xref: /openbmc/linux/arch/powerpc/mm/numa.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/memblock.h>
21 #include <linux/of.h>
22 #include <linux/pfn.h>
23 #include <linux/cpuset.h>
24 #include <linux/node.h>
25 #include <asm/sparsemem.h>
26 #include <asm/prom.h>
27 #include <asm/system.h>
28 #include <asm/smp.h>
29 #include <asm/firmware.h>
30 #include <asm/paca.h>
31 #include <asm/hvcall.h>
32 
33 static int numa_enabled = 1;
34 
35 static char *cmdline __initdata;
36 
37 static int numa_debug;
38 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
39 
40 int numa_cpu_lookup_table[NR_CPUS];
41 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
42 struct pglist_data *node_data[MAX_NUMNODES];
43 
44 EXPORT_SYMBOL(numa_cpu_lookup_table);
45 EXPORT_SYMBOL(node_to_cpumask_map);
46 EXPORT_SYMBOL(node_data);
47 
48 static int min_common_depth;
49 static int n_mem_addr_cells, n_mem_size_cells;
50 static int form1_affinity;
51 
52 #define MAX_DISTANCE_REF_POINTS 4
53 static int distance_ref_points_depth;
54 static const unsigned int *distance_ref_points;
55 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
56 
57 /*
58  * Allocate node_to_cpumask_map based on number of available nodes
59  * Requires node_possible_map to be valid.
60  *
61  * Note: node_to_cpumask() is not valid until after this is done.
62  */
63 static void __init setup_node_to_cpumask_map(void)
64 {
65 	unsigned int node, num = 0;
66 
67 	/* setup nr_node_ids if not done yet */
68 	if (nr_node_ids == MAX_NUMNODES) {
69 		for_each_node_mask(node, node_possible_map)
70 			num = node;
71 		nr_node_ids = num + 1;
72 	}
73 
74 	/* allocate the map */
75 	for (node = 0; node < nr_node_ids; node++)
76 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
77 
78 	/* cpumask_of_node() will now work */
79 	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
80 }
81 
82 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
83 						unsigned int *nid)
84 {
85 	unsigned long long mem;
86 	char *p = cmdline;
87 	static unsigned int fake_nid;
88 	static unsigned long long curr_boundary;
89 
90 	/*
91 	 * Modify node id, iff we started creating NUMA nodes
92 	 * We want to continue from where we left of the last time
93 	 */
94 	if (fake_nid)
95 		*nid = fake_nid;
96 	/*
97 	 * In case there are no more arguments to parse, the
98 	 * node_id should be the same as the last fake node id
99 	 * (we've handled this above).
100 	 */
101 	if (!p)
102 		return 0;
103 
104 	mem = memparse(p, &p);
105 	if (!mem)
106 		return 0;
107 
108 	if (mem < curr_boundary)
109 		return 0;
110 
111 	curr_boundary = mem;
112 
113 	if ((end_pfn << PAGE_SHIFT) > mem) {
114 		/*
115 		 * Skip commas and spaces
116 		 */
117 		while (*p == ',' || *p == ' ' || *p == '\t')
118 			p++;
119 
120 		cmdline = p;
121 		fake_nid++;
122 		*nid = fake_nid;
123 		dbg("created new fake_node with id %d\n", fake_nid);
124 		return 1;
125 	}
126 	return 0;
127 }
128 
129 /*
130  * get_active_region_work_fn - A helper function for get_node_active_region
131  *	Returns datax set to the start_pfn and end_pfn if they contain
132  *	the initial value of datax->start_pfn between them
133  * @start_pfn: start page(inclusive) of region to check
134  * @end_pfn: end page(exclusive) of region to check
135  * @datax: comes in with ->start_pfn set to value to search for and
136  *	goes out with active range if it contains it
137  * Returns 1 if search value is in range else 0
138  */
139 static int __init get_active_region_work_fn(unsigned long start_pfn,
140 					unsigned long end_pfn, void *datax)
141 {
142 	struct node_active_region *data;
143 	data = (struct node_active_region *)datax;
144 
145 	if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
146 		data->start_pfn = start_pfn;
147 		data->end_pfn = end_pfn;
148 		return 1;
149 	}
150 	return 0;
151 
152 }
153 
154 /*
155  * get_node_active_region - Return active region containing start_pfn
156  * Active range returned is empty if none found.
157  * @start_pfn: The page to return the region for.
158  * @node_ar: Returned set to the active region containing start_pfn
159  */
160 static void __init get_node_active_region(unsigned long start_pfn,
161 		       struct node_active_region *node_ar)
162 {
163 	int nid = early_pfn_to_nid(start_pfn);
164 
165 	node_ar->nid = nid;
166 	node_ar->start_pfn = start_pfn;
167 	node_ar->end_pfn = start_pfn;
168 	work_with_active_regions(nid, get_active_region_work_fn, node_ar);
169 }
170 
171 static void map_cpu_to_node(int cpu, int node)
172 {
173 	numa_cpu_lookup_table[cpu] = node;
174 
175 	dbg("adding cpu %d to node %d\n", cpu, node);
176 
177 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
178 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
179 }
180 
181 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
182 static void unmap_cpu_from_node(unsigned long cpu)
183 {
184 	int node = numa_cpu_lookup_table[cpu];
185 
186 	dbg("removing cpu %lu from node %d\n", cpu, node);
187 
188 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
189 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
190 	} else {
191 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
192 		       cpu, node);
193 	}
194 }
195 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
196 
197 /* must hold reference to node during call */
198 static const int *of_get_associativity(struct device_node *dev)
199 {
200 	return of_get_property(dev, "ibm,associativity", NULL);
201 }
202 
203 /*
204  * Returns the property linux,drconf-usable-memory if
205  * it exists (the property exists only in kexec/kdump kernels,
206  * added by kexec-tools)
207  */
208 static const u32 *of_get_usable_memory(struct device_node *memory)
209 {
210 	const u32 *prop;
211 	u32 len;
212 	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
213 	if (!prop || len < sizeof(unsigned int))
214 		return 0;
215 	return prop;
216 }
217 
218 int __node_distance(int a, int b)
219 {
220 	int i;
221 	int distance = LOCAL_DISTANCE;
222 
223 	if (!form1_affinity)
224 		return distance;
225 
226 	for (i = 0; i < distance_ref_points_depth; i++) {
227 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
228 			break;
229 
230 		/* Double the distance for each NUMA level */
231 		distance *= 2;
232 	}
233 
234 	return distance;
235 }
236 
237 static void initialize_distance_lookup_table(int nid,
238 		const unsigned int *associativity)
239 {
240 	int i;
241 
242 	if (!form1_affinity)
243 		return;
244 
245 	for (i = 0; i < distance_ref_points_depth; i++) {
246 		distance_lookup_table[nid][i] =
247 			associativity[distance_ref_points[i]];
248 	}
249 }
250 
251 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
252  * info is found.
