1 /* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #define pr_fmt(fmt) "numa: " fmt 12 13 #include <linux/threads.h> 14 #include <linux/memblock.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/mmzone.h> 18 #include <linux/export.h> 19 #include <linux/nodemask.h> 20 #include <linux/cpu.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/pfn.h> 24 #include <linux/cpuset.h> 25 #include <linux/node.h> 26 #include <linux/stop_machine.h> 27 #include <linux/proc_fs.h> 28 #include <linux/seq_file.h> 29 #include <linux/uaccess.h> 30 #include <linux/slab.h> 31 #include <asm/cputhreads.h> 32 #include <asm/sparsemem.h> 33 #include <asm/prom.h> 34 #include <asm/smp.h> 35 #include <asm/cputhreads.h> 36 #include <asm/topology.h> 37 #include <asm/firmware.h> 38 #include <asm/paca.h> 39 #include <asm/hvcall.h> 40 #include <asm/setup.h> 41 #include <asm/vdso.h> 42 #include <asm/drmem.h> 43 44 static int numa_enabled = 1; 45 46 static char *cmdline __initdata; 47 48 static int numa_debug; 49 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 50 51 int numa_cpu_lookup_table[NR_CPUS]; 52 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 53 struct pglist_data *node_data[MAX_NUMNODES]; 54 55 EXPORT_SYMBOL(numa_cpu_lookup_table); 56 EXPORT_SYMBOL(node_to_cpumask_map); 57 EXPORT_SYMBOL(node_data); 58 59 static int min_common_depth; 60 static int n_mem_addr_cells, n_mem_size_cells; 61 static int form1_affinity; 62 63 #define MAX_DISTANCE_REF_POINTS 4 64 static int distance_ref_points_depth; 65 static const __be32 *distance_ref_points; 66 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 67 68 /* 69 * Allocate node_to_cpumask_map based on number of available nodes 70 * Requires node_possible_map to be valid. 71 * 72 * Note: cpumask_of_node() is not valid until after this is done. 73 */ 74 static void __init setup_node_to_cpumask_map(void) 75 { 76 unsigned int node; 77 78 /* setup nr_node_ids if not done yet */ 79 if (nr_node_ids == MAX_NUMNODES) 80 setup_nr_node_ids(); 81 82 /* allocate the map */ 83 for_each_node(node) 84 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 85 86 /* cpumask_of_node() will now work */ 87 dbg("Node to cpumask map for %d nodes\n", nr_node_ids); 88 } 89 90 static int __init fake_numa_create_new_node(unsigned long end_pfn, 91 unsigned int *nid) 92 { 93 unsigned long long mem; 94 char *p = cmdline; 95 static unsigned int fake_nid; 96 static unsigned long long curr_boundary; 97 98 /* 99 * Modify node id, iff we started creating NUMA nodes 100 * We want to continue from where we left of the last time 101 */ 102 if (fake_nid) 103 *nid = fake_nid; 104 /* 105 * In case there are no more arguments to parse, the 106 * node_id should be the same as the last fake node id 107 * (we've handled this above). 108 */ 109 if (!p) 110 return 0; 111 112 mem = memparse(p, &p); 113 if (!mem) 114 return 0; 115 116 if (mem < curr_boundary) 117 return 0; 118 119 curr_boundary = mem; 120 121 if ((end_pfn << PAGE_SHIFT) > mem) { 122 /* 123 * Skip commas and spaces 124 */ 125 while (*p == ',' || *p == ' ' || *p == '\t') 126 p++; 127 128 cmdline = p; 129 fake_nid++; 130 *nid = fake_nid; 131 dbg("created new fake_node with id %d\n", fake_nid); 132 return 1; 133 } 134 return 0; 135 } 136 137 static void reset_numa_cpu_lookup_table(void) 138 { 139 unsigned int cpu; 140 141 for_each_possible_cpu(cpu) 142 numa_cpu_lookup_table[cpu] = -1; 143 } 144 145 static void map_cpu_to_node(int cpu, int node) 146 { 147 update_numa_cpu_lookup_table(cpu, node); 148 149 dbg("adding cpu %d to node %d\n", cpu, node); 150 151 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) 152 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 153 } 154 155 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 156 static void unmap_cpu_from_node(unsigned long cpu) 157 { 158 int node = numa_cpu_lookup_table[cpu]; 159 160 dbg("removing cpu %lu from node %d\n", cpu, node); 161 162 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 163 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 164 } else { 165 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 166 cpu, node); 167 } 168 } 169 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 170 171 /* must hold reference to node during call */ 172 static const __be32 *of_get_associativity(struct device_node *dev) 173 { 174 return of_get_property(dev, "ibm,associativity", NULL); 175 } 176 177 int __node_distance(int a, int b) 178 { 179 int i; 180 int distance = LOCAL_DISTANCE; 181 182 if (!form1_affinity) 183 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); 184 185 for (i = 0; i < distance_ref_points_depth; i++) { 186 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 187 break; 188 189 /* Double the distance for each NUMA level */ 190 distance *= 2; 191 } 192 193 return distance; 194 } 195 EXPORT_SYMBOL(__node_distance); 196 197 static void initialize_distance_lookup_table(int nid, 198 const __be32 *associativity) 199 { 200 int i; 201 202 if (!form1_affinity) 203 return; 204 205 for (i = 0; i < distance_ref_points_depth; i++) { 206 const __be32 *entry; 207 208 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1]; 209 distance_lookup_table[nid][i] = of_read_number(entry, 1); 210 } 211 } 212 213 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa 214 * info is found. 