1 /* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #define pr_fmt(fmt) "numa: " fmt 12 13 #include <linux/threads.h> 14 #include <linux/bootmem.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/mmzone.h> 18 #include <linux/export.h> 19 #include <linux/nodemask.h> 20 #include <linux/cpu.h> 21 #include <linux/notifier.h> 22 #include <linux/memblock.h> 23 #include <linux/of.h> 24 #include <linux/pfn.h> 25 #include <linux/cpuset.h> 26 #include <linux/node.h> 27 #include <linux/stop_machine.h> 28 #include <linux/proc_fs.h> 29 #include <linux/seq_file.h> 30 #include <linux/uaccess.h> 31 #include <linux/slab.h> 32 #include <asm/cputhreads.h> 33 #include <asm/sparsemem.h> 34 #include <asm/prom.h> 35 #include <asm/smp.h> 36 #include <asm/cputhreads.h> 37 #include <asm/topology.h> 38 #include <asm/firmware.h> 39 #include <asm/paca.h> 40 #include <asm/hvcall.h> 41 #include <asm/setup.h> 42 #include <asm/vdso.h> 43 44 static int numa_enabled = 1; 45 46 static char *cmdline __initdata; 47 48 static int numa_debug; 49 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 50 51 int numa_cpu_lookup_table[NR_CPUS]; 52 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 53 struct pglist_data *node_data[MAX_NUMNODES]; 54 55 EXPORT_SYMBOL(numa_cpu_lookup_table); 56 EXPORT_SYMBOL(node_to_cpumask_map); 57 EXPORT_SYMBOL(node_data); 58 59 static int min_common_depth; 60 static int n_mem_addr_cells, n_mem_size_cells; 61 static int form1_affinity; 62 63 #define MAX_DISTANCE_REF_POINTS 4 64 static int distance_ref_points_depth; 65 static const __be32 *distance_ref_points; 66 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 67 68 /* 69 * Allocate node_to_cpumask_map based on number of available nodes 70 * Requires node_possible_map to be valid. 71 * 72 * Note: cpumask_of_node() is not valid until after this is done. 73 */ 74 static void __init setup_node_to_cpumask_map(void) 75 { 76 unsigned int node; 77 78 /* setup nr_node_ids if not done yet */ 79 if (nr_node_ids == MAX_NUMNODES) 80 setup_nr_node_ids(); 81 82 /* allocate the map */ 83 for (node = 0; node < nr_node_ids; node++) 84 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 85 86 /* cpumask_of_node() will now work */ 87 dbg("Node to cpumask map for %d nodes\n", nr_node_ids); 88 } 89 90 static int __init fake_numa_create_new_node(unsigned long end_pfn, 91 unsigned int *nid) 92 { 93 unsigned long long mem; 94 char *p = cmdline; 95 static unsigned int fake_nid; 96 static unsigned long long curr_boundary; 97 98 /* 99 * Modify node id, iff we started creating NUMA nodes 100 * We want to continue from where we left of the last time 101 */ 102 if (fake_nid) 103 *nid = fake_nid; 104 /* 105 * In case there are no more arguments to parse, the 106 * node_id should be the same as the last fake node id 107 * (we've handled this above). 108 */ 109 if (!p) 110 return 0; 111 112 mem = memparse(p, &p); 113 if (!mem) 114 return 0; 115 116 if (mem < curr_boundary) 117 return 0; 118 119 curr_boundary = mem; 120 121 if ((end_pfn << PAGE_SHIFT) > mem) { 122 /* 123 * Skip commas and spaces 124 */ 125 while (*p == ',' || *p == ' ' || *p == '\t') 126 p++; 127 128 cmdline = p; 129 fake_nid++; 130 *nid = fake_nid; 131 dbg("created new fake_node with id %d\n", fake_nid); 132 return 1; 133 } 134 return 0; 135 } 136 137 static void reset_numa_cpu_lookup_table(void) 138 { 139 unsigned int cpu; 140 141 for_each_possible_cpu(cpu) 142 numa_cpu_lookup_table[cpu] = -1; 143 } 144 145 static void update_numa_cpu_lookup_table(unsigned int cpu, int node) 146 { 147 numa_cpu_lookup_table[cpu] = node; 148 } 149 150 static void map_cpu_to_node(int cpu, int node) 151 { 152 update_numa_cpu_lookup_table(cpu, node); 153 154 dbg("adding cpu %d to node %d\n", cpu, node); 155 156 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) 157 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 158 } 159 160 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 161 static void unmap_cpu_from_node(unsigned long cpu) 162 { 163 int node = numa_cpu_lookup_table[cpu]; 164 165 dbg("removing cpu %lu from node %d\n", cpu, node); 166 167 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 168 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 169 } else { 170 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 171 cpu, node); 172 } 173 } 174 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 175 176 /* must hold reference to node during call */ 177 static const __be32 *of_get_associativity(struct device_node *dev) 178 { 179 return of_get_property(dev, "ibm,associativity", NULL); 180 } 181 182 /* 183 * Returns the property linux,drconf-usable-memory if 184 * it exists (the property exists only in kexec/kdump kernels, 185 * added by kexec-tools) 186 */ 187 static const __be32 *of_get_usable_memory(struct device_node *memory) 188 { 189 const __be32 *prop; 190 u32 len; 191 prop = of_get_property(memory, "linux,drconf-usable-memory", &len); 192 if (!prop || len < sizeof(unsigned int)) 193 return NULL; 194 return prop; 195 } 196 197 int __node_distance(int a, int b) 198 { 199 int i; 200 int distance = LOCAL_DISTANCE; 201 202 if (!form1_affinity) 203 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); 204 205 for (i = 0; i < distance_ref_points_depth; i++) { 206 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 207 break; 208 209 /* Double the distance for each NUMA level */ 210 distance *= 2; 211 } 212 213 return distance; 214 } 215 EXPORT_SYMBOL(__node_distance); 216 217 static void initialize_distance_lookup_table(int nid, 218 const __be32 *associativity) 219 { 220 int i; 221 222 if (!form1_affinity) 223 return; 224 225 for (i = 0; i < distance_ref_points_depth; i++) { 226 const __be32 *entry; 227 228 entry = &associativity[be32_to_cpu(distance_ref_points[i])]; 229 distance_lookup_table[nid][i] = of_read_number(entry, 1); 230 } 231 } 232 233 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa 234 * info is found. 235 */ 236 static int associativity_to_nid(const __be32 *associativity) 237 { 238 int nid = -1; 239 240 if (min_common_depth == -1) 241 goto out; 242 243 if (of_read_number(associativity, 1) >= min_common_depth) 244 nid = of_read_number(&associativity[min_common_depth], 1); 245 246 /* POWER4 LPAR uses 0xffff as invalid node */ 247 if (nid == 0xffff || nid >= MAX_NUMNODES) 248 nid = -1; 249 250 if (nid > 0 && 251 of_read_number(associativity, 1) >= distance_ref_points_depth) 252 initialize_distance_lookup_table(nid, associativity); 253 254 out: 255 return nid; 256 } 257 258 /* Returns the nid associated with the given device tree node, 259 * or -1 if not found. 260 */ 261 static int of_node_to_nid_single(struct device_node *device) 262 { 263 int nid = -1; 264 const __be32 *tmp; 265 266 tmp = of_get_associativity(device); 267 if (tmp) 268 nid = associativity_to_nid(tmp); 269 return nid; 270 } 271 272 /* Walk the device tree upwards, looking for an associativity id */ 273 int of_node_to_nid(struct device_node *device) 274 { 275 struct device_node *tmp; 276 int nid = -1; 277 278 of_node_get(device); 279 while (device) { 280 nid = of_node_to_nid_single(device); 281 if (nid != -1) 282 break; 283 284 tmp = device; 285 device = of_get_parent(tmp); 286 of_node_put(tmp); 287 } 288 of_node_put(device); 289 290 return nid; 291 } 292 EXPORT_SYMBOL_GPL(of_node_to_nid); 293 294 static int __init find_min_common_depth(void) 295 { 296 int depth; 297 struct device_node *root; 298 299 if (firmware_has_feature(FW_FEATURE_OPAL)) 300 root = of_find_node_by_path("/ibm,opal"); 301 else 302 root = of_find_node_by_path("/rtas"); 303 if (!root) 304 root = of_find_node_by_path("/"); 305 306 /* 307 * This property is a set of 32-bit integers, each representing 308 * an index into the ibm,associativity nodes. 309 * 310 * With form 0 affinity the first integer is for an SMP configuration 311 * (should be all 0's) and the second is for a normal NUMA 312 * configuration. We have only one level of NUMA. 313 * 314 * With form 1 affinity the first integer is the most significant 315 * NUMA boundary and the following are progressively less significant 316 * boundaries. There can be more than one level of NUMA. 317 */ 318 distance_ref_points = of_get_property(root, 319 "ibm,associativity-reference-points", 320 &distance_ref_points_depth); 321 322 if (!distance_ref_points) { 323 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 324 goto err; 325 } 326 327 distance_ref_points_depth /= sizeof(int); 328 329 if (firmware_has_feature(FW_FEATURE_OPAL) || 330 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { 331 dbg("Using form 1 affinity\n"); 332 form1_affinity = 1; 333 } 334 335 if (form1_affinity) { 336 depth = of_read_number(distance_ref_points, 1); 337 } else { 338 if (distance_ref_points_depth < 2) { 339 printk(KERN_WARNING "NUMA: " 340 "short ibm,associativity-reference-points\n"); 341 goto err; 342 } 343 344 depth = of_read_number(&distance_ref_points[1], 1); 345 } 346 347 /* 348 * Warn and cap if the hardware supports more than 349 * MAX_DISTANCE_REF_POINTS domains. 