1 /* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/threads.h> 12 #include <linux/bootmem.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/mmzone.h> 16 #include <linux/export.h> 17 #include <linux/nodemask.h> 18 #include <linux/cpu.h> 19 #include <linux/notifier.h> 20 #include <linux/memblock.h> 21 #include <linux/of.h> 22 #include <linux/pfn.h> 23 #include <linux/cpuset.h> 24 #include <linux/node.h> 25 #include <linux/stop_machine.h> 26 #include <linux/proc_fs.h> 27 #include <linux/seq_file.h> 28 #include <linux/uaccess.h> 29 #include <linux/slab.h> 30 #include <asm/cputhreads.h> 31 #include <asm/sparsemem.h> 32 #include <asm/prom.h> 33 #include <asm/smp.h> 34 #include <asm/firmware.h> 35 #include <asm/paca.h> 36 #include <asm/hvcall.h> 37 #include <asm/setup.h> 38 #include <asm/vdso.h> 39 40 static int numa_enabled = 1; 41 42 static char *cmdline __initdata; 43 44 static int numa_debug; 45 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 46 47 int numa_cpu_lookup_table[NR_CPUS]; 48 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 49 struct pglist_data *node_data[MAX_NUMNODES]; 50 51 EXPORT_SYMBOL(numa_cpu_lookup_table); 52 EXPORT_SYMBOL(node_to_cpumask_map); 53 EXPORT_SYMBOL(node_data); 54 55 static int min_common_depth; 56 static int n_mem_addr_cells, n_mem_size_cells; 57 static int form1_affinity; 58 59 #define MAX_DISTANCE_REF_POINTS 4 60 static int distance_ref_points_depth; 61 static const unsigned int *distance_ref_points; 62 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 63 64 /* 65 * Allocate node_to_cpumask_map based on number of available nodes 66 * Requires node_possible_map to be valid. 67 * 68 * Note: cpumask_of_node() is not valid until after this is done. 69 */ 70 static void __init setup_node_to_cpumask_map(void) 71 { 72 unsigned int node; 73 74 /* setup nr_node_ids if not done yet */ 75 if (nr_node_ids == MAX_NUMNODES) 76 setup_nr_node_ids(); 77 78 /* allocate the map */ 79 for (node = 0; node < nr_node_ids; node++) 80 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 81 82 /* cpumask_of_node() will now work */ 83 dbg("Node to cpumask map for %d nodes\n", nr_node_ids); 84 } 85 86 static int __init fake_numa_create_new_node(unsigned long end_pfn, 87 unsigned int *nid) 88 { 89 unsigned long long mem; 90 char *p = cmdline; 91 static unsigned int fake_nid; 92 static unsigned long long curr_boundary; 93 94 /* 95 * Modify node id, iff we started creating NUMA nodes 96 * We want to continue from where we left of the last time 97 */ 98 if (fake_nid) 99 *nid = fake_nid; 100 /* 101 * In case there are no more arguments to parse, the 102 * node_id should be the same as the last fake node id 103 * (we've handled this above). 104 */ 105 if (!p) 106 return 0; 107 108 mem = memparse(p, &p); 109 if (!mem) 110 return 0; 111 112 if (mem < curr_boundary) 113 return 0; 114 115 curr_boundary = mem; 116 117 if ((end_pfn << PAGE_SHIFT) > mem) { 118 /* 119 * Skip commas and spaces 120 */ 121 while (*p == ',' || *p == ' ' || *p == '\t') 122 p++; 123 124 cmdline = p; 125 fake_nid++; 126 *nid = fake_nid; 127 dbg("created new fake_node with id %d\n", fake_nid); 128 return 1; 129 } 130 return 0; 131 } 132 133 /* 134 * get_node_active_region - Return active region containing pfn 135 * Active range returned is empty if none found. 136 * @pfn: The page to return the region for 137 * @node_ar: Returned set to the active region containing @pfn 138 */ 139 static void __init get_node_active_region(unsigned long pfn, 140 struct node_active_region *node_ar) 141 { 142 unsigned long start_pfn, end_pfn; 143 int i, nid; 144 145 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 146 if (pfn >= start_pfn && pfn < end_pfn) { 147 node_ar->nid = nid; 148 node_ar->start_pfn = start_pfn; 149 node_ar->end_pfn = end_pfn; 150 break; 151 } 152 } 153 } 154 155 static void map_cpu_to_node(int cpu, int node) 156 { 157 numa_cpu_lookup_table[cpu] = node; 158 159 dbg("adding cpu %d to node %d\n", cpu, node); 160 161 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) 162 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 163 } 164 165 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 166 static void unmap_cpu_from_node(unsigned long cpu) 167 { 168 int node = numa_cpu_lookup_table[cpu]; 169 170 dbg("removing cpu %lu from node %d\n", cpu, node); 171 172 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 173 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 174 } else { 175 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 176 cpu, node); 177 } 178 } 179 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 180 181 /* must hold reference to node during call */ 182 static const int *of_get_associativity(struct device_node *dev) 183 { 184 return of_get_property(dev, "ibm,associativity", NULL); 185 } 186 187 /* 188 * Returns the property linux,drconf-usable-memory if 189 * it exists (the property exists only in kexec/kdump kernels, 190 * added by kexec-tools) 191 */ 192 static const u32 *of_get_usable_memory(struct device_node *memory) 193 { 194 const u32 *prop; 195 u32 len; 196 prop = of_get_property(memory, "linux,drconf-usable-memory", &len); 197 if (!prop || len < sizeof(unsigned int)) 198 return 0; 199 return prop; 200 } 201 202 int __node_distance(int a, int b) 203 { 204 int i; 205 int distance = LOCAL_DISTANCE; 206 207 if (!form1_affinity) 208 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); 209 210 for (i = 0; i < distance_ref_points_depth; i++) { 211 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 212 break; 213 214 /* Double the distance for each NUMA level */ 215 distance *= 2; 216 } 217 218 return distance; 219 } 220 221 static void initialize_distance_lookup_table(int nid, 222 const unsigned int *associativity) 223 { 224 int i; 225 226 if (!form1_affinity) 227 return; 228 229 for (i = 0; i < distance_ref_points_depth; i++) { 230 distance_lookup_table[nid][i] = 231 associativity[distance_ref_points[i]]; 232 } 233 } 234 235 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa 236 * info is found. 