 */ 318 distance_ref_points = of_get_property(root, 319 "ibm,associativity-reference-points", 320 &distance_ref_points_depth); 321 322 if (!distance_ref_points) { 323 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 324 goto err; 325 } 326 327 distance_ref_points_depth /= sizeof(int); 328 329 if (firmware_has_feature(FW_FEATURE_OPAL) || 330 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { 331 dbg("Using form 1 affinity\n"); 332 form1_affinity = 1; 333 } 334 335 if (form1_affinity) { 336 depth = distance_ref_points[0]; 337 } else { 338 if (distance_ref_points_depth < 2) { 339 printk(KERN_WARNING "NUMA: " 340 "short ibm,associativity-reference-points\n"); 341 goto err; 342 } 343 344 depth = distance_ref_points[1]; 345 } 346 347 /* 348 * Warn and cap if the hardware supports more than 349 * MAX_DISTANCE_REF_POINTS domains. 350 */ 351 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 352 printk(KERN_WARNING "NUMA: distance array capped at " 353 "%d entries\n", MAX_DISTANCE_REF_POINTS); 354 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 355 } 356 357 of_node_put(root); 358 return depth; 359 360 err: 361 of_node_put(root); 362 return -1; 363 } 364 365 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 366 { 367 struct device_node *memory = NULL; 368 369 memory = of_find_node_by_type(memory, "memory"); 370 if (!memory) 371 panic("numa.c: No memory nodes found!"); 372 373 *n_addr_cells = of_n_addr_cells(memory); 374 *n_size_cells = of_n_size_cells(memory); 375 of_node_put(memory); 376 } 377 378 static unsigned long read_n_cells(int n, const unsigned int **buf) 379 { 380 unsigned long result = 0; 381 382 while (n--) { 383 result = (result << 32) | **buf; 384 (*buf)++; 385 } 386 return result; 387 } 388 389 /* 390 * Read the next memblock list entry from the ibm,dynamic-memory property 391 * and return the information in the provided of_drconf_cell structure. 392 */ 393 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp) 394 { 395 const u32 *cp; 396 397 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); 398 399 cp = *cellp; 400 drmem->drc_index = cp[0]; 401 drmem->reserved = cp[1]; 402 drmem->aa_index = cp[2]; 403 drmem->flags = cp[3]; 404 405 *cellp = cp + 4; 406 } 407 408 /* 409 * Retrieve and validate the ibm,dynamic-memory property of the device tree. 410 * 411 * The layout of the ibm,dynamic-memory property is a number N of memblock 412 * list entries followed by N memblock list entries. Each memblock list entry 413 * contains information as laid out in the of_drconf_cell struct above. 414 */ 415 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm) 416 { 417 const u32 *prop; 418 u32 len, entries; 419 420 prop = of_get_property(memory, "ibm,dynamic-memory", &len); 421 if (!prop || len < sizeof(unsigned int)) 422 return 0; 423 424 entries = *prop++; 425 426 /* Now that we know the number of entries, revalidate the size 427 * of the property read in to ensure we have everything 428 */ 429 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) 430 return 0; 431 432 *dm = prop; 433 return entries; 434 } 435 436 /* 437 * Retrieve and validate the ibm,lmb-size property for drconf memory 438 * from the device tree. 439 */ 440 static u64 of_get_lmb_size(struct device_node *memory) 441 { 442 const u32 *prop; 443 u32 len; 444 445 prop = of_get_property(memory, "ibm,lmb-size", &len); 446 if (!prop || len < sizeof(unsigned int)) 447 return 0; 448 449 return read_n_cells(n_mem_size_cells, &prop); 450 } 451 452 struct assoc_arrays { 453 u32 n_arrays; 454 u32 array_sz; 455 const u32 *arrays; 456 }; 457 458 /* 459 * Retrieve and validate the list of associativity arrays for drconf 460 * memory from the ibm,associativity-lookup-arrays property of the 461 * device tree.. 462 * 463 * The layout of the ibm,associativity-lookup-arrays property is a number N 464 * indicating the number of associativity arrays, followed by a number M 465 * indicating the size of each associativity array, followed by a list 466 * of N associativity arrays. 467 */ 468 static int of_get_assoc_arrays(struct device_node *memory, 469 struct assoc_arrays *aa) 470 { 471 const u32 *prop; 472 u32 len; 473 474 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 475 if (!prop || len < 2 * sizeof(unsigned int)) 476 return -1; 477 478 aa->n_arrays = *prop++; 479 aa->array_sz = *prop++; 480 481 /* Now that we know the number of arrays and size of each array, 482 * revalidate the size of the property read in. 483 */ 484 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 485 return -1; 486 487 aa->arrays = prop; 488 return 0; 489 } 490 491 /* 492 * This is like of_node_to_nid_single() for memory represented in the 493 * ibm,dynamic-reconfiguration-memory node. 494 */ 495 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, 496 struct assoc_arrays *aa) 497 { 498 int default_nid = 0; 499 int nid = default_nid; 500 int index; 501 502 if (min_common_depth > 0 && min_common_depth <= aa->array_sz && 503 !