xref: /openbmc/linux/arch/powerpc/mm/numa.c (revision efdbd7345f8836f7495f3ac6ee237d86cb3bb6b0)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #define pr_fmt(fmt) "numa: " fmt
12 
13 #include <linux/threads.h>
14 #include <linux/bootmem.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/mmzone.h>
18 #include <linux/export.h>
19 #include <linux/nodemask.h>
20 #include <linux/cpu.h>
21 #include <linux/notifier.h>
22 #include <linux/memblock.h>
23 #include <linux/of.h>
24 #include <linux/pfn.h>
25 #include <linux/cpuset.h>
26 #include <linux/node.h>
27 #include <linux/stop_machine.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/uaccess.h>
31 #include <linux/slab.h>
32 #include <asm/cputhreads.h>
33 #include <asm/sparsemem.h>
34 #include <asm/prom.h>
35 #include <asm/smp.h>
36 #include <asm/cputhreads.h>
37 #include <asm/topology.h>
38 #include <asm/firmware.h>
39 #include <asm/paca.h>
40 #include <asm/hvcall.h>
41 #include <asm/setup.h>
42 #include <asm/vdso.h>
43 
44 static int numa_enabled = 1;
45 
46 static char *cmdline __initdata;
47 
48 static int numa_debug;
49 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
50 
51 int numa_cpu_lookup_table[NR_CPUS];
52 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
53 struct pglist_data *node_data[MAX_NUMNODES];
54 
55 EXPORT_SYMBOL(numa_cpu_lookup_table);
56 EXPORT_SYMBOL(node_to_cpumask_map);
57 EXPORT_SYMBOL(node_data);
58 
59 static int min_common_depth;
60 static int n_mem_addr_cells, n_mem_size_cells;
61 static int form1_affinity;
62 
63 #define MAX_DISTANCE_REF_POINTS 4
64 static int distance_ref_points_depth;
65 static const __be32 *distance_ref_points;
66 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
67 
68 /*
69  * Allocate node_to_cpumask_map based on number of available nodes
70  * Requires node_possible_map to be valid.
71  *
72  * Note: cpumask_of_node() is not valid until after this is done.
73  */
74 static void __init setup_node_to_cpumask_map(void)
75 {
76 	unsigned int node;
77 
78 	/* setup nr_node_ids if not done yet */
79 	if (nr_node_ids == MAX_NUMNODES)
80 		setup_nr_node_ids();
81 
82 	/* allocate the map */
83 	for (node = 0; node < nr_node_ids; node++)
84 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
85 
86 	/* cpumask_of_node() will now work */
87 	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
88 }
89 
90 static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 						unsigned int *nid)
92 {
93 	unsigned long long mem;
94 	char *p = cmdline;
95 	static unsigned int fake_nid;
96 	static unsigned long long curr_boundary;
97 
98 	/*
99 	 * Modify node id, iff we started creating NUMA nodes
100 	 * We want to continue from where we left of the last time
101 	 */
102 	if (fake_nid)
103 		*nid = fake_nid;
104 	/*
105 	 * In case there are no more arguments to parse, the
106 	 * node_id should be the same as the last fake node id
107 	 * (we've handled this above).
108 	 */
109 	if (!p)
110 		return 0;
111 
112 	mem = memparse(p, &p);
113 	if (!mem)
114 		return 0;
115 
116 	if (mem < curr_boundary)
117 		return 0;
118 
119 	curr_boundary = mem;
120 
121 	if ((end_pfn << PAGE_SHIFT) > mem) {
122 		/*
123 		 * Skip commas and spaces
124 		 */
125 		while (*p == ',' || *p == ' ' || *p == '\t')
126 			p++;
127 
128 		cmdline = p;
129 		fake_nid++;
130 		*nid = fake_nid;
131 		dbg("created new fake_node with id %d\n", fake_nid);
132 		return 1;
133 	}
134 	return 0;
135 }
136 
137 static void reset_numa_cpu_lookup_table(void)
138 {
139 	unsigned int cpu;
140 
141 	for_each_possible_cpu(cpu)
142 		numa_cpu_lookup_table[cpu] = -1;
143 }
144 
145 static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
146 {
147 	numa_cpu_lookup_table[cpu] = node;
148 }
149 
150 static void map_cpu_to_node(int cpu, int node)
151 {
152 	update_numa_cpu_lookup_table(cpu, node);
153 
154 	dbg("adding cpu %d to node %d\n", cpu, node);
155 
156 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
157 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
158 }
159 
160 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
161 static void unmap_cpu_from_node(unsigned long cpu)
162 {
163 	int node = numa_cpu_lookup_table[cpu];
164 
165 	dbg("removing cpu %lu from node %d\n", cpu, node);
166 
167 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
168 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
169 	} else {
170 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
171 		       cpu, node);
172 	}
173 }
174 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
175 
176 /* must hold reference to node during call */
177 static const __be32 *of_get_associativity(struct device_node *dev)
178 {
179 	return of_get_property(dev, "ibm,associativity", NULL);
180 }
181 
182 /*
183  * Returns the property linux,drconf-usable-memory if
184  * it exists (the property exists only in kexec/kdump kernels,
185  * added by kexec-tools)
186  */
187 static const __be32 *of_get_usable_memory(struct device_node *memory)
188 {
189 	const __be32 *prop;
190 	u32 len;
191 	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
192 	if (!prop || len < sizeof(unsigned int))
193 		return NULL;
194 	return prop;
195 }
196 
197 int __node_distance(int a, int b)
198 {
199 	int i;
200 	int distance = LOCAL_DISTANCE;
201 
202 	if (!form1_affinity)
203 		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
204 
205 	for (i = 0; i < distance_ref_points_depth; i++) {
206 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
207 			break;
208 
209 		/* Double the distance for each NUMA level */
210 		distance *= 2;
211 	}
212 
213 	return distance;
214 }
215 EXPORT_SYMBOL(__node_distance);
216 
217 static void initialize_distance_lookup_table(int nid,
218 		const __be32 *associativity)
219 {
220 	int i;
221 
222 	if (!form1_affinity)
223 		return;
224 
225 	for (i = 0; i < distance_ref_points_depth; i++) {
226 		const __be32 *entry;
227 
228 		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
229 		distance_lookup_table[nid][i] = of_read_number(entry, 1);
230 	}
231 }
232 
233 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
234  * info is found.