215 */ 216 static int associativity_to_nid(const __be32 *associativity) 217 { 218 int nid = -1; 219 220 if (min_common_depth == -1) 221 goto out; 222 223 if (of_read_number(associativity, 1) >= min_common_depth) 224 nid = of_read_number(&associativity[min_common_depth], 1); 225 226 /* POWER4 LPAR uses 0xffff as invalid node */ 227 if (nid == 0xffff || nid >= MAX_NUMNODES) 228 nid = -1; 229 230 if (nid > 0 && 231 of_read_number(associativity, 1) >= distance_ref_points_depth) { 232 /* 233 * Skip the length field and send start of associativity array 234 */ 235 initialize_distance_lookup_table(nid, associativity + 1); 236 } 237 238 out: 239 return nid; 240 } 241 242 /* Returns the nid associated with the given device tree node, 243 * or -1 if not found. 244 */ 245 static int of_node_to_nid_single(struct device_node *device) 246 { 247 int nid = -1; 248 const __be32 *tmp; 249 250 tmp = of_get_associativity(device); 251 if (tmp) 252 nid = associativity_to_nid(tmp); 253 return nid; 254 } 255 256 /* Walk the device tree upwards, looking for an associativity id */ 257 int of_node_to_nid(struct device_node *device) 258 { 259 int nid = -1; 260 261 of_node_get(device); 262 while (device) { 263 nid = of_node_to_nid_single(device); 264 if (nid != -1) 265 break; 266 267 device = of_get_next_parent(device); 268 } 269 of_node_put(device); 270 271 return nid; 272 } 273 EXPORT_SYMBOL(of_node_to_nid); 274 275 static int __init find_min_common_depth(void) 276 { 277 int depth; 278 struct device_node *root; 279 280 if (firmware_has_feature(FW_FEATURE_OPAL)) 281 root = of_find_node_by_path("/ibm,opal"); 282 else 283 root = of_find_node_by_path("/rtas"); 284 if (!root) 285 root = of_find_node_by_path("/"); 286 287 /* 288 * This property is a set of 32-bit integers, each representing 289 * an index into the ibm,associativity nodes. 290 * 291 * With form 0 affinity the first integer is for an SMP configuration 292 * (should be all 0's) and the second is for a normal NUMA 293 * configuration. We have only one level of NUMA. 294 * 295 * With form 1 affinity the first integer is the most significant 296 * NUMA boundary and the following are progressively less significant 297 * boundaries. There can be more than one level of NUMA. 298 */ 299 distance_ref_points = of_get_property(root, 300 "ibm,associativity-reference-points", 301 &distance_ref_points_depth); 302 303 if (!distance_ref_points) { 304 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 305 goto err; 306 } 307 308 distance_ref_points_depth /= sizeof(int); 309 310 if (firmware_has_feature(FW_FEATURE_OPAL) || 311 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { 312 dbg("Using form 1 affinity\n"); 313 form1_affinity = 1; 314 } 315 316 if (form1_affinity) { 317 depth = of_read_number(distance_ref_points, 1); 318 } else { 319 if (distance_ref_points_depth < 2) { 320 printk(KERN_WARNING "NUMA: " 321 "short ibm,associativity-reference-points\n"); 322 goto err; 323 } 324 325 depth = of_read_number(&distance_ref_points[1], 1); 326 } 327 328 /* 329 * Warn and cap if the hardware supports more than 330 * MAX_DISTANCE_REF_POINTS domains. 331 */ 332 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 333 printk(KERN_WARNING "NUMA: distance array capped at " 334 "%d entries\n", MAX_DISTANCE_REF_POINTS); 335 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 336 } 337 338 of_node_put(root); 339 return depth; 340 341 err: 342 of_node_put(root); 343 return -1; 344 } 345 346 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 347 { 348 struct device_node *memory = NULL; 349 350 memory = of_find_node_by_type(memory, "memory"); 351 if (!memory) 352 panic("numa.c: No memory nodes found!"); 353 354 *n_addr_cells = of_n_addr_cells(memory); 355 *n_size_cells = of_n_size_cells(memory); 356 of_node_put(memory); 357 } 358 359 static unsigned long read_n_cells(int n, const __be32 **buf) 360 { 361 unsigned long result = 0; 362 363 while (n--) { 364 result = (result << 32) | of_read_number(*buf, 1); 365 (*buf)++; 366 } 367 return result; 368 } 369 370 struct assoc_arrays { 371 u32 n_arrays; 372 u32 array_sz; 373 const __be32 *arrays; 374 }; 375 376 /* 377 * Retrieve and validate the list of associativity arrays for drconf 378 * memory from the ibm,associativity-lookup-arrays property of the 379 * device tree.. 380 * 381 * The layout of the ibm,associativity-lookup-arrays property is a number N 382 * indicating the number of associativity arrays, followed by a number M 383 * indicating the size of each associativity array, followed by a list 384 * of N associativity arrays. 385 */ 386 static int of_get_assoc_arrays(struct assoc_arrays *aa) 387 { 388 struct device_node *memory; 389 const __be32 *prop; 390 u32 len; 391 392 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 393 if (!memory) 394 return -1; 395 396 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 397 if (!prop || len < 2 * sizeof(unsigned int)) { 398 of_node_put(memory); 399 return -1; 400 } 401 402 aa->n_arrays = of_read_number(prop++, 1); 403 aa->array_sz = of_read_number(prop++, 1); 404 405 of_node_put(memory); 406 407 /* Now that we know the number of arrays and size of each array, 408 * revalidate the size of the property read in. 409 */ 410 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 411 return -1; 412 413 aa->arrays = prop; 414 return 0; 415 } 416 417 /* 418 * This is like of_node_to_nid_single() for memory represented in the 419 * ibm,dynamic-reconfiguration-memory node. 420 */ 421 static int of_drconf_to_nid_single(struct drmem_lmb *lmb) 422 { 423 struct assoc_arrays aa = { .arrays = NULL }; 424 int default_nid = 0; 425 int nid = default_nid; 426 int rc, index; 427 428 rc = of_get_assoc_arrays(&aa); 429 if (rc) 430 return default_nid; 431 432 if (min_common_depth > 0 && min_common_depth <= aa.array_sz && 433 !