(drmem->flags & DRCONF_MEM_AI_INVALID) && 504 drmem->aa_index < aa->n_arrays) { 505 index = drmem->aa_index * aa->array_sz + min_common_depth - 1; 506 nid = aa->arrays[index]; 507 508 if (nid == 0xffff || nid >= MAX_NUMNODES) 509 nid = default_nid; 510 } 511 512 return nid; 513 } 514 515 /* 516 * Figure out to which domain a cpu belongs and stick it there. 517 * Return the id of the domain used. 518 */ 519 static int __cpuinit numa_setup_cpu(unsigned long lcpu) 520 { 521 int nid = 0; 522 struct device_node *cpu = of_get_cpu_node(lcpu, NULL); 523 524 if (!cpu) { 525 WARN_ON(1); 526 goto out; 527 } 528 529 nid = of_node_to_nid_single(cpu); 530 531 if (nid < 0 || !node_online(nid)) 532 nid = first_online_node; 533 out: 534 map_cpu_to_node(lcpu, nid); 535 536 of_node_put(cpu); 537 538 return nid; 539 } 540 541 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb, 542 unsigned long action, 543 void *hcpu) 544 { 545 unsigned long lcpu = (unsigned long)hcpu; 546 int ret = NOTIFY_DONE; 547 548 switch (action) { 549 case CPU_UP_PREPARE: 550 case CPU_UP_PREPARE_FROZEN: 551 numa_setup_cpu(lcpu); 552 ret = NOTIFY_OK; 553 break; 554 #ifdef CONFIG_HOTPLUG_CPU 555 case CPU_DEAD: 556 case CPU_DEAD_FROZEN: 557 case CPU_UP_CANCELED: 558 case CPU_UP_CANCELED_FROZEN: 559 unmap_cpu_from_node(lcpu); 560 break; 561 ret = NOTIFY_OK; 562 #endif 563 } 564 return ret; 565 } 566 567 /* 568 * Check and possibly modify a memory region to enforce the memory limit. 569 * 570 * Returns the size the region should have to enforce the memory limit. 571 * This will either be the original value of size, a truncated value, 572 * or zero. If the returned value of size is 0 the region should be 573 * discarded as it lies wholly above the memory limit. 574 */ 575 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 576 unsigned long size) 577 { 578 /* 579 * We use memblock_end_of_DRAM() in here instead of memory_limit because 580 * we've already adjusted it for the limit and it takes care of 581 * having memory holes below the limit. Also, in the case of 582 * iommu_is_off, memory_limit is not set but is implicitly enforced. 583 */ 584 585 if (start + size <= memblock_end_of_DRAM()) 586 return size; 587 588 if (start >= memblock_end_of_DRAM()) 589 return 0; 590 591 return memblock_end_of_DRAM() - start; 592 } 593 594 /* 595 * Reads the counter for a given entry in 596 * linux,drconf-usable-memory property 597 */ 598 static inline int __init read_usm_ranges(const u32 **usm) 599 { 600 /* 601 * For each lmb in ibm,dynamic-memory a corresponding 602 * entry in linux,drconf-usable-memory property contains 603 * a counter followed by that many (base, size) duple. 604 * read the counter from linux,drconf-usable-memory 605 */ 606 return read_n_cells(n_mem_size_cells, usm); 607 } 608 609 /* 610 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 611 * node. This assumes n_mem_{addr,size}_cells have been set. 612 */ 613 static void __init parse_drconf_memory(struct device_node *memory) 614 { 615 const u32 *uninitialized_var(dm), *usm; 616 unsigned int n, rc, ranges, is_kexec_kdump = 0; 617 unsigned long lmb_size, base, size, sz; 618 int nid; 619 struct assoc_arrays aa = { .arrays = NULL }; 620 621 n = of_get_drconf_memory(memory, &dm); 622 if (!n) 623 return; 624 625 lmb_size = of_get_lmb_size(memory); 626 if (!lmb_size) 627 return; 628 629 rc = of_get_assoc_arrays(memory, &aa); 630 if (rc) 631 return; 632 633 /* check if this is a kexec/kdump kernel */ 634 usm = of_get_usable_memory(memory); 635 if (usm != NULL) 636 is_kexec_kdump = 1; 637 638 for (; n != 0; --n) { 639 struct of_drconf_cell drmem; 640 641 read_drconf_cell(&drmem, &dm); 642 643 /* skip this block if the reserved bit is set in flags (0x80) 644 or if the block is not assigned to this partition (0x8) */ 645 if ((drmem.flags & DRCONF_MEM_RESERVED) 646 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 647 continue; 648 649 base = drmem.base_addr; 650 size = lmb_size; 651 ranges = 1; 652 653 if (is_kexec_kdump) { 654 ranges = read_usm_ranges(&usm); 655 if (!ranges) /* there are no (base, size) duple */ 656 continue; 657 } 658 do { 659 if (is_kexec_kdump) { 660 base = read_n_cells(n_mem_addr_cells, &usm); 661 size = read_n_cells(n_mem_size_cells, &usm); 662 } 663 nid = of_drconf_to_nid_single(&drmem, &aa); 664 fake_numa_create_new_node( 665 ((base + size) >> PAGE_SHIFT), 666 &nid); 667 node_set_online(nid); 668 sz = numa_enforce_memory_limit(base, size); 669 if (sz) 670 memblock_set_node(base, sz, nid); 671 } while (--ranges); 672 } 673 } 674 675 static int __init parse_numa_properties(void) 676 { 677 struct device_node *memory; 678 int default_nid = 0; 679 unsigned long i; 680 681 if (numa_enabled == 0) { 682 printk(KERN_WARNING "NUMA disabled by user\n"); 683 return -1; 684 } 685 686 min_common_depth = find_min_common_depth(); 687 688 if (min_common_depth < 0) 689 return min_common_depth; 690 691 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 692 693 /* 694 * Even though we connect cpus to numa domains later in SMP 695 * init, we need to know the node ids now. This is because 696 * each node to be onlined must have NODE_DATA etc backing it. 697 */ 698 for_each_present_cpu(i) { 699 struct device_node *cpu; 700 int nid; 701 702 cpu = of_get_cpu_node(i, NULL); 703 BUG_ON(!cpu); 704 nid = of_node_to_nid_single(cpu); 705 of_node_put(cpu); 706 707 /* 708 * Don't fall back to default_nid yet -- we will plug 709 * cpus into nodes once the memory scan has discovered 710 * the topology. 711 */ 712 if (nid < 0) 713 continue; 714 node_set_online(nid); 715 } 716 717 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 718 719 for_each_node_by_type(memory, "memory") { 720 unsigned long start; 721 unsigned long size; 722 int nid; 723 int ranges; 724 const unsigned int *memcell_buf; 725 unsigned int len; 726 727 memcell_buf = of_get_property(memory, 728 "linux,usable-memory", &len); 729 if (!memcell_buf || len <= 0) 730 memcell_buf = of_get_property(memory, "reg", &len); 731 if (!memcell_buf || len <= 0) 732 continue; 733 734 /* ranges in cell */ 735 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 736 new_range: 737 /* these are order-sensitive, and modify the buffer pointer */ 738 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 739 size = read_n_cells(n_mem_size_cells, &memcell_buf); 740 741 /* 742 * Assumption: either all memory nodes or none will 743 * have associativity properties. If none, then 744 * everything goes to default_nid. 745 */ 746 nid = of_node_to_nid_single(memory); 747 if (nid < 0) 748 nid = default_nid; 749 750 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 751 node_set_online(nid); 752 753 if (!(size = numa_enforce_memory_limit(start, size))) { 754 if (--ranges) 755 goto new_range; 756 else 757 continue; 758 } 759 760 memblock_set_node(start, size, nid); 761 762 if (--ranges) 763 goto new_range; 764 } 765 766 /* 767 * Now do the same thing for each MEMBLOCK listed in the 768 * ibm,dynamic-memory property in the 769 * ibm,dynamic-reconfiguration-memory node. 770 */ 771 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 772 if (memory) 773 parse_drconf_memory(memory); 774 775 return 0; 776 } 777 778 static void __init setup_nonnuma(void) 779 { 780 unsigned long top_of_ram = memblock_end_of_DRAM(); 781 unsigned long total_ram = memblock_phys_mem_size(); 782 unsigned long start_pfn, end_pfn; 783 unsigned int nid = 0; 784 struct memblock_region *reg; 785 786 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 787 top_of_ram, total_ram); 788 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 789 (top_of_ram - total_ram) >> 20); 790 791 for_each_memblock(memory, reg) { 792 start_pfn = memblock_region_memory_base_pfn(reg); 793 end_pfn = memblock_region_memory_end_pfn(reg); 794 795 fake_numa_create_new_node(end_pfn, &nid); 796 memblock_set_node(PFN_PHYS(start_pfn), 797 PFN_PHYS(end_pfn - start_pfn), nid); 798 node_set_online(nid); 799 } 800 } 801 802 void __init dump_numa_cpu_topology(void) 803 { 804 unsigned int node; 805 unsigned int cpu, count; 806 807 if (min_common_depth == -1 || !numa_enabled) 808 return; 809 810 for_each_online_node(node) { 811 printk(KERN_DEBUG "Node %d CPUs:", node); 812 813 count = 0; 814 /* 815 * If we used a CPU iterator here we would miss printing 816 * the holes in the cpumap. 