235  */
236 static int associativity_to_nid(const __be32 *associativity)
237 {
238 	int nid = -1;
239 
240 	if (min_common_depth == -1)
241 		goto out;
242 
243 	if (of_read_number(associativity, 1) >= min_common_depth)
244 		nid = of_read_number(&associativity[min_common_depth], 1);
245 
246 	/* POWER4 LPAR uses 0xffff as invalid node */
247 	if (nid == 0xffff || nid >= MAX_NUMNODES)
248 		nid = -1;
249 
250 	if (nid > 0 &&
251 		of_read_number(associativity, 1) >= distance_ref_points_depth) {
252 		/*
253 		 * Skip the length field and send start of associativity array
254 		 */
255 		initialize_distance_lookup_table(nid, associativity + 1);
256 	}
257 
258 out:
259 	return nid;
260 }
261 
262 /* Returns the nid associated with the given device tree node,
263  * or -1 if not found.
264  */
265 static int of_node_to_nid_single(struct device_node *device)
266 {
267 	int nid = -1;
268 	const __be32 *tmp;
269 
270 	tmp = of_get_associativity(device);
271 	if (tmp)
272 		nid = associativity_to_nid(tmp);
273 	return nid;
274 }
275 
276 /* Walk the device tree upwards, looking for an associativity id */
277 int of_node_to_nid(struct device_node *device)
278 {
279 	struct device_node *tmp;
280 	int nid = -1;
281 
282 	of_node_get(device);
283 	while (device) {
284 		nid = of_node_to_nid_single(device);
285 		if (nid != -1)
286 			break;
287 
288 	        tmp = device;
289 		device = of_get_parent(tmp);
290 		of_node_put(tmp);
291 	}
292 	of_node_put(device);
293 
294 	return nid;
295 }
296 EXPORT_SYMBOL_GPL(of_node_to_nid);
297 
298 static int __init find_min_common_depth(void)
299 {
300 	int depth;
301 	struct device_node *root;
302 
303 	if (firmware_has_feature(FW_FEATURE_OPAL))
304 		root = of_find_node_by_path("/ibm,opal");
305 	else
306 		root = of_find_node_by_path("/rtas");
307 	if (!root)
308 		root = of_find_node_by_path("/");
309 
310 	/*
311 	 * This property is a set of 32-bit integers, each representing
312 	 * an index into the ibm,associativity nodes.
313 	 *
314 	 * With form 0 affinity the first integer is for an SMP configuration
315 	 * (should be all 0's) and the second is for a normal NUMA
316 	 * configuration. We have only one level of NUMA.
317 	 *
318 	 * With form 1 affinity the first integer is the most significant
319 	 * NUMA boundary and the following are progressively less significant
320 	 * boundaries. There can be more than one level of NUMA.
321 	 */
322 	distance_ref_points = of_get_property(root,
323 					"ibm,associativity-reference-points",
324 					&distance_ref_points_depth);
325 
326 	if (!distance_ref_points) {
327 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
328 		goto err;
329 	}
330 
331 	distance_ref_points_depth /= sizeof(int);
332 
333 	if (firmware_has_feature(FW_FEATURE_OPAL) ||
334 	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
335 		dbg("Using form 1 affinity\n");
336 		form1_affinity = 1;
337 	}
338 
339 	if (form1_affinity) {
340 		depth = of_read_number(distance_ref_points, 1);
341 	} else {
342 		if (distance_ref_points_depth < 2) {
343 			printk(KERN_WARNING "NUMA: "
344 				"short ibm,associativity-reference-points\n");
345 			goto err;
346 		}
347 
348 		depth = of_read_number(&distance_ref_points[1], 1);
349 	}
350 
351 	/*
352 	 * Warn and cap if the hardware supports more than
353 	 * MAX_DISTANCE_REF_POINTS domains.
354 	 */
355 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
356 		printk(KERN_WARNING "NUMA: distance array capped at "
357 			"%d entries\n", MAX_DISTANCE_REF_POINTS);
358 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
359 	}
360 
361 	of_node_put(root);
362 	return depth;
363 
364 err:
365 	of_node_put(root);
366 	return -1;
367 }
368 
369 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
370 {
371 	struct device_node *memory = NULL;
372 
373 	memory = of_find_node_by_type(memory, "memory");
374 	if (!memory)
375 		panic("numa.c: No memory nodes found!");
376 
377 	*n_addr_cells = of_n_addr_cells(memory);
378 	*n_size_cells = of_n_size_cells(memory);
379 	of_node_put(memory);
380 }
381 
382 static unsigned long read_n_cells(int n, const __be32 **buf)
383 {
384 	unsigned long result = 0;
385 
386 	while (n--) {
387 		result = (result << 32) | of_read_number(*buf, 1);
388 		(*buf)++;
389 	}
390 	return result;
391 }
392 
393 /*
394  * Read the next memblock list entry from the ibm,dynamic-memory property
395  * and return the information in the provided of_drconf_cell structure.
396  */
397 static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
398 {
399 	const __be32 *cp;
400 
401 	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
402 
403 	cp = *cellp;
404 	drmem->drc_index = of_read_number(cp, 1);
405 	drmem->reserved = of_read_number(&cp[1], 1);
406 	drmem->aa_index = of_read_number(&cp[2], 1);
407 	drmem->flags = of_read_number(&cp[3], 1);
408 
409 	*cellp = cp + 4;
410 }
411 
412 /*
413  * Retrieve and validate the ibm,dynamic-memory property of the device tree.
414  *
415  * The layout of the ibm,dynamic-memory property is a number N of memblock
416  * list entries followed by N memblock list entries.  Each memblock list entry
417  * contains information as laid out in the of_drconf_cell struct above.
418  */
419 static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
420 {
421 	const __be32 *prop;
422 	u32 len, entries;
423 
424 	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
425 	if (!prop || len < sizeof(unsigned int))
426 		return 0;
427 
428 	entries = of_read_number(prop++, 1);
429 
430 	/* Now that we know the number of entries, revalidate the size
431 	 * of the property read in to ensure we have everything
432 	 */
433 	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
434 		return 0;
435 
436 	*dm = prop;
437 	return entries;
438 }
439 
440 /*
441  * Retrieve and validate the ibm,lmb-size property for drconf memory
442  * from the device tree.