(lmb->flags & DRCONF_MEM_AI_INVALID) && 434 lmb->aa_index < aa.n_arrays) { 435 index = lmb->aa_index * aa.array_sz + min_common_depth - 1; 436 nid = of_read_number(&aa.arrays[index], 1); 437 438 if (nid == 0xffff || nid >= MAX_NUMNODES) 439 nid = default_nid; 440 441 if (nid > 0) { 442 index = lmb->aa_index * aa.array_sz; 443 initialize_distance_lookup_table(nid, 444 &aa.arrays[index]); 445 } 446 } 447 448 return nid; 449 } 450 451 /* 452 * Figure out to which domain a cpu belongs and stick it there. 453 * Return the id of the domain used. 454 */ 455 static int numa_setup_cpu(unsigned long lcpu) 456 { 457 int nid = -1; 458 struct device_node *cpu; 459 460 /* 461 * If a valid cpu-to-node mapping is already available, use it 462 * directly instead of querying the firmware, since it represents 463 * the most recent mapping notified to us by the platform (eg: VPHN). 464 */ 465 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) { 466 map_cpu_to_node(lcpu, nid); 467 return nid; 468 } 469 470 cpu = of_get_cpu_node(lcpu, NULL); 471 472 if (!cpu) { 473 WARN_ON(1); 474 if (cpu_present(lcpu)) 475 goto out_present; 476 else 477 goto out; 478 } 479 480 nid = of_node_to_nid_single(cpu); 481 482 out_present: 483 if (nid < 0 || !node_possible(nid)) 484 nid = first_online_node; 485 486 map_cpu_to_node(lcpu, nid); 487 of_node_put(cpu); 488 out: 489 return nid; 490 } 491 492 static void verify_cpu_node_mapping(int cpu, int node) 493 { 494 int base, sibling, i; 495 496 /* Verify that all the threads in the core belong to the same node */ 497 base = cpu_first_thread_sibling(cpu); 498 499 for (i = 0; i < threads_per_core; i++) { 500 sibling = base + i; 501 502 if (sibling == cpu || cpu_is_offline(sibling)) 503 continue; 504 505 if (cpu_to_node(sibling) != node) { 506 WARN(1, "CPU thread siblings %d and %d don't belong" 507 " to the same node!\n", cpu, sibling); 508 break; 509 } 510 } 511 } 512 513 /* Must run before sched domains notifier. */ 514 static int ppc_numa_cpu_prepare(unsigned int cpu) 515 { 516 int nid; 517 518 nid = numa_setup_cpu(cpu); 519 verify_cpu_node_mapping(cpu, nid); 520 return 0; 521 } 522 523 static int ppc_numa_cpu_dead(unsigned int cpu) 524 { 525 #ifdef CONFIG_HOTPLUG_CPU 526 unmap_cpu_from_node(cpu); 527 #endif 528 return 0; 529 } 530 531 /* 532 * Check and possibly modify a memory region to enforce the memory limit. 533 * 534 * Returns the size the region should have to enforce the memory limit. 535 * This will either be the original value of size, a truncated value, 536 * or zero. If the returned value of size is 0 the region should be 537 * discarded as it lies wholly above the memory limit. 538 */ 539 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 540 unsigned long size) 541 { 542 /* 543 * We use memblock_end_of_DRAM() in here instead of memory_limit because 544 * we've already adjusted it for the limit and it takes care of 545 * having memory holes below the limit. Also, in the case of 546 * iommu_is_off, memory_limit is not set but is implicitly enforced. 547 */ 548 549 if (start + size <= memblock_end_of_DRAM()) 550 return size; 551 552 if (start >= memblock_end_of_DRAM()) 553 return 0; 554 555 return memblock_end_of_DRAM() - start; 556 } 557 558 /* 559 * Reads the counter for a given entry in 560 * linux,drconf-usable-memory property 561 */ 562 static inline int __init read_usm_ranges(const __be32 **usm) 563 { 564 /* 565 * For each lmb in ibm,dynamic-memory a corresponding 566 * entry in linux,drconf-usable-memory property contains 567 * a counter followed by that many (base, size) duple. 568 * read the counter from linux,drconf-usable-memory 569 */ 570 return read_n_cells(n_mem_size_cells, usm); 571 } 572 573 /* 574 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 575 * node. This assumes n_mem_{addr,size}_cells have been set. 576 */ 577 static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb, 578 const __be32 **usm) 579 { 580 unsigned int ranges, is_kexec_kdump = 0; 581 unsigned long base, size, sz; 582 int nid; 583 584 /* 585 * Skip this block if the reserved bit is set in flags (0x80) 586 * or if the block is not assigned to this partition (0x8) 587 */ 588 if ((lmb->flags & DRCONF_MEM_RESERVED) 589 || !