350 */ 351 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 352 printk(KERN_WARNING "NUMA: distance array capped at " 353 "%d entries\n", MAX_DISTANCE_REF_POINTS); 354 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 355 } 356 357 of_node_put(root); 358 return depth; 359 360 err: 361 of_node_put(root); 362 return -1; 363 } 364 365 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 366 { 367 struct device_node *memory = NULL; 368 369 memory = of_find_node_by_type(memory, "memory"); 370 if (!memory) 371 panic("numa.c: No memory nodes found!"); 372 373 *n_addr_cells = of_n_addr_cells(memory); 374 *n_size_cells = of_n_size_cells(memory); 375 of_node_put(memory); 376 } 377 378 static unsigned long read_n_cells(int n, const __be32 **buf) 379 { 380 unsigned long result = 0; 381 382 while (n--) { 383 result = (result << 32) | of_read_number(*buf, 1); 384 (*buf)++; 385 } 386 return result; 387 } 388 389 /* 390 * Read the next memblock list entry from the ibm,dynamic-memory property 391 * and return the information in the provided of_drconf_cell structure. 392 */ 393 static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp) 394 { 395 const __be32 *cp; 396 397 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); 398 399 cp = *cellp; 400 drmem->drc_index = of_read_number(cp, 1); 401 drmem->reserved = of_read_number(&cp[1], 1); 402 drmem->aa_index = of_read_number(&cp[2], 1); 403 drmem->flags = of_read_number(&cp[3], 1); 404 405 *cellp = cp + 4; 406 } 407 408 /* 409 * Retrieve and validate the ibm,dynamic-memory property of the device tree. 410 * 411 * The layout of the ibm,dynamic-memory property is a number N of memblock 412 * list entries followed by N memblock list entries. Each memblock list entry 413 * contains information as laid out in the of_drconf_cell struct above. 414 */ 415 static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm) 416 { 417 const __be32 *prop; 418 u32 len, entries; 419 420 prop = of_get_property(memory, "ibm,dynamic-memory", &len); 421 if (!prop || len < sizeof(unsigned int)) 422 return 0; 423 424 entries = of_read_number(prop++, 1); 425 426 /* Now that we know the number of entries, revalidate the size 427 * of the property read in to ensure we have everything 428 */ 429 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) 430 return 0; 431 432 *dm = prop; 433 return entries; 434 } 435 436 /* 437 * Retrieve and validate the ibm,lmb-size property for drconf memory 438 * from the device tree. 439 */ 440 static u64 of_get_lmb_size(struct device_node *memory) 441 { 442 const __be32 *prop; 443 u32 len; 444 445 prop = of_get_property(memory, "ibm,lmb-size", &len); 446 if (!prop || len < sizeof(unsigned int)) 447 return 0; 448 449 return read_n_cells(n_mem_size_cells, &prop); 450 } 451 452 struct assoc_arrays { 453 u32 n_arrays; 454 u32 array_sz; 455 const __be32 *arrays; 456 }; 457 458 /* 459 * Retrieve and validate the list of associativity arrays for drconf 460 * memory from the ibm,associativity-lookup-arrays property of the 461 * device tree.. 462 * 463 * The layout of the ibm,associativity-lookup-arrays property is a number N 464 * indicating the number of associativity arrays, followed by a number M 465 * indicating the size of each associativity array, followed by a list 466 * of N associativity arrays. 467 */ 468 static int of_get_assoc_arrays(struct device_node *memory, 469 struct assoc_arrays *aa) 470 { 471 const __be32 *prop; 472 u32 len; 473 474 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 475 if (!prop || len < 2 * sizeof(unsigned int)) 476 return -1; 477 478 aa->n_arrays = of_read_number(prop++, 1); 479 aa->array_sz = of_read_number(prop++, 1); 480 481 /* Now that we know the number of arrays and size of each array, 482 * revalidate the size of the property read in. 483 */ 484 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 485 return -1; 486 487 aa->arrays = prop; 488 return 0; 489 } 490 491 /* 492 * This is like of_node_to_nid_single() for memory represented in the 493 * ibm,dynamic-reconfiguration-memory node. 494 */ 495 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, 496 struct assoc_arrays *aa) 497 { 498 int default_nid = 0; 499 int nid = default_nid; 500 int index; 501 502 if (min_common_depth > 0 && min_common_depth <= aa->array_sz && 503 !