237 */ 238 static int associativity_to_nid(const unsigned int *associativity) 239 { 240 int nid = -1; 241 242 if (min_common_depth == -1) 243 goto out; 244 245 if (associativity[0] >= min_common_depth) 246 nid = associativity[min_common_depth]; 247 248 /* POWER4 LPAR uses 0xffff as invalid node */ 249 if (nid == 0xffff || nid >= MAX_NUMNODES) 250 nid = -1; 251 252 if (nid > 0 && associativity[0] >= distance_ref_points_depth) 253 initialize_distance_lookup_table(nid, associativity); 254 255 out: 256 return nid; 257 } 258 259 /* Returns the nid associated with the given device tree node, 260 * or -1 if not found. 261 */ 262 static int of_node_to_nid_single(struct device_node *device) 263 { 264 int nid = -1; 265 const unsigned int *tmp; 266 267 tmp = of_get_associativity(device); 268 if (tmp) 269 nid = associativity_to_nid(tmp); 270 return nid; 271 } 272 273 /* Walk the device tree upwards, looking for an associativity id */ 274 int of_node_to_nid(struct device_node *device) 275 { 276 struct device_node *tmp; 277 int nid = -1; 278 279 of_node_get(device); 280 while (device) { 281 nid = of_node_to_nid_single(device); 282 if (nid != -1) 283 break; 284 285 tmp = device; 286 device = of_get_parent(tmp); 287 of_node_put(tmp); 288 } 289 of_node_put(device); 290 291 return nid; 292 } 293 EXPORT_SYMBOL_GPL(of_node_to_nid); 294 295 static int __init find_min_common_depth(void) 296 { 297 int depth; 298 struct device_node *root; 299 300 if (firmware_has_feature(FW_FEATURE_OPAL)) 301 root = of_find_node_by_path("/ibm,opal"); 302 else 303 root = of_find_node_by_path("/rtas"); 304 if (!root) 305 root = of_find_node_by_path("/"); 306 307 /* 308 * This property is a set of 32-bit integers, each representing 309 * an index into the ibm,associativity nodes. 310 * 311 * With form 0 affinity the first integer is for an SMP configuration 312 * (should be all 0's) and the second is for a normal NUMA 313 * configuration. We have only one level of NUMA. 314 * 315 * With form 1 affinity the first integer is the most significant 316 * NUMA boundary and the following are progressively less significant 317 * boundaries. There can be more than one level of NUMA. 318 */ 319 distance_ref_points = of_get_property(root, 320 "ibm,associativity-reference-points", 321 &distance_ref_points_depth); 322 323 if (!distance_ref_points) { 324 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 325 goto err; 326 } 327 328 distance_ref_points_depth /= sizeof(int); 329 330 if (firmware_has_feature(FW_FEATURE_OPAL) || 331 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { 332 dbg("Using form 1 affinity\n"); 333 form1_affinity = 1; 334 } 335 336 if (form1_affinity) { 337 depth = distance_ref_points[0]; 338 } else { 339 if (distance_ref_points_depth < 2) { 340 printk(KERN_WARNING "NUMA: " 341 "short ibm,associativity-reference-points\n"); 342 goto err; 343 } 344 345 depth = distance_ref_points[1]; 346 } 347 348 /* 349 * Warn and cap if the hardware supports more than 350 * MAX_DISTANCE_REF_POINTS domains. 351 */ 352 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 353 printk(KERN_WARNING "NUMA: distance array capped at " 354 "%d entries\n", MAX_DISTANCE_REF_POINTS); 355 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 356 } 357 358 of_node_put(root); 359 return depth; 360 361 err: 362 of_node_put(root); 363 return -1; 364 } 365 366 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 367 { 368 struct device_node *memory = NULL; 369 370 memory = of_find_node_by_type(memory, "memory"); 371 if (!memory) 372 panic("numa.c: No memory nodes found!"); 373 374 *n_addr_cells = of_n_addr_cells(memory); 375 *n_size_cells = of_n_size_cells(memory); 376 of_node_put(memory); 377 } 378 379 static unsigned long read_n_cells(int n, const unsigned int **buf) 380 { 381 unsigned long result = 0; 382 383 while (n--) { 384 result = (result << 32) | **buf; 385 (*buf)++; 386 } 387 return result; 388 } 389 390 /* 391 * Read the next memblock list entry from the ibm,dynamic-memory property 392 * and return the information in the provided of_drconf_cell structure. 393 */ 394 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp) 395 { 396 const u32 *cp; 397 398 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); 399 400 cp = *cellp; 401 drmem->drc_index = cp[0]; 402 drmem->reserved = cp[1]; 403 drmem->aa_index = cp[2]; 404 drmem->flags = cp[3]; 405 406 *cellp = cp + 4; 407 } 408 409 /* 410 * Retrieve and validate the ibm,dynamic-memory property of the device tree. 411 * 412 * The layout of the ibm,dynamic-memory property is a number N of memblock 413 * list entries followed by N memblock list entries. Each memblock list entry 414 * contains information as laid out in the of_drconf_cell struct above. 