(lmb->flags & DRCONF_MEM_ASSIGNED)) 590 return; 591 592 if (*usm) 593 is_kexec_kdump = 1; 594 595 base = lmb->base_addr; 596 size = drmem_lmb_size(); 597 ranges = 1; 598 599 if (is_kexec_kdump) { 600 ranges = read_usm_ranges(usm); 601 if (!ranges) /* there are no (base, size) duple */ 602 return; 603 } 604 605 do { 606 if (is_kexec_kdump) { 607 base = read_n_cells(n_mem_addr_cells, usm); 608 size = read_n_cells(n_mem_size_cells, usm); 609 } 610 611 nid = of_drconf_to_nid_single(lmb); 612 fake_numa_create_new_node(((base + size) >> PAGE_SHIFT), 613 &nid); 614 node_set_online(nid); 615 sz = numa_enforce_memory_limit(base, size); 616 if (sz) 617 memblock_set_node(base, sz, &memblock.memory, nid); 618 } while (--ranges); 619 } 620 621 static int __init parse_numa_properties(void) 622 { 623 struct device_node *memory; 624 int default_nid = 0; 625 unsigned long i; 626 627 if (numa_enabled == 0) { 628 printk(KERN_WARNING "NUMA disabled by user\n"); 629 return -1; 630 } 631 632 min_common_depth = find_min_common_depth(); 633 634 if (min_common_depth < 0) 635 return min_common_depth; 636 637 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 638 639 /* 640 * Even though we connect cpus to numa domains later in SMP 641 * init, we need to know the node ids now. This is because 642 * each node to be onlined must have NODE_DATA etc backing it. 643 */ 644 for_each_present_cpu(i) { 645 struct device_node *cpu; 646 int nid; 647 648 cpu = of_get_cpu_node(i, NULL); 649 BUG_ON(!cpu); 650 nid = of_node_to_nid_single(cpu); 651 of_node_put(cpu); 652 653 /* 654 * Don't fall back to default_nid yet -- we will plug 655 * cpus into nodes once the memory scan has discovered 656 * the topology. 657 */ 658 if (nid < 0) 659 continue; 660 node_set_online(nid); 661 } 662 663 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 664 665 for_each_node_by_type(memory, "memory") { 666 unsigned long start; 667 unsigned long size; 668 int nid; 669 int ranges; 670 const __be32 *memcell_buf; 671 unsigned int len; 672 673 memcell_buf = of_get_property(memory, 674 "linux,usable-memory", &len); 675 if (!memcell_buf || len <= 0) 676 memcell_buf = of_get_property(memory, "reg", &len); 677 if (!memcell_buf || len <= 0) 678 continue; 679 680 /* ranges in cell */ 681 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 682 new_range: 683 /* these are order-sensitive, and modify the buffer pointer */ 684 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 685 size = read_n_cells(n_mem_size_cells, &memcell_buf); 686 687 /* 688 * Assumption: either all memory nodes or none will 689 * have associativity properties. If none, then 690 * everything goes to default_nid. 691 */ 692 nid = of_node_to_nid_single(memory); 693 if (nid < 0) 694 nid = default_nid; 695 696 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 697 node_set_online(nid); 698 699 size = numa_enforce_memory_limit(start, size); 700 if (size) 701 memblock_set_node(start, size, &memblock.memory, nid); 702 703 if (--ranges) 704 goto new_range; 705 } 706 707 /* 708 * Now do the same thing for each MEMBLOCK listed in the 709 * ibm,dynamic-memory property in the 710 * ibm,dynamic-reconfiguration-memory node. 711 */ 712 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 713 if (memory) { 714 walk_drmem_lmbs(memory, numa_setup_drmem_lmb); 715 of_node_put(memory); 716 } 717 718 return 0; 719 } 720 721 static void __init setup_nonnuma(void) 722 { 723 unsigned long top_of_ram = memblock_end_of_DRAM(); 724 unsigned long total_ram = memblock_phys_mem_size(); 725 unsigned long start_pfn, end_pfn; 726 unsigned int nid = 0; 727 struct memblock_region *reg; 728 729 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 730 top_of_ram, total_ram); 731 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 732 (top_of_ram - total_ram) >> 20); 733 734 for_each_memblock(memory, reg) { 735 start_pfn = memblock_region_memory_base_pfn(reg); 736 end_pfn = memblock_region_memory_end_pfn(reg); 737 738 fake_numa_create_new_node(end_pfn, &nid); 739 memblock_set_node(PFN_PHYS(start_pfn), 740 PFN_PHYS(end_pfn - start_pfn), 741 &memblock.memory, nid); 742 node_set_online(nid); 743 } 744 } 745 746 void __init dump_numa_cpu_topology(void) 747 { 748 unsigned int node; 749 unsigned int cpu, count; 750 751 if (min_common_depth == -1 || !numa_enabled) 752 return; 753 754 for_each_online_node(node) { 755 pr_info("Node %d CPUs:", node); 756 757 count = 0; 758 /* 759 * If we used a CPU iterator here we would miss printing 760 * the holes in the cpumap. 761 */ 762 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 763 if (cpumask_test_cpu(cpu, 764 node_to_cpumask_map[node])) { 765 if (count == 0) 766 pr_cont(" %u", cpu); 767 ++count; 768 } else { 769 if (count > 1) 770 pr_cont("-%u", cpu - 1); 771 count = 0; 772 } 773 } 774 775 if (count > 1) 776 pr_cont("-%u", nr_cpu_ids - 1); 777 pr_cont("\n"); 778 } 779 } 780 781 /* Initialize NODE_DATA for a node on the local memory */ 782 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) 783 { 784 u64 spanned_pages = end_pfn - start_pfn; 785 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); 786 u64 nd_pa; 787 void *nd; 788 int tnid; 789 790 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); 791 nd = __va(nd_pa); 792 793 /* report and initialize */ 794 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n", 795 nd_pa, nd_pa + nd_size - 1); 796 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); 797 if (tnid != nid) 798 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid); 799 800 node_data[nid] = nd; 801 memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); 802 NODE_DATA(nid)->node_id = nid; 803 NODE_DATA(nid)->node_start_pfn = start_pfn; 804 NODE_DATA(nid)->node_spanned_pages = spanned_pages; 805 } 806 807 static void __init find_possible_nodes(void) 808 { 809 struct device_node *rtas; 810 u32 numnodes, i; 811 812 if (min_common_depth <= 0) 813 return; 814 815 rtas = of_find_node_by_path("/rtas"); 816 if (!rtas) 817 return; 818 819 if (of_property_read_u32_index(rtas, 820 "ibm,max-associativity-domains", 821 min_common_depth, &numnodes)) 822 goto out; 823 824 for (i = 0; i < numnodes; i++) { 825 if (!node_possible(i)) 826 node_set(i, node_possible_map); 827 } 828 829 out: 830 of_node_put(rtas); 831 } 832 833 void __init mem_topology_setup(void) 834 { 835 int cpu; 836 837 if (parse_numa_properties()) 838 setup_nonnuma(); 839 840 /* 841 * Modify the set of possible NUMA nodes to reflect information 842 * available about the set of online nodes, and the set of nodes 843 * that we expect to make use of for this platform's affinity 844 * calculations. 