443  */
444 static u64 of_get_lmb_size(struct device_node *memory)
445 {
446 	const __be32 *prop;
447 	u32 len;
448 
449 	prop = of_get_property(memory, "ibm,lmb-size", &len);
450 	if (!prop || len < sizeof(unsigned int))
451 		return 0;
452 
453 	return read_n_cells(n_mem_size_cells, &prop);
454 }
455 
456 struct assoc_arrays {
457 	u32	n_arrays;
458 	u32	array_sz;
459 	const __be32 *arrays;
460 };
461 
462 /*
463  * Retrieve and validate the list of associativity arrays for drconf
464  * memory from the ibm,associativity-lookup-arrays property of the
465  * device tree..
466  *
467  * The layout of the ibm,associativity-lookup-arrays property is a number N
468  * indicating the number of associativity arrays, followed by a number M
469  * indicating the size of each associativity array, followed by a list
470  * of N associativity arrays.
471  */
472 static int of_get_assoc_arrays(struct device_node *memory,
473 			       struct assoc_arrays *aa)
474 {
475 	const __be32 *prop;
476 	u32 len;
477 
478 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
479 	if (!prop || len < 2 * sizeof(unsigned int))
480 		return -1;
481 
482 	aa->n_arrays = of_read_number(prop++, 1);
483 	aa->array_sz = of_read_number(prop++, 1);
484 
485 	/* Now that we know the number of arrays and size of each array,
486 	 * revalidate the size of the property read in.
487 	 */
488 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
489 		return -1;
490 
491 	aa->arrays = prop;
492 	return 0;
493 }
494 
495 /*
496  * This is like of_node_to_nid_single() for memory represented in the
497  * ibm,dynamic-reconfiguration-memory node.
498  */
499 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
500 				   struct assoc_arrays *aa)
501 {
502 	int default_nid = 0;
503 	int nid = default_nid;
504 	int index;
505 
506 	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
507 	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
508 	    drmem->aa_index < aa->n_arrays) {
509 		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
510 		nid = of_read_number(&aa->arrays[index], 1);
511 
512 		if (nid == 0xffff || nid >= MAX_NUMNODES)
513 			nid = default_nid;
514 
515 		if (nid > 0) {
516 			index = drmem->aa_index * aa->array_sz;
517 			initialize_distance_lookup_table(nid,
518 							&aa->arrays[index]);
519 		}
520 	}
521 
522 	return nid;
523 }
524 
525 /*
526  * Figure out to which domain a cpu belongs and stick it there.
527  * Return the id of the domain used.
528  */
529 static int numa_setup_cpu(unsigned long lcpu)
530 {
531 	int nid = -1;
532 	struct device_node *cpu;
533 
534 	/*
535 	 * If a valid cpu-to-node mapping is already available, use it
536 	 * directly instead of querying the firmware, since it represents
537 	 * the most recent mapping notified to us by the platform (eg: VPHN).
538 	 */
539 	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
540 		map_cpu_to_node(lcpu, nid);
541 		return nid;
542 	}
543 
544 	cpu = of_get_cpu_node(lcpu, NULL);
545 
546 	if (!cpu) {
547 		WARN_ON(1);
548 		if (cpu_present(lcpu))
549 			goto out_present;
550 		else
551 			goto out;
552 	}
553 
554 	nid = of_node_to_nid_single(cpu);
555 
556 out_present:
557 	if (nid < 0 || !node_online(nid))
558 		nid = first_online_node;
559 
560 	map_cpu_to_node(lcpu, nid);
561 	of_node_put(cpu);
562 out:
563 	return nid;
564 }
565 
566 static void verify_cpu_node_mapping(int cpu, int node)
567 {
568 	int base, sibling, i;
569 
570 	/* Verify that all the threads in the core belong to the same node */
571 	base = cpu_first_thread_sibling(cpu);
572 
573 	for (i = 0; i < threads_per_core; i++) {
574 		sibling = base + i;
575 
576 		if (sibling == cpu || cpu_is_offline(sibling))
577 			continue;
578 
579 		if (cpu_to_node(sibling) != node) {
580 			WARN(1, "CPU thread siblings %d and %d don't belong"
581 				" to the same node!\n", cpu, sibling);
582 			break;
583 		}
584 	}
585 }
586 
587 static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
588 			     void *hcpu)
589 {
590 	unsigned long lcpu = (unsigned long)hcpu;
591 	int ret = NOTIFY_DONE, nid;
592 
593 	switch (action) {
594 	case CPU_UP_PREPARE:
595 	case CPU_UP_PREPARE_FROZEN:
596 		nid = numa_setup_cpu(lcpu);
597 		verify_cpu_node_mapping((int)lcpu, nid);
598 		ret = NOTIFY_OK;
599 		break;
600 #ifdef CONFIG_HOTPLUG_CPU
601 	case CPU_DEAD:
602 	case CPU_DEAD_FROZEN:
603 	case CPU_UP_CANCELED:
604 	case CPU_UP_CANCELED_FROZEN:
605 		unmap_cpu_from_node(lcpu);
606 		ret = NOTIFY_OK;
607 		break;
608 #endif
609 	}
610 	return ret;
611 }
612 
613 /*
614  * Check and possibly modify a memory region to enforce the memory limit.
615  *
616  * Returns the size the region should have to enforce the memory limit.
617  * This will either be the original value of size, a truncated value,
618  * or zero. If the returned value of size is 0 the region should be
619  * discarded as it lies wholly above the memory limit.
620  */
621 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
622 						      unsigned long size)
623 {
624 	/*
625 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
626 	 * we've already adjusted it for the limit and it takes care of
627 	 * having memory holes below the limit.  Also, in the case of
628 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
629 	 */
630 
631 	if (start + size <= memblock_end_of_DRAM())
632 		return size;
633 
634 	if (start >= memblock_end_of_DRAM())
635 		return 0;
636 
637 	return memblock_end_of_DRAM() - start;
638 }
639 
640 /*
641  * Reads the counter for a given entry in
642  * linux,drconf-usable-memory property
643  */
644 static inline int __init read_usm_ranges(const __be32 **usm)
645 {
646 	/*
647 	 * For each lmb in ibm,dynamic-memory a corresponding
648 	 * entry in linux,drconf-usable-memory property contains
649 	 * a counter followed by that many (base, size) duple.