(drmem->flags & DRCONF_MEM_AI_INVALID) && 504 drmem->aa_index < aa->n_arrays) { 505 index = drmem->aa_index * aa->array_sz + min_common_depth - 1; 506 nid = of_read_number(&aa->arrays[index], 1); 507 508 if (nid == 0xffff || nid >= MAX_NUMNODES) 509 nid = default_nid; 510 } 511 512 return nid; 513 } 514 515 /* 516 * Figure out to which domain a cpu belongs and stick it there. 517 * Return the id of the domain used. 518 */ 519 static int numa_setup_cpu(unsigned long lcpu) 520 { 521 int nid = -1; 522 struct device_node *cpu; 523 524 /* 525 * If a valid cpu-to-node mapping is already available, use it 526 * directly instead of querying the firmware, since it represents 527 * the most recent mapping notified to us by the platform (eg: VPHN). 528 */ 529 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) { 530 map_cpu_to_node(lcpu, nid); 531 return nid; 532 } 533 534 cpu = of_get_cpu_node(lcpu, NULL); 535 536 if (!cpu) { 537 WARN_ON(1); 538 if (cpu_present(lcpu)) 539 goto out_present; 540 else 541 goto out; 542 } 543 544 nid = of_node_to_nid_single(cpu); 545 546 out_present: 547 if (nid < 0 || !node_online(nid)) 548 nid = first_online_node; 549 550 map_cpu_to_node(lcpu, nid); 551 of_node_put(cpu); 552 out: 553 return nid; 554 } 555 556 static void verify_cpu_node_mapping(int cpu, int node) 557 { 558 int base, sibling, i; 559 560 /* Verify that all the threads in the core belong to the same node */ 561 base = cpu_first_thread_sibling(cpu); 562 563 for (i = 0; i < threads_per_core; i++) { 564 sibling = base + i; 565 566 if (sibling == cpu || cpu_is_offline(sibling)) 567 continue; 568 569 if (cpu_to_node(sibling) != node) { 570 WARN(1, "CPU thread siblings %d and %d don't belong" 571 " to the same node!\n", cpu, sibling); 572 break; 573 } 574 } 575 } 576 577 static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action, 578 void *hcpu) 579 { 580 unsigned long lcpu = (unsigned long)hcpu; 581 int ret = NOTIFY_DONE, nid; 582 583 switch (action) { 584 case CPU_UP_PREPARE: 585 case CPU_UP_PREPARE_FROZEN: 586 nid = numa_setup_cpu(lcpu); 587 verify_cpu_node_mapping((int)lcpu, nid); 588 ret = NOTIFY_OK; 589 break; 590 #ifdef CONFIG_HOTPLUG_CPU 591 case CPU_DEAD: 592 case CPU_DEAD_FROZEN: 593 case CPU_UP_CANCELED: 594 case CPU_UP_CANCELED_FROZEN: 595 unmap_cpu_from_node(lcpu); 596 ret = NOTIFY_OK; 597 break; 598 #endif 599 } 600 return ret; 601 } 602 603 /* 604 * Check and possibly modify a memory region to enforce the memory limit. 605 * 606 * Returns the size the region should have to enforce the memory limit. 607 * This will either be the original value of size, a truncated value, 608 * or zero. If the returned value of size is 0 the region should be 609 * discarded as it lies wholly above the memory limit. 610 */ 611 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 612 unsigned long size) 613 { 614 /* 615 * We use memblock_end_of_DRAM() in here instead of memory_limit because 616 * we've already adjusted it for the limit and it takes care of 617 * having memory holes below the limit. Also, in the case of 618 * iommu_is_off, memory_limit is not set but is implicitly enforced. 619 */ 620 621 if (start + size <= memblock_end_of_DRAM()) 622 return size; 623 624 if (start >= memblock_end_of_DRAM()) 625 return 0; 626 627 return memblock_end_of_DRAM() - start; 628 } 629 630 /* 631 * Reads the counter for a given entry in 632 * linux,drconf-usable-memory property 633 */ 634 static inline int __init read_usm_ranges(const __be32 **usm) 635 { 636 /* 637 * For each lmb in ibm,dynamic-memory a corresponding 638 * entry in linux,drconf-usable-memory property contains 639 * a counter followed by that many (base, size) duple. 640 * read the counter from linux,drconf-usable-memory 641 */ 642 return read_n_cells(n_mem_size_cells, usm); 643 } 644 645 /* 646 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 647 * node. This assumes n_mem_{addr,size}_cells have been set. 648 */ 649 static void __init parse_drconf_memory(struct device_node *memory) 650 { 651 const __be32 *uninitialized_var(dm), *usm; 652 unsigned int n, rc, ranges, is_kexec_kdump = 0; 653 unsigned long lmb_size, base, size, sz; 654 int nid; 655 struct assoc_arrays aa = { .arrays = NULL }; 656 657 n = of_get_drconf_memory(memory, &dm); 658 if (!n) 659 return; 660 661 lmb_size = of_get_lmb_size(memory); 662 if (!lmb_size) 663 return; 664 665 rc = of_get_assoc_arrays(memory, &aa); 666 if (rc) 667 return; 668 669 /* check if this is a kexec/kdump kernel */ 670 usm = of_get_usable_memory(memory); 671 if (usm != NULL) 672 is_kexec_kdump = 1; 673 674 for (; n != 0; --n) { 675 struct of_drconf_cell drmem; 676 677 read_drconf_cell(&drmem, &dm); 678 679 /* skip this block if the reserved bit is set in flags (0x80) 680 or if the block is not assigned to this partition (0x8) */ 681 if ((drmem.flags & DRCONF_MEM_RESERVED) 682 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 683 continue; 684 685 base = drmem.base_addr; 686 size = lmb_size; 687 ranges = 1; 688 689 if (is_kexec_kdump) { 690 ranges = read_usm_ranges(&usm); 691 if (!ranges) /* there are no (base, size) duple */ 692 continue; 693 } 694 do { 695 if (is_kexec_kdump) { 696 base = read_n_cells(n_mem_addr_cells, &usm); 697 size = read_n_cells(n_mem_size_cells, &usm); 698 } 699 nid = of_drconf_to_nid_single(&drmem, &aa); 700 fake_numa_create_new_node( 701 ((base + size) >> PAGE_SHIFT), 702 &nid); 703 node_set_online(nid); 704 sz = numa_enforce_memory_limit(base, size); 705 if (sz) 706 memblock_set_node(base, sz, 707 &memblock.memory, nid); 708 } while (--ranges); 709 } 710 } 711 712 static int __init parse_numa_properties(void) 713 { 714 struct device_node *memory; 715 int default_nid = 0; 716 unsigned long i; 717 718 if (numa_enabled == 0) { 719 printk(KERN_WARNING "NUMA disabled by user\n"); 720 return -1; 721 } 722 723 min_common_depth = find_min_common_depth(); 724 725 if (min_common_depth < 0) 726 return min_common_depth; 727 728 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 729 730 /* 731 * Even though we connect cpus to numa domains later in SMP 732 * init, we need to know the node ids now. This is because 733 * each node to be onlined must have NODE_DATA etc backing it. 734 */ 735 for_each_present_cpu(i) { 736 struct device_node *cpu; 737 int nid; 738 739 cpu = of_get_cpu_node(i, NULL); 740 BUG_ON(!cpu); 741 nid = of_node_to_nid_single(cpu); 742 of_node_put(cpu); 743 744 /* 745 * Don't fall back to default_nid yet -- we will plug 746 * cpus into nodes once the memory scan has discovered 747 * the topology. 748 */ 749 if (nid < 0) 750 continue; 751 node_set_online(nid); 752 } 753 754 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 755 756 for_each_node_by_type(memory, "memory") { 757 unsigned long start; 758 unsigned long size; 759 int nid; 760 int ranges; 761 const __be32 *memcell_buf; 762 unsigned int len; 763 764 memcell_buf = of_get_property(memory, 765 "linux,usable-memory", &len); 766 if (!memcell_buf || len <= 0) 767 memcell_buf = of_get_property(memory, "reg", &len); 768 if (!memcell_buf || len <= 0) 769 continue; 770 771 /* ranges in cell */ 772 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 773 new_range: 774 /* these are order-sensitive, and modify the buffer pointer */ 775 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 776 size = read_n_cells(n_mem_size_cells, &memcell_buf); 777 778 /* 779 * Assumption: either all memory nodes or none will 780 * have associativity properties. If none, then 781 * everything goes to default_nid. 782 */ 783 nid = of_node_to_nid_single(memory); 784 if (nid < 0) 785 nid = default_nid; 786 787 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 788 node_set_online(nid); 789 790 if (!(size = numa_enforce_memory_limit(start, size))) { 791 if (--ranges) 792 goto new_range; 793 else 794 continue; 795 } 796 797 memblock_set_node(start, size, &memblock.memory, nid); 798 799 if (--ranges) 800 goto new_range; 801 } 802 803 /* 804 * Now do the same thing for each MEMBLOCK listed in the 805 * ibm,dynamic-memory property in the 806 * ibm,dynamic-reconfiguration-memory node. 807 */ 808 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 809 if (memory) 810 parse_drconf_memory(memory); 811 812 return 0; 813 } 814 815 static void __init setup_nonnuma(void) 816 { 817 unsigned long top_of_ram = memblock_end_of_DRAM(); 818 unsigned long total_ram = memblock_phys_mem_size(); 819 unsigned long start_pfn, end_pfn; 820 unsigned int nid = 0; 821 struct memblock_region *reg; 822 823 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 824 top_of_ram, total_ram); 825 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 826 (top_of_ram - total_ram) >> 20); 827 828 for_each_memblock(memory, reg) { 829 start_pfn = memblock_region_memory_base_pfn(reg); 830 end_pfn = memblock_region_memory_end_pfn(reg); 831 832 fake_numa_create_new_node(end_pfn, &nid); 833 memblock_set_node(PFN_PHYS(start_pfn), 834 PFN_PHYS(end_pfn - start_pfn), 835 &memblock.memory, nid); 836 node_set_online(nid); 837 } 838 } 839 840 void __init dump_numa_cpu_topology(void) 841 { 842 unsigned int node; 843 unsigned int cpu, count; 844 845 if (min_common_depth == -1 || !numa_enabled) 846 return; 847 848 for_each_online_node(node) { 849 printk(KERN_DEBUG "Node %d CPUs:", node); 850 851 count = 0; 852 /* 853 * If we used a CPU iterator here we would miss printing 854 * the holes in the cpumap. 