845 */ 846 nodes_and(node_possible_map, node_possible_map, node_online_map); 847 848 find_possible_nodes(); 849 850 setup_node_to_cpumask_map(); 851 852 reset_numa_cpu_lookup_table(); 853 854 for_each_present_cpu(cpu) 855 numa_setup_cpu(cpu); 856 } 857 858 void __init initmem_init(void) 859 { 860 int nid; 861 862 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 863 max_pfn = max_low_pfn; 864 865 memblock_dump_all(); 866 867 for_each_online_node(nid) { 868 unsigned long start_pfn, end_pfn; 869 870 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 871 setup_node_data(nid, start_pfn, end_pfn); 872 sparse_memory_present_with_active_regions(nid); 873 } 874 875 sparse_init(); 876 877 /* 878 * We need the numa_cpu_lookup_table to be accurate for all CPUs, 879 * even before we online them, so that we can use cpu_to_{node,mem} 880 * early in boot, cf. smp_prepare_cpus(). 881 * _nocalls() + manual invocation is used because cpuhp is not yet 882 * initialized for the boot CPU. 883 */ 884 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare", 885 ppc_numa_cpu_prepare, ppc_numa_cpu_dead); 886 } 887 888 static int __init early_numa(char *p) 889 { 890 if (!p) 891 return 0; 892 893 if (strstr(p, "off")) 894 numa_enabled = 0; 895 896 if (strstr(p, "debug")) 897 numa_debug = 1; 898 899 p = strstr(p, "fake="); 900 if (p) 901 cmdline = p + strlen("fake="); 902 903 return 0; 904 } 905 early_param("numa", early_numa); 906 907 static bool topology_updates_enabled = true; 908 909 static int __init early_topology_updates(char *p) 910 { 911 if (!p) 912 return 0; 913 914 if (!strcmp(p, "off")) { 915 pr_info("Disabling topology updates\n"); 916 topology_updates_enabled = false; 917 } 918 919 return 0; 920 } 921 early_param("topology_updates", early_topology_updates); 922 923 #ifdef CONFIG_MEMORY_HOTPLUG 924 /* 925 * Find the node associated with a hot added memory section for 926 * memory represented in the device tree by the property 927 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 928 */ 929 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr) 930 { 931 struct drmem_lmb *lmb; 932 unsigned long lmb_size; 933 int nid = -1; 934 935 lmb_size = drmem_lmb_size(); 936 937 for_each_drmem_lmb(lmb) { 938 /* skip this block if it is reserved or not assigned to 939 * this partition */ 940 if ((lmb->flags & DRCONF_MEM_RESERVED) 941 || !(lmb->flags & DRCONF_MEM_ASSIGNED)) 942 continue; 943 944 if ((scn_addr < lmb->base_addr) 945 || (scn_addr >= (lmb->base_addr + lmb_size))) 946 continue; 947 948 nid = of_drconf_to_nid_single(lmb); 949 break; 950 } 951 952 return nid; 953 } 954 955 /* 956 * Find the node associated with a hot added memory section for memory 957 * represented in the device tree as a node (i.e. memory@XXXX) for 958 * each memblock. 959 */ 960 static int hot_add_node_scn_to_nid(unsigned long scn_addr) 961 { 962 struct device_node *memory; 963 int nid = -1; 964 965 for_each_node_by_type(memory, "memory") { 966 unsigned long start, size; 967 int ranges; 968 const __be32 *memcell_buf; 969 unsigned int len; 970 971 memcell_buf = of_get_property(memory, "reg", &len); 972 if (!memcell_buf || len <= 0) 973 continue; 974 975 /* ranges in cell */ 976 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 977 978 while (ranges--) { 979 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 980 size = read_n_cells(n_mem_size_cells, &memcell_buf); 981 982 if ((scn_addr < start) || (scn_addr >= (start + size))) 983 continue; 984 985 nid = of_node_to_nid_single(memory); 986 break; 987 } 988 989 if (nid >= 0) 990 break; 991 } 992 993 of_node_put(memory); 994 995 return nid; 996 } 997 998 /* 999 * Find the node associated with a hot added memory section. Section 1000 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1001 * sections are fully contained within a single MEMBLOCK. 1002 */ 1003 int hot_add_scn_to_nid(unsigned long scn_addr) 1004 { 1005 struct device_node *memory = NULL; 1006 int nid; 1007 1008 if (!numa_enabled || (min_common_depth < 0)) 1009 return first_online_node; 1010 1011 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1012 if (memory) { 1013 nid = hot_add_drconf_scn_to_nid(scn_addr); 1014 of_node_put(memory); 1015 } else { 1016 nid = hot_add_node_scn_to_nid(scn_addr); 1017 } 1018 1019 if (nid < 0 || !node_possible(nid)) 1020 nid = first_online_node; 1021 1022 return nid; 1023 } 1024 1025 static u64 hot_add_drconf_memory_max(void) 1026 { 1027 struct device_node *memory = NULL; 1028 struct device_node *dn = NULL; 1029 const __be64 *lrdr = NULL; 1030 1031 dn = of_find_node_by_path("/rtas"); 1032 if (dn) { 1033 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL); 1034 of_node_put(dn); 1035 if (lrdr) 1036 return be64_to_cpup(lrdr); 1037 } 1038 1039 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1040 if (memory) { 1041 of_node_put(memory); 1042 return drmem_lmb_memory_max(); 1043 } 1044 return 0; 1045 } 1046 1047 /* 1048 * memory_hotplug_max - return max address of memory that may be added 1049 * 1050 * This is currently only used on systems that support drconfig memory 1051 * hotplug. 