xref: /openbmc/linux/arch/powerpc/mm/numa.c (revision ee8a99bd)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/export.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/memblock.h>
21 #include <linux/of.h>
22 #include <linux/pfn.h>
23 #include <linux/cpuset.h>
24 #include <linux/node.h>
25 #include <linux/stop_machine.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/uaccess.h>
29 #include <linux/slab.h>
30 #include <asm/cputhreads.h>
31 #include <asm/sparsemem.h>
32 #include <asm/prom.h>
33 #include <asm/smp.h>
34 #include <asm/firmware.h>
35 #include <asm/paca.h>
36 #include <asm/hvcall.h>
37 #include <asm/setup.h>
38 #include <asm/vdso.h>
39 
40 static int numa_enabled = 1;
41 
42 static char *cmdline __initdata;
43 
44 static int numa_debug;
45 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
46 
47 int numa_cpu_lookup_table[NR_CPUS];
48 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
49 struct pglist_data *node_data[MAX_NUMNODES];
50 
51 EXPORT_SYMBOL(numa_cpu_lookup_table);
52 EXPORT_SYMBOL(node_to_cpumask_map);
53 EXPORT_SYMBOL(node_data);
54 
55 static int min_common_depth;
56 static int n_mem_addr_cells, n_mem_size_cells;
57 static int form1_affinity;
58 
59 #define MAX_DISTANCE_REF_POINTS 4
60 static int distance_ref_points_depth;
61 static const unsigned int *distance_ref_points;
62 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
63 
64 /*
65  * Allocate node_to_cpumask_map based on number of available nodes
66  * Requires node_possible_map to be valid.
67  *
68  * Note: cpumask_of_node() is not valid until after this is done.
69  */
70 static void __init setup_node_to_cpumask_map(void)
71 {
72 	unsigned int node;
73 
74 	/* setup nr_node_ids if not done yet */
75 	if (nr_node_ids == MAX_NUMNODES)
76 		setup_nr_node_ids();
77 
78 	/* allocate the map */
79 	for (node = 0; node < nr_node_ids; node++)
80 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
81 
82 	/* cpumask_of_node() will now work */
83 	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
84 }
85 
86 static int __init fake_numa_create_new_node(unsigned long end_pfn,
87 						unsigned int *nid)
88 {
89 	unsigned long long mem;
90 	char *p = cmdline;
91 	static unsigned int fake_nid;
92 	static unsigned long long curr_boundary;
93 
94 	/*
95 	 * Modify node id, iff we started creating NUMA nodes
96 	 * We want to continue from where we left of the last time
97 	 */
98 	if (fake_nid)
99 		*nid = fake_nid;
100 	/*
101 	 * In case there are no more arguments to parse, the
102 	 * node_id should be the same as the last fake node id
103 	 * (we've handled this above).
104 	 */
105 	if (!p)
106 		return 0;
107 
108 	mem = memparse(p, &p);
109 	if (!mem)
110 		return 0;
111 
112 	if (mem < curr_boundary)
113 		return 0;
114 
115 	curr_boundary = mem;
116 
117 	if ((end_pfn << PAGE_SHIFT) > mem) {
118 		/*
119 		 * Skip commas and spaces
120 		 */
121 		while (*p == ',' || *p == ' ' || *p == '\t')
122 			p++;
123 
124 		cmdline = p;
125 		fake_nid++;
126 		*nid = fake_nid;
127 		dbg("created new fake_node with id %d\n", fake_nid);
128 		return 1;
129 	}
130 	return 0;
131 }
132 
133 /*
134  * get_node_active_region - Return active region containing pfn
135  * Active range returned is empty if none found.
136  * @pfn: The page to return the region for
137  * @node_ar: Returned set to the active region containing @pfn
138  */
139 static void __init get_node_active_region(unsigned long pfn,
140 					  struct node_active_region *node_ar)
141 {
142 	unsigned long start_pfn, end_pfn;
143 	int i, nid;
144 
145 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
146 		if (pfn >= start_pfn && pfn < end_pfn) {
147 			node_ar->nid = nid;
148 			node_ar->start_pfn = start_pfn;
149 			node_ar->end_pfn = end_pfn;
150 			break;
151 		}
152 	}
153 }
154 
155 static void map_cpu_to_node(int cpu, int node)
156 {
157 	numa_cpu_lookup_table[cpu] = node;
158 
159 	dbg("adding cpu %d to node %d\n", cpu, node);
160 
161 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
162 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
163 }
164 
165 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
166 static void unmap_cpu_from_node(unsigned long cpu)
167 {
168 	int node = numa_cpu_lookup_table[cpu];
169 
170 	dbg("removing cpu %lu from node %d\n", cpu, node);
171 
172 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
173 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
174 	} else {
175 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
176 		       cpu, node);
177 	}
178 }
179 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
180 
181 /* must hold reference to node during call */
182 static const int *of_get_associativity(struct device_node *dev)
183 {
184 	return of_get_property(dev, "ibm,associativity", NULL);
185 }
186 
187 /*
188  * Returns the property linux,drconf-usable-memory if
189  * it exists (the property exists only in kexec/kdump kernels,
190  * added by kexec-tools)
191  */
192 static const u32 *of_get_usable_memory(struct device_node *memory)
193 {
194 	const u32 *prop;
195 	u32 len;
196 	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
197 	if (!prop || len < sizeof(unsigned int))
198 		return 0;
199 	return prop;
200 }
201 
202 int __node_distance(int a, int b)
203 {
204 	int i;
205 	int distance = LOCAL_DISTANCE;
206 
207 	if (!form1_affinity)
208 		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
209 
210 	for (i = 0; i < distance_ref_points_depth; i++) {
211 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
212 			break;
213 
214 		/* Double the distance for each NUMA level */
215 		distance *= 2;
216 	}
217 
218 	return distance;
219 }
220 
221 static void initialize_distance_lookup_table(int nid,
222 		const unsigned int *associativity)
223 {
224 	int i;
225 
226 	if (!form1_affinity)
227 		return;
228 
229 	for (i = 0; i < distance_ref_points_depth; i++) {
230 		distance_lookup_table[nid][i] =
231 			associativity[distance_ref_points[i]];
232 	}
233 }
234 
235 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
236  * info is found.