253  */
254 static int associativity_to_nid(const unsigned int *associativity)
255 {
256 	int nid = -1;
257 
258 	if (min_common_depth == -1)
259 		goto out;
260 
261 	if (associativity[0] >= min_common_depth)
262 		nid = associativity[min_common_depth];
263 
264 	/* POWER4 LPAR uses 0xffff as invalid node */
265 	if (nid == 0xffff || nid >= MAX_NUMNODES)
266 		nid = -1;
267 
268 	if (nid > 0 && associativity[0] >= distance_ref_points_depth)
269 		initialize_distance_lookup_table(nid, associativity);
270 
271 out:
272 	return nid;
273 }
274 
275 /* Returns the nid associated with the given device tree node,
276  * or -1 if not found.
277  */
278 static int of_node_to_nid_single(struct device_node *device)
279 {
280 	int nid = -1;
281 	const unsigned int *tmp;
282 
283 	tmp = of_get_associativity(device);
284 	if (tmp)
285 		nid = associativity_to_nid(tmp);
286 	return nid;
287 }
288 
289 /* Walk the device tree upwards, looking for an associativity id */
290 int of_node_to_nid(struct device_node *device)
291 {
292 	struct device_node *tmp;
293 	int nid = -1;
294 
295 	of_node_get(device);
296 	while (device) {
297 		nid = of_node_to_nid_single(device);
298 		if (nid != -1)
299 			break;
300 
301 	        tmp = device;
302 		device = of_get_parent(tmp);
303 		of_node_put(tmp);
304 	}
305 	of_node_put(device);
306 
307 	return nid;
308 }
309 EXPORT_SYMBOL_GPL(of_node_to_nid);
310 
311 static int __init find_min_common_depth(void)
312 {
313 	int depth;
314 	struct device_node *rtas_root;
315 	struct device_node *chosen;
316 	const char *vec5;
317 
318 	rtas_root = of_find_node_by_path("/rtas");
319 
320 	if (!rtas_root)
321 		return -1;
322 
323 	/*
324 	 * This property is a set of 32-bit integers, each representing
325 	 * an index into the ibm,associativity nodes.
326 	 *
327 	 * With form 0 affinity the first integer is for an SMP configuration
328 	 * (should be all 0's) and the second is for a normal NUMA
329 	 * configuration. We have only one level of NUMA.
330 	 *
331 	 * With form 1 affinity the first integer is the most significant
332 	 * NUMA boundary and the following are progressively less significant
333 	 * boundaries. There can be more than one level of NUMA.
334 	 */
335 	distance_ref_points = of_get_property(rtas_root,
336 					"ibm,associativity-reference-points",
337 					&distance_ref_points_depth);
338 
339 	if (!distance_ref_points) {
340 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
341 		goto err;
342 	}
343 
344 	distance_ref_points_depth /= sizeof(int);
345 
346 #define VEC5_AFFINITY_BYTE	5
347 #define VEC5_AFFINITY		0x80
348 	chosen = of_find_node_by_path("/chosen");
349 	if (chosen) {
350 		vec5 = of_get_property(chosen, "ibm,architecture-vec-5", NULL);
351 		if (vec5 && (vec5[VEC5_AFFINITY_BYTE] & VEC5_AFFINITY)) {
352 			dbg("Using form 1 affinity\n");
353 			form1_affinity = 1;
354 		}
355 	}
356 
357 	if (form1_affinity) {
358 		depth = distance_ref_points[0];
359 	} else {
360 		if (distance_ref_points_depth < 2) {
361 			printk(KERN_WARNING "NUMA: "
362 				"short ibm,associativity-reference-points\n");
363 			goto err;
364 		}
365 
366 		depth = distance_ref_points[1];
367 	}
368 
369 	/*
370 	 * Warn and cap if the hardware supports more than
371 	 * MAX_DISTANCE_REF_POINTS domains.
372 	 */
373 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
374 		printk(KERN_WARNING "NUMA: distance array capped at "
375 			"%d entries\n", MAX_DISTANCE_REF_POINTS);
376 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
377 	}
378 
379 	of_node_put(rtas_root);
380 	return depth;
381 
382 err:
383 	of_node_put(rtas_root);
384 	return -1;
385 }
386 
387 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
388 {
389 	struct device_node *memory = NULL;
390 
391 	memory = of_find_node_by_type(memory, "memory");
392 	if (!memory)
393 		panic("numa.c: No memory nodes found!");
394 
395 	*n_addr_cells = of_n_addr_cells(memory);
396 	*n_size_cells = of_n_size_cells(memory);
397 	of_node_put(memory);
398 }
399 
400 static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
401 {
402 	unsigned long result = 0;
403 
404 	while (n--) {
405 		result = (result << 32) | **buf;
406 		(*buf)++;
407 	}
408 	return result;
409 }
410 
411 struct of_drconf_cell {
412 	u64	base_addr;
413 	u32	drc_index;
414 	u32	reserved;
415 	u32	aa_index;
416 	u32	flags;
417 };
418 
419 #define DRCONF_MEM_ASSIGNED	0x00000008
420 #define DRCONF_MEM_AI_INVALID	0x00000040
421 #define DRCONF_MEM_RESERVED	0x00000080
422 
423 /*
424  * Read the next memblock list entry from the ibm,dynamic-memory property
425  * and return the information in the provided of_drconf_cell structure.