415 */ 416 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm) 417 { 418 const u32 *prop; 419 u32 len, entries; 420 421 prop = of_get_property(memory, "ibm,dynamic-memory", &len); 422 if (!prop || len < sizeof(unsigned int)) 423 return 0; 424 425 entries = *prop++; 426 427 /* Now that we know the number of entries, revalidate the size 428 * of the property read in to ensure we have everything 429 */ 430 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) 431 return 0; 432 433 *dm = prop; 434 return entries; 435 } 436 437 /* 438 * Retrieve and validate the ibm,lmb-size property for drconf memory 439 * from the device tree. 440 */ 441 static u64 of_get_lmb_size(struct device_node *memory) 442 { 443 const u32 *prop; 444 u32 len; 445 446 prop = of_get_property(memory, "ibm,lmb-size", &len); 447 if (!prop || len < sizeof(unsigned int)) 448 return 0; 449 450 return read_n_cells(n_mem_size_cells, &prop); 451 } 452 453 struct assoc_arrays { 454 u32 n_arrays; 455 u32 array_sz; 456 const u32 *arrays; 457 }; 458 459 /* 460 * Retrieve and validate the list of associativity arrays for drconf 461 * memory from the ibm,associativity-lookup-arrays property of the 462 * device tree.. 463 * 464 * The layout of the ibm,associativity-lookup-arrays property is a number N 465 * indicating the number of associativity arrays, followed by a number M 466 * indicating the size of each associativity array, followed by a list 467 * of N associativity arrays. 468 */ 469 static int of_get_assoc_arrays(struct device_node *memory, 470 struct assoc_arrays *aa) 471 { 472 const u32 *prop; 473 u32 len; 474 475 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 476 if (!prop || len < 2 * sizeof(unsigned int)) 477 return -1; 478 479 aa->n_arrays = *prop++; 480 aa->array_sz = *prop++; 481 482 /* Now that we know the number of arrays and size of each array, 483 * revalidate the size of the property read in. 484 */ 485 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 486 return -1; 487 488 aa->arrays = prop; 489 return 0; 490 } 491 492 /* 493 * This is like of_node_to_nid_single() for memory represented in the 494 * ibm,dynamic-reconfiguration-memory node. 495 */ 496 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, 497 struct assoc_arrays *aa) 498 { 499 int default_nid = 0; 500 int nid = default_nid; 501 int index; 502 503 if (min_common_depth > 0 && min_common_depth <= aa->array_sz && 504 !(drmem->flags & DRCONF_MEM_AI_INVALID) && 505 drmem->aa_index < aa->n_arrays) { 506 index = drmem->aa_index * aa->array_sz + min_common_depth - 1; 507 nid = aa->arrays[index]; 508 509 if (nid == 0xffff || nid >= MAX_NUMNODES) 510 nid = default_nid; 511 } 512 513 return nid; 514 } 515 516 /* 517 * Figure out to which domain a cpu belongs and stick it there. 518 * Return the id of the domain used. 519 */ 520 static int numa_setup_cpu(unsigned long lcpu) 521 { 522 int nid = 0; 523 struct device_node *cpu = of_get_cpu_node(lcpu, NULL); 524 525 if (!cpu) { 526 WARN_ON(1); 527 goto out; 528 } 529 530 nid = of_node_to_nid_single(cpu); 531 532 if (nid < 0 || !node_online(nid)) 533 nid = first_online_node; 534 out: 535 map_cpu_to_node(lcpu, nid); 536 537 of_node_put(cpu); 538 539 return nid; 540 } 541 542 static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action, 543 void *hcpu) 544 { 545 unsigned long lcpu = (unsigned long)hcpu; 546 int ret = NOTIFY_DONE; 547 548 switch (action) { 549 case CPU_UP_PREPARE: 550 case CPU_UP_PREPARE_FROZEN: 551 numa_setup_cpu(lcpu); 552 ret = NOTIFY_OK; 553 break; 554 #ifdef CONFIG_HOTPLUG_CPU 555 case CPU_DEAD: 556 case CPU_DEAD_FROZEN: 557 case CPU_UP_CANCELED: 558 case CPU_UP_CANCELED_FROZEN: 559 unmap_cpu_from_node(lcpu); 560 break; 561 ret = NOTIFY_OK; 562 #endif 563 } 564 return ret; 565 } 566 567 /* 568 * Check and possibly modify a memory region to enforce the memory limit. 569 * 570 * Returns the size the region should have to enforce the memory limit. 571 * This will either be the original value of size, a truncated value, 572 * or zero. If the returned value of size is 0 the region should be 573 * discarded as it lies wholly above the memory limit. 574 */ 575 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 576 unsigned long size) 577 { 578 /* 579 * We use memblock_end_of_DRAM() in here instead of memory_limit because 580 * we've already adjusted it for the limit and it takes care of 581 * having memory holes below the limit. Also, in the case of 582 * iommu_is_off, memory_limit is not set but is implicitly enforced. 583 */ 584 585 if (start + size <= memblock_end_of_DRAM()) 586 return size; 587 588 if (start >= memblock_end_of_DRAM()) 589 return 0; 590 591 return memblock_end_of_DRAM() - start; 592 } 593 594 /* 595 * Reads the counter for a given entry in 596 * linux,drconf-usable-memory property 597 */ 598 static inline int __init read_usm_ranges(const u32 **usm) 599 { 600 /* 601 * For each lmb in ibm,dynamic-memory a corresponding 602 * entry in linux,drconf-usable-memory property contains 603 * a counter followed by that many (base, size) duple. 604 * read the counter from linux,drconf-usable-memory 605 */ 606 return read_n_cells(n_mem_size_cells, usm); 607 } 608 609 /* 610 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 611 * node. This assumes n_mem_{addr,size}_cells have been set. 612 */ 613 static void __init parse_drconf_memory(struct device_node *memory) 614 { 615 const u32 *uninitialized_var(dm), *usm; 616 unsigned int n, rc, ranges, is_kexec_kdump = 0; 617 unsigned long lmb_size, base, size, sz; 618 int nid; 619 struct assoc_arrays aa = { .arrays = NULL }; 620 621 n = of_get_drconf_memory(memory, &dm); 622 if (!n) 623 return; 624 625 lmb_size = of_get_lmb_size(memory); 626 if (!lmb_size) 627 return; 628 629 rc = of_get_assoc_arrays(memory, &aa); 630 if (rc) 631 return; 632 633 /* check if this is a kexec/kdump kernel */ 634 usm = of_get_usable_memory(memory); 635 if (usm != NULL) 636 is_kexec_kdump = 1; 637 638 for (; n != 0; --n) { 639 struct of_drconf_cell drmem; 640 641 read_drconf_cell(&drmem, &dm); 642 643 /* skip this block if the reserved bit is set in flags (0x80) 644 or if the block is not assigned to this partition (0x8) */ 645 if ((drmem.flags & DRCONF_MEM_RESERVED) 646 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 647 continue; 648 649 base = drmem.base_addr; 650 size = lmb_size; 651 ranges = 1; 