237  */
238 static int associativity_to_nid(const unsigned int *associativity)
239 {
240 	int nid = -1;
241 
242 	if (min_common_depth == -1)
243 		goto out;
244 
245 	if (associativity[0] >= min_common_depth)
246 		nid = associativity[min_common_depth];
247 
248 	/* POWER4 LPAR uses 0xffff as invalid node */
249 	if (nid == 0xffff || nid >= MAX_NUMNODES)
250 		nid = -1;
251 
252 	if (nid > 0 && associativity[0] >= distance_ref_points_depth)
253 		initialize_distance_lookup_table(nid, associativity);
254 
255 out:
256 	return nid;
257 }
258 
259 /* Returns the nid associated with the given device tree node,
260  * or -1 if not found.
261  */
262 static int of_node_to_nid_single(struct device_node *device)
263 {
264 	int nid = -1;
265 	const unsigned int *tmp;
266 
267 	tmp = of_get_associativity(device);
268 	if (tmp)
269 		nid = associativity_to_nid(tmp);
270 	return nid;
271 }
272 
273 /* Walk the device tree upwards, looking for an associativity id */
274 int of_node_to_nid(struct device_node *device)
275 {
276 	struct device_node *tmp;
277 	int nid = -1;
278 
279 	of_node_get(device);
280 	while (device) {
281 		nid = of_node_to_nid_single(device);
282 		if (nid != -1)
283 			break;
284 
285 	        tmp = device;
286 		device = of_get_parent(tmp);
287 		of_node_put(tmp);
288 	}
289 	of_node_put(device);
290 
291 	return nid;
292 }
293 EXPORT_SYMBOL_GPL(of_node_to_nid);
294 
295 static int __init find_min_common_depth(void)
296 {
297 	int depth;
298 	struct device_node *root;
299 
300 	if (firmware_has_feature(FW_FEATURE_OPAL))
301 		root = of_find_node_by_path("/ibm,opal");
302 	else
303 		root = of_find_node_by_path("/rtas");
304 	if (!root)
305 		root = of_find_node_by_path("/");
306 
307 	/*
308 	 * This property is a set of 32-bit integers, each representing
309 	 * an index into the ibm,associativity nodes.
310 	 *
311 	 * With form 0 affinity the first integer is for an SMP configuration
312 	 * (should be all 0's) and the second is for a normal NUMA
313 	 * configuration. We have only one level of NUMA.
314 	 *
315 	 * With form 1 affinity the first integer is the most significant
316 	 * NUMA boundary and the following are progressively less significant
317 	 * boundaries. There can be more than one level of NUMA.
318 	 */
319 	distance_ref_points = of_get_property(root,
320 					"ibm,associativity-reference-points",
321 					&distance_ref_points_depth);
322 
323 	if (!distance_ref_points) {
324 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
325 		goto err;
326 	}
327 
328 	distance_ref_points_depth /= sizeof(int);
329 
330 	if (firmware_has_feature(FW_FEATURE_OPAL) ||
331 	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
332 		dbg("Using form 1 affinity\n");
333 		form1_affinity = 1;
334 	}
335 
336 	if (form1_affinity) {
337 		depth = distance_ref_points[0];
338 	} else {
339 		if (distance_ref_points_depth < 2) {
340 			printk(KERN_WARNING "NUMA: "
341 				"short ibm,associativity-reference-points\n");
342 			goto err;
343 		}
344 
345 		depth = distance_ref_points[1];
346 	}
347 
348 	/*
349 	 * Warn and cap if the hardware supports more than
350 	 * MAX_DISTANCE_REF_POINTS domains.
351 	 */
352 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
353 		printk(KERN_WARNING "NUMA: distance array capped at "
354 			"%d entries\n", MAX_DISTANCE_REF_POINTS);
355 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
356 	}
357 
358 	of_node_put(root);
359 	return depth;
360 
361 err:
362 	of_node_put(root);
363 	return -1;
364 }
365 
366 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
367 {
368 	struct device_node *memory = NULL;
369 
370 	memory = of_find_node_by_type(memory, "memory");
371 	if (!memory)
372 		panic("numa.c: No memory nodes found!");
373 
374 	*n_addr_cells = of_n_addr_cells(memory);
375 	*n_size_cells = of_n_size_cells(memory);
376 	of_node_put(memory);
377 }
378 
379 static unsigned long read_n_cells(int n, const unsigned int **buf)
380 {
381 	unsigned long result = 0;
382 
383 	while (n--) {
384 		result = (result << 32) | **buf;
385 		(*buf)++;
386 	}
387 	return result;
388 }
389 
390 /*
391  * Read the next memblock list entry from the ibm,dynamic-memory property
392  * and return the information in the provided of_drconf_cell structure.
393  */
394 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
395 {
396 	const u32 *cp;
397 
398 	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
399 
400 	cp = *cellp;
401 	drmem->drc_index = cp[0];
402 	drmem->reserved = cp[1];
403 	drmem->aa_index = cp[2];
404 	drmem->flags = cp[3];
405 
406 	*cellp = cp + 4;
407 }
408 
409 /*
410  * Retrieve and validate the ibm,dynamic-memory property of the device tree.
411  *
412  * The layout of the ibm,dynamic-memory property is a number N of memblock
413  * list entries followed by N memblock list entries.  Each memblock list entry
414  * contains information as laid out in the of_drconf_cell struct above.
415  */
416 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
417 {
418 	const u32 *prop;
419 	u32 len, entries;
420 
421 	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
422 	if (!prop || len < sizeof(unsigned int))
423 		return 0;
424 
425 	entries = *prop++;
426 
427 	/* Now that we know the number of entries, revalidate the size
428 	 * of the property read in to ensure we have everything
429 	 */
430 	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
431 		return 0;
432 
433 	*dm = prop;
434 	return entries;
435 }
436 
437 /*
438  * Retrieve and validate the ibm,lmb-size property for drconf memory
439  * from the device tree.
440  */
441 static u64 of_get_lmb_size(struct device_node *memory)
442 {
443 	const u32 *prop;
444 	u32 len;
445 
446 	prop = of_get_property(memory, "ibm,lmb-size", &len);
447 	if (!prop || len < sizeof(unsigned int))
448 		return 0;
449 
450 	return read_n_cells(n_mem_size_cells, &prop);
451 }
452 
453 struct assoc_arrays {
454 	u32	n_arrays;
455 	u32	array_sz;
456 	const u32 *arrays;
457 };
458 
459 /*
460  * Retrieve and validate the list of associativity arrays for drconf
461  * memory from the ibm,associativity-lookup-arrays property of the
462  * device tree..