650 	 * read the counter from linux,drconf-usable-memory
651 	 */
652 	return read_n_cells(n_mem_size_cells, usm);
653 }
654 
655 /*
656  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
657  * node.  This assumes n_mem_{addr,size}_cells have been set.
658  */
659 static void __init parse_drconf_memory(struct device_node *memory)
660 {
661 	const __be32 *uninitialized_var(dm), *usm;
662 	unsigned int n, rc, ranges, is_kexec_kdump = 0;
663 	unsigned long lmb_size, base, size, sz;
664 	int nid;
665 	struct assoc_arrays aa = { .arrays = NULL };
666 
667 	n = of_get_drconf_memory(memory, &dm);
668 	if (!n)
669 		return;
670 
671 	lmb_size = of_get_lmb_size(memory);
672 	if (!lmb_size)
673 		return;
674 
675 	rc = of_get_assoc_arrays(memory, &aa);
676 	if (rc)
677 		return;
678 
679 	/* check if this is a kexec/kdump kernel */
680 	usm = of_get_usable_memory(memory);
681 	if (usm != NULL)
682 		is_kexec_kdump = 1;
683 
684 	for (; n != 0; --n) {
685 		struct of_drconf_cell drmem;
686 
687 		read_drconf_cell(&drmem, &dm);
688 
689 		/* skip this block if the reserved bit is set in flags (0x80)
690 		   or if the block is not assigned to this partition (0x8) */
691 		if ((drmem.flags & DRCONF_MEM_RESERVED)
692 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
693 			continue;
694 
695 		base = drmem.base_addr;
696 		size = lmb_size;
697 		ranges = 1;
698 
699 		if (is_kexec_kdump) {
700 			ranges = read_usm_ranges(&usm);
701 			if (!ranges) /* there are no (base, size) duple */
702 				continue;
703 		}
704 		do {
705 			if (is_kexec_kdump) {
706 				base = read_n_cells(n_mem_addr_cells, &usm);
707 				size = read_n_cells(n_mem_size_cells, &usm);
708 			}
709 			nid = of_drconf_to_nid_single(&drmem, &aa);
710 			fake_numa_create_new_node(
711 				((base + size) >> PAGE_SHIFT),
712 					   &nid);
713 			node_set_online(nid);
714 			sz = numa_enforce_memory_limit(base, size);
715 			if (sz)
716 				memblock_set_node(base, sz,
717 						  &memblock.memory, nid);
718 		} while (--ranges);
719 	}
720 }
721 
722 static int __init parse_numa_properties(void)
723 {
724 	struct device_node *memory;
725 	int default_nid = 0;
726 	unsigned long i;
727 
728 	if (numa_enabled == 0) {
729 		printk(KERN_WARNING "NUMA disabled by user\n");
730 		return -1;
731 	}
732 
733 	min_common_depth = find_min_common_depth();
734 
735 	if (min_common_depth < 0)
736 		return min_common_depth;
737 
738 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
739 
740 	/*
741 	 * Even though we connect cpus to numa domains later in SMP
742 	 * init, we need to know the node ids now. This is because
743 	 * each node to be onlined must have NODE_DATA etc backing it.
744 	 */
745 	for_each_present_cpu(i) {
746 		struct device_node *cpu;
747 		int nid;
748 
749 		cpu = of_get_cpu_node(i, NULL);
750 		BUG_ON(!cpu);
751 		nid = of_node_to_nid_single(cpu);
752 		of_node_put(cpu);
753 
754 		/*
755 		 * Don't fall back to default_nid yet -- we will plug
756 		 * cpus into nodes once the memory scan has discovered
757 		 * the topology.
758 		 */
759 		if (nid < 0)
760 			continue;
761 		node_set_online(nid);
762 	}
763 
764 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
765 
766 	for_each_node_by_type(memory, "memory") {
767 		unsigned long start;
768 		unsigned long size;
769 		int nid;
770 		int ranges;
771 		const __be32 *memcell_buf;
772 		unsigned int len;
773 
774 		memcell_buf = of_get_property(memory,
775 			"linux,usable-memory", &len);
776 		if (!memcell_buf || len <= 0)
777 			memcell_buf = of_get_property(memory, "reg", &len);
778 		if (!memcell_buf || len <= 0)
779 			continue;
780 
781 		/* ranges in cell */
782 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
783 new_range:
784 		/* these are order-sensitive, and modify the buffer pointer */
785 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
786 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
787 
788 		/*
789 		 * Assumption: either all memory nodes or none will
790 		 * have associativity properties.  If none, then
791 		 * everything goes to default_nid.
792 		 */
793 		nid = of_node_to_nid_single(memory);
794 		if (nid < 0)
795 			nid = default_nid;
796 
797 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
798 		node_set_online(nid);
799 
800 		if (!(size = numa_enforce_memory_limit(start, size))) {
801 			if (--ranges)
802 				goto new_range;
803 			else
804 				continue;
805 		}
806 
807 		memblock_set_node(start, size, &memblock.memory, nid);
808 
809 		if (--ranges)
810 			goto new_range;
811 	}
812 
813 	/*
814 	 * Now do the same thing for each MEMBLOCK listed in the
815 	 * ibm,dynamic-memory property in the
816 	 * ibm,dynamic-reconfiguration-memory node.
817 	 */
818 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
819 	if (memory)
820 		parse_drconf_memory(memory);
821 
822 	return 0;
823 }
824 
825 static void __init setup_nonnuma(void)
826 {
827 	unsigned long top_of_ram = memblock_end_of_DRAM();
828 	unsigned long total_ram = memblock_phys_mem_size();
829 	unsigned long start_pfn, end_pfn;
830 	unsigned int nid = 0;
831 	struct memblock_region *reg;
832 
833 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
834 	       top_of_ram, total_ram);
835 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
836 	       (top_of_ram - total_ram) >> 20);
837 
838 	for_each_memblock(memory, reg) {
839 		start_pfn = memblock_region_memory_base_pfn(reg);
840 		end_pfn = memblock_region_memory_end_pfn(reg);
841 
842 		fake_numa_create_new_node(end_pfn, &nid);
843 		memblock_set_node(PFN_PHYS(start_pfn),
844 				  PFN_PHYS(end_pfn - start_pfn),
845 				  &memblock.memory, nid);
846 		node_set_online(nid);
847 	}
848 }
849 
850 void __init dump_numa_cpu_topology(void)
851 {
852 	unsigned int node;
853 	unsigned int cpu, count;
854 
855 	if (min_common_depth == -1 || !numa_enabled)
856 		return;
857 
858 	for_each_online_node(node) {
859 		printk(KERN_DEBUG "Node %d CPUs:", node);
860 
861 		count = 0;
862 		/*
863 		 * If we used a CPU iterator here we would miss printing
864 		 * the holes in the cpumap.