652 653 if (is_kexec_kdump) { 654 ranges = read_usm_ranges(&usm); 655 if (!ranges) /* there are no (base, size) duple */ 656 continue; 657 } 658 do { 659 if (is_kexec_kdump) { 660 base = read_n_cells(n_mem_addr_cells, &usm); 661 size = read_n_cells(n_mem_size_cells, &usm); 662 } 663 nid = of_drconf_to_nid_single(&drmem, &aa); 664 fake_numa_create_new_node( 665 ((base + size) >> PAGE_SHIFT), 666 &nid); 667 node_set_online(nid); 668 sz = numa_enforce_memory_limit(base, size); 669 if (sz) 670 memblock_set_node(base, sz, nid); 671 } while (--ranges); 672 } 673 } 674 675 static int __init parse_numa_properties(void) 676 { 677 struct device_node *memory; 678 int default_nid = 0; 679 unsigned long i; 680 681 if (numa_enabled == 0) { 682 printk(KERN_WARNING "NUMA disabled by user\n"); 683 return -1; 684 } 685 686 min_common_depth = find_min_common_depth(); 687 688 if (min_common_depth < 0) 689 return min_common_depth; 690 691 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 692 693 /* 694 * Even though we connect cpus to numa domains later in SMP 695 * init, we need to know the node ids now. This is because 696 * each node to be onlined must have NODE_DATA etc backing it. 697 */ 698 for_each_present_cpu(i) { 699 struct device_node *cpu; 700 int nid; 701 702 cpu = of_get_cpu_node(i, NULL); 703 BUG_ON(!cpu); 704 nid = of_node_to_nid_single(cpu); 705 of_node_put(cpu); 706 707 /* 708 * Don't fall back to default_nid yet -- we will plug 709 * cpus into nodes once the memory scan has discovered 710 * the topology. 711 */ 712 if (nid < 0) 713 continue; 714 node_set_online(nid); 715 } 716 717 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 718 719 for_each_node_by_type(memory, "memory") { 720 unsigned long start; 721 unsigned long size; 722 int nid; 723 int ranges; 724 const unsigned int *memcell_buf; 725 unsigned int len; 726 727 memcell_buf = of_get_property(memory, 728 "linux,usable-memory", &len); 729 if (!memcell_buf || len <= 0) 730 memcell_buf = of_get_property(memory, "reg", &len); 731 if (!memcell_buf || len <= 0) 732 continue; 733 734 /* ranges in cell */ 735 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 736 new_range: 737 /* these are order-sensitive, and modify the buffer pointer */ 738 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 739 size = read_n_cells(n_mem_size_cells, &memcell_buf); 740 741 /* 742 * Assumption: either all memory nodes or none will 743 * have associativity properties. If none, then 744 * everything goes to default_nid. 745 */ 746 nid = of_node_to_nid_single(memory); 747 if (nid < 0) 748 nid = default_nid; 749 750 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 751 node_set_online(nid); 752 753 if (!(size = numa_enforce_memory_limit(start, size))) { 754 if (--ranges) 755 goto new_range; 756 else 757 continue; 758 } 759 760 memblock_set_node(start, size, nid); 761 762 if (--ranges) 763 goto new_range; 764 } 765 766 /* 767 * Now do the same thing for each MEMBLOCK listed in the 768 * ibm,dynamic-memory property in the 769 * ibm,dynamic-reconfiguration-memory node. 770 */ 771 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 772 if (memory) 773 parse_drconf_memory(memory); 774 775 return 0; 776 } 777 778 static void __init setup_nonnuma(void) 779 { 780 unsigned long top_of_ram = memblock_end_of_DRAM(); 781 unsigned long total_ram = memblock_phys_mem_size(); 782 unsigned long start_pfn, end_pfn; 783 unsigned int nid = 0; 784 struct memblock_region *reg; 785 786 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 787 top_of_ram, total_ram); 788 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 789 (top_of_ram - total_ram) >> 20); 790 791 for_each_memblock(memory, reg) { 792 start_pfn = memblock_region_memory_base_pfn(reg); 793 end_pfn = memblock_region_memory_end_pfn(reg); 794 795 fake_numa_create_new_node(end_pfn, &nid); 796 memblock_set_node(PFN_PHYS(start_pfn), 797 PFN_PHYS(end_pfn - start_pfn), nid); 798 node_set_online(nid); 799 } 800 } 801 802 void __init dump_numa_cpu_topology(void) 803 { 804 unsigned int node; 805 unsigned int cpu, count; 806 807 if (min_common_depth == -1 || !numa_enabled) 808 return; 809 810 for_each_online_node(node) { 811 printk(KERN_DEBUG "Node %d CPUs:", node); 812 813 count = 0; 814 /* 815 * If we used a CPU iterator here we would miss printing 816 * the holes in the cpumap. 817 */ 818 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 819 if (cpumask_test_cpu(cpu, 820 node_to_cpumask_map[node])) { 821 if (count == 0) 822 printk(" %u", cpu); 823 ++count; 824 } else { 825 if (count > 1) 826 printk("-%u", cpu - 1); 827 count = 0; 828 } 829 } 830 831 if (count > 1) 832 printk("-%u", nr_cpu_ids - 1); 833 printk("\n"); 834 } 835 } 836 837 static void __init dump_numa_memory_topology(void) 838 { 839 unsigned int node; 840 unsigned int count; 841 842 if (min_common_depth == -1 || !numa_enabled) 843 return; 844 845 for_each_online_node(node) { 846 unsigned long i; 847 848 printk(KERN_DEBUG "Node %d Memory:", node); 849 850 count = 0; 851 852 for (i = 0; i < memblock_end_of_DRAM(); 853 i += (1 << SECTION_SIZE_BITS)) { 854 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { 855 if (count == 0) 856 printk(" 0x%lx", i); 857 ++count; 858 } else { 859 if (count > 0) 860 printk("-0x%lx", i); 861 count = 0; 862 } 863 } 864 865 if (count > 0) 866 printk("-0x%lx", i); 867 printk("\n"); 868 } 869 } 870 871 /* 872 * Allocate some memory, satisfying the memblock or bootmem allocator where 873 * required. nid is the preferred node and end is the physical address of 874 * the highest address in the node. 875 * 876 * Returns the virtual address of the memory. 