817 */ 818 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 819 if (cpumask_test_cpu(cpu, 820 node_to_cpumask_map[node])) { 821 if (count == 0) 822 printk(" %u", cpu); 823 ++count; 824 } else { 825 if (count > 1) 826 printk("-%u", cpu - 1); 827 count = 0; 828 } 829 } 830 831 if (count > 1) 832 printk("-%u", nr_cpu_ids - 1); 833 printk("\n"); 834 } 835 } 836 837 static void __init dump_numa_memory_topology(void) 838 { 839 unsigned int node; 840 unsigned int count; 841 842 if (min_common_depth == -1 || !numa_enabled) 843 return; 844 845 for_each_online_node(node) { 846 unsigned long i; 847 848 printk(KERN_DEBUG "Node %d Memory:", node); 849 850 count = 0; 851 852 for (i = 0; i < memblock_end_of_DRAM(); 853 i += (1 << SECTION_SIZE_BITS)) { 854 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { 855 if (count == 0) 856 printk(" 0x%lx", i); 857 ++count; 858 } else { 859 if (count > 0) 860 printk("-0x%lx", i); 861 count = 0; 862 } 863 } 864 865 if (count > 0) 866 printk("-0x%lx", i); 867 printk("\n"); 868 } 869 } 870 871 /* 872 * Allocate some memory, satisfying the memblock or bootmem allocator where 873 * required. nid is the preferred node and end is the physical address of 874 * the highest address in the node. 875 * 876 * Returns the virtual address of the memory. 877 */ 878 static void __init *careful_zallocation(int nid, unsigned long size, 879 unsigned long align, 880 unsigned long end_pfn) 881 { 882 void *ret; 883 int new_nid; 884 unsigned long ret_paddr; 885 886 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT); 887 888 /* retry over all memory */ 889 if (!ret_paddr) 890 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM()); 891 892 if (!ret_paddr) 893 panic("numa.c: cannot allocate %lu bytes for node %d", 894 size, nid); 895 896 ret = __va(ret_paddr); 897 898 /* 899 * We initialize the nodes in numeric order: 0, 1, 2... 900 * and hand over control from the MEMBLOCK allocator to the 901 * bootmem allocator. If this function is called for 902 * node 5, then we know that all nodes <5 are using the 903 * bootmem allocator instead of the MEMBLOCK allocator. 904 * 905 * So, check the nid from which this allocation came 906 * and double check to see if we need to use bootmem 907 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory 908 * since it would be useless. 909 */ 910 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT); 911 if (new_nid < nid) { 912 ret = __alloc_bootmem_node(NODE_DATA(new_nid), 913 size, align, 0); 914 915 dbg("alloc_bootmem %p %lx\n", ret, size); 916 } 917 918 memset(ret, 0, size); 919 return ret; 920 } 921 922 static struct notifier_block __cpuinitdata ppc64_numa_nb = { 923 .notifier_call = cpu_numa_callback, 924 .priority = 1 /* Must run before sched domains notifier. */ 925 }; 926 927 static void __init mark_reserved_regions_for_nid(int nid) 928 { 929 struct pglist_data *node = NODE_DATA(nid); 930 struct memblock_region *reg; 931 932 for_each_memblock(reserved, reg) { 933 unsigned long physbase = reg->base; 934 unsigned long size = reg->size; 935 unsigned long start_pfn = physbase >> PAGE_SHIFT; 936 unsigned long end_pfn = PFN_UP(physbase + size); 937 struct node_active_region node_ar; 938 unsigned long node_end_pfn = node->node_start_pfn + 939 node->node_spanned_pages; 940 941 /* 942 * Check to make sure that this memblock.reserved area is 943 * within the bounds of the node that we care about. 944 * Checking the nid of the start and end points is not 945 * sufficient because the reserved area could span the 946 * entire node. 947 */ 948 if (end_pfn <= node->node_start_pfn || 949 start_pfn >= node_end_pfn) 950 continue; 951 952 get_node_active_region(start_pfn, &node_ar); 953 while (start_pfn < end_pfn && 954 node_ar.start_pfn < node_ar.end_pfn) { 955 unsigned long reserve_size = size; 956 /* 957 * if reserved region extends past active region 958 * then trim size to active region 959 */ 960 if (end_pfn > node_ar.end_pfn) 961 reserve_size = (node_ar.end_pfn << PAGE_SHIFT) 962 - physbase; 963 /* 964 * Only worry about *this* node, others may not 965 * yet have valid NODE_DATA(). 966 */ 967 if (node_ar.nid == nid) { 968 dbg("reserve_bootmem %lx %lx nid=%d\n", 969 physbase, reserve_size, node_ar.nid); 970 reserve_bootmem_node(NODE_DATA(node_ar.nid), 971 physbase, reserve_size, 972 BOOTMEM_DEFAULT); 973 } 974 /* 975 * if reserved region is contained in the active region 976 * then done. 977 */ 978 if (end_pfn <= node_ar.end_pfn) 979 break; 980 981 /* 982 * reserved region extends past the active region 983 * get next active region that contains this 984 * reserved region 985 */ 986 start_pfn = node_ar.end_pfn; 987 physbase = start_pfn << PAGE_SHIFT; 988 size = size - reserve_size; 989 get_node_active_region(start_pfn, &node_ar); 990 } 991 } 992 } 993 994 995 void __init do_init_bootmem(void) 996 { 997 int nid; 998 999 min_low_pfn = 0; 1000 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1001 max_pfn = max_low_pfn; 1002 1003 if (parse_numa_properties()) 1004 setup_nonnuma(); 1005 else 1006 dump_numa_memory_topology(); 1007 1008 for_each_online_node(nid) { 1009 unsigned long start_pfn, end_pfn; 1010 void *bootmem_vaddr; 1011 unsigned long bootmap_pages; 1012 1013 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1014 1015 /* 1016 * Allocate the node structure node local if possible 1017 * 1018 * Be careful moving this around, as it relies on all 1019 * previous nodes' bootmem to be initialized and have 1020 * all reserved areas marked. 