865 		 */
866 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
867 			if (cpumask_test_cpu(cpu,
868 					node_to_cpumask_map[node])) {
869 				if (count == 0)
870 					printk(" %u", cpu);
871 				++count;
872 			} else {
873 				if (count > 1)
874 					printk("-%u", cpu - 1);
875 				count = 0;
876 			}
877 		}
878 
879 		if (count > 1)
880 			printk("-%u", nr_cpu_ids - 1);
881 		printk("\n");
882 	}
883 }
884 
885 static void __init dump_numa_memory_topology(void)
886 {
887 	unsigned int node;
888 	unsigned int count;
889 
890 	if (min_common_depth == -1 || !numa_enabled)
891 		return;
892 
893 	for_each_online_node(node) {
894 		unsigned long i;
895 
896 		printk(KERN_DEBUG "Node %d Memory:", node);
897 
898 		count = 0;
899 
900 		for (i = 0; i < memblock_end_of_DRAM();
901 		     i += (1 << SECTION_SIZE_BITS)) {
902 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
903 				if (count == 0)
904 					printk(" 0x%lx", i);
905 				++count;
906 			} else {
907 				if (count > 0)
908 					printk("-0x%lx", i);
909 				count = 0;
910 			}
911 		}
912 
913 		if (count > 0)
914 			printk("-0x%lx", i);
915 		printk("\n");
916 	}
917 }
918 
919 static struct notifier_block ppc64_numa_nb = {
920 	.notifier_call = cpu_numa_callback,
921 	.priority = 1 /* Must run before sched domains notifier. */
922 };
923 
924 /* Initialize NODE_DATA for a node on the local memory */
925 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
926 {
927 	u64 spanned_pages = end_pfn - start_pfn;
928 	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
929 	u64 nd_pa;
930 	void *nd;
931 	int tnid;
932 
933 	if (spanned_pages)
934 		pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
935 			nid, start_pfn << PAGE_SHIFT,
936 			(end_pfn << PAGE_SHIFT) - 1);
937 	else
938 		pr_info("Initmem setup node %d\n", nid);
939 
940 	nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
941 	nd = __va(nd_pa);
942 
943 	/* report and initialize */
944 	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
945 		nd_pa, nd_pa + nd_size - 1);
946 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
947 	if (tnid != nid)
948 		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
949 
950 	node_data[nid] = nd;
951 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
952 	NODE_DATA(nid)->node_id = nid;
953 	NODE_DATA(nid)->node_start_pfn = start_pfn;
954 	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
955 }
956 
957 void __init initmem_init(void)
958 {
959 	int nid, cpu;
960 
961 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
962 	max_pfn = max_low_pfn;
963 
964 	if (parse_numa_properties())
965 		setup_nonnuma();
966 	else
967 		dump_numa_memory_topology();
968 
969 	memblock_dump_all();
970 
971 	/*
972 	 * Reduce the possible NUMA nodes to the online NUMA nodes,
973 	 * since we do not support node hotplug. This ensures that  we
974 	 * lower the maximum NUMA node ID to what is actually present.
975 	 */
976 	nodes_and(node_possible_map, node_possible_map, node_online_map);
977 
978 	for_each_online_node(nid) {
979 		unsigned long start_pfn, end_pfn;
980 
981 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
982 		setup_node_data(nid, start_pfn, end_pfn);
983 		sparse_memory_present_with_active_regions(nid);
984 	}
985 
986 	sparse_init();
987 
988 	setup_node_to_cpumask_map();
989 
990 	reset_numa_cpu_lookup_table();
991 	register_cpu_notifier(&ppc64_numa_nb);
992 	/*
993 	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
994 	 * even before we online them, so that we can use cpu_to_{node,mem}
995 	 * early in boot, cf. smp_prepare_cpus().
996 	 */
997 	for_each_present_cpu(cpu) {
998 		numa_setup_cpu((unsigned long)cpu);
999 	}
1000 }
1001 
1002 static int __init early_numa(char *p)
1003 {
1004 	if (!p)
1005 		return 0;
1006 
1007 	if (strstr(p, "off"))
1008 		numa_enabled = 0;
1009 
1010 	if (strstr(p, "debug"))
1011 		numa_debug = 1;
1012 
1013 	p = strstr(p, "fake=");
1014 	if (p)
1015 		cmdline = p + strlen("fake=");
1016 
1017 	return 0;
1018 }
1019 early_param("numa", early_numa);
1020 
1021 static bool topology_updates_enabled = true;
1022 
1023 static int __init early_topology_updates(char *p)
1024 {
1025 	if (!p)
1026 		return 0;
1027 
1028 	if (!strcmp(p, "off")) {
1029 		pr_info("Disabling topology updates\n");
1030 		topology_updates_enabled = false;
1031 	}
1032 
1033 	return 0;
1034 }
1035 early_param("topology_updates", early_topology_updates);
1036 
1037 #ifdef CONFIG_MEMORY_HOTPLUG
1038 /*
1039  * Find the node associated with a hot added memory section for
1040  * memory represented in the device tree by the property
1041  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1042  */
1043 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1044 				     unsigned long scn_addr)
1045 {
1046 	const __be32 *dm;
1047 	unsigned int drconf_cell_cnt, rc;
1048 	unsigned long lmb_size;
1049 	struct assoc_arrays aa;
1050 	int nid = -1;
1051 
1052 	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1053 	if (!drconf_cell_cnt)
1054 		return -1;
1055 
1056 	lmb_size = of_get_lmb_size(memory);
1057 	if (!lmb_size)
1058 		return -1;
1059 
1060 	rc = of_get_assoc_arrays(memory, &aa);
1061 	if (rc)
1062 		return -1;
1063 
1064 	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1065 		struct of_drconf_cell drmem;
1066 
1067 		read_drconf_cell(&drmem, &dm);
1068 
1069 		/* skip this block if it is reserved or not assigned to
1070 		 * this partition */
1071 		if ((drmem.flags & DRCONF_MEM_RESERVED)
1072 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1073 			continue;
1074 
1075 		if ((scn_addr < drmem.base_addr)
1076 		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1077 			continue;
1078 
1079 		nid = of_drconf_to_nid_single(&drmem, &aa);
1080 		break;
1081 	}
1082 
1083 	return nid;
1084 }
1085 
1086 /*
1087  * Find the node associated with a hot added memory section for memory
1088  * represented in the device tree as a node (i.e. memory@XXXX) for
1089  * each memblock.