1052 */ 1053 u64 memory_hotplug_max(void) 1054 { 1055 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1056 } 1057 #endif /* CONFIG_MEMORY_HOTPLUG */ 1058 1059 /* Virtual Processor Home Node (VPHN) support */ 1060 #ifdef CONFIG_PPC_SPLPAR 1061 1062 #include "vphn.h" 1063 1064 struct topology_update_data { 1065 struct topology_update_data *next; 1066 unsigned int cpu; 1067 int old_nid; 1068 int new_nid; 1069 }; 1070 1071 #define TOPOLOGY_DEF_TIMER_SECS 60 1072 1073 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; 1074 static cpumask_t cpu_associativity_changes_mask; 1075 static int vphn_enabled; 1076 static int prrn_enabled; 1077 static void reset_topology_timer(void); 1078 static int topology_timer_secs = 1; 1079 static int topology_inited; 1080 1081 /* 1082 * Change polling interval for associativity changes. 1083 */ 1084 int timed_topology_update(int nsecs) 1085 { 1086 if (vphn_enabled) { 1087 if (nsecs > 0) 1088 topology_timer_secs = nsecs; 1089 else 1090 topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS; 1091 1092 reset_topology_timer(); 1093 } 1094 1095 return 0; 1096 } 1097 1098 /* 1099 * Store the current values of the associativity change counters in the 1100 * hypervisor. 1101 */ 1102 static void setup_cpu_associativity_change_counters(void) 1103 { 1104 int cpu; 1105 1106 /* The VPHN feature supports a maximum of 8 reference points */ 1107 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); 1108 1109 for_each_possible_cpu(cpu) { 1110 int i; 1111 u8 *counts = vphn_cpu_change_counts[cpu]; 1112 volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts; 1113 1114 for (i = 0; i < distance_ref_points_depth; i++) 1115 counts[i] = hypervisor_counts[i]; 1116 } 1117 } 1118 1119 /* 1120 * The hypervisor maintains a set of 8 associativity change counters in 1121 * the VPA of each cpu that correspond to the associativity levels in the 1122 * ibm,associativity-reference-points property. When an associativity 1123 * level changes, the corresponding counter is incremented. 1124 * 1125 * Set a bit in cpu_associativity_changes_mask for each cpu whose home 1126 * node associativity levels have changed. 1127 * 1128 * Returns the number of cpus with unhandled associativity changes. 1129 */ 1130 static int update_cpu_associativity_changes_mask(void) 1131 { 1132 int cpu; 1133 cpumask_t *changes = &cpu_associativity_changes_mask; 1134 1135 for_each_possible_cpu(cpu) { 1136 int i, changed = 0; 1137 u8 *counts = vphn_cpu_change_counts[cpu]; 1138 volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts; 1139 1140 for (i = 0; i < distance_ref_points_depth; i++) { 1141 if (hypervisor_counts[i] != counts[i]) { 1142 counts[i] = hypervisor_counts[i]; 1143 changed = 1; 1144 } 1145 } 1146 if (changed) { 1147 cpumask_or(changes, changes, cpu_sibling_mask(cpu)); 1148 cpu = cpu_last_thread_sibling(cpu); 1149 } 1150 } 1151 1152 return cpumask_weight(changes); 1153 } 1154 1155 /* 1156 * Retrieve the new associativity information for a virtual processor's 1157 * home node. 1158 */ 1159 static long hcall_vphn(unsigned long cpu, __be32 *associativity) 1160 { 1161 long rc; 1162 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; 1163 u64 flags = 1; 1164 int hwcpu = get_hard_smp_processor_id(cpu); 1165 1166 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); 1167 vphn_unpack_associativity(retbuf, associativity); 1168 1169 return rc; 1170 } 1171 1172 static long vphn_get_associativity(unsigned long cpu, 1173 __be32 *associativity) 1174 { 1175 long rc; 1176 1177 rc = hcall_vphn(cpu, associativity); 1178 1179 switch (rc) { 1180 case H_FUNCTION: 1181 printk(KERN_INFO 1182 "VPHN is not supported. Disabling polling...\n"); 1183 stop_topology_update(); 1184 break; 1185 case H_HARDWARE: 1186 printk(KERN_ERR 1187 "hcall_vphn() experienced a hardware fault " 1188 "preventing VPHN. Disabling polling...\n"); 1189 stop_topology_update(); 1190 break; 1191 case H_SUCCESS: 1192 dbg("VPHN hcall succeeded. Reset polling...\n"); 1193 timed_topology_update(0); 1194 break; 1195 } 1196 1197 return rc; 1198 } 1199 1200 int find_and_online_cpu_nid(int cpu) 1201 { 1202 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1203 int new_nid; 1204 1205 /* Use associativity from first thread for all siblings */ 1206 if (vphn_get_associativity(cpu, associativity)) 1207 return cpu_to_node(cpu); 1208 1209 new_nid = associativity_to_nid(associativity); 1210 if (new_nid < 0 || !node_possible(new_nid)) 1211 new_nid = first_online_node; 1212 1213 if (NODE_DATA(new_nid) == NULL) { 1214 #ifdef CONFIG_MEMORY_HOTPLUG 1215 /* 1216 * Need to ensure that NODE_DATA is initialized for a node from 1217 * available memory (see memblock_alloc_try_nid). If unable to 1218 * init the node, then default to nearest node that has memory 1219 * installed. Skip onlining a node if the subsystems are not 1220 * yet initialized. 1221 */ 1222 if (!topology_inited || try_online_node(new_nid)) 1223 new_nid = first_online_node; 1224 #else 1225 /* 1226 * Default to using the nearest node that has memory installed. 1227 * Otherwise, it would be necessary to patch the kernel MM code 1228 * to deal with more memoryless-node error conditions. 