1021 */ 1022 NODE_DATA(nid) = careful_zallocation(nid, 1023 sizeof(struct pglist_data), 1024 SMP_CACHE_BYTES, end_pfn); 1025 1026 dbg("node %d\n", nid); 1027 dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); 1028 1029 NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; 1030 NODE_DATA(nid)->node_start_pfn = start_pfn; 1031 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; 1032 1033 if (NODE_DATA(nid)->node_spanned_pages == 0) 1034 continue; 1035 1036 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); 1037 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); 1038 1039 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); 1040 bootmem_vaddr = careful_zallocation(nid, 1041 bootmap_pages << PAGE_SHIFT, 1042 PAGE_SIZE, end_pfn); 1043 1044 dbg("bootmap_vaddr = %p\n", bootmem_vaddr); 1045 1046 init_bootmem_node(NODE_DATA(nid), 1047 __pa(bootmem_vaddr) >> PAGE_SHIFT, 1048 start_pfn, end_pfn); 1049 1050 free_bootmem_with_active_regions(nid, end_pfn); 1051 /* 1052 * Be very careful about moving this around. Future 1053 * calls to careful_zallocation() depend on this getting 1054 * done correctly. 1055 */ 1056 mark_reserved_regions_for_nid(nid); 1057 sparse_memory_present_with_active_regions(nid); 1058 } 1059 1060 init_bootmem_done = 1; 1061 1062 /* 1063 * Now bootmem is initialised we can create the node to cpumask 1064 * lookup tables and setup the cpu callback to populate them. 1065 */ 1066 setup_node_to_cpumask_map(); 1067 1068 register_cpu_notifier(&ppc64_numa_nb); 1069 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, 1070 (void *)(unsigned long)boot_cpuid); 1071 } 1072 1073 void __init paging_init(void) 1074 { 1075 unsigned long max_zone_pfns[MAX_NR_ZONES]; 1076 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 1077 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT; 1078 free_area_init_nodes(max_zone_pfns); 1079 } 1080 1081 static int __init early_numa(char *p) 1082 { 1083 if (!p) 1084 return 0; 1085 1086 if (strstr(p, "off")) 1087 numa_enabled = 0; 1088 1089 if (strstr(p, "debug")) 1090 numa_debug = 1; 1091 1092 p = strstr(p, "fake="); 1093 if (p) 1094 cmdline = p + strlen("fake="); 1095 1096 return 0; 1097 } 1098 early_param("numa", early_numa); 1099 1100 #ifdef CONFIG_MEMORY_HOTPLUG 1101 /* 1102 * Find the node associated with a hot added memory section for 1103 * memory represented in the device tree by the property 1104 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 1105 */ 1106 static int hot_add_drconf_scn_to_nid(struct device_node *memory, 1107 unsigned long scn_addr) 1108 { 1109 const u32 *dm; 1110 unsigned int drconf_cell_cnt, rc; 1111 unsigned long lmb_size; 1112 struct assoc_arrays aa; 1113 int nid = -1; 1114 1115 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1116 if (!drconf_cell_cnt) 1117 return -1; 1118 1119 lmb_size = of_get_lmb_size(memory); 1120 if (!lmb_size) 1121 return -1; 1122 1123 rc = of_get_assoc_arrays(memory, &aa); 1124 if (rc) 1125 return -1; 1126 1127 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { 1128 struct of_drconf_cell drmem; 1129 1130 read_drconf_cell(&drmem, &dm); 1131 1132 /* skip this block if it is reserved or not assigned to 1133 * this partition */ 1134 if ((drmem.flags & DRCONF_MEM_RESERVED) 1135 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 1136 continue; 1137 1138 if ((scn_addr < drmem.base_addr) 1139 || (scn_addr >= (drmem.base_addr + lmb_size))) 1140 continue; 1141 1142 nid = of_drconf_to_nid_single(&drmem, &aa); 1143 break; 1144 } 1145 1146 return nid; 1147 } 1148 1149 /* 1150 * Find the node associated with a hot added memory section for memory 1151 * represented in the device tree as a node (i.e. memory@XXXX) for 1152 * each memblock. 