426  */
427 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
428 {
429 	const u32 *cp;
430 
431 	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
432 
433 	cp = *cellp;
434 	drmem->drc_index = cp[0];
435 	drmem->reserved = cp[1];
436 	drmem->aa_index = cp[2];
437 	drmem->flags = cp[3];
438 
439 	*cellp = cp + 4;
440 }
441 
442 /*
443  * Retreive and validate the ibm,dynamic-memory property of the device tree.
444  *
445  * The layout of the ibm,dynamic-memory property is a number N of memblock
446  * list entries followed by N memblock list entries.  Each memblock list entry
447  * contains information as layed out in the of_drconf_cell struct above.
448  */
449 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
450 {
451 	const u32 *prop;
452 	u32 len, entries;
453 
454 	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
455 	if (!prop || len < sizeof(unsigned int))
456 		return 0;
457 
458 	entries = *prop++;
459 
460 	/* Now that we know the number of entries, revalidate the size
461 	 * of the property read in to ensure we have everything
462 	 */
463 	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
464 		return 0;
465 
466 	*dm = prop;
467 	return entries;
468 }
469 
470 /*
471  * Retreive and validate the ibm,lmb-size property for drconf memory
472  * from the device tree.
473  */
474 static u64 of_get_lmb_size(struct device_node *memory)
475 {
476 	const u32 *prop;
477 	u32 len;
478 
479 	prop = of_get_property(memory, "ibm,lmb-size", &len);
480 	if (!prop || len < sizeof(unsigned int))
481 		return 0;
482 
483 	return read_n_cells(n_mem_size_cells, &prop);
484 }
485 
486 struct assoc_arrays {
487 	u32	n_arrays;
488 	u32	array_sz;
489 	const u32 *arrays;
490 };
491 
492 /*
493  * Retreive and validate the list of associativity arrays for drconf
494  * memory from the ibm,associativity-lookup-arrays property of the
495  * device tree..
496  *
497  * The layout of the ibm,associativity-lookup-arrays property is a number N
498  * indicating the number of associativity arrays, followed by a number M
499  * indicating the size of each associativity array, followed by a list
500  * of N associativity arrays.
501  */
502 static int of_get_assoc_arrays(struct device_node *memory,
503 			       struct assoc_arrays *aa)
504 {
505 	const u32 *prop;
506 	u32 len;
507 
508 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
509 	if (!prop || len < 2 * sizeof(unsigned int))
510 		return -1;
511 
512 	aa->n_arrays = *prop++;
513 	aa->array_sz = *prop++;
514 
515 	/* Now that we know the number of arrrays and size of each array,
516 	 * revalidate the size of the property read in.
517 	 */
518 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
519 		return -1;
520 
521 	aa->arrays = prop;
522 	return 0;
523 }
524 
525 /*
526  * This is like of_node_to_nid_single() for memory represented in the
527  * ibm,dynamic-reconfiguration-memory node.
528  */
529 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
530 				   struct assoc_arrays *aa)
531 {
532 	int default_nid = 0;
533 	int nid = default_nid;
534 	int index;
535 
536 	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
537 	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
538 	    drmem->aa_index < aa->n_arrays) {
539 		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
540 		nid = aa->arrays[index];
541 
542 		if (nid == 0xffff || nid >= MAX_NUMNODES)
543 			nid = default_nid;
544 	}
545 
546 	return nid;
547 }
548 
549 /*
550  * Figure out to which domain a cpu belongs and stick it there.
551  * Return the id of the domain used.
552  */
553 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
554 {
555 	int nid = 0;
556 	struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
557 
558 	if (!cpu) {
559 		WARN_ON(1);
560 		goto out;
561 	}
562 
563 	nid = of_node_to_nid_single(cpu);
564 
565 	if (nid < 0 || !node_online(nid))
566 		nid = first_online_node;
567 out:
568 	map_cpu_to_node(lcpu, nid);
569 
570 	of_node_put(cpu);
571 
572 	return nid;
573 }
574 
575 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
576 			     unsigned long action,
577 			     void *hcpu)
578 {
579 	unsigned long lcpu = (unsigned long)hcpu;
580 	int ret = NOTIFY_DONE;
581 
582 	switch (action) {
583 	case CPU_UP_PREPARE:
584 	case CPU_UP_PREPARE_FROZEN:
585 		numa_setup_cpu(lcpu);
586 		ret = NOTIFY_OK;
587 		break;
588 #ifdef CONFIG_HOTPLUG_CPU
589 	case CPU_DEAD:
590 	case CPU_DEAD_FROZEN:
591 	case CPU_UP_CANCELED:
592 	case CPU_UP_CANCELED_FROZEN:
593 		unmap_cpu_from_node(lcpu);
594 		break;
595 		ret = NOTIFY_OK;
596 #endif
597 	}
598 	return ret;
599 }
600 
601 /*
602  * Check and possibly modify a memory region to enforce the memory limit.
603  *
604  * Returns the size the region should have to enforce the memory limit.
605  * This will either be the original value of size, a truncated value,
606  * or zero. If the returned value of size is 0 the region should be
607  * discarded as it lies wholy above the memory limit.