877 */ 878 static void __init *careful_zallocation(int nid, unsigned long size, 879 unsigned long align, 880 unsigned long end_pfn) 881 { 882 void *ret; 883 int new_nid; 884 unsigned long ret_paddr; 885 886 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT); 887 888 /* retry over all memory */ 889 if (!ret_paddr) 890 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM()); 891 892 if (!ret_paddr) 893 panic("numa.c: cannot allocate %lu bytes for node %d", 894 size, nid); 895 896 ret = __va(ret_paddr); 897 898 /* 899 * We initialize the nodes in numeric order: 0, 1, 2... 900 * and hand over control from the MEMBLOCK allocator to the 901 * bootmem allocator. If this function is called for 902 * node 5, then we know that all nodes <5 are using the 903 * bootmem allocator instead of the MEMBLOCK allocator. 904 * 905 * So, check the nid from which this allocation came 906 * and double check to see if we need to use bootmem 907 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory 908 * since it would be useless. 909 */ 910 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT); 911 if (new_nid < nid) { 912 ret = __alloc_bootmem_node(NODE_DATA(new_nid), 913 size, align, 0); 914 915 dbg("alloc_bootmem %p %lx\n", ret, size); 916 } 917 918 memset(ret, 0, size); 919 return ret; 920 } 921 922 static struct notifier_block ppc64_numa_nb = { 923 .notifier_call = cpu_numa_callback, 924 .priority = 1 /* Must run before sched domains notifier. */ 925 }; 926 927 static void __init mark_reserved_regions_for_nid(int nid) 928 { 929 struct pglist_data *node = NODE_DATA(nid); 930 struct memblock_region *reg; 931 932 for_each_memblock(reserved, reg) { 933 unsigned long physbase = reg->base; 934 unsigned long size = reg->size; 935 unsigned long start_pfn = physbase >> PAGE_SHIFT; 936 unsigned long end_pfn = PFN_UP(physbase + size); 937 struct node_active_region node_ar; 938 unsigned long node_end_pfn = node->node_start_pfn + 939 node->node_spanned_pages; 940 941 /* 942 * Check to make sure that this memblock.reserved area is 943 * within the bounds of the node that we care about. 944 * Checking the nid of the start and end points is not 945 * sufficient because the reserved area could span the 946 * entire node. 947 */ 948 if (end_pfn <= node->node_start_pfn || 949 start_pfn >= node_end_pfn) 950 continue; 951 952 get_node_active_region(start_pfn, &node_ar); 953 while (start_pfn < end_pfn && 954 node_ar.start_pfn < node_ar.end_pfn) { 955 unsigned long reserve_size = size; 956 /* 957 * if reserved region extends past active region 958 * then trim size to active region 959 */ 960 if (end_pfn > node_ar.end_pfn) 961 reserve_size = (node_ar.end_pfn << PAGE_SHIFT) 962 - physbase; 963 /* 964 * Only worry about *this* node, others may not 965 * yet have valid NODE_DATA(). 966 */ 967 if (node_ar.nid == nid) { 968 dbg("reserve_bootmem %lx %lx nid=%d\n", 969 physbase, reserve_size, node_ar.nid); 970 reserve_bootmem_node(NODE_DATA(node_ar.nid), 971 physbase, reserve_size, 972 BOOTMEM_DEFAULT); 973 } 974 /* 975 * if reserved region is contained in the active region 976 * then done. 977 */ 978 if (end_pfn <= node_ar.end_pfn) 979 break; 980 981 /* 982 * reserved region extends past the active region 983 * get next active region that contains this 984 * reserved region 985 */ 986 start_pfn = node_ar.end_pfn; 987 physbase = start_pfn << PAGE_SHIFT; 988 size = size - reserve_size; 989 get_node_active_region(start_pfn, &node_ar); 990 } 991 } 992 } 993 994 995 void __init do_init_bootmem(void) 996 { 997 int nid; 998 999 min_low_pfn = 0; 1000 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1001 max_pfn = max_low_pfn; 1002 1003 if (parse_numa_properties()) 1004 setup_nonnuma(); 1005 else 1006 dump_numa_memory_topology(); 1007 1008 for_each_online_node(nid) { 1009 unsigned long start_pfn, end_pfn; 1010 void *bootmem_vaddr; 1011 unsigned long bootmap_pages; 1012 1013 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1014 1015 /* 1016 * Allocate the node structure node local if possible 1017 * 1018 * Be careful moving this around, as it relies on all 1019 * previous nodes' bootmem to be initialized and have 1020 * all reserved areas marked. 1021 */ 1022 NODE_DATA(nid) = careful_zallocation(nid, 1023 sizeof(struct pglist_data), 1024 SMP_CACHE_BYTES, end_pfn); 1025 1026 dbg("node %d\n", nid); 1027 dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); 1028 1029 NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; 1030 NODE_DATA(nid)->node_start_pfn = start_pfn; 1031 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; 1032 1033 if (NODE_DATA(nid)->node_spanned_pages == 0) 1034 continue; 1035 1036 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); 1037 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); 1038 1039 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); 1040 bootmem_vaddr = careful_zallocation(nid, 1041 bootmap_pages << PAGE_SHIFT, 1042 PAGE_SIZE, end_pfn); 1043 1044 dbg("bootmap_vaddr = %p\n", bootmem_vaddr); 1045 1046 init_bootmem_node(NODE_DATA(nid), 1047 __pa(bootmem_vaddr) >> PAGE_SHIFT, 1048 start_pfn, end_pfn); 1049 1050 free_bootmem_with_active_regions(nid, end_pfn); 1051 /* 1052 * Be very careful about moving this around. Future 1053 * calls to careful_zallocation() depend on this getting 1054 * done correctly. 