1229 */ 1230 new_nid = first_online_node; 1231 #endif 1232 } 1233 1234 pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__, 1235 cpu, new_nid); 1236 return new_nid; 1237 } 1238 1239 /* 1240 * Update the CPU maps and sysfs entries for a single CPU when its NUMA 1241 * characteristics change. This function doesn't perform any locking and is 1242 * only safe to call from stop_machine(). 1243 */ 1244 static int update_cpu_topology(void *data) 1245 { 1246 struct topology_update_data *update; 1247 unsigned long cpu; 1248 1249 if (!data) 1250 return -EINVAL; 1251 1252 cpu = smp_processor_id(); 1253 1254 for (update = data; update; update = update->next) { 1255 int new_nid = update->new_nid; 1256 if (cpu != update->cpu) 1257 continue; 1258 1259 unmap_cpu_from_node(cpu); 1260 map_cpu_to_node(cpu, new_nid); 1261 set_cpu_numa_node(cpu, new_nid); 1262 set_cpu_numa_mem(cpu, local_memory_node(new_nid)); 1263 vdso_getcpu_init(); 1264 } 1265 1266 return 0; 1267 } 1268 1269 static int update_lookup_table(void *data) 1270 { 1271 struct topology_update_data *update; 1272 1273 if (!data) 1274 return -EINVAL; 1275 1276 /* 1277 * Upon topology update, the numa-cpu lookup table needs to be updated 1278 * for all threads in the core, including offline CPUs, to ensure that 1279 * future hotplug operations respect the cpu-to-node associativity 1280 * properly. 1281 */ 1282 for (update = data; update; update = update->next) { 1283 int nid, base, j; 1284 1285 nid = update->new_nid; 1286 base = cpu_first_thread_sibling(update->cpu); 1287 1288 for (j = 0; j < threads_per_core; j++) { 1289 update_numa_cpu_lookup_table(base + j, nid); 1290 } 1291 } 1292 1293 return 0; 1294 } 1295 1296 /* 1297 * Update the node maps and sysfs entries for each cpu whose home node 1298 * has changed. Returns 1 when the topology has changed, and 0 otherwise. 1299 * 1300 * cpus_locked says whether we already hold cpu_hotplug_lock. 1301 */ 1302 int numa_update_cpu_topology(bool cpus_locked) 1303 { 1304 unsigned int cpu, sibling, changed = 0; 1305 struct topology_update_data *updates, *ud; 1306 cpumask_t updated_cpus; 1307 struct device *dev; 1308 int weight, new_nid, i = 0; 1309 1310 if (!prrn_enabled && !vphn_enabled && topology_inited) 1311 return 0; 1312 1313 weight = cpumask_weight(&cpu_associativity_changes_mask); 1314 if (!weight) 1315 return 0; 1316 1317 updates = kcalloc(weight, sizeof(*updates), GFP_KERNEL); 1318 if (!updates) 1319 return 0; 1320 1321 cpumask_clear(&updated_cpus); 1322 1323 for_each_cpu(cpu, &cpu_associativity_changes_mask) { 1324 /* 1325 * If siblings aren't flagged for changes, updates list 1326 * will be too short. Skip on this update and set for next 1327 * update. 1328 */ 1329 if (!cpumask_subset(cpu_sibling_mask(cpu), 1330 &cpu_associativity_changes_mask)) { 1331 pr_info("Sibling bits not set for associativity " 1332 "change, cpu%d\n", cpu); 1333 cpumask_or(&cpu_associativity_changes_mask, 1334 &cpu_associativity_changes_mask, 1335 cpu_sibling_mask(cpu)); 1336 cpu = cpu_last_thread_sibling(cpu); 1337 continue; 1338 } 1339 1340 new_nid = find_and_online_cpu_nid(cpu); 1341 1342 if (new_nid == numa_cpu_lookup_table[cpu]) { 1343 cpumask_andnot(&cpu_associativity_changes_mask, 1344 &cpu_associativity_changes_mask, 1345 cpu_sibling_mask(cpu)); 1346 dbg("Assoc chg gives same node %d for cpu%d\n", 1347 new_nid, cpu); 1348 cpu = cpu_last_thread_sibling(cpu); 1349 continue; 1350 } 1351 1352 for_each_cpu(sibling, cpu_sibling_mask(cpu)) { 1353 ud = &updates[i++]; 1354 ud->next = &updates[i]; 1355 ud->cpu = sibling; 1356 ud->new_nid = new_nid; 1357 ud->old_nid = numa_cpu_lookup_table[sibling]; 1358 cpumask_set_cpu(sibling, &updated_cpus); 1359 } 1360 cpu = cpu_last_thread_sibling(cpu); 1361 } 1362 1363 /* 1364 * Prevent processing of 'updates' from overflowing array 1365 * where last entry filled in a 'next' pointer. 1366 */ 1367 if (i) 1368 updates[i-1].next = NULL; 1369 1370 pr_debug("Topology update for the following CPUs:\n"); 1371 if (cpumask_weight(&updated_cpus)) { 1372 for (ud = &updates[0]; ud; ud = ud->next) { 1373 pr_debug("cpu %d moving from node %d " 1374 "to %d\n", ud->cpu, 1375 ud->old_nid, ud->new_nid); 1376 } 1377 } 1378 1379 /* 1380 * In cases where we have nothing to update (because the updates list 1381 * is too short or because the new topology is same as the old one), 1382 * skip invoking update_cpu_topology() via stop-machine(). This is 1383 * necessary (and not just a fast-path optimization) since stop-machine 1384 * can end up electing a random CPU to run update_cpu_topology(), and 1385 * thus trick us into setting up incorrect cpu-node mappings (since 1386 * 'updates' is kzalloc()'ed). 1387 * 1388 * And for the similar reason, we will skip all the following updating. 1389 */ 1390 if (!cpumask_weight(&updated_cpus)) 1391 goto out; 1392 1393 if (cpus_locked) 1394 stop_machine_cpuslocked(update_cpu_topology, &updates[0], 1395 &updated_cpus); 1396 else 1397 stop_machine(update_cpu_topology, &updates[0], &updated_cpus); 1398 1399 /* 1400 * Update the numa-cpu lookup table with the new mappings, even for 1401 * offline CPUs. It is best to perform this update from the stop- 1402 * machine context. 