463  *
464  * The layout of the ibm,associativity-lookup-arrays property is a number N
465  * indicating the number of associativity arrays, followed by a number M
466  * indicating the size of each associativity array, followed by a list
467  * of N associativity arrays.
468  */
469 static int of_get_assoc_arrays(struct device_node *memory,
470 			       struct assoc_arrays *aa)
471 {
472 	const u32 *prop;
473 	u32 len;
474 
475 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
476 	if (!prop || len < 2 * sizeof(unsigned int))
477 		return -1;
478 
479 	aa->n_arrays = *prop++;
480 	aa->array_sz = *prop++;
481 
482 	/* Now that we know the number of arrays and size of each array,
483 	 * revalidate the size of the property read in.
484 	 */
485 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
486 		return -1;
487 
488 	aa->arrays = prop;
489 	return 0;
490 }
491 
492 /*
493  * This is like of_node_to_nid_single() for memory represented in the
494  * ibm,dynamic-reconfiguration-memory node.
495  */
496 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
497 				   struct assoc_arrays *aa)
498 {
499 	int default_nid = 0;
500 	int nid = default_nid;
501 	int index;
502 
503 	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
504 	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
505 	    drmem->aa_index < aa->n_arrays) {
506 		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
507 		nid = aa->arrays[index];
508 
509 		if (nid == 0xffff || nid >= MAX_NUMNODES)
510 			nid = default_nid;
511 	}
512 
513 	return nid;
514 }
515 
516 /*
517  * Figure out to which domain a cpu belongs and stick it there.
518  * Return the id of the domain used.
519  */
520 static int numa_setup_cpu(unsigned long lcpu)
521 {
522 	int nid = 0;
523 	struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
524 
525 	if (!cpu) {
526 		WARN_ON(1);
527 		goto out;
528 	}
529 
530 	nid = of_node_to_nid_single(cpu);
531 
532 	if (nid < 0 || !node_online(nid))
533 		nid = first_online_node;
534 out:
535 	map_cpu_to_node(lcpu, nid);
536 
537 	of_node_put(cpu);
538 
539 	return nid;
540 }
541 
542 static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
543 			     void *hcpu)
544 {
545 	unsigned long lcpu = (unsigned long)hcpu;
546 	int ret = NOTIFY_DONE;
547 
548 	switch (action) {
549 	case CPU_UP_PREPARE:
550 	case CPU_UP_PREPARE_FROZEN:
551 		numa_setup_cpu(lcpu);
552 		ret = NOTIFY_OK;
553 		break;
554 #ifdef CONFIG_HOTPLUG_CPU
555 	case CPU_DEAD:
556 	case CPU_DEAD_FROZEN:
557 	case CPU_UP_CANCELED:
558 	case CPU_UP_CANCELED_FROZEN:
559 		unmap_cpu_from_node(lcpu);
560 		break;
561 		ret = NOTIFY_OK;
562 #endif
563 	}
564 	return ret;
565 }
566 
567 /*
568  * Check and possibly modify a memory region to enforce the memory limit.
569  *
570  * Returns the size the region should have to enforce the memory limit.
571  * This will either be the original value of size, a truncated value,
572  * or zero. If the returned value of size is 0 the region should be
573  * discarded as it lies wholly above the memory limit.
574  */
575 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
576 						      unsigned long size)
577 {
578 	/*
579 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
580 	 * we've already adjusted it for the limit and it takes care of
581 	 * having memory holes below the limit.  Also, in the case of
582 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
583 	 */
584 
585 	if (start + size <= memblock_end_of_DRAM())
586 		return size;
587 
588 	if (start >= memblock_end_of_DRAM())
589 		return 0;
590 
591 	return memblock_end_of_DRAM() - start;
592 }
593 
594 /*
595  * Reads the counter for a given entry in
596  * linux,drconf-usable-memory property
597  */
598 static inline int __init read_usm_ranges(const u32 **usm)
599 {
600 	/*
601 	 * For each lmb in ibm,dynamic-memory a corresponding
602 	 * entry in linux,drconf-usable-memory property contains
603 	 * a counter followed by that many (base, size) duple.
604 	 * read the counter from linux,drconf-usable-memory
605 	 */
606 	return read_n_cells(n_mem_size_cells, usm);
607 }
608 
609 /*
610  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
611  * node.  This assumes n_mem_{addr,size}_cells have been set.
612  */
613 static void __init parse_drconf_memory(struct device_node *memory)
614 {
615 	const u32 *uninitialized_var(dm), *usm;
616 	unsigned int n, rc, ranges, is_kexec_kdump = 0;
617 	unsigned long lmb_size, base, size, sz;
618 	int nid;
619 	struct assoc_arrays aa = { .arrays = NULL };
620 
621 	n = of_get_drconf_memory(memory, &dm);
622 	if (!n)
623 		return;
624 
625 	lmb_size = of_get_lmb_size(memory);
626 	if (!lmb_size)
627 		return;
628 
629 	rc = of_get_assoc_arrays(memory, &aa);
630 	if (rc)
631 		return;
632 
633 	/* check if this is a kexec/kdump kernel */
634 	usm = of_get_usable_memory(memory);
635 	if (usm != NULL)
636 		is_kexec_kdump = 1;
637 
638 	for (; n != 0; --n) {
639 		struct of_drconf_cell drmem;
640 
641 		read_drconf_cell(&drmem, &dm);
642 
643 		/* skip this block if the reserved bit is set in flags (0x80)
644 		   or if the block is not assigned to this partition (0x8) */
645 		if ((drmem.flags & DRCONF_MEM_RESERVED)
646 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
647 			continue;
648 
649 		base = drmem.base_addr;
650 		size = lmb_size;
651 		ranges = 1;
652 
653 		if (is_kexec_kdump) {
654 			ranges = read_usm_ranges(&usm);
655 			if (!ranges) /* there are no (base, size) duple */
656 				continue;
657 		}
658 		do {
659 			if (is_kexec_kdump) {
660 				base = read_n_cells(n_mem_addr_cells, &usm);
661 				size = read_n_cells(n_mem_size_cells, &usm);
662 			}
663 			nid = of_drconf_to_nid_single(&drmem, &aa);
664 			fake_numa_create_new_node(
665 				((base + size) >> PAGE_SHIFT),
666 					   &nid);
667 			node_set_online(nid);
668 			sz = numa_enforce_memory_limit(base, size);
669 			if (sz)
670 				memblock_set_node(base, sz, nid);
671 		} while (--ranges);
672 	}
673 }
674 
675 static int __init parse_numa_properties(void)
676 {
677 	struct device_node *memory;
678 	int default_nid = 0;
679 	unsigned long i;
680 
681 	if (numa_enabled == 0) {
682 		printk(KERN_WARNING "NUMA disabled by user\n");
683 		return -1;
684 	}
685 
686 	min_common_depth = find_min_common_depth();
687 
688 	if (min_common_depth < 0)
689 		return min_common_depth;
690 
691 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
692 
693 	/*
694 	 * Even though we connect cpus to numa domains later in SMP
695 	 * init, we need to know the node ids now. This is because
696 	 * each node to be onlined must have NODE_DATA etc backing it.