1090  */
1091 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1092 {
1093 	struct device_node *memory;
1094 	int nid = -1;
1095 
1096 	for_each_node_by_type(memory, "memory") {
1097 		unsigned long start, size;
1098 		int ranges;
1099 		const __be32 *memcell_buf;
1100 		unsigned int len;
1101 
1102 		memcell_buf = of_get_property(memory, "reg", &len);
1103 		if (!memcell_buf || len <= 0)
1104 			continue;
1105 
1106 		/* ranges in cell */
1107 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1108 
1109 		while (ranges--) {
1110 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1111 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1112 
1113 			if ((scn_addr < start) || (scn_addr >= (start + size)))
1114 				continue;
1115 
1116 			nid = of_node_to_nid_single(memory);
1117 			break;
1118 		}
1119 
1120 		if (nid >= 0)
1121 			break;
1122 	}
1123 
1124 	of_node_put(memory);
1125 
1126 	return nid;
1127 }
1128 
1129 /*
1130  * Find the node associated with a hot added memory section.  Section
1131  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1132  * sections are fully contained within a single MEMBLOCK.
1133  */
1134 int hot_add_scn_to_nid(unsigned long scn_addr)
1135 {
1136 	struct device_node *memory = NULL;
1137 	int nid, found = 0;
1138 
1139 	if (!numa_enabled || (min_common_depth < 0))
1140 		return first_online_node;
1141 
1142 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1143 	if (memory) {
1144 		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1145 		of_node_put(memory);
1146 	} else {
1147 		nid = hot_add_node_scn_to_nid(scn_addr);
1148 	}
1149 
1150 	if (nid < 0 || !node_online(nid))
1151 		nid = first_online_node;
1152 
1153 	if (NODE_DATA(nid)->node_spanned_pages)
1154 		return nid;
1155 
1156 	for_each_online_node(nid) {
1157 		if (NODE_DATA(nid)->node_spanned_pages) {
1158 			found = 1;
1159 			break;
1160 		}
1161 	}
1162 
1163 	BUG_ON(!found);
1164 	return nid;
1165 }
1166 
1167 static u64 hot_add_drconf_memory_max(void)
1168 {
1169         struct device_node *memory = NULL;
1170         unsigned int drconf_cell_cnt = 0;
1171         u64 lmb_size = 0;
1172 	const __be32 *dm = NULL;
1173 
1174         memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1175         if (memory) {
1176                 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1177                 lmb_size = of_get_lmb_size(memory);
1178                 of_node_put(memory);
1179         }
1180         return lmb_size * drconf_cell_cnt;
1181 }
1182 
1183 /*
1184  * memory_hotplug_max - return max address of memory that may be added
1185  *
1186  * This is currently only used on systems that support drconfig memory
1187  * hotplug.
1188  */
1189 u64 memory_hotplug_max(void)
1190 {
1191         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1192 }
1193 #endif /* CONFIG_MEMORY_HOTPLUG */
1194 
1195 /* Virtual Processor Home Node (VPHN) support */
1196 #ifdef CONFIG_PPC_SPLPAR
1197 
1198 #include "vphn.h"
1199 
1200 struct topology_update_data {
1201 	struct topology_update_data *next;
1202 	unsigned int cpu;
1203 	int old_nid;
1204 	int new_nid;
1205 };
1206 
1207 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1208 static cpumask_t cpu_associativity_changes_mask;
1209 static int vphn_enabled;
1210 static int prrn_enabled;
1211 static void reset_topology_timer(void);
1212 
1213 /*
1214  * Store the current values of the associativity change counters in the
1215  * hypervisor.
1216  */
1217 static void setup_cpu_associativity_change_counters(void)
1218 {
1219 	int cpu;
1220 
1221 	/* The VPHN feature supports a maximum of 8 reference points */
1222 	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1223 
1224 	for_each_possible_cpu(cpu) {
1225 		int i;
1226 		u8 *counts = vphn_cpu_change_counts[cpu];
1227 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1228 
1229 		for (i = 0; i < distance_ref_points_depth; i++)
1230 			counts[i] = hypervisor_counts[i];
1231 	}
1232 }
1233 
1234 /*
1235  * The hypervisor maintains a set of 8 associativity change counters in
1236  * the VPA of each cpu that correspond to the associativity levels in the
1237  * ibm,associativity-reference-points property. When an associativity
1238  * level changes, the corresponding counter is incremented.
1239  *
1240  * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1241  * node associativity levels have changed.
1242  *
1243  * Returns the number of cpus with unhandled associativity changes.
1244  */
1245 static int update_cpu_associativity_changes_mask(void)
1246 {
1247 	int cpu;
1248 	cpumask_t *changes = &cpu_associativity_changes_mask;
1249 
1250 	for_each_possible_cpu(cpu) {
1251 		int i, changed = 0;
1252 		u8 *counts = vphn_cpu_change_counts[cpu];
1253 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1254 
1255 		for (i = 0; i < distance_ref_points_depth; i++) {
1256 			if (hypervisor_counts[i] != counts[i]) {
1257 				counts[i] = hypervisor_counts[i];
1258 				changed = 1;
1259 			}
1260 		}
1261 		if (changed) {
1262 			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1263 			cpu = cpu_last_thread_sibling(cpu);
1264 		}
1265 	}
1266 
1267 	return cpumask_weight(changes);
1268 }
1269 
1270 /*
1271  * Retrieve the new associativity information for a virtual processor's
1272  * home node.