1055 */ 1056 mark_reserved_regions_for_nid(nid); 1057 sparse_memory_present_with_active_regions(nid); 1058 } 1059 1060 init_bootmem_done = 1; 1061 1062 /* 1063 * Now bootmem is initialised we can create the node to cpumask 1064 * lookup tables and setup the cpu callback to populate them. 1065 */ 1066 setup_node_to_cpumask_map(); 1067 1068 register_cpu_notifier(&ppc64_numa_nb); 1069 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, 1070 (void *)(unsigned long)boot_cpuid); 1071 } 1072 1073 void __init paging_init(void) 1074 { 1075 unsigned long max_zone_pfns[MAX_NR_ZONES]; 1076 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 1077 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT; 1078 free_area_init_nodes(max_zone_pfns); 1079 } 1080 1081 static int __init early_numa(char *p) 1082 { 1083 if (!p) 1084 return 0; 1085 1086 if (strstr(p, "off")) 1087 numa_enabled = 0; 1088 1089 if (strstr(p, "debug")) 1090 numa_debug = 1; 1091 1092 p = strstr(p, "fake="); 1093 if (p) 1094 cmdline = p + strlen("fake="); 1095 1096 return 0; 1097 } 1098 early_param("numa", early_numa); 1099 1100 #ifdef CONFIG_MEMORY_HOTPLUG 1101 /* 1102 * Find the node associated with a hot added memory section for 1103 * memory represented in the device tree by the property 1104 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 1105 */ 1106 static int hot_add_drconf_scn_to_nid(struct device_node *memory, 1107 unsigned long scn_addr) 1108 { 1109 const u32 *dm; 1110 unsigned int drconf_cell_cnt, rc; 1111 unsigned long lmb_size; 1112 struct assoc_arrays aa; 1113 int nid = -1; 1114 1115 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1116 if (!drconf_cell_cnt) 1117 return -1; 1118 1119 lmb_size = of_get_lmb_size(memory); 1120 if (!lmb_size) 1121 return -1; 1122 1123 rc = of_get_assoc_arrays(memory, &aa); 1124 if (rc) 1125 return -1; 1126 1127 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { 1128 struct of_drconf_cell drmem; 1129 1130 read_drconf_cell(&drmem, &dm); 1131 1132 /* skip this block if it is reserved or not assigned to 1133 * this partition */ 1134 if ((drmem.flags & DRCONF_MEM_RESERVED) 1135 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 1136 continue; 1137 1138 if ((scn_addr < drmem.base_addr) 1139 || (scn_addr >= (drmem.base_addr + lmb_size))) 1140 continue; 1141 1142 nid = of_drconf_to_nid_single(&drmem, &aa); 1143 break; 1144 } 1145 1146 return nid; 1147 } 1148 1149 /* 1150 * Find the node associated with a hot added memory section for memory 1151 * represented in the device tree as a node (i.e. memory@XXXX) for 1152 * each memblock. 1153 */ 1154 int hot_add_node_scn_to_nid(unsigned long scn_addr) 1155 { 1156 struct device_node *memory; 1157 int nid = -1; 1158 1159 for_each_node_by_type(memory, "memory") { 1160 unsigned long start, size; 1161 int ranges; 1162 const unsigned int *memcell_buf; 1163 unsigned int len; 1164 1165 memcell_buf = of_get_property(memory, "reg", &len); 1166 if (!memcell_buf || len <= 0) 1167 continue; 1168 1169 /* ranges in cell */ 1170 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 1171 1172 while (ranges--) { 1173 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 1174 size = read_n_cells(n_mem_size_cells, &memcell_buf); 1175 1176 if ((scn_addr < start) || (scn_addr >= (start + size))) 1177 continue; 1178 1179 nid = of_node_to_nid_single(memory); 1180 break; 1181 } 1182 1183 if (nid >= 0) 1184 break; 1185 } 1186 1187 of_node_put(memory); 1188 1189 return nid; 1190 } 1191 1192 /* 1193 * Find the node associated with a hot added memory section. Section 1194 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1195 * sections are fully contained within a single MEMBLOCK. 1196 */ 1197 int hot_add_scn_to_nid(unsigned long scn_addr) 1198 { 1199 struct device_node *memory = NULL; 1200 int nid, found = 0; 1201 1202 if (!numa_enabled || (min_common_depth < 0)) 1203 return first_online_node; 1204 1205 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1206 if (memory) { 1207 nid = hot_add_drconf_scn_to_nid(memory, scn_addr); 1208 of_node_put(memory); 1209 } else { 1210 nid = hot_add_node_scn_to_nid(scn_addr); 1211 } 1212 1213 if (nid < 0 || !node_online(nid)) 1214 nid = first_online_node; 1215 1216 if (NODE_DATA(nid)->node_spanned_pages) 1217 return nid; 1218 1219 for_each_online_node(nid) { 1220 if (NODE_DATA(nid)->node_spanned_pages) { 1221 found = 1; 1222 break; 1223 } 1224 } 1225 1226 BUG_ON(!found); 1227 return nid; 1228 } 1229 1230 static u64 hot_add_drconf_memory_max(void) 1231 { 1232 struct device_node *memory = NULL; 1233 unsigned int drconf_cell_cnt = 0; 1234 u64 lmb_size = 0; 1235 const u32 *dm = 0; 1236 1237 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1238 if (memory) { 1239 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1240 lmb_size = of_get_lmb_size(memory); 1241 of_node_put(memory); 1242 } 1243 return lmb_size * drconf_cell_cnt; 1244 } 1245 1246 /* 1247 * memory_hotplug_max - return max address of memory that may be added 1248 * 1249 * This is currently only used on systems that support drconfig memory 1250 * hotplug. 1251 */ 1252 u64 memory_hotplug_max(void) 1253 { 1254 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1255 } 1256 #endif /* CONFIG_MEMORY_HOTPLUG */ 1257 1258 /* Virtual Processor Home Node (VPHN) support */ 1259 #ifdef CONFIG_PPC_SPLPAR 1260 struct topology_update_data { 1261 struct topology_update_data *next; 1262 unsigned int cpu; 1263 int old_nid; 1264 int new_nid; 1265 }; 1266 1267 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; 1268 static cpumask_t cpu_associativity_changes_mask; 1269 static int vphn_enabled; 1270 static int prrn_enabled; 1271 static void reset_topology_timer(void); 1272 1273 /* 1274 * Store the current values of the associativity change counters in the 1275 * hypervisor. 1276 */ 1277 static void setup_cpu_associativity_change_counters(void) 1278 { 1279 int cpu; 1280 1281 /* The VPHN feature supports a maximum of 8 reference points */ 1282 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); 1283 1284 for_each_possible_cpu(cpu) { 1285 int i; 1286 u8 *counts = vphn_cpu_change_counts[cpu]; 1287 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1288 1289 for (i = 0; i < distance_ref_points_depth; i++) 1290 counts[i] = hypervisor_counts[i]; 1291 } 1292 } 1293 1294 /* 1295 * The hypervisor maintains a set of 8 associativity change counters in 1296 * the VPA of each cpu that correspond to the associativity levels in the 1297 * ibm,associativity-reference-points property. When an associativity 1298 * level changes, the corresponding counter is incremented. 