1153 */ 1154 int hot_add_node_scn_to_nid(unsigned long scn_addr) 1155 { 1156 struct device_node *memory; 1157 int nid = -1; 1158 1159 for_each_node_by_type(memory, "memory") { 1160 unsigned long start, size; 1161 int ranges; 1162 const unsigned int *memcell_buf; 1163 unsigned int len; 1164 1165 memcell_buf = of_get_property(memory, "reg", &len); 1166 if (!memcell_buf || len <= 0) 1167 continue; 1168 1169 /* ranges in cell */ 1170 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 1171 1172 while (ranges--) { 1173 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 1174 size = read_n_cells(n_mem_size_cells, &memcell_buf); 1175 1176 if ((scn_addr < start) || (scn_addr >= (start + size))) 1177 continue; 1178 1179 nid = of_node_to_nid_single(memory); 1180 break; 1181 } 1182 1183 if (nid >= 0) 1184 break; 1185 } 1186 1187 of_node_put(memory); 1188 1189 return nid; 1190 } 1191 1192 /* 1193 * Find the node associated with a hot added memory section. Section 1194 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1195 * sections are fully contained within a single MEMBLOCK. 1196 */ 1197 int hot_add_scn_to_nid(unsigned long scn_addr) 1198 { 1199 struct device_node *memory = NULL; 1200 int nid, found = 0; 1201 1202 if (!numa_enabled || (min_common_depth < 0)) 1203 return first_online_node; 1204 1205 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1206 if (memory) { 1207 nid = hot_add_drconf_scn_to_nid(memory, scn_addr); 1208 of_node_put(memory); 1209 } else { 1210 nid = hot_add_node_scn_to_nid(scn_addr); 1211 } 1212 1213 if (nid < 0 || !node_online(nid)) 1214 nid = first_online_node; 1215 1216 if (NODE_DATA(nid)->node_spanned_pages) 1217 return nid; 1218 1219 for_each_online_node(nid) { 1220 if (NODE_DATA(nid)->node_spanned_pages) { 1221 found = 1; 1222 break; 1223 } 1224 } 1225 1226 BUG_ON(!found); 1227 return nid; 1228 } 1229 1230 static u64 hot_add_drconf_memory_max(void) 1231 { 1232 struct device_node *memory = NULL; 1233 unsigned int drconf_cell_cnt = 0; 1234 u64 lmb_size = 0; 1235 const u32 *dm = 0; 1236 1237 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1238 if (memory) { 1239 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1240 lmb_size = of_get_lmb_size(memory); 1241 of_node_put(memory); 1242 } 1243 return lmb_size * drconf_cell_cnt; 1244 } 1245 1246 /* 1247 * memory_hotplug_max - return max address of memory that may be added 1248 * 1249 * This is currently only used on systems that support drconfig memory 1250 * hotplug. 1251 */ 1252 u64 memory_hotplug_max(void) 1253 { 1254 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1255 } 1256 #endif /* CONFIG_MEMORY_HOTPLUG */ 1257 1258 /* Virtual Processor Home Node (VPHN) support */ 1259 #ifdef CONFIG_PPC_SPLPAR 1260 struct topology_update_data { 1261 struct topology_update_data *next; 1262 unsigned int cpu; 1263 int old_nid; 1264 int new_nid; 1265 }; 1266 1267 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; 1268 static cpumask_t cpu_associativity_changes_mask; 1269 static int vphn_enabled; 1270 static int prrn_enabled; 1271 static void reset_topology_timer(void); 1272 1273 /* 1274 * Store the current values of the associativity change counters in the 1275 * hypervisor. 1276 */ 1277 static void setup_cpu_associativity_change_counters(void) 1278 { 1279 int cpu; 1280 1281 /* The VPHN feature supports a maximum of 8 reference points */ 1282 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); 1283 1284 for_each_possible_cpu(cpu) { 1285 int i; 1286 u8 *counts = vphn_cpu_change_counts[cpu]; 1287 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1288 1289 for (i = 0; i < distance_ref_points_depth; i++) 1290 counts[i] = hypervisor_counts[i]; 1291 } 1292 } 1293 1294 /* 1295 * The hypervisor maintains a set of 8 associativity change counters in 1296 * the VPA of each cpu that correspond to the associativity levels in the 1297 * ibm,associativity-reference-points property. When an associativity 1298 * level changes, the corresponding counter is incremented. 1299 * 1300 * Set a bit in cpu_associativity_changes_mask for each cpu whose home 1301 * node associativity levels have changed. 1302 * 1303 * Returns the number of cpus with unhandled associativity changes. 1304 */ 1305 static int update_cpu_associativity_changes_mask(void) 1306 { 1307 int cpu; 1308 cpumask_t *changes = &cpu_associativity_changes_mask; 1309 1310 for_each_possible_cpu(cpu) { 1311 int i, changed = 0; 1312 u8 *counts = vphn_cpu_change_counts[cpu]; 1313 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1314 1315 for (i = 0; i < distance_ref_points_depth; i++) { 1316 if (hypervisor_counts[i] != counts[i]) { 1317 counts[i] = hypervisor_counts[i]; 1318 changed = 1; 1319 } 1320 } 1321 if (changed) { 1322 cpumask_set_cpu(cpu, changes); 1323 } 1324 } 1325 1326 return cpumask_weight(changes); 1327 } 1328 1329 /* 1330 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form 1331 * the complete property we have to add the length in the first cell. 1332 */ 1333 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1) 1334 1335 /* 1336 * Convert the associativity domain numbers returned from the hypervisor 1337 * to the sequence they would appear in the ibm,associativity property. 