1273  */
1274 static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1275 {
1276 	long rc;
1277 	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1278 	u64 flags = 1;
1279 	int hwcpu = get_hard_smp_processor_id(cpu);
1280 
1281 	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1282 	vphn_unpack_associativity(retbuf, associativity);
1283 
1284 	return rc;
1285 }
1286 
1287 static long vphn_get_associativity(unsigned long cpu,
1288 					__be32 *associativity)
1289 {
1290 	long rc;
1291 
1292 	rc = hcall_vphn(cpu, associativity);
1293 
1294 	switch (rc) {
1295 	case H_FUNCTION:
1296 		printk(KERN_INFO
1297 			"VPHN is not supported. Disabling polling...\n");
1298 		stop_topology_update();
1299 		break;
1300 	case H_HARDWARE:
1301 		printk(KERN_ERR
1302 			"hcall_vphn() experienced a hardware fault "
1303 			"preventing VPHN. Disabling polling...\n");
1304 		stop_topology_update();
1305 	}
1306 
1307 	return rc;
1308 }
1309 
1310 /*
1311  * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1312  * characteristics change. This function doesn't perform any locking and is
1313  * only safe to call from stop_machine().
1314  */
1315 static int update_cpu_topology(void *data)
1316 {
1317 	struct topology_update_data *update;
1318 	unsigned long cpu;
1319 
1320 	if (!data)
1321 		return -EINVAL;
1322 
1323 	cpu = smp_processor_id();
1324 
1325 	for (update = data; update; update = update->next) {
1326 		int new_nid = update->new_nid;
1327 		if (cpu != update->cpu)
1328 			continue;
1329 
1330 		unmap_cpu_from_node(cpu);
1331 		map_cpu_to_node(cpu, new_nid);
1332 		set_cpu_numa_node(cpu, new_nid);
1333 		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1334 		vdso_getcpu_init();
1335 	}
1336 
1337 	return 0;
1338 }
1339 
1340 static int update_lookup_table(void *data)
1341 {
1342 	struct topology_update_data *update;
1343 
1344 	if (!data)
1345 		return -EINVAL;
1346 
1347 	/*
1348 	 * Upon topology update, the numa-cpu lookup table needs to be updated
1349 	 * for all threads in the core, including offline CPUs, to ensure that
1350 	 * future hotplug operations respect the cpu-to-node associativity
1351 	 * properly.
1352 	 */
1353 	for (update = data; update; update = update->next) {
1354 		int nid, base, j;
1355 
1356 		nid = update->new_nid;
1357 		base = cpu_first_thread_sibling(update->cpu);
1358 
1359 		for (j = 0; j < threads_per_core; j++) {
1360 			update_numa_cpu_lookup_table(base + j, nid);
1361 		}
1362 	}
1363 
1364 	return 0;
1365 }
1366 
1367 /*
1368  * Update the node maps and sysfs entries for each cpu whose home node
1369  * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1370  */
1371 int arch_update_cpu_topology(void)
1372 {
1373 	unsigned int cpu, sibling, changed = 0;
1374 	struct topology_update_data *updates, *ud;
1375 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1376 	cpumask_t updated_cpus;
1377 	struct device *dev;
1378 	int weight, new_nid, i = 0;
1379 
1380 	if (!prrn_enabled && !vphn_enabled)
1381 		return 0;
1382 
1383 	weight = cpumask_weight(&cpu_associativity_changes_mask);
1384 	if (!weight)
1385 		return 0;
1386 
1387 	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1388 	if (!updates)
1389 		return 0;
1390 
1391 	cpumask_clear(&updated_cpus);
1392 
1393 	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1394 		/*
1395 		 * If siblings aren't flagged for changes, updates list
1396 		 * will be too short. Skip on this update and set for next
1397 		 * update.
1398 		 */
1399 		if (!cpumask_subset(cpu_sibling_mask(cpu),
1400 					&cpu_associativity_changes_mask)) {
1401 			pr_info("Sibling bits not set for associativity "
1402 					"change, cpu%d\n", cpu);
1403 			cpumask_or(&cpu_associativity_changes_mask,
1404 					&cpu_associativity_changes_mask,
1405 					cpu_sibling_mask(cpu));
1406 			cpu = cpu_last_thread_sibling(cpu);
1407 			continue;
1408 		}
1409 
1410 		/* Use associativity from first thread for all siblings */
1411 		vphn_get_associativity(cpu, associativity);
1412 		new_nid = associativity_to_nid(associativity);
1413 		if (new_nid < 0 || !node_online(new_nid))
1414 			new_nid = first_online_node;
1415 
1416 		if (new_nid == numa_cpu_lookup_table[cpu]) {
1417 			cpumask_andnot(&cpu_associativity_changes_mask,
1418 					&cpu_associativity_changes_mask,
1419 					cpu_sibling_mask(cpu));
1420 			cpu = cpu_last_thread_sibling(cpu);
1421 			continue;
1422 		}
1423 
1424 		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1425 			ud = &updates[i++];
1426 			ud->cpu = sibling;
1427 			ud->new_nid = new_nid;
1428 			ud->old_nid = numa_cpu_lookup_table[sibling];
1429 			cpumask_set_cpu(sibling, &updated_cpus);
1430 			if (i < weight)
1431 				ud->next = &updates[i];
1432 		}
1433 		cpu = cpu_last_thread_sibling(cpu);
1434 	}
1435 
1436 	pr_debug("Topology update for the following CPUs:\n");
1437 	if (cpumask_weight(&updated_cpus)) {
1438 		for (ud = &updates[0]; ud; ud = ud->next) {
1439 			pr_debug("cpu %d moving from node %d "
1440 					  "to %d\n", ud->cpu,
1441 					  ud->old_nid, ud->new_nid);
1442 		}
1443 	}
1444 
1445 	/*
1446 	 * In cases where we have nothing to update (because the updates list
1447 	 * is too short or because the new topology is same as the old one),
1448 	 * skip invoking update_cpu_topology() via stop-machine(). This is
1449 	 * necessary (and not just a fast-path optimization) since stop-machine
1450 	 * can end up electing a random CPU to run update_cpu_topology(), and
1451 	 * thus trick us into setting up incorrect cpu-node mappings (since
1452 	 * 'updates' is kzalloc()'ed).
1453 	 *
1454 	 * And for the similar reason, we will skip all the following updating.