697 	 */
698 	for_each_present_cpu(i) {
699 		struct device_node *cpu;
700 		int nid;
701 
702 		cpu = of_get_cpu_node(i, NULL);
703 		BUG_ON(!cpu);
704 		nid = of_node_to_nid_single(cpu);
705 		of_node_put(cpu);
706 
707 		/*
708 		 * Don't fall back to default_nid yet -- we will plug
709 		 * cpus into nodes once the memory scan has discovered
710 		 * the topology.
711 		 */
712 		if (nid < 0)
713 			continue;
714 		node_set_online(nid);
715 	}
716 
717 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
718 
719 	for_each_node_by_type(memory, "memory") {
720 		unsigned long start;
721 		unsigned long size;
722 		int nid;
723 		int ranges;
724 		const unsigned int *memcell_buf;
725 		unsigned int len;
726 
727 		memcell_buf = of_get_property(memory,
728 			"linux,usable-memory", &len);
729 		if (!memcell_buf || len <= 0)
730 			memcell_buf = of_get_property(memory, "reg", &len);
731 		if (!memcell_buf || len <= 0)
732 			continue;
733 
734 		/* ranges in cell */
735 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
736 new_range:
737 		/* these are order-sensitive, and modify the buffer pointer */
738 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
739 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
740 
741 		/*
742 		 * Assumption: either all memory nodes or none will
743 		 * have associativity properties.  If none, then
744 		 * everything goes to default_nid.
745 		 */
746 		nid = of_node_to_nid_single(memory);
747 		if (nid < 0)
748 			nid = default_nid;
749 
750 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
751 		node_set_online(nid);
752 
753 		if (!(size = numa_enforce_memory_limit(start, size))) {
754 			if (--ranges)
755 				goto new_range;
756 			else
757 				continue;
758 		}
759 
760 		memblock_set_node(start, size, nid);
761 
762 		if (--ranges)
763 			goto new_range;
764 	}
765 
766 	/*
767 	 * Now do the same thing for each MEMBLOCK listed in the
768 	 * ibm,dynamic-memory property in the
769 	 * ibm,dynamic-reconfiguration-memory node.
770 	 */
771 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
772 	if (memory)
773 		parse_drconf_memory(memory);
774 
775 	return 0;
776 }
777 
778 static void __init setup_nonnuma(void)
779 {
780 	unsigned long top_of_ram = memblock_end_of_DRAM();
781 	unsigned long total_ram = memblock_phys_mem_size();
782 	unsigned long start_pfn, end_pfn;
783 	unsigned int nid = 0;
784 	struct memblock_region *reg;
785 
786 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
787 	       top_of_ram, total_ram);
788 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
789 	       (top_of_ram - total_ram) >> 20);
790 
791 	for_each_memblock(memory, reg) {
792 		start_pfn = memblock_region_memory_base_pfn(reg);
793 		end_pfn = memblock_region_memory_end_pfn(reg);
794 
795 		fake_numa_create_new_node(end_pfn, &nid);
796 		memblock_set_node(PFN_PHYS(start_pfn),
797 				  PFN_PHYS(end_pfn - start_pfn), nid);
798 		node_set_online(nid);
799 	}
800 }
801 
802 void __init dump_numa_cpu_topology(void)
803 {
804 	unsigned int node;
805 	unsigned int cpu, count;
806 
807 	if (min_common_depth == -1 || !numa_enabled)
808 		return;
809 
810 	for_each_online_node(node) {
811 		printk(KERN_DEBUG "Node %d CPUs:", node);
812 
813 		count = 0;
814 		/*
815 		 * If we used a CPU iterator here we would miss printing
816 		 * the holes in the cpumap.
817 		 */
818 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
819 			if (cpumask_test_cpu(cpu,
820 					node_to_cpumask_map[node])) {
821 				if (count == 0)
822 					printk(" %u", cpu);
823 				++count;
824 			} else {
825 				if (count > 1)
826 					printk("-%u", cpu - 1);
827 				count = 0;
828 			}
829 		}
830 
831 		if (count > 1)
832 			printk("-%u", nr_cpu_ids - 1);
833 		printk("\n");
834 	}
835 }
836 
837 static void __init dump_numa_memory_topology(void)
838 {
839 	unsigned int node;
840 	unsigned int count;
841 
842 	if (min_common_depth == -1 || !numa_enabled)
843 		return;
844 
845 	for_each_online_node(node) {
846 		unsigned long i;
847 
848 		printk(KERN_DEBUG "Node %d Memory:", node);
849 
850 		count = 0;
851 
852 		for (i = 0; i < memblock_end_of_DRAM();
853 		     i += (1 << SECTION_SIZE_BITS)) {
854 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
855 				if (count == 0)
856 					printk(" 0x%lx", i);
857 				++count;
858 			} else {
859 				if (count > 0)
860 					printk("-0x%lx", i);
861 				count = 0;
862 			}
863 		}
864 
865 		if (count > 0)
866 			printk("-0x%lx", i);
867 		printk("\n");
868 	}
869 }
870 
871 /*
872  * Allocate some memory, satisfying the memblock or bootmem allocator where
873  * required. nid is the preferred node and end is the physical address of
874  * the highest address in the node.
875  *
876  * Returns the virtual address of the memory.
877  */
878 static void __init *careful_zallocation(int nid, unsigned long size,
879 				       unsigned long align,
880 				       unsigned long end_pfn)
881 {
882 	void *ret;
883 	int new_nid;
884 	unsigned long ret_paddr;
885 
886 	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
887 
888 	/* retry over all memory */
889 	if (!ret_paddr)
890 		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
891 
892 	if (!ret_paddr)
893 		panic("numa.c: cannot allocate %lu bytes for node %d",
894 		      size, nid);
895 
896 	ret = __va(ret_paddr);
897 
898 	/*
899 	 * We initialize the nodes in numeric order: 0, 1, 2...