1299 * 1300 * Set a bit in cpu_associativity_changes_mask for each cpu whose home 1301 * node associativity levels have changed. 1302 * 1303 * Returns the number of cpus with unhandled associativity changes. 1304 */ 1305 static int update_cpu_associativity_changes_mask(void) 1306 { 1307 int cpu; 1308 cpumask_t *changes = &cpu_associativity_changes_mask; 1309 1310 for_each_possible_cpu(cpu) { 1311 int i, changed = 0; 1312 u8 *counts = vphn_cpu_change_counts[cpu]; 1313 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1314 1315 for (i = 0; i < distance_ref_points_depth; i++) { 1316 if (hypervisor_counts[i] != counts[i]) { 1317 counts[i] = hypervisor_counts[i]; 1318 changed = 1; 1319 } 1320 } 1321 if (changed) { 1322 cpumask_or(changes, changes, cpu_sibling_mask(cpu)); 1323 cpu = cpu_last_thread_sibling(cpu); 1324 } 1325 } 1326 1327 return cpumask_weight(changes); 1328 } 1329 1330 /* 1331 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form 1332 * the complete property we have to add the length in the first cell. 1333 */ 1334 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1) 1335 1336 /* 1337 * Convert the associativity domain numbers returned from the hypervisor 1338 * to the sequence they would appear in the ibm,associativity property. 1339 */ 1340 static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked) 1341 { 1342 int i, nr_assoc_doms = 0; 1343 const u16 *field = (const u16*) packed; 1344 1345 #define VPHN_FIELD_UNUSED (0xffff) 1346 #define VPHN_FIELD_MSB (0x8000) 1347 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB) 1348 1349 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) { 1350 if (*field == VPHN_FIELD_UNUSED) { 1351 /* All significant fields processed, and remaining 1352 * fields contain the reserved value of all 1's. 1353 * Just store them. 1354 */ 1355 unpacked[i] = *((u32*)field); 1356 field += 2; 1357 } else if (*field & VPHN_FIELD_MSB) { 1358 /* Data is in the lower 15 bits of this field */ 1359 unpacked[i] = *field & VPHN_FIELD_MASK; 1360 field++; 1361 nr_assoc_doms++; 1362 } else { 1363 /* Data is in the lower 15 bits of this field 1364 * concatenated with the next 16 bit field 1365 */ 1366 unpacked[i] = *((u32*)field); 1367 field += 2; 1368 nr_assoc_doms++; 1369 } 1370 } 1371 1372 /* The first cell contains the length of the property */ 1373 unpacked[0] = nr_assoc_doms; 1374 1375 return nr_assoc_doms; 1376 } 1377 1378 /* 1379 * Retrieve the new associativity information for a virtual processor's 1380 * home node. 1381 */ 1382 static long hcall_vphn(unsigned long cpu, unsigned int *associativity) 1383 { 1384 long rc; 1385 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; 1386 u64 flags = 1; 1387 int hwcpu = get_hard_smp_processor_id(cpu); 1388 1389 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); 1390 vphn_unpack_associativity(retbuf, associativity); 1391 1392 return rc; 1393 } 1394 1395 static long vphn_get_associativity(unsigned long cpu, 1396 unsigned int *associativity) 1397 { 1398 long rc; 1399 1400 rc = hcall_vphn(cpu, associativity); 1401 1402 switch (rc) { 1403 case H_FUNCTION: 1404 printk(KERN_INFO 1405 "VPHN is not supported. Disabling polling...\n"); 1406 stop_topology_update(); 1407 break; 1408 case H_HARDWARE: 1409 printk(KERN_ERR 1410 "hcall_vphn() experienced a hardware fault " 1411 "preventing VPHN. Disabling polling...\n"); 1412 stop_topology_update(); 1413 } 1414 1415 return rc; 1416 } 1417 1418 /* 1419 * Update the CPU maps and sysfs entries for a single CPU when its NUMA 1420 * characteristics change. This function doesn't perform any locking and is 1421 * only safe to call from stop_machine(). 1422 */ 1423 static int update_cpu_topology(void *data) 1424 { 1425 struct topology_update_data *update; 1426 unsigned long cpu; 1427 1428 if (!data) 1429 return -EINVAL; 1430 1431 cpu = smp_processor_id(); 1432 1433 for (update = data; update; update = update->next) { 1434 if (cpu != update->cpu) 1435 continue; 1436 1437 unmap_cpu_from_node(update->cpu); 1438 map_cpu_to_node(update->cpu, update->new_nid); 1439 vdso_getcpu_init(); 1440 } 1441 1442 return 0; 1443 } 1444 1445 /* 1446 * Update the node maps and sysfs entries for each cpu whose home node 1447 * has changed. Returns 1 when the topology has changed, and 0 otherwise. 1448 */ 1449 int arch_update_cpu_topology(void) 1450 { 1451 unsigned int cpu, sibling, changed = 0; 1452 struct topology_update_data *updates, *ud; 1453 unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1454 cpumask_t updated_cpus; 1455 struct device *dev; 1456 int weight, new_nid, i = 0; 1457 1458 weight = cpumask_weight(&cpu_associativity_changes_mask); 1459 if (!weight) 1460 return 0; 1461 1462 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL); 1463 if (!updates) 1464 return 0; 1465 1466 cpumask_clear(&updated_cpus); 1467 1468 for_each_cpu(cpu, &cpu_associativity_changes_mask) { 1469 /* 1470 * If siblings aren't flagged for changes, updates list 1471 * will be too short. Skip on this update and set for next 1472 * update. 