608  */
609 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
610 						      unsigned long size)
611 {
612 	/*
613 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
614 	 * we've already adjusted it for the limit and it takes care of
615 	 * having memory holes below the limit.  Also, in the case of
616 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
617 	 */
618 
619 	if (start + size <= memblock_end_of_DRAM())
620 		return size;
621 
622 	if (start >= memblock_end_of_DRAM())
623 		return 0;
624 
625 	return memblock_end_of_DRAM() - start;
626 }
627 
628 /*
629  * Reads the counter for a given entry in
630  * linux,drconf-usable-memory property
631  */
632 static inline int __init read_usm_ranges(const u32 **usm)
633 {
634 	/*
635 	 * For each lmb in ibm,dynamic-memory a corresponding
636 	 * entry in linux,drconf-usable-memory property contains
637 	 * a counter followed by that many (base, size) duple.
638 	 * read the counter from linux,drconf-usable-memory
639 	 */
640 	return read_n_cells(n_mem_size_cells, usm);
641 }
642 
643 /*
644  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
645  * node.  This assumes n_mem_{addr,size}_cells have been set.
646  */
647 static void __init parse_drconf_memory(struct device_node *memory)
648 {
649 	const u32 *dm, *usm;
650 	unsigned int n, rc, ranges, is_kexec_kdump = 0;
651 	unsigned long lmb_size, base, size, sz;
652 	int nid;
653 	struct assoc_arrays aa;
654 
655 	n = of_get_drconf_memory(memory, &dm);
656 	if (!n)
657 		return;
658 
659 	lmb_size = of_get_lmb_size(memory);
660 	if (!lmb_size)
661 		return;
662 
663 	rc = of_get_assoc_arrays(memory, &aa);
664 	if (rc)
665 		return;
666 
667 	/* check if this is a kexec/kdump kernel */
668 	usm = of_get_usable_memory(memory);
669 	if (usm != NULL)
670 		is_kexec_kdump = 1;
671 
672 	for (; n != 0; --n) {
673 		struct of_drconf_cell drmem;
674 
675 		read_drconf_cell(&drmem, &dm);
676 
677 		/* skip this block if the reserved bit is set in flags (0x80)
678 		   or if the block is not assigned to this partition (0x8) */
679 		if ((drmem.flags & DRCONF_MEM_RESERVED)
680 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
681 			continue;
682 
683 		base = drmem.base_addr;
684 		size = lmb_size;
685 		ranges = 1;
686 
687 		if (is_kexec_kdump) {
688 			ranges = read_usm_ranges(&usm);
689 			if (!ranges) /* there are no (base, size) duple */
690 				continue;
691 		}
692 		do {
693 			if (is_kexec_kdump) {
694 				base = read_n_cells(n_mem_addr_cells, &usm);
695 				size = read_n_cells(n_mem_size_cells, &usm);
696 			}
697 			nid = of_drconf_to_nid_single(&drmem, &aa);
698 			fake_numa_create_new_node(
699 				((base + size) >> PAGE_SHIFT),
700 					   &nid);
701 			node_set_online(nid);
702 			sz = numa_enforce_memory_limit(base, size);
703 			if (sz)
704 				add_active_range(nid, base >> PAGE_SHIFT,
705 						 (base >> PAGE_SHIFT)
706 						 + (sz >> PAGE_SHIFT));
707 		} while (--ranges);
708 	}
709 }
710 
711 static int __init parse_numa_properties(void)
712 {
713 	struct device_node *cpu = NULL;
714 	struct device_node *memory = NULL;
715 	int default_nid = 0;
716 	unsigned long i;
717 
718 	if (numa_enabled == 0) {
719 		printk(KERN_WARNING "NUMA disabled by user\n");
720 		return -1;
721 	}
722 
723 	min_common_depth = find_min_common_depth();
724 
725 	if (min_common_depth < 0)
726 		return min_common_depth;
727 
728 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
729 
730 	/*
731 	 * Even though we connect cpus to numa domains later in SMP
732 	 * init, we need to know the node ids now. This is because
733 	 * each node to be onlined must have NODE_DATA etc backing it.
734 	 */
735 	for_each_present_cpu(i) {
736 		int nid;
737 
738 		cpu = of_get_cpu_node(i, NULL);
739 		BUG_ON(!cpu);
740 		nid = of_node_to_nid_single(cpu);
741 		of_node_put(cpu);
742 
743 		/*
744 		 * Don't fall back to default_nid yet -- we will plug
745 		 * cpus into nodes once the memory scan has discovered
746 		 * the topology.
747 		 */
748 		if (nid < 0)
749 			continue;
750 		node_set_online(nid);
751 	}
752 
753 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
754 	memory = NULL;
755 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
756 		unsigned long start;
757 		unsigned long size;
758 		int nid;
759 		int ranges;
760 		const unsigned int *memcell_buf;
761 		unsigned int len;
762 
763 		memcell_buf = of_get_property(memory,
764 			"linux,usable-memory", &len);
765 		if (!memcell_buf || len <= 0)
766 			memcell_buf = of_get_property(memory, "reg", &len);
767 		if (!memcell_buf || len <= 0)
768 			continue;
769 
770 		/* ranges in cell */
771 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
772 new_range:
773 		/* these are order-sensitive, and modify the buffer pointer */
774 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
775 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
776 
777 		/*
778 		 * Assumption: either all memory nodes or none will
779 		 * have associativity properties.  If none, then
780 		 * everything goes to default_nid.
781 		 */
782 		nid = of_node_to_nid_single(memory);
783 		if (nid < 0)
784 			nid = default_nid;
785 
786 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
787 		node_set_online(nid);
788 
789 		if (!(size = numa_enforce_memory_limit(start, size))) {
790 			if (--ranges)
791 				goto new_range;
792 			else
793 				continue;
794 		}
795 
796 		add_active_range(nid, start >> PAGE_SHIFT,
797 				(start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
798 
799 		if (--ranges)
800 			goto new_range;
801 	}
802 
803 	/*
804 	 * Now do the same thing for each MEMBLOCK listed in the ibm,dynamic-memory
805 	 * property in the ibm,dynamic-reconfiguration-memory node.