900 	 * and hand over control from the MEMBLOCK allocator to the
901 	 * bootmem allocator.  If this function is called for
902 	 * node 5, then we know that all nodes <5 are using the
903 	 * bootmem allocator instead of the MEMBLOCK allocator.
904 	 *
905 	 * So, check the nid from which this allocation came
906 	 * and double check to see if we need to use bootmem
907 	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
908 	 * since it would be useless.
909 	 */
910 	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
911 	if (new_nid < nid) {
912 		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
913 				size, align, 0);
914 
915 		dbg("alloc_bootmem %p %lx\n", ret, size);
916 	}
917 
918 	memset(ret, 0, size);
919 	return ret;
920 }
921 
922 static struct notifier_block ppc64_numa_nb = {
923 	.notifier_call = cpu_numa_callback,
924 	.priority = 1 /* Must run before sched domains notifier. */
925 };
926 
927 static void __init mark_reserved_regions_for_nid(int nid)
928 {
929 	struct pglist_data *node = NODE_DATA(nid);
930 	struct memblock_region *reg;
931 
932 	for_each_memblock(reserved, reg) {
933 		unsigned long physbase = reg->base;
934 		unsigned long size = reg->size;
935 		unsigned long start_pfn = physbase >> PAGE_SHIFT;
936 		unsigned long end_pfn = PFN_UP(physbase + size);
937 		struct node_active_region node_ar;
938 		unsigned long node_end_pfn = node->node_start_pfn +
939 					     node->node_spanned_pages;
940 
941 		/*
942 		 * Check to make sure that this memblock.reserved area is
943 		 * within the bounds of the node that we care about.
944 		 * Checking the nid of the start and end points is not
945 		 * sufficient because the reserved area could span the
946 		 * entire node.
947 		 */
948 		if (end_pfn <= node->node_start_pfn ||
949 		    start_pfn >= node_end_pfn)
950 			continue;
951 
952 		get_node_active_region(start_pfn, &node_ar);
953 		while (start_pfn < end_pfn &&
954 			node_ar.start_pfn < node_ar.end_pfn) {
955 			unsigned long reserve_size = size;
956 			/*
957 			 * if reserved region extends past active region
958 			 * then trim size to active region
959 			 */
960 			if (end_pfn > node_ar.end_pfn)
961 				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
962 					- physbase;
963 			/*
964 			 * Only worry about *this* node, others may not
965 			 * yet have valid NODE_DATA().
966 			 */
967 			if (node_ar.nid == nid) {
968 				dbg("reserve_bootmem %lx %lx nid=%d\n",
969 					physbase, reserve_size, node_ar.nid);
970 				reserve_bootmem_node(NODE_DATA(node_ar.nid),
971 						physbase, reserve_size,
972 						BOOTMEM_DEFAULT);
973 			}
974 			/*
975 			 * if reserved region is contained in the active region
976 			 * then done.
977 			 */
978 			if (end_pfn <= node_ar.end_pfn)
979 				break;
980 
981 			/*
982 			 * reserved region extends past the active region
983 			 *   get next active region that contains this
984 			 *   reserved region
985 			 */
986 			start_pfn = node_ar.end_pfn;
987 			physbase = start_pfn << PAGE_SHIFT;
988 			size = size - reserve_size;
989 			get_node_active_region(start_pfn, &node_ar);
990 		}
991 	}
992 }
993 
994 
995 void __init do_init_bootmem(void)
996 {
997 	int nid;
998 
999 	min_low_pfn = 0;
1000 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1001 	max_pfn = max_low_pfn;
1002 
1003 	if (parse_numa_properties())
1004 		setup_nonnuma();
1005 	else
1006 		dump_numa_memory_topology();
1007 
1008 	for_each_online_node(nid) {
1009 		unsigned long start_pfn, end_pfn;
1010 		void *bootmem_vaddr;
1011 		unsigned long bootmap_pages;
1012 
1013 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1014 
1015 		/*
1016 		 * Allocate the node structure node local if possible
1017 		 *
1018 		 * Be careful moving this around, as it relies on all
1019 		 * previous nodes' bootmem to be initialized and have
1020 		 * all reserved areas marked.
1021 		 */
1022 		NODE_DATA(nid) = careful_zallocation(nid,
1023 					sizeof(struct pglist_data),
1024 					SMP_CACHE_BYTES, end_pfn);
1025 
1026   		dbg("node %d\n", nid);
1027 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1028 
1029 		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1030 		NODE_DATA(nid)->node_start_pfn = start_pfn;
1031 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1032 
1033 		if (NODE_DATA(nid)->node_spanned_pages == 0)
1034   			continue;
1035 
1036   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1037   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1038 
1039 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1040 		bootmem_vaddr = careful_zallocation(nid,
1041 					bootmap_pages << PAGE_SHIFT,
1042 					PAGE_SIZE, end_pfn);
1043 
1044 		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1045 
1046 		init_bootmem_node(NODE_DATA(nid),
1047 				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1048 				  start_pfn, end_pfn);
1049 
1050 		free_bootmem_with_active_regions(nid, end_pfn);
1051 		/*
1052 		 * Be very careful about moving this around.  Future
1053 		 * calls to careful_zallocation() depend on this getting
1054 		 * done correctly.
1055 		 */
1056 		mark_reserved_regions_for_nid(nid);
1057 		sparse_memory_present_with_active_regions(nid);
1058 	}
1059 
1060 	init_bootmem_done = 1;
1061 
1062 	/*
1063 	 * Now bootmem is initialised we can create the node to cpumask
1064 	 * lookup tables and setup the cpu callback to populate them.