1403 */ 1404 if (cpus_locked) 1405 stop_machine_cpuslocked(update_lookup_table, &updates[0], 1406 cpumask_of(raw_smp_processor_id())); 1407 else 1408 stop_machine(update_lookup_table, &updates[0], 1409 cpumask_of(raw_smp_processor_id())); 1410 1411 for (ud = &updates[0]; ud; ud = ud->next) { 1412 unregister_cpu_under_node(ud->cpu, ud->old_nid); 1413 register_cpu_under_node(ud->cpu, ud->new_nid); 1414 1415 dev = get_cpu_device(ud->cpu); 1416 if (dev) 1417 kobject_uevent(&dev->kobj, KOBJ_CHANGE); 1418 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask); 1419 changed = 1; 1420 } 1421 1422 out: 1423 kfree(updates); 1424 return changed; 1425 } 1426 1427 int arch_update_cpu_topology(void) 1428 { 1429 return numa_update_cpu_topology(true); 1430 } 1431 1432 static void topology_work_fn(struct work_struct *work) 1433 { 1434 rebuild_sched_domains(); 1435 } 1436 static DECLARE_WORK(topology_work, topology_work_fn); 1437 1438 static void topology_schedule_update(void) 1439 { 1440 schedule_work(&topology_work); 1441 } 1442 1443 static void topology_timer_fn(struct timer_list *unused) 1444 { 1445 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask)) 1446 topology_schedule_update(); 1447 else if (vphn_enabled) { 1448 if (update_cpu_associativity_changes_mask() > 0) 1449 topology_schedule_update(); 1450 reset_topology_timer(); 1451 } 1452 } 1453 static struct timer_list topology_timer; 1454 1455 static void reset_topology_timer(void) 1456 { 1457 if (vphn_enabled) 1458 mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ); 1459 } 1460 1461 #ifdef CONFIG_SMP 1462 1463 static void stage_topology_update(int core_id) 1464 { 1465 cpumask_or(&cpu_associativity_changes_mask, 1466 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id)); 1467 reset_topology_timer(); 1468 } 1469 1470 static int dt_update_callback(struct notifier_block *nb, 1471 unsigned long action, void *data) 1472 { 1473 struct of_reconfig_data *update = data; 1474 int rc = NOTIFY_DONE; 1475 1476 switch (action) { 1477 case OF_RECONFIG_UPDATE_PROPERTY: 1478 if (!of_prop_cmp(update->dn->type, "cpu") && 1479 !of_prop_cmp(update->prop->name, "ibm,associativity")) { 1480 u32 core_id; 1481 of_property_read_u32(update->dn, "reg", &core_id); 1482 stage_topology_update(core_id); 1483 rc = NOTIFY_OK; 1484 } 1485 break; 1486 } 1487 1488 return rc; 1489 } 1490 1491 static struct notifier_block dt_update_nb = { 1492 .notifier_call = dt_update_callback, 1493 }; 1494 1495 #endif 1496 1497 /* 1498 * Start polling for associativity changes. 1499 */ 1500 int start_topology_update(void) 1501 { 1502 int rc = 0; 1503 1504 if (firmware_has_feature(FW_FEATURE_PRRN)) { 1505 if (!prrn_enabled) { 1506 prrn_enabled = 1; 1507 #ifdef CONFIG_SMP 1508 rc = of_reconfig_notifier_register(&dt_update_nb); 1509 #endif 1510 } 1511 } 1512 if (firmware_has_feature(FW_FEATURE_VPHN) && 1513 lppaca_shared_proc(get_lppaca())) { 1514 if (!vphn_enabled) { 1515 vphn_enabled = 1; 1516 setup_cpu_associativity_change_counters(); 1517 timer_setup(&topology_timer, topology_timer_fn, 1518 TIMER_DEFERRABLE); 1519 reset_topology_timer(); 1520 } 1521 } 1522 1523 pr_info("Starting topology update%s%s\n", 1524 (prrn_enabled ? " prrn_enabled" : ""), 1525 (vphn_enabled ? " vphn_enabled" : "")); 1526 1527 return rc; 1528 } 1529 1530 /* 1531 * Disable polling for VPHN associativity changes. 1532 */ 1533 int stop_topology_update(void) 1534 { 1535 int rc = 0; 1536 1537 if (prrn_enabled) { 1538 prrn_enabled = 0; 1539 #ifdef CONFIG_SMP 1540 rc = of_reconfig_notifier_unregister(&dt_update_nb); 1541 #endif 1542 } 1543 if (vphn_enabled) { 1544 vphn_enabled = 0; 1545 rc = del_timer_sync(&topology_timer); 1546 } 1547 1548 pr_info("Stopping topology update\n"); 1549 1550 return rc; 1551 } 1552 1553 int prrn_is_enabled(void) 1554 { 1555 return prrn_enabled; 1556 } 1557 1558 void __init shared_proc_topology_init(void) 1559 { 1560 if (lppaca_shared_proc(get_lppaca())) { 1561 bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask), 1562 nr_cpumask_bits); 1563 numa_update_cpu_topology(false); 1564 } 1565 } 1566 1567 static int topology_read(struct seq_file *file, void *v) 1568 { 1569 if (vphn_enabled || prrn_enabled) 1570 seq_puts(file, "on\n"); 1571 else 1572 seq_puts(file, "off\n"); 1573 1574 return 0; 1575 } 1576 1577 static int topology_open(struct inode *inode, struct file *file) 1578 { 1579 return single_open(file, topology_read, NULL); 1580 } 1581 1582 static ssize_t topology_write(struct file *file, const char __user *buf, 1583 size_t count, loff_t *off) 1584 { 1585 char kbuf[4]; /* "on" or "off" plus null. */ 1586 int read_len; 1587 1588 read_len = count < 3 ? count : 3; 1589 if (copy_from_user(kbuf, buf, read_len)) 1590 return -EINVAL; 1591 1592 kbuf[read_len] = '\0'; 1593 1594 if (!strncmp(kbuf, "on", 2)) 1595 start_topology_update(); 1596 else if (!strncmp(kbuf, "off", 3)) 1597 stop_topology_update(); 1598 else 1599 return -EINVAL; 1600 1601 return count; 1602 } 1603 1604 static const struct file_operations topology_ops = { 1605 .read = seq_read, 1606 .write = topology_write, 1607 .open = topology_open, 1608 .release = single_release 1609 }; 1610 1611 static int topology_update_init(void) 1612 { 1613 /* Do not poll for changes if disabled at boot */ 1614 if (topology_updates_enabled) 1615 start_topology_update(); 1616 1617 if (vphn_enabled) 1618 topology_schedule_update(); 1619 1620 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops)) 1621 return -ENOMEM; 1622 1623 topology_inited = 1; 1624 return 0; 1625 } 1626 device_initcall(topology_update_init); 1627 #endif /* CONFIG_PPC_SPLPAR */ 1628