806 	 */
807 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
808 	if (memory)
809 		parse_drconf_memory(memory);
810 
811 	return 0;
812 }
813 
814 static void __init setup_nonnuma(void)
815 {
816 	unsigned long top_of_ram = memblock_end_of_DRAM();
817 	unsigned long total_ram = memblock_phys_mem_size();
818 	unsigned long start_pfn, end_pfn;
819 	unsigned int nid = 0;
820 	struct memblock_region *reg;
821 
822 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
823 	       top_of_ram, total_ram);
824 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
825 	       (top_of_ram - total_ram) >> 20);
826 
827 	for_each_memblock(memory, reg) {
828 		start_pfn = memblock_region_memory_base_pfn(reg);
829 		end_pfn = memblock_region_memory_end_pfn(reg);
830 
831 		fake_numa_create_new_node(end_pfn, &nid);
832 		add_active_range(nid, start_pfn, end_pfn);
833 		node_set_online(nid);
834 	}
835 }
836 
837 void __init dump_numa_cpu_topology(void)
838 {
839 	unsigned int node;
840 	unsigned int cpu, count;
841 
842 	if (min_common_depth == -1 || !numa_enabled)
843 		return;
844 
845 	for_each_online_node(node) {
846 		printk(KERN_DEBUG "Node %d CPUs:", node);
847 
848 		count = 0;
849 		/*
850 		 * If we used a CPU iterator here we would miss printing
851 		 * the holes in the cpumap.
852 		 */
853 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
854 			if (cpumask_test_cpu(cpu,
855 					node_to_cpumask_map[node])) {
856 				if (count == 0)
857 					printk(" %u", cpu);
858 				++count;
859 			} else {
860 				if (count > 1)
861 					printk("-%u", cpu - 1);
862 				count = 0;
863 			}
864 		}
865 
866 		if (count > 1)
867 			printk("-%u", nr_cpu_ids - 1);
868 		printk("\n");
869 	}
870 }
871 
872 static void __init dump_numa_memory_topology(void)
873 {
874 	unsigned int node;
875 	unsigned int count;
876 
877 	if (min_common_depth == -1 || !numa_enabled)
878 		return;
879 
880 	for_each_online_node(node) {
881 		unsigned long i;
882 
883 		printk(KERN_DEBUG "Node %d Memory:", node);
884 
885 		count = 0;
886 
887 		for (i = 0; i < memblock_end_of_DRAM();
888 		     i += (1 << SECTION_SIZE_BITS)) {
889 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
890 				if (count == 0)
891 					printk(" 0x%lx", i);
892 				++count;
893 			} else {
894 				if (count > 0)
895 					printk("-0x%lx", i);
896 				count = 0;
897 			}
898 		}
899 
900 		if (count > 0)
901 			printk("-0x%lx", i);
902 		printk("\n");
903 	}
904 }
905 
906 /*
907  * Allocate some memory, satisfying the memblock or bootmem allocator where
908  * required. nid is the preferred node and end is the physical address of
909  * the highest address in the node.
910  *
911  * Returns the virtual address of the memory.
912  */
913 static void __init *careful_zallocation(int nid, unsigned long size,
914 				       unsigned long align,
915 				       unsigned long end_pfn)
916 {
917 	void *ret;
918 	int new_nid;
919 	unsigned long ret_paddr;
920 
921 	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
922 
923 	/* retry over all memory */
924 	if (!ret_paddr)
925 		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
926 
927 	if (!ret_paddr)
928 		panic("numa.c: cannot allocate %lu bytes for node %d",
929 		      size, nid);
930 
931 	ret = __va(ret_paddr);
932 
933 	/*
934 	 * We initialize the nodes in numeric order: 0, 1, 2...
935 	 * and hand over control from the MEMBLOCK allocator to the
936 	 * bootmem allocator.  If this function is called for
937 	 * node 5, then we know that all nodes <5 are using the
938 	 * bootmem allocator instead of the MEMBLOCK allocator.
939 	 *
940 	 * So, check the nid from which this allocation came
941 	 * and double check to see if we need to use bootmem
942 	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
943 	 * since it would be useless.
944 	 */
945 	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
946 	if (new_nid < nid) {
947 		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
948 				size, align, 0);
949 
950 		dbg("alloc_bootmem %p %lx\n", ret, size);
951 	}
952 
953 	memset(ret, 0, size);
954 	return ret;
955 }
956 
957 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
958 	.notifier_call = cpu_numa_callback,
959 	.priority = 1 /* Must run before sched domains notifier. */
960 };
961 
962 static void mark_reserved_regions_for_nid(int nid)
963 {
964 	struct pglist_data *node = NODE_DATA(nid);
965 	struct memblock_region *reg;
966 
967 	for_each_memblock(reserved, reg) {
968 		unsigned long physbase = reg->base;
969 		unsigned long size = reg->size;
970 		unsigned long start_pfn = physbase >> PAGE_SHIFT;
971 		unsigned long end_pfn = PFN_UP(physbase + size);
972 		struct node_active_region node_ar;
973 		unsigned long node_end_pfn = node->node_start_pfn +
974 					     node->node_spanned_pages;
975 
976 		/*
977 		 * Check to make sure that this memblock.reserved area is
978 		 * within the bounds of the node that we care about.
979 		 * Checking the nid of the start and end points is not
980 		 * sufficient because the reserved area could span the
981 		 * entire node.