855 */ 856 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 857 if (cpumask_test_cpu(cpu, 858 node_to_cpumask_map[node])) { 859 if (count == 0) 860 printk(" %u", cpu); 861 ++count; 862 } else { 863 if (count > 1) 864 printk("-%u", cpu - 1); 865 count = 0; 866 } 867 } 868 869 if (count > 1) 870 printk("-%u", nr_cpu_ids - 1); 871 printk("\n"); 872 } 873 } 874 875 static void __init dump_numa_memory_topology(void) 876 { 877 unsigned int node; 878 unsigned int count; 879 880 if (min_common_depth == -1 || !numa_enabled) 881 return; 882 883 for_each_online_node(node) { 884 unsigned long i; 885 886 printk(KERN_DEBUG "Node %d Memory:", node); 887 888 count = 0; 889 890 for (i = 0; i < memblock_end_of_DRAM(); 891 i += (1 << SECTION_SIZE_BITS)) { 892 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { 893 if (count == 0) 894 printk(" 0x%lx", i); 895 ++count; 896 } else { 897 if (count > 0) 898 printk("-0x%lx", i); 899 count = 0; 900 } 901 } 902 903 if (count > 0) 904 printk("-0x%lx", i); 905 printk("\n"); 906 } 907 } 908 909 static struct notifier_block ppc64_numa_nb = { 910 .notifier_call = cpu_numa_callback, 911 .priority = 1 /* Must run before sched domains notifier. */ 912 }; 913 914 /* Initialize NODE_DATA for a node on the local memory */ 915 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) 916 { 917 u64 spanned_pages = end_pfn - start_pfn; 918 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); 919 u64 nd_pa; 920 void *nd; 921 int tnid; 922 923 if (spanned_pages) 924 pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n", 925 nid, start_pfn << PAGE_SHIFT, 926 (end_pfn << PAGE_SHIFT) - 1); 927 else 928 pr_info("Initmem setup node %d\n", nid); 929 930 nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); 931 nd = __va(nd_pa); 932 933 /* report and initialize */ 934 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n", 935 nd_pa, nd_pa + nd_size - 1); 936 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); 937 if (tnid != nid) 938 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid); 939 940 node_data[nid] = nd; 941 memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); 942 NODE_DATA(nid)->node_id = nid; 943 NODE_DATA(nid)->node_start_pfn = start_pfn; 944 NODE_DATA(nid)->node_spanned_pages = spanned_pages; 945 } 946 947 void __init initmem_init(void) 948 { 949 int nid, cpu; 950 951 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 952 max_pfn = max_low_pfn; 953 954 if (parse_numa_properties()) 955 setup_nonnuma(); 956 else 957 dump_numa_memory_topology(); 958 959 memblock_dump_all(); 960 961 for_each_online_node(nid) { 962 unsigned long start_pfn, end_pfn; 963 964 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 965 setup_node_data(nid, start_pfn, end_pfn); 966 sparse_memory_present_with_active_regions(nid); 967 } 968 969 sparse_init(); 970 971 setup_node_to_cpumask_map(); 972 973 reset_numa_cpu_lookup_table(); 974 register_cpu_notifier(&ppc64_numa_nb); 975 /* 976 * We need the numa_cpu_lookup_table to be accurate for all CPUs, 977 * even before we online them, so that we can use cpu_to_{node,mem} 978 * early in boot, cf. smp_prepare_cpus(). 979 */ 980 for_each_present_cpu(cpu) { 981 numa_setup_cpu((unsigned long)cpu); 982 } 983 } 984 985 static int __init early_numa(char *p) 986 { 987 if (!p) 988 return 0; 989 990 if (strstr(p, "off")) 991 numa_enabled = 0; 992 993 if (strstr(p, "debug")) 994 numa_debug = 1; 995 996 p = strstr(p, "fake="); 997 if (p) 998 cmdline = p + strlen("fake="); 999 1000 return 0; 1001 } 1002 early_param("numa", early_numa); 1003 1004 static bool topology_updates_enabled = true; 1005 1006 static int __init early_topology_updates(char *p) 1007 { 1008 if (!p) 1009 return 0; 1010 1011 if (!strcmp(p, "off")) { 1012 pr_info("Disabling topology updates\n"); 1013 topology_updates_enabled = false; 1014 } 1015 1016 return 0; 1017 } 1018 early_param("topology_updates", early_topology_updates); 1019 1020 #ifdef CONFIG_MEMORY_HOTPLUG 1021 /* 1022 * Find the node associated with a hot added memory section for 1023 * memory represented in the device tree by the property 1024 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 1025 */ 1026 static int hot_add_drconf_scn_to_nid(struct device_node *memory, 1027 unsigned long scn_addr) 1028 { 1029 const __be32 *dm; 1030 unsigned int drconf_cell_cnt, rc; 1031 unsigned long lmb_size; 1032 struct assoc_arrays aa; 1033 int nid = -1; 1034 1035 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1036 if (!drconf_cell_cnt) 1037 return -1; 1038 1039 lmb_size = of_get_lmb_size(memory); 1040 if (!lmb_size) 1041 return -1; 1042 1043 rc = of_get_assoc_arrays(memory, &aa); 1044 if (rc) 1045 return -1; 1046 1047 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { 1048 struct of_drconf_cell drmem; 1049 1050 read_drconf_cell(&drmem, &dm); 1051 1052 /* skip this block if it is reserved or not assigned to 1053 * this partition */ 1054 if ((drmem.flags & DRCONF_MEM_RESERVED) 1055 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 1056 continue; 1057 1058 if ((scn_addr < drmem.base_addr) 1059 || (scn_addr >= (drmem.base_addr + lmb_size))) 1060 continue; 1061 1062 nid = of_drconf_to_nid_single(&drmem, &aa); 1063 break; 1064 } 1065 1066 return nid; 1067 } 1068 1069 /* 1070 * Find the node associated with a hot added memory section for memory 1071 * represented in the device tree as a node (i.e. memory@XXXX) for 1072 * each memblock. 1073 */ 1074 static int hot_add_node_scn_to_nid(unsigned long scn_addr) 1075 { 1076 struct device_node *memory; 1077 int nid = -1; 1078 1079 for_each_node_by_type(memory, "memory") { 1080 unsigned long start, size; 1081 int ranges; 1082 const __be32 *memcell_buf; 1083 unsigned int len; 1084 1085 memcell_buf = of_get_property(memory, "reg", &len); 1086 if (!memcell_buf || len <= 0) 1087 continue; 1088 1089 /* ranges in cell */ 1090 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 1091 1092 while (ranges--) { 1093 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 1094 size = read_n_cells(n_mem_size_cells, &memcell_buf); 1095 1096 if ((scn_addr < start) || (scn_addr >= (start + size))) 1097 continue; 1098 1099 nid = of_node_to_nid_single(memory); 1100 break; 1101 } 1102 1103 if (nid >= 0) 1104 break; 1105 } 1106 1107 of_node_put(memory); 1108 1109 return nid; 1110 } 1111 1112 /* 1113 * Find the node associated with a hot added memory section. Section 1114 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1115 * sections are fully contained within a single MEMBLOCK. 1116 */ 1117 int hot_add_scn_to_nid(unsigned long scn_addr) 1118 { 1119 struct device_node *memory = NULL; 1120 int nid, found = 0; 1121 1122 if (!numa_enabled || (min_common_depth < 0)) 1123 return first_online_node; 1124 1125 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1126 if (memory) { 1127 nid = hot_add_drconf_scn_to_nid(memory, scn_addr); 1128 of_node_put(memory); 1129 } else { 1130 nid = hot_add_node_scn_to_nid(scn_addr); 1131 } 1132 1133 if (nid < 0 || !node_online(nid)) 1134 nid = first_online_node; 1135 1136 if (NODE_DATA(nid)->node_spanned_pages) 1137 return nid; 1138 1139 for_each_online_node(nid) { 1140 if (NODE_DATA(nid)->node_spanned_pages) { 1141 found = 1; 1142 break; 1143 } 1144 } 1145 1146 BUG_ON(!found); 1147 return nid; 1148 } 1149 1150 static u64 hot_add_drconf_memory_max(void) 1151 { 1152 struct device_node *memory = NULL; 1153 unsigned int drconf_cell_cnt = 0; 1154 u64 lmb_size = 0; 1155 const __be32 *dm = NULL; 1156 1157 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1158 if (memory) { 1159 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1160 lmb_size = of_get_lmb_size(memory); 1161 of_node_put(memory); 1162 } 1163 return lmb_size * drconf_cell_cnt; 1164 } 1165 1166 /* 1167 * memory_hotplug_max - return max address of memory that may be added 1168 * 1169 * This is currently only used on systems that support drconfig memory 1170 * hotplug. 1171 */ 1172 u64 memory_hotplug_max(void) 1173 { 1174 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1175 } 1176 #endif /* CONFIG_MEMORY_HOTPLUG */ 1177 1178 /* Virtual Processor Home Node (VPHN) support */ 1179 #ifdef CONFIG_PPC_SPLPAR 1180 struct topology_update_data { 1181 struct topology_update_data *next; 1182 unsigned int cpu; 1183 int old_nid; 1184 int new_nid; 1185 }; 1186 1187 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; 1188 static cpumask_t cpu_associativity_changes_mask; 1189 static int vphn_enabled; 1190 static int prrn_enabled; 1191 static void reset_topology_timer(void); 1192 1193 /* 1194 * Store the current values of the associativity change counters in the 1195 * hypervisor. 