1065 	 */
1066 	setup_node_to_cpumask_map();
1067 
1068 	register_cpu_notifier(&ppc64_numa_nb);
1069 	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1070 			  (void *)(unsigned long)boot_cpuid);
1071 }
1072 
1073 void __init paging_init(void)
1074 {
1075 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1076 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1077 	max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1078 	free_area_init_nodes(max_zone_pfns);
1079 }
1080 
1081 static int __init early_numa(char *p)
1082 {
1083 	if (!p)
1084 		return 0;
1085 
1086 	if (strstr(p, "off"))
1087 		numa_enabled = 0;
1088 
1089 	if (strstr(p, "debug"))
1090 		numa_debug = 1;
1091 
1092 	p = strstr(p, "fake=");
1093 	if (p)
1094 		cmdline = p + strlen("fake=");
1095 
1096 	return 0;
1097 }
1098 early_param("numa", early_numa);
1099 
1100 #ifdef CONFIG_MEMORY_HOTPLUG
1101 /*
1102  * Find the node associated with a hot added memory section for
1103  * memory represented in the device tree by the property
1104  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1105  */
1106 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1107 				     unsigned long scn_addr)
1108 {
1109 	const u32 *dm;
1110 	unsigned int drconf_cell_cnt, rc;
1111 	unsigned long lmb_size;
1112 	struct assoc_arrays aa;
1113 	int nid = -1;
1114 
1115 	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1116 	if (!drconf_cell_cnt)
1117 		return -1;
1118 
1119 	lmb_size = of_get_lmb_size(memory);
1120 	if (!lmb_size)
1121 		return -1;
1122 
1123 	rc = of_get_assoc_arrays(memory, &aa);
1124 	if (rc)
1125 		return -1;
1126 
1127 	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1128 		struct of_drconf_cell drmem;
1129 
1130 		read_drconf_cell(&drmem, &dm);
1131 
1132 		/* skip this block if it is reserved or not assigned to
1133 		 * this partition */
1134 		if ((drmem.flags & DRCONF_MEM_RESERVED)
1135 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1136 			continue;
1137 
1138 		if ((scn_addr < drmem.base_addr)
1139 		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1140 			continue;
1141 
1142 		nid = of_drconf_to_nid_single(&drmem, &aa);
1143 		break;
1144 	}
1145 
1146 	return nid;
1147 }
1148 
1149 /*
1150  * Find the node associated with a hot added memory section for memory
1151  * represented in the device tree as a node (i.e. memory@XXXX) for
1152  * each memblock.
1153  */
1154 int hot_add_node_scn_to_nid(unsigned long scn_addr)
1155 {
1156 	struct device_node *memory;
1157 	int nid = -1;
1158 
1159 	for_each_node_by_type(memory, "memory") {
1160 		unsigned long start, size;
1161 		int ranges;
1162 		const unsigned int *memcell_buf;
1163 		unsigned int len;
1164 
1165 		memcell_buf = of_get_property(memory, "reg", &len);
1166 		if (!memcell_buf || len <= 0)
1167 			continue;
1168 
1169 		/* ranges in cell */
1170 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1171 
1172 		while (ranges--) {
1173 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1174 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1175 
1176 			if ((scn_addr < start) || (scn_addr >= (start + size)))
1177 				continue;
1178 
1179 			nid = of_node_to_nid_single(memory);
1180 			break;
1181 		}
1182 
1183 		if (nid >= 0)
1184 			break;
1185 	}
1186 
1187 	of_node_put(memory);
1188 
1189 	return nid;
1190 }
1191 
1192 /*
1193  * Find the node associated with a hot added memory section.  Section
1194  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1195  * sections are fully contained within a single MEMBLOCK.
1196  */
1197 int hot_add_scn_to_nid(unsigned long scn_addr)
1198 {
1199 	struct device_node *memory = NULL;
1200 	int nid, found = 0;
1201 
1202 	if (!numa_enabled || (min_common_depth < 0))
1203 		return first_online_node;
1204 
1205 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1206 	if (memory) {
1207 		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1208 		of_node_put(memory);
1209 	} else {
1210 		nid = hot_add_node_scn_to_nid(scn_addr);
1211 	}
1212 
1213 	if (nid < 0 || !node_online(nid))
1214 		nid = first_online_node;
1215 
1216 	if (NODE_DATA(nid)->node_spanned_pages)
1217 		return nid;
1218 
1219 	for_each_online_node(nid) {
1220 		if (NODE_DATA(nid)->node_spanned_pages) {
1221 			found = 1;
1222 			break;
1223 		}
1224 	}
1225 
1226 	BUG_ON(!found);
1227 	return nid;
1228 }
1229 
1230 static u64 hot_add_drconf_memory_max(void)
1231 {
1232         struct device_node *memory = NULL;
1233         unsigned int drconf_cell_cnt = 0;
1234         u64 lmb_size = 0;
1235         const u32 *dm = 0;
1236 
1237         memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1238         if (memory) {
1239                 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1240                 lmb_size = of_get_lmb_size(memory);
1241                 of_node_put(memory);
1242         }
1243         return lmb_size * drconf_cell_cnt;
1244 }
1245 
1246 /*
1247  * memory_hotplug_max - return max address of memory that may be added
1248  *
1249  * This is currently only used on systems that support drconfig memory
1250  * hotplug.
1251  */
1252 u64 memory_hotplug_max(void)
1253 {
1254         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1255 }
1256 #endif /* CONFIG_MEMORY_HOTPLUG */
1257 
1258 /* Virtual Processor Home Node (VPHN) support */
1259 #ifdef CONFIG_PPC_SPLPAR
1260 struct topology_update_data {
1261 	struct topology_update_data *next;
1262 	unsigned int cpu;
1263 	int old_nid;
1264 	int new_nid;
1265 };
1266 
1267 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1268 static cpumask_t cpu_associativity_changes_mask;
1269 static int vphn_enabled;
1270 static int prrn_enabled;
1271 static void reset_topology_timer(void);
1272 
1273 /*
1274  * Store the current values of the associativity change counters in the
1275  * hypervisor.
1276  */
1277 static void setup_cpu_associativity_change_counters(void)
1278 {
1279 	int cpu;
1280 
1281 	/* The VPHN feature supports a maximum of 8 reference points */
1282 	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1283 
1284 	for_each_possible_cpu(cpu) {
1285 		int i;
1286 		u8 *counts = vphn_cpu_change_counts[cpu];
1287 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1288 
1289 		for (i = 0; i < distance_ref_points_depth; i++)
1290 			counts[i] = hypervisor_counts[i];
1291 	}
1292 }
1293 
1294 /*
1295  * The hypervisor maintains a set of 8 associativity change counters in
1296  * the VPA of each cpu that correspond to the associativity levels in the
1297  * ibm,associativity-reference-points property. When an associativity
1298  * level changes, the corresponding counter is incremented.
1299  *
1300  * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1301  * node associativity levels have changed.