982 		 */
983 		if (end_pfn <= node->node_start_pfn ||
984 		    start_pfn >= node_end_pfn)
985 			continue;
986 
987 		get_node_active_region(start_pfn, &node_ar);
988 		while (start_pfn < end_pfn &&
989 			node_ar.start_pfn < node_ar.end_pfn) {
990 			unsigned long reserve_size = size;
991 			/*
992 			 * if reserved region extends past active region
993 			 * then trim size to active region
994 			 */
995 			if (end_pfn > node_ar.end_pfn)
996 				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
997 					- physbase;
998 			/*
999 			 * Only worry about *this* node, others may not
1000 			 * yet have valid NODE_DATA().
1001 			 */
1002 			if (node_ar.nid == nid) {
1003 				dbg("reserve_bootmem %lx %lx nid=%d\n",
1004 					physbase, reserve_size, node_ar.nid);
1005 				reserve_bootmem_node(NODE_DATA(node_ar.nid),
1006 						physbase, reserve_size,
1007 						BOOTMEM_DEFAULT);
1008 			}
1009 			/*
1010 			 * if reserved region is contained in the active region
1011 			 * then done.
1012 			 */
1013 			if (end_pfn <= node_ar.end_pfn)
1014 				break;
1015 
1016 			/*
1017 			 * reserved region extends past the active region
1018 			 *   get next active region that contains this
1019 			 *   reserved region
1020 			 */
1021 			start_pfn = node_ar.end_pfn;
1022 			physbase = start_pfn << PAGE_SHIFT;
1023 			size = size - reserve_size;
1024 			get_node_active_region(start_pfn, &node_ar);
1025 		}
1026 	}
1027 }
1028 
1029 
1030 void __init do_init_bootmem(void)
1031 {
1032 	int nid;
1033 
1034 	min_low_pfn = 0;
1035 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1036 	max_pfn = max_low_pfn;
1037 
1038 	if (parse_numa_properties())
1039 		setup_nonnuma();
1040 	else
1041 		dump_numa_memory_topology();
1042 
1043 	for_each_online_node(nid) {
1044 		unsigned long start_pfn, end_pfn;
1045 		void *bootmem_vaddr;
1046 		unsigned long bootmap_pages;
1047 
1048 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1049 
1050 		/*
1051 		 * Allocate the node structure node local if possible
1052 		 *
1053 		 * Be careful moving this around, as it relies on all
1054 		 * previous nodes' bootmem to be initialized and have
1055 		 * all reserved areas marked.
1056 		 */
1057 		NODE_DATA(nid) = careful_zallocation(nid,
1058 					sizeof(struct pglist_data),
1059 					SMP_CACHE_BYTES, end_pfn);
1060 
1061   		dbg("node %d\n", nid);
1062 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1063 
1064 		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1065 		NODE_DATA(nid)->node_start_pfn = start_pfn;
1066 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1067 
1068 		if (NODE_DATA(nid)->node_spanned_pages == 0)
1069   			continue;
1070 
1071   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1072   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1073 
1074 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1075 		bootmem_vaddr = careful_zallocation(nid,
1076 					bootmap_pages << PAGE_SHIFT,
1077 					PAGE_SIZE, end_pfn);
1078 
1079 		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1080 
1081 		init_bootmem_node(NODE_DATA(nid),
1082 				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1083 				  start_pfn, end_pfn);
1084 
1085 		free_bootmem_with_active_regions(nid, end_pfn);
1086 		/*
1087 		 * Be very careful about moving this around.  Future
1088 		 * calls to careful_zallocation() depend on this getting
1089 		 * done correctly.
1090 		 */
1091 		mark_reserved_regions_for_nid(nid);
1092 		sparse_memory_present_with_active_regions(nid);
1093 	}
1094 
1095 	init_bootmem_done = 1;
1096 
1097 	/*
1098 	 * Now bootmem is initialised we can create the node to cpumask
1099 	 * lookup tables and setup the cpu callback to populate them.
1100 	 */
1101 	setup_node_to_cpumask_map();
1102 
1103 	register_cpu_notifier(&ppc64_numa_nb);
1104 	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1105 			  (void *)(unsigned long)boot_cpuid);
1106 }
1107 
1108 void __init paging_init(void)
1109 {
1110 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1111 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1112 	max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1113 	free_area_init_nodes(max_zone_pfns);
1114 }
1115 
1116 static int __init early_numa(char *p)
1117 {
1118 	if (!p)
1119 		return 0;
1120 
1121 	if (strstr(p, "off"))
1122 		numa_enabled = 0;
1123 
1124 	if (strstr(p, "debug"))
1125 		numa_debug = 1;
1126 
1127 	p = strstr(p, "fake=");
1128 	if (p)
1129 		cmdline = p + strlen("fake=");
1130 
1131 	return 0;
1132 }
1133 early_param("numa", early_numa);
1134 
1135 #ifdef CONFIG_MEMORY_HOTPLUG
1136 /*
1137  * Find the node associated with a hot added memory section for
1138  * memory represented in the device tree by the property
1139  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1140  */
1141 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1142 				     unsigned long scn_addr)
1143 {
1144 	const u32 *dm;
1145 	unsigned int drconf_cell_cnt, rc;
1146 	unsigned long lmb_size;
1147 	struct assoc_arrays aa;
1148 	int nid = -1;
1149 
1150 	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1151 	if (!drconf_cell_cnt)
1152 		return -1;
1153 
1154 	lmb_size = of_get_lmb_size(memory);
1155 	if (!lmb_size)
1156 		return -1;
1157 
1158 	rc = of_get_assoc_arrays(memory, &aa);
1159 	if (rc)
1160 		return -1;
1161 
1162 	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1163 		struct of_drconf_cell drmem;
1164 
1165 		read_drconf_cell(&drmem, &dm);
1166 
1167 		/* skip this block if it is reserved or not assigned to
1168 		 * this partition */
1169 		if ((drmem.flags & DRCONF_MEM_RESERVED)
1170 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1171 			continue;
1172 
1173 		if ((scn_addr < drmem.base_addr)
1174 		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1175 			continue;
1176 
1177 		nid = of_drconf_to_nid_single(&drmem, &aa);
1178 		break;
1179 	}
1180 
1181 	return nid;
1182 }
1183 
1184 /*
1185  * Find the node associated with a hot added memory section for memory
1186  * represented in the device tree as a node (i.e. memory@XXXX) for
1187  * each memblock.