1473 */ 1474 if (!cpumask_subset(cpu_sibling_mask(cpu), 1475 &cpu_associativity_changes_mask)) { 1476 pr_info("Sibling bits not set for associativity " 1477 "change, cpu%d\n", cpu); 1478 cpumask_or(&cpu_associativity_changes_mask, 1479 &cpu_associativity_changes_mask, 1480 cpu_sibling_mask(cpu)); 1481 cpu = cpu_last_thread_sibling(cpu); 1482 continue; 1483 } 1484 1485 /* Use associativity from first thread for all siblings */ 1486 vphn_get_associativity(cpu, associativity); 1487 new_nid = associativity_to_nid(associativity); 1488 if (new_nid < 0 || !node_online(new_nid)) 1489 new_nid = first_online_node; 1490 1491 if (new_nid == numa_cpu_lookup_table[cpu]) { 1492 cpumask_andnot(&cpu_associativity_changes_mask, 1493 &cpu_associativity_changes_mask, 1494 cpu_sibling_mask(cpu)); 1495 cpu = cpu_last_thread_sibling(cpu); 1496 continue; 1497 } 1498 1499 for_each_cpu(sibling, cpu_sibling_mask(cpu)) { 1500 ud = &updates[i++]; 1501 ud->cpu = sibling; 1502 ud->new_nid = new_nid; 1503 ud->old_nid = numa_cpu_lookup_table[sibling]; 1504 cpumask_set_cpu(sibling, &updated_cpus); 1505 if (i < weight) 1506 ud->next = &updates[i]; 1507 } 1508 cpu = cpu_last_thread_sibling(cpu); 1509 } 1510 1511 stop_machine(update_cpu_topology, &updates[0], &updated_cpus); 1512 1513 for (ud = &updates[0]; ud; ud = ud->next) { 1514 unregister_cpu_under_node(ud->cpu, ud->old_nid); 1515 register_cpu_under_node(ud->cpu, ud->new_nid); 1516 1517 dev = get_cpu_device(ud->cpu); 1518 if (dev) 1519 kobject_uevent(&dev->kobj, KOBJ_CHANGE); 1520 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask); 1521 changed = 1; 1522 } 1523 1524 kfree(updates); 1525 return changed; 1526 } 1527 1528 static void topology_work_fn(struct work_struct *work) 1529 { 1530 rebuild_sched_domains(); 1531 } 1532 static DECLARE_WORK(topology_work, topology_work_fn); 1533 1534 void topology_schedule_update(void) 1535 { 1536 schedule_work(&topology_work); 1537 } 1538 1539 static void topology_timer_fn(unsigned long ignored) 1540 { 1541 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask)) 1542 topology_schedule_update(); 1543 else if (vphn_enabled) { 1544 if (update_cpu_associativity_changes_mask() > 0) 1545 topology_schedule_update(); 1546 reset_topology_timer(); 1547 } 1548 } 1549 static struct timer_list topology_timer = 1550 TIMER_INITIALIZER(topology_timer_fn, 0, 0); 1551 1552 static void reset_topology_timer(void) 1553 { 1554 topology_timer.data = 0; 1555 topology_timer.expires = jiffies + 60 * HZ; 1556 mod_timer(&topology_timer, topology_timer.expires); 1557 } 1558 1559 #ifdef CONFIG_SMP 1560 1561 static void stage_topology_update(int core_id) 1562 { 1563 cpumask_or(&cpu_associativity_changes_mask, 1564 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id)); 1565 reset_topology_timer(); 1566 } 1567 1568 static int dt_update_callback(struct notifier_block *nb, 1569 unsigned long action, void *data) 1570 { 1571 struct of_prop_reconfig *update; 1572 int rc = NOTIFY_DONE; 1573 1574 switch (action) { 1575 case OF_RECONFIG_UPDATE_PROPERTY: 1576 update = (struct of_prop_reconfig *)data; 1577 if (!of_prop_cmp(update->dn->type, "cpu") && 1578 !of_prop_cmp(update->prop->name, "ibm,associativity")) { 1579 u32 core_id; 1580 of_property_read_u32(update->dn, "reg", &core_id); 1581 stage_topology_update(core_id); 1582 rc = NOTIFY_OK; 1583 } 1584 break; 1585 } 1586 1587 return rc; 1588 } 1589 1590 static struct notifier_block dt_update_nb = { 1591 .notifier_call = dt_update_callback, 1592 }; 1593 1594 #endif 1595 1596 /* 1597 * Start polling for associativity changes. 1598 */ 1599 int start_topology_update(void) 1600 { 1601 int rc = 0; 1602 1603 if (firmware_has_feature(FW_FEATURE_PRRN)) { 1604 if (!prrn_enabled) { 1605 prrn_enabled = 1; 1606 vphn_enabled = 0; 1607 #ifdef CONFIG_SMP 1608 rc = of_reconfig_notifier_register(&dt_update_nb); 1609 #endif 1610 } 1611 } else if (firmware_has_feature(FW_FEATURE_VPHN) && 1612 get_lppaca()->shared_proc) { 1613 if (!vphn_enabled) { 1614 prrn_enabled = 0; 1615 vphn_enabled = 1; 1616 setup_cpu_associativity_change_counters(); 1617 init_timer_deferrable(&topology_timer); 1618 reset_topology_timer(); 1619 } 1620 } 1621 1622 return rc; 1623 } 1624 1625 /* 1626 * Disable polling for VPHN associativity changes. 1627 */ 1628 int stop_topology_update(void) 1629 { 1630 int rc = 0; 1631 1632 if (prrn_enabled) { 1633 prrn_enabled = 0; 1634 #ifdef CONFIG_SMP 1635 rc = of_reconfig_notifier_unregister(&dt_update_nb); 1636 #endif 1637 } else if (vphn_enabled) { 1638 vphn_enabled = 0; 1639 rc = del_timer_sync(&topology_timer); 1640 } 1641 1642 return rc; 1643 } 1644 1645 int prrn_is_enabled(void) 1646 { 1647 return prrn_enabled; 1648 } 1649 1650 static int topology_read(struct seq_file *file, void *v) 1651 { 1652 if (vphn_enabled || prrn_enabled) 1653 seq_puts(file, "on\n"); 1654 else 1655 seq_puts(file, "off\n"); 1656 1657 return 0; 1658 } 1659 1660 static int topology_open(struct inode *inode, struct file *file) 1661 { 1662 return single_open(file, topology_read, NULL); 1663 } 1664 1665 static ssize_t topology_write(struct file *file, const char __user *buf, 1666 size_t count, loff_t *off) 1667 { 1668 char kbuf[4]; /* "on" or "off" plus null. */ 1669 int read_len; 1670 1671 read_len = count < 3 ? count : 3; 1672 if (copy_from_user(kbuf, buf, read_len)) 1673 return -EINVAL; 1674 1675 kbuf[read_len] = '\0'; 1676 1677 if (!strncmp(kbuf, "on", 2)) 1678 start_topology_update(); 1679 else if (!strncmp(kbuf, "off", 3)) 1680 stop_topology_update(); 1681 else 1682 return -EINVAL; 1683 1684 return count; 1685 } 1686 1687 static const struct file_operations topology_ops = { 1688 .read = seq_read, 1689 .write = topology_write, 1690 .open = topology_open, 1691 .release = single_release 1692 }; 1693 1694 static int topology_update_init(void) 1695 { 1696 start_topology_update(); 1697 proc_create("powerpc/topology_updates", 644, NULL, &topology_ops); 1698 1699 return 0; 1700 } 1701 device_initcall(topology_update_init); 1702 #endif /* CONFIG_PPC_SPLPAR */ 1703