1455 	 */
1456 	if (!cpumask_weight(&updated_cpus))
1457 		goto out;
1458 
1459 	stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1460 
1461 	/*
1462 	 * Update the numa-cpu lookup table with the new mappings, even for
1463 	 * offline CPUs. It is best to perform this update from the stop-
1464 	 * machine context.
1465 	 */
1466 	stop_machine(update_lookup_table, &updates[0],
1467 					cpumask_of(raw_smp_processor_id()));
1468 
1469 	for (ud = &updates[0]; ud; ud = ud->next) {
1470 		unregister_cpu_under_node(ud->cpu, ud->old_nid);
1471 		register_cpu_under_node(ud->cpu, ud->new_nid);
1472 
1473 		dev = get_cpu_device(ud->cpu);
1474 		if (dev)
1475 			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1476 		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1477 		changed = 1;
1478 	}
1479 
1480 out:
1481 	kfree(updates);
1482 	return changed;
1483 }
1484 
1485 static void topology_work_fn(struct work_struct *work)
1486 {
1487 	rebuild_sched_domains();
1488 }
1489 static DECLARE_WORK(topology_work, topology_work_fn);
1490 
1491 static void topology_schedule_update(void)
1492 {
1493 	schedule_work(&topology_work);
1494 }
1495 
1496 static void topology_timer_fn(unsigned long ignored)
1497 {
1498 	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1499 		topology_schedule_update();
1500 	else if (vphn_enabled) {
1501 		if (update_cpu_associativity_changes_mask() > 0)
1502 			topology_schedule_update();
1503 		reset_topology_timer();
1504 	}
1505 }
1506 static struct timer_list topology_timer =
1507 	TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1508 
1509 static void reset_topology_timer(void)
1510 {
1511 	topology_timer.data = 0;
1512 	topology_timer.expires = jiffies + 60 * HZ;
1513 	mod_timer(&topology_timer, topology_timer.expires);
1514 }
1515 
1516 #ifdef CONFIG_SMP
1517 
1518 static void stage_topology_update(int core_id)
1519 {
1520 	cpumask_or(&cpu_associativity_changes_mask,
1521 		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1522 	reset_topology_timer();
1523 }
1524 
1525 static int dt_update_callback(struct notifier_block *nb,
1526 				unsigned long action, void *data)
1527 {
1528 	struct of_reconfig_data *update = data;
1529 	int rc = NOTIFY_DONE;
1530 
1531 	switch (action) {
1532 	case OF_RECONFIG_UPDATE_PROPERTY:
1533 		if (!of_prop_cmp(update->dn->type, "cpu") &&
1534 		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1535 			u32 core_id;
1536 			of_property_read_u32(update->dn, "reg", &core_id);
1537 			stage_topology_update(core_id);
1538 			rc = NOTIFY_OK;
1539 		}
1540 		break;
1541 	}
1542 
1543 	return rc;
1544 }
1545 
1546 static struct notifier_block dt_update_nb = {
1547 	.notifier_call = dt_update_callback,
1548 };
1549 
1550 #endif
1551 
1552 /*
1553  * Start polling for associativity changes.
1554  */
1555 int start_topology_update(void)
1556 {
1557 	int rc = 0;
1558 
1559 	if (firmware_has_feature(FW_FEATURE_PRRN)) {
1560 		if (!prrn_enabled) {
1561 			prrn_enabled = 1;
1562 			vphn_enabled = 0;
1563 #ifdef CONFIG_SMP
1564 			rc = of_reconfig_notifier_register(&dt_update_nb);
1565 #endif
1566 		}
1567 	} else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1568 		   lppaca_shared_proc(get_lppaca())) {
1569 		if (!vphn_enabled) {
1570 			prrn_enabled = 0;
1571 			vphn_enabled = 1;
1572 			setup_cpu_associativity_change_counters();
1573 			init_timer_deferrable(&topology_timer);
1574 			reset_topology_timer();
1575 		}
1576 	}
1577 
1578 	return rc;
1579 }
1580 
1581 /*
1582  * Disable polling for VPHN associativity changes.
1583  */
1584 int stop_topology_update(void)
1585 {
1586 	int rc = 0;
1587 
1588 	if (prrn_enabled) {
1589 		prrn_enabled = 0;
1590 #ifdef CONFIG_SMP
1591 		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1592 #endif
1593 	} else if (vphn_enabled) {
1594 		vphn_enabled = 0;
1595 		rc = del_timer_sync(&topology_timer);
1596 	}
1597 
1598 	return rc;
1599 }
1600 
1601 int prrn_is_enabled(void)
1602 {
1603 	return prrn_enabled;
1604 }
1605 
1606 static int topology_read(struct seq_file *file, void *v)
1607 {
1608 	if (vphn_enabled || prrn_enabled)
1609 		seq_puts(file, "on\n");
1610 	else
1611 		seq_puts(file, "off\n");
1612 
1613 	return 0;
1614 }
1615 
1616 static int topology_open(struct inode *inode, struct file *file)
1617 {
1618 	return single_open(file, topology_read, NULL);
1619 }
1620 
1621 static ssize_t topology_write(struct file *file, const char __user *buf,
1622 			      size_t count, loff_t *off)
1623 {
1624 	char kbuf[4]; /* "on" or "off" plus null. */
1625 	int read_len;
1626 
1627 	read_len = count < 3 ? count : 3;
1628 	if (copy_from_user(kbuf, buf, read_len))
1629 		return -EINVAL;
1630 
1631 	kbuf[read_len] = '\0';
1632 
1633 	if (!strncmp(kbuf, "on", 2))
1634 		start_topology_update();
1635 	else if (!strncmp(kbuf, "off", 3))
1636 		stop_topology_update();
1637 	else
1638 		return -EINVAL;
1639 
1640 	return count;
1641 }
1642 
1643 static const struct file_operations topology_ops = {
1644 	.read = seq_read,
1645 	.write = topology_write,
1646 	.open = topology_open,
1647 	.release = single_release
1648 };
1649 
1650 static int topology_update_init(void)
1651 {
1652 	/* Do not poll for changes if disabled at boot */
1653 	if (topology_updates_enabled)
1654 		start_topology_update();
1655 
1656 	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1657 		return -ENOMEM;
1658 
1659 	return 0;
1660 }
1661 device_initcall(topology_update_init);
1662 #endif /* CONFIG_PPC_SPLPAR */
1663