1188  */
1189 int hot_add_node_scn_to_nid(unsigned long scn_addr)
1190 {
1191 	struct device_node *memory = NULL;
1192 	int nid = -1;
1193 
1194 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
1195 		unsigned long start, size;
1196 		int ranges;
1197 		const unsigned int *memcell_buf;
1198 		unsigned int len;
1199 
1200 		memcell_buf = of_get_property(memory, "reg", &len);
1201 		if (!memcell_buf || len <= 0)
1202 			continue;
1203 
1204 		/* ranges in cell */
1205 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1206 
1207 		while (ranges--) {
1208 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1209 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1210 
1211 			if ((scn_addr < start) || (scn_addr >= (start + size)))
1212 				continue;
1213 
1214 			nid = of_node_to_nid_single(memory);
1215 			break;
1216 		}
1217 
1218 		of_node_put(memory);
1219 		if (nid >= 0)
1220 			break;
1221 	}
1222 
1223 	return nid;
1224 }
1225 
1226 /*
1227  * Find the node associated with a hot added memory section.  Section
1228  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1229  * sections are fully contained within a single MEMBLOCK.
1230  */
1231 int hot_add_scn_to_nid(unsigned long scn_addr)
1232 {
1233 	struct device_node *memory = NULL;
1234 	int nid, found = 0;
1235 
1236 	if (!numa_enabled || (min_common_depth < 0))
1237 		return first_online_node;
1238 
1239 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1240 	if (memory) {
1241 		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1242 		of_node_put(memory);
1243 	} else {
1244 		nid = hot_add_node_scn_to_nid(scn_addr);
1245 	}
1246 
1247 	if (nid < 0 || !node_online(nid))
1248 		nid = first_online_node;
1249 
1250 	if (NODE_DATA(nid)->node_spanned_pages)
1251 		return nid;
1252 
1253 	for_each_online_node(nid) {
1254 		if (NODE_DATA(nid)->node_spanned_pages) {
1255 			found = 1;
1256 			break;
1257 		}
1258 	}
1259 
1260 	BUG_ON(!found);
1261 	return nid;
1262 }
1263 
1264 static u64 hot_add_drconf_memory_max(void)
1265 {
1266         struct device_node *memory = NULL;
1267         unsigned int drconf_cell_cnt = 0;
1268         u64 lmb_size = 0;
1269         const u32 *dm = 0;
1270 
1271         memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1272         if (memory) {
1273                 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1274                 lmb_size = of_get_lmb_size(memory);
1275                 of_node_put(memory);
1276         }
1277         return lmb_size * drconf_cell_cnt;
1278 }
1279 
1280 /*
1281  * memory_hotplug_max - return max address of memory that may be added
1282  *
1283  * This is currently only used on systems that support drconfig memory
1284  * hotplug.
1285  */
1286 u64 memory_hotplug_max(void)
1287 {
1288         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1289 }
1290 #endif /* CONFIG_MEMORY_HOTPLUG */
1291 
1292 /* Virtual Processor Home Node (VPHN) support */
1293 #ifdef CONFIG_PPC_SPLPAR
1294 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1295 static cpumask_t cpu_associativity_changes_mask;
1296 static int vphn_enabled;
1297 static void set_topology_timer(void);
1298 
1299 /*
1300  * Store the current values of the associativity change counters in the
1301  * hypervisor.
1302  */
1303 static void setup_cpu_associativity_change_counters(void)
1304 {
1305 	int cpu;
1306 
1307 	/* The VPHN feature supports a maximum of 8 reference points */
1308 	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1309 
1310 	for_each_possible_cpu(cpu) {
1311 		int i;
1312 		u8 *counts = vphn_cpu_change_counts[cpu];
1313 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1314 
1315 		for (i = 0; i < distance_ref_points_depth; i++)
1316 			counts[i] = hypervisor_counts[i];
1317 	}
1318 }
1319 
1320 /*
1321  * The hypervisor maintains a set of 8 associativity change counters in
1322  * the VPA of each cpu that correspond to the associativity levels in the
1323  * ibm,associativity-reference-points property. When an associativity
1324  * level changes, the corresponding counter is incremented.
1325  *
1326  * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1327  * node associativity levels have changed.
1328  *
1329  * Returns the number of cpus with unhandled associativity changes.
1330  */
1331 static int update_cpu_associativity_changes_mask(void)
1332 {
1333 	int cpu, nr_cpus = 0;
1334 	cpumask_t *changes = &cpu_associativity_changes_mask;
1335 
1336 	cpumask_clear(changes);
1337 
1338 	for_each_possible_cpu(cpu) {
1339 		int i, changed = 0;
1340 		u8 *counts = vphn_cpu_change_counts[cpu];
1341 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1342 
1343 		for (i = 0; i < distance_ref_points_depth; i++) {
1344 			if (hypervisor_counts[i] != counts[i]) {
1345 				counts[i] = hypervisor_counts[i];
1346 				changed = 1;
1347 			}
1348 		}
1349 		if (changed) {
1350 			cpumask_set_cpu(cpu, changes);
1351 			nr_cpus++;
1352 		}
1353 	}
1354 
1355 	return nr_cpus;
1356 }
1357 
1358 /*
1359  * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1360  * the complete property we have to add the length in the first cell.