1338 */ 1339 static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked) 1340 { 1341 int i, nr_assoc_doms = 0; 1342 const u16 *field = (const u16*) packed; 1343 1344 #define VPHN_FIELD_UNUSED (0xffff) 1345 #define VPHN_FIELD_MSB (0x8000) 1346 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB) 1347 1348 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) { 1349 if (*field == VPHN_FIELD_UNUSED) { 1350 /* All significant fields processed, and remaining 1351 * fields contain the reserved value of all 1's. 1352 * Just store them. 1353 */ 1354 unpacked[i] = *((u32*)field); 1355 field += 2; 1356 } else if (*field & VPHN_FIELD_MSB) { 1357 /* Data is in the lower 15 bits of this field */ 1358 unpacked[i] = *field & VPHN_FIELD_MASK; 1359 field++; 1360 nr_assoc_doms++; 1361 } else { 1362 /* Data is in the lower 15 bits of this field 1363 * concatenated with the next 16 bit field 1364 */ 1365 unpacked[i] = *((u32*)field); 1366 field += 2; 1367 nr_assoc_doms++; 1368 } 1369 } 1370 1371 /* The first cell contains the length of the property */ 1372 unpacked[0] = nr_assoc_doms; 1373 1374 return nr_assoc_doms; 1375 } 1376 1377 /* 1378 * Retrieve the new associativity information for a virtual processor's 1379 * home node. 1380 */ 1381 static long hcall_vphn(unsigned long cpu, unsigned int *associativity) 1382 { 1383 long rc; 1384 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; 1385 u64 flags = 1; 1386 int hwcpu = get_hard_smp_processor_id(cpu); 1387 1388 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); 1389 vphn_unpack_associativity(retbuf, associativity); 1390 1391 return rc; 1392 } 1393 1394 static long vphn_get_associativity(unsigned long cpu, 1395 unsigned int *associativity) 1396 { 1397 long rc; 1398 1399 rc = hcall_vphn(cpu, associativity); 1400 1401 switch (rc) { 1402 case H_FUNCTION: 1403 printk(KERN_INFO 1404 "VPHN is not supported. Disabling polling...\n"); 1405 stop_topology_update(); 1406 break; 1407 case H_HARDWARE: 1408 printk(KERN_ERR 1409 "hcall_vphn() experienced a hardware fault " 1410 "preventing VPHN. Disabling polling...\n"); 1411 stop_topology_update(); 1412 } 1413 1414 return rc; 1415 } 1416 1417 /* 1418 * Update the CPU maps and sysfs entries for a single CPU when its NUMA 1419 * characteristics change. This function doesn't perform any locking and is 1420 * only safe to call from stop_machine(). 1421 */ 1422 static int update_cpu_topology(void *data) 1423 { 1424 struct topology_update_data *update; 1425 unsigned long cpu; 1426 1427 if (!data) 1428 return -EINVAL; 1429 1430 cpu = get_cpu(); 1431 1432 for (update = data; update; update = update->next) { 1433 if (cpu != update->cpu) 1434 continue; 1435 1436 unregister_cpu_under_node(update->cpu, update->old_nid); 1437 unmap_cpu_from_node(update->cpu); 1438 map_cpu_to_node(update->cpu, update->new_nid); 1439 vdso_getcpu_init(); 1440 register_cpu_under_node(update->cpu, update->new_nid); 1441 } 1442 1443 return 0; 1444 } 1445 1446 /* 1447 * Update the node maps and sysfs entries for each cpu whose home node 1448 * has changed. Returns 1 when the topology has changed, and 0 otherwise. 1449 */ 1450 int arch_update_cpu_topology(void) 1451 { 1452 unsigned int cpu, changed = 0; 1453 struct topology_update_data *updates, *ud; 1454 unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1455 cpumask_t updated_cpus; 1456 struct device *dev; 1457 int weight, i = 0; 1458 1459 weight = cpumask_weight(&cpu_associativity_changes_mask); 1460 if (!weight) 1461 return 0; 1462 1463 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL); 1464 if (!updates) 1465 return 0; 1466 1467 cpumask_clear(&updated_cpus); 1468 1469 for_each_cpu(cpu, &cpu_associativity_changes_mask) { 1470 ud = &updates[i++]; 1471 ud->cpu = cpu; 1472 vphn_get_associativity(cpu, associativity); 1473 ud->new_nid = associativity_to_nid(associativity); 1474 1475 if (ud->new_nid < 0 || !node_online(ud->new_nid)) 1476 ud->new_nid = first_online_node; 1477 1478 ud->old_nid = numa_cpu_lookup_table[cpu]; 1479 cpumask_set_cpu(cpu, &updated_cpus); 1480 1481 if (i < weight) 1482 ud->next = &updates[i]; 1483 } 1484 1485 stop_machine(update_cpu_topology, &updates[0], &updated_cpus); 1486 1487 for (ud = &updates[0]; ud; ud = ud->next) { 1488 dev = get_cpu_device(ud->cpu); 1489 if (dev) 1490 kobject_uevent(&dev->kobj, KOBJ_CHANGE); 1491 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask); 1492 changed = 1; 1493 } 1494 1495 kfree(updates); 1496 return changed; 1497 } 1498 1499 static void topology_work_fn(struct work_struct *work) 1500 { 1501 rebuild_sched_domains(); 1502 } 1503 static DECLARE_WORK(topology_work, topology_work_fn); 1504 1505 void topology_schedule_update(void) 1506 { 1507 schedule_work(&topology_work); 1508 } 1509 1510 static void topology_timer_fn(unsigned long ignored) 1511 { 1512 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask)) 1513 topology_schedule_update(); 1514 else if (vphn_enabled) { 1515 if (update_cpu_associativity_changes_mask() > 0) 1516 topology_schedule_update(); 1517 reset_topology_timer(); 1518 } 1519 } 1520 static struct timer_list topology_timer = 1521 TIMER_INITIALIZER(topology_timer_fn, 0, 0); 1522 1523 static void reset_topology_timer(void) 1524 { 1525 topology_timer.data = 0; 1526 topology_timer.expires = jiffies + 60 * HZ; 1527 mod_timer(&topology_timer, topology_timer.expires); 1528 } 1529 1530 #ifdef CONFIG_SMP 1531 1532 static void stage_topology_update(int core_id) 1533 { 1534 cpumask_or(&cpu_associativity_changes_mask, 1535 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id)); 1536 reset_topology_timer(); 1537 } 1538 1539 static int dt_update_callback(struct notifier_block *nb, 1540 unsigned long action, void *data) 1541 { 1542 struct of_prop_reconfig *update; 1543 int rc = NOTIFY_DONE; 1544 1545 switch (action) { 1546 case OF_RECONFIG_UPDATE_PROPERTY: 1547 update = (struct of_prop_reconfig *)data; 1548 if (!of_prop_cmp(update->dn->type, "cpu") && 1549 !of_prop_cmp(update->prop->name, "ibm,associativity")) { 1550 u32 core_id; 1551 of_property_read_u32(update->dn, "reg", &core_id); 1552 stage_topology_update(core_id); 1553 rc = NOTIFY_OK; 1554 } 1555 break; 1556 } 1557 1558 return rc; 1559 } 1560 1561 static struct notifier_block dt_update_nb = { 1562 .notifier_call = dt_update_callback, 1563 }; 1564 1565 #endif 1566 1567 /* 1568 * Start polling for associativity changes. 1569 */ 1570 int start_topology_update(void) 1571 { 1572 int rc = 0; 1573 1574 if (firmware_has_feature(FW_FEATURE_PRRN)) { 1575 if (!prrn_enabled) { 1576 prrn_enabled = 1; 1577 vphn_enabled = 0; 1578 #ifdef CONFIG_SMP 1579 rc = of_reconfig_notifier_register(&dt_update_nb); 1580 #endif 1581 } 1582 } else if (firmware_has_feature(FW_FEATURE_VPHN) && 1583 get_lppaca()->shared_proc) { 1584 if (!vphn_enabled) { 1585 prrn_enabled = 0; 1586 vphn_enabled = 1; 1587 setup_cpu_associativity_change_counters(); 1588 init_timer_deferrable(&topology_timer); 1589 reset_topology_timer(); 1590 } 1591 } 1592 1593 return rc; 1594 } 1595 1596 /* 1597 * Disable polling for VPHN associativity changes. 1598 */ 1599 int stop_topology_update(void) 1600 { 1601 int rc = 0; 1602 1603 if (prrn_enabled) { 1604 prrn_enabled = 0; 1605 #ifdef CONFIG_SMP 1606 rc = of_reconfig_notifier_unregister(&dt_update_nb); 1607 #endif 1608 } else if (vphn_enabled) { 1609 vphn_enabled = 0; 1610 rc = del_timer_sync(&topology_timer); 1611 } 1612 1613 return rc; 1614 } 1615 1616 int prrn_is_enabled(void) 1617 { 1618 return prrn_enabled; 1619 } 1620 1621 static int topology_read(struct seq_file *file, void *v) 1622 { 1623 if (vphn_enabled || prrn_enabled) 1624 seq_puts(file, "on\n"); 1625 else 1626 seq_puts(file, "off\n"); 1627 1628 return 0; 1629 } 1630 1631 static int topology_open(struct inode *inode, struct file *file) 1632 { 1633 return single_open(file, topology_read, NULL); 1634 } 1635 1636 static ssize_t topology_write(struct file *file, const char __user *buf, 1637 size_t count, loff_t *off) 1638 { 1639 char kbuf[4]; /* "on" or "off" plus null. */ 1640 int read_len; 1641 1642 read_len = count < 3 ? count : 3; 1643 if (copy_from_user(kbuf, buf, read_len)) 1644 return -EINVAL; 1645 1646 kbuf[read_len] = '\0'; 1647 1648 if (!strncmp(kbuf, "on", 2)) 1649 start_topology_update(); 1650 else if (!strncmp(kbuf, "off", 3)) 1651 stop_topology_update(); 1652 else 1653 return -EINVAL; 1654 1655 return count; 1656 } 1657 1658 static const struct file_operations topology_ops = { 1659 .read = seq_read, 1660 .write = topology_write, 1661 .open = topology_open, 1662 .release = single_release 1663 }; 1664 1665 static int topology_update_init(void) 1666 { 1667 start_topology_update(); 1668 proc_create("powerpc/topology_updates", 644, NULL, &topology_ops); 1669 1670 return 0; 1671 } 1672 device_initcall(topology_update_init); 1673 #endif /* CONFIG_PPC_SPLPAR */ 1674