1302  *
1303  * Returns the number of cpus with unhandled associativity changes.
1304  */
1305 static int update_cpu_associativity_changes_mask(void)
1306 {
1307 	int cpu;
1308 	cpumask_t *changes = &cpu_associativity_changes_mask;
1309 
1310 	for_each_possible_cpu(cpu) {
1311 		int i, changed = 0;
1312 		u8 *counts = vphn_cpu_change_counts[cpu];
1313 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1314 
1315 		for (i = 0; i < distance_ref_points_depth; i++) {
1316 			if (hypervisor_counts[i] != counts[i]) {
1317 				counts[i] = hypervisor_counts[i];
1318 				changed = 1;
1319 			}
1320 		}
1321 		if (changed) {
1322 			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1323 			cpu = cpu_last_thread_sibling(cpu);
1324 		}
1325 	}
1326 
1327 	return cpumask_weight(changes);
1328 }
1329 
1330 /*
1331  * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1332  * the complete property we have to add the length in the first cell.
1333  */
1334 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1335 
1336 /*
1337  * Convert the associativity domain numbers returned from the hypervisor
1338  * to the sequence they would appear in the ibm,associativity property.
1339  */
1340 static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1341 {
1342 	int i, nr_assoc_doms = 0;
1343 	const u16 *field = (const u16*) packed;
1344 
1345 #define VPHN_FIELD_UNUSED	(0xffff)
1346 #define VPHN_FIELD_MSB		(0x8000)
1347 #define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)
1348 
1349 	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1350 		if (*field == VPHN_FIELD_UNUSED) {
1351 			/* All significant fields processed, and remaining
1352 			 * fields contain the reserved value of all 1's.
1353 			 * Just store them.
1354 			 */
1355 			unpacked[i] = *((u32*)field);
1356 			field += 2;
1357 		} else if (*field & VPHN_FIELD_MSB) {
1358 			/* Data is in the lower 15 bits of this field */
1359 			unpacked[i] = *field & VPHN_FIELD_MASK;
1360 			field++;
1361 			nr_assoc_doms++;
1362 		} else {
1363 			/* Data is in the lower 15 bits of this field
1364 			 * concatenated with the next 16 bit field
1365 			 */
1366 			unpacked[i] = *((u32*)field);
1367 			field += 2;
1368 			nr_assoc_doms++;
1369 		}
1370 	}
1371 
1372 	/* The first cell contains the length of the property */
1373 	unpacked[0] = nr_assoc_doms;
1374 
1375 	return nr_assoc_doms;
1376 }
1377 
1378 /*
1379  * Retrieve the new associativity information for a virtual processor's
1380  * home node.
1381  */
1382 static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1383 {
1384 	long rc;
1385 	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1386 	u64 flags = 1;
1387 	int hwcpu = get_hard_smp_processor_id(cpu);
1388 
1389 	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1390 	vphn_unpack_associativity(retbuf, associativity);
1391 
1392 	return rc;
1393 }
1394 
1395 static long vphn_get_associativity(unsigned long cpu,
1396 					unsigned int *associativity)
1397 {
1398 	long rc;
1399 
1400 	rc = hcall_vphn(cpu, associativity);
1401 
1402 	switch (rc) {
1403 	case H_FUNCTION:
1404 		printk(KERN_INFO
1405 			"VPHN is not supported. Disabling polling...\n");
1406 		stop_topology_update();
1407 		break;
1408 	case H_HARDWARE:
1409 		printk(KERN_ERR
1410 			"hcall_vphn() experienced a hardware fault "
1411 			"preventing VPHN. Disabling polling...\n");
1412 		stop_topology_update();
1413 	}
1414 
1415 	return rc;
1416 }
1417 
1418 /*
1419  * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1420  * characteristics change. This function doesn't perform any locking and is
1421  * only safe to call from stop_machine().
1422  */
1423 static int update_cpu_topology(void *data)
1424 {
1425 	struct topology_update_data *update;
1426 	unsigned long cpu;
1427 
1428 	if (!data)
1429 		return -EINVAL;
1430 
1431 	cpu = smp_processor_id();
1432 
1433 	for (update = data; update; update = update->next) {
1434 		if (cpu != update->cpu)
1435 			continue;
1436 
1437 		unmap_cpu_from_node(update->cpu);
1438 		map_cpu_to_node(update->cpu, update->new_nid);
1439 		vdso_getcpu_init();
1440 	}
1441 
1442 	return 0;
1443 }
1444 
1445 /*
1446  * Update the node maps and sysfs entries for each cpu whose home node
1447  * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1448  */
1449 int arch_update_cpu_topology(void)
1450 {
1451 	unsigned int cpu, sibling, changed = 0;
1452 	struct topology_update_data *updates, *ud;
1453 	unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1454 	cpumask_t updated_cpus;
1455 	struct device *dev;
1456 	int weight, new_nid, i = 0;
1457 
1458 	weight = cpumask_weight(&cpu_associativity_changes_mask);
1459 	if (!weight)
1460 		return 0;
1461 
1462 	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1463 	if (!updates)
1464 		return 0;
1465 
1466 	cpumask_clear(&updated_cpus);
1467 
1468 	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1469 		/*
1470 		 * If siblings aren't flagged for changes, updates list
1471 		 * will be too short. Skip on this update and set for next
1472 		 * update.