1361  */
1362 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1363 
1364 /*
1365  * Convert the associativity domain numbers returned from the hypervisor
1366  * to the sequence they would appear in the ibm,associativity property.
1367  */
1368 static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1369 {
1370 	int i, nr_assoc_doms = 0;
1371 	const u16 *field = (const u16*) packed;
1372 
1373 #define VPHN_FIELD_UNUSED	(0xffff)
1374 #define VPHN_FIELD_MSB		(0x8000)
1375 #define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)
1376 
1377 	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1378 		if (*field == VPHN_FIELD_UNUSED) {
1379 			/* All significant fields processed, and remaining
1380 			 * fields contain the reserved value of all 1's.
1381 			 * Just store them.
1382 			 */
1383 			unpacked[i] = *((u32*)field);
1384 			field += 2;
1385 		} else if (*field & VPHN_FIELD_MSB) {
1386 			/* Data is in the lower 15 bits of this field */
1387 			unpacked[i] = *field & VPHN_FIELD_MASK;
1388 			field++;
1389 			nr_assoc_doms++;
1390 		} else {
1391 			/* Data is in the lower 15 bits of this field
1392 			 * concatenated with the next 16 bit field
1393 			 */
1394 			unpacked[i] = *((u32*)field);
1395 			field += 2;
1396 			nr_assoc_doms++;
1397 		}
1398 	}
1399 
1400 	/* The first cell contains the length of the property */
1401 	unpacked[0] = nr_assoc_doms;
1402 
1403 	return nr_assoc_doms;
1404 }
1405 
1406 /*
1407  * Retrieve the new associativity information for a virtual processor's
1408  * home node.
1409  */
1410 static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1411 {
1412 	long rc;
1413 	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1414 	u64 flags = 1;
1415 	int hwcpu = get_hard_smp_processor_id(cpu);
1416 
1417 	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1418 	vphn_unpack_associativity(retbuf, associativity);
1419 
1420 	return rc;
1421 }
1422 
1423 static long vphn_get_associativity(unsigned long cpu,
1424 					unsigned int *associativity)
1425 {
1426 	long rc;
1427 
1428 	rc = hcall_vphn(cpu, associativity);
1429 
1430 	switch (rc) {
1431 	case H_FUNCTION:
1432 		printk(KERN_INFO
1433 			"VPHN is not supported. Disabling polling...\n");
1434 		stop_topology_update();
1435 		break;
1436 	case H_HARDWARE:
1437 		printk(KERN_ERR
1438 			"hcall_vphn() experienced a hardware fault "
1439 			"preventing VPHN. Disabling polling...\n");
1440 		stop_topology_update();
1441 	}
1442 
1443 	return rc;
1444 }
1445 
1446 /*
1447  * Update the node maps and sysfs entries for each cpu whose home node
1448  * has changed.
1449  */
1450 int arch_update_cpu_topology(void)
1451 {
1452 	int cpu, nid, old_nid;
1453 	unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1454 	struct sys_device *sysdev;
1455 
1456 	for_each_cpu_mask(cpu, cpu_associativity_changes_mask) {
1457 		vphn_get_associativity(cpu, associativity);
1458 		nid = associativity_to_nid(associativity);
1459 
1460 		if (nid < 0 || !node_online(nid))
1461 			nid = first_online_node;
1462 
1463 		old_nid = numa_cpu_lookup_table[cpu];
1464 
1465 		/* Disable hotplug while we update the cpu
1466 		 * masks and sysfs.
1467 		 */
1468 		get_online_cpus();
1469 		unregister_cpu_under_node(cpu, old_nid);
1470 		unmap_cpu_from_node(cpu);
1471 		map_cpu_to_node(cpu, nid);
1472 		register_cpu_under_node(cpu, nid);
1473 		put_online_cpus();
1474 
1475 		sysdev = get_cpu_sysdev(cpu);
1476 		if (sysdev)
1477 			kobject_uevent(&sysdev->kobj, KOBJ_CHANGE);
1478 	}
1479 
1480 	return 1;
1481 }
1482 
1483 static void topology_work_fn(struct work_struct *work)
1484 {
1485 	rebuild_sched_domains();
1486 }
1487 static DECLARE_WORK(topology_work, topology_work_fn);
1488 
1489 void topology_schedule_update(void)
1490 {
1491 	schedule_work(&topology_work);
1492 }
1493 
1494 static void topology_timer_fn(unsigned long ignored)
1495 {
1496 	if (!vphn_enabled)
1497 		return;
1498 	if (update_cpu_associativity_changes_mask() > 0)
1499 		topology_schedule_update();
1500 	set_topology_timer();
1501 }
1502 static struct timer_list topology_timer =
1503 	TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1504 
1505 static void set_topology_timer(void)
1506 {
1507 	topology_timer.data = 0;
1508 	topology_timer.expires = jiffies + 60 * HZ;
1509 	add_timer(&topology_timer);
1510 }
1511 
1512 /*
1513  * Start polling for VPHN associativity changes.
1514  */
1515 int start_topology_update(void)
1516 {
1517 	int rc = 0;
1518 
1519 	if (firmware_has_feature(FW_FEATURE_VPHN) &&
1520 	    get_lppaca()->shared_proc) {
1521 		vphn_enabled = 1;
1522 		setup_cpu_associativity_change_counters();
1523 		init_timer_deferrable(&topology_timer);
1524 		set_topology_timer();
1525 		rc = 1;
1526 	}
1527 
1528 	return rc;
1529 }
1530 __initcall(start_topology_update);
1531 
1532 /*
1533  * Disable polling for VPHN associativity changes.
1534  */
1535 int stop_topology_update(void)
1536 {
1537 	vphn_enabled = 0;
1538 	return del_timer_sync(&topology_timer);
1539 }
1540 #endif /* CONFIG_PPC_SPLPAR */
1541