1473 		 */
1474 		if (!cpumask_subset(cpu_sibling_mask(cpu),
1475 					&cpu_associativity_changes_mask)) {
1476 			pr_info("Sibling bits not set for associativity "
1477 					"change, cpu%d\n", cpu);
1478 			cpumask_or(&cpu_associativity_changes_mask,
1479 					&cpu_associativity_changes_mask,
1480 					cpu_sibling_mask(cpu));
1481 			cpu = cpu_last_thread_sibling(cpu);
1482 			continue;
1483 		}
1484 
1485 		/* Use associativity from first thread for all siblings */
1486 		vphn_get_associativity(cpu, associativity);
1487 		new_nid = associativity_to_nid(associativity);
1488 		if (new_nid < 0 || !node_online(new_nid))
1489 			new_nid = first_online_node;
1490 
1491 		if (new_nid == numa_cpu_lookup_table[cpu]) {
1492 			cpumask_andnot(&cpu_associativity_changes_mask,
1493 					&cpu_associativity_changes_mask,
1494 					cpu_sibling_mask(cpu));
1495 			cpu = cpu_last_thread_sibling(cpu);
1496 			continue;
1497 		}
1498 
1499 		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1500 			ud = &updates[i++];
1501 			ud->cpu = sibling;
1502 			ud->new_nid = new_nid;
1503 			ud->old_nid = numa_cpu_lookup_table[sibling];
1504 			cpumask_set_cpu(sibling, &updated_cpus);
1505 			if (i < weight)
1506 				ud->next = &updates[i];
1507 		}
1508 		cpu = cpu_last_thread_sibling(cpu);
1509 	}
1510 
1511 	stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1512 
1513 	for (ud = &updates[0]; ud; ud = ud->next) {
1514 		unregister_cpu_under_node(ud->cpu, ud->old_nid);
1515 		register_cpu_under_node(ud->cpu, ud->new_nid);
1516 
1517 		dev = get_cpu_device(ud->cpu);
1518 		if (dev)
1519 			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1520 		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1521 		changed = 1;
1522 	}
1523 
1524 	kfree(updates);
1525 	return changed;
1526 }
1527 
1528 static void topology_work_fn(struct work_struct *work)
1529 {
1530 	rebuild_sched_domains();
1531 }
1532 static DECLARE_WORK(topology_work, topology_work_fn);
1533 
1534 void topology_schedule_update(void)
1535 {
1536 	schedule_work(&topology_work);
1537 }
1538 
1539 static void topology_timer_fn(unsigned long ignored)
1540 {
1541 	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1542 		topology_schedule_update();
1543 	else if (vphn_enabled) {
1544 		if (update_cpu_associativity_changes_mask() > 0)
1545 			topology_schedule_update();
1546 		reset_topology_timer();
1547 	}
1548 }
1549 static struct timer_list topology_timer =
1550 	TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1551 
1552 static void reset_topology_timer(void)
1553 {
1554 	topology_timer.data = 0;
1555 	topology_timer.expires = jiffies + 60 * HZ;
1556 	mod_timer(&topology_timer, topology_timer.expires);
1557 }
1558 
1559 #ifdef CONFIG_SMP
1560 
1561 static void stage_topology_update(int core_id)
1562 {
1563 	cpumask_or(&cpu_associativity_changes_mask,
1564 		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1565 	reset_topology_timer();
1566 }
1567 
1568 static int dt_update_callback(struct notifier_block *nb,
1569 				unsigned long action, void *data)
1570 {
1571 	struct of_prop_reconfig *update;
1572 	int rc = NOTIFY_DONE;
1573 
1574 	switch (action) {
1575 	case OF_RECONFIG_UPDATE_PROPERTY:
1576 		update = (struct of_prop_reconfig *)data;
1577 		if (!of_prop_cmp(update->dn->type, "cpu") &&
1578 		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1579 			u32 core_id;
1580 			of_property_read_u32(update->dn, "reg", &core_id);
1581 			stage_topology_update(core_id);
1582 			rc = NOTIFY_OK;
1583 		}
1584 		break;
1585 	}
1586 
1587 	return rc;
1588 }
1589 
1590 static struct notifier_block dt_update_nb = {
1591 	.notifier_call = dt_update_callback,
1592 };
1593 
1594 #endif
1595 
1596 /*
1597  * Start polling for associativity changes.
1598  */
1599 int start_topology_update(void)
1600 {
1601 	int rc = 0;
1602 
1603 	if (firmware_has_feature(FW_FEATURE_PRRN)) {
1604 		if (!prrn_enabled) {
1605 			prrn_enabled = 1;
1606 			vphn_enabled = 0;
1607 #ifdef CONFIG_SMP
1608 			rc = of_reconfig_notifier_register(&dt_update_nb);
1609 #endif
1610 		}
1611 	} else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1612 		   get_lppaca()->shared_proc) {
1613 		if (!vphn_enabled) {
1614 			prrn_enabled = 0;
1615 			vphn_enabled = 1;
1616 			setup_cpu_associativity_change_counters();
1617 			init_timer_deferrable(&topology_timer);
1618 			reset_topology_timer();
1619 		}
1620 	}
1621 
1622 	return rc;
1623 }
1624 
1625 /*
1626  * Disable polling for VPHN associativity changes.
1627  */
1628 int stop_topology_update(void)
1629 {
1630 	int rc = 0;
1631 
1632 	if (prrn_enabled) {
1633 		prrn_enabled = 0;
1634 #ifdef CONFIG_SMP
1635 		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1636 #endif
1637 	} else if (vphn_enabled) {
1638 		vphn_enabled = 0;
1639 		rc = del_timer_sync(&topology_timer);
1640 	}
1641 
1642 	return rc;
1643 }
1644 
1645 int prrn_is_enabled(void)
1646 {
1647 	return prrn_enabled;
1648 }
1649 
1650 static int topology_read(struct seq_file *file, void *v)
1651 {
1652 	if (vphn_enabled || prrn_enabled)
1653 		seq_puts(file, "on\n");
1654 	else
1655 		seq_puts(file, "off\n");
1656 
1657 	return 0;
1658 }
1659 
1660 static int topology_open(struct inode *inode, struct file *file)
1661 {
1662 	return single_open(file, topology_read, NULL);
1663 }
1664 
1665 static ssize_t topology_write(struct file *file, const char __user *buf,
1666 			      size_t count, loff_t *off)
1667 {
1668 	char kbuf[4]; /* "on" or "off" plus null. */
1669 	int read_len;
1670 
1671 	read_len = count < 3 ? count : 3;
1672 	if (copy_from_user(kbuf, buf, read_len))
1673 		return -EINVAL;
1674 
1675 	kbuf[read_len] = '\0';
1676 
1677 	if (!strncmp(kbuf, "on", 2))
1678 		start_topology_update();
1679 	else if (!strncmp(kbuf, "off", 3))
1680 		stop_topology_update();
1681 	else
1682 		return -EINVAL;
1683 
1684 	return count;
1685 }
1686 
1687 static const struct file_operations topology_ops = {
1688 	.read = seq_read,
1689 	.write = topology_write,
1690 	.open = topology_open,
1691 	.release = single_release
1692 };
1693 
1694 static int topology_update_init(void)
1695 {
1696 	start_topology_update();
1697 	proc_create("powerpc/topology_updates", 644, NULL, &topology_ops);
1698 
1699 	return 0;
1700 }
1701 device_initcall(topology_update_init);
1702 #endif /* CONFIG_PPC_SPLPAR */
1703