1196 */ 1197 static void setup_cpu_associativity_change_counters(void) 1198 { 1199 int cpu; 1200 1201 /* The VPHN feature supports a maximum of 8 reference points */ 1202 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); 1203 1204 for_each_possible_cpu(cpu) { 1205 int i; 1206 u8 *counts = vphn_cpu_change_counts[cpu]; 1207 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1208 1209 for (i = 0; i < distance_ref_points_depth; i++) 1210 counts[i] = hypervisor_counts[i]; 1211 } 1212 } 1213 1214 /* 1215 * The hypervisor maintains a set of 8 associativity change counters in 1216 * the VPA of each cpu that correspond to the associativity levels in the 1217 * ibm,associativity-reference-points property. When an associativity 1218 * level changes, the corresponding counter is incremented. 1219 * 1220 * Set a bit in cpu_associativity_changes_mask for each cpu whose home 1221 * node associativity levels have changed. 1222 * 1223 * Returns the number of cpus with unhandled associativity changes. 1224 */ 1225 static int update_cpu_associativity_changes_mask(void) 1226 { 1227 int cpu; 1228 cpumask_t *changes = &cpu_associativity_changes_mask; 1229 1230 for_each_possible_cpu(cpu) { 1231 int i, changed = 0; 1232 u8 *counts = vphn_cpu_change_counts[cpu]; 1233 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1234 1235 for (i = 0; i < distance_ref_points_depth; i++) { 1236 if (hypervisor_counts[i] != counts[i]) { 1237 counts[i] = hypervisor_counts[i]; 1238 changed = 1; 1239 } 1240 } 1241 if (changed) { 1242 cpumask_or(changes, changes, cpu_sibling_mask(cpu)); 1243 cpu = cpu_last_thread_sibling(cpu); 1244 } 1245 } 1246 1247 return cpumask_weight(changes); 1248 } 1249 1250 /* 1251 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form 1252 * the complete property we have to add the length in the first cell. 1253 */ 1254 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1) 1255 1256 /* 1257 * Convert the associativity domain numbers returned from the hypervisor 1258 * to the sequence they would appear in the ibm,associativity property. 1259 */ 1260 static int vphn_unpack_associativity(const long *packed, __be32 *unpacked) 1261 { 1262 int i, nr_assoc_doms = 0; 1263 const __be16 *field = (const __be16 *) packed; 1264 1265 #define VPHN_FIELD_UNUSED (0xffff) 1266 #define VPHN_FIELD_MSB (0x8000) 1267 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB) 1268 1269 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) { 1270 if (be16_to_cpup(field) == VPHN_FIELD_UNUSED) { 1271 /* All significant fields processed, and remaining 1272 * fields contain the reserved value of all 1's. 1273 * Just store them. 1274 */ 1275 unpacked[i] = *((__be32 *)field); 1276 field += 2; 1277 } else if (be16_to_cpup(field) & VPHN_FIELD_MSB) { 1278 /* Data is in the lower 15 bits of this field */ 1279 unpacked[i] = cpu_to_be32( 1280 be16_to_cpup(field) & VPHN_FIELD_MASK); 1281 field++; 1282 nr_assoc_doms++; 1283 } else { 1284 /* Data is in the lower 15 bits of this field 1285 * concatenated with the next 16 bit field 1286 */ 1287 unpacked[i] = *((__be32 *)field); 1288 field += 2; 1289 nr_assoc_doms++; 1290 } 1291 } 1292 1293 /* The first cell contains the length of the property */ 1294 unpacked[0] = cpu_to_be32(nr_assoc_doms); 1295 1296 return nr_assoc_doms; 1297 } 1298 1299 /* 1300 * Retrieve the new associativity information for a virtual processor's 1301 * home node. 1302 */ 1303 static long hcall_vphn(unsigned long cpu, __be32 *associativity) 1304 { 1305 long rc; 1306 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; 1307 u64 flags = 1; 1308 int hwcpu = get_hard_smp_processor_id(cpu); 1309 int i; 1310 1311 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); 1312 for (i = 0; i < 6; i++) 1313 retbuf[i] = cpu_to_be64(retbuf[i]); 1314 vphn_unpack_associativity(retbuf, associativity); 1315 1316 return rc; 1317 } 1318 1319 static long vphn_get_associativity(unsigned long cpu, 1320 __be32 *associativity) 1321 { 1322 long rc; 1323 1324 rc = hcall_vphn(cpu, associativity); 1325 1326 switch (rc) { 1327 case H_FUNCTION: 1328 printk(KERN_INFO 1329 "VPHN is not supported. Disabling polling...\n"); 1330 stop_topology_update(); 1331 break; 1332 case H_HARDWARE: 1333 printk(KERN_ERR 1334 "hcall_vphn() experienced a hardware fault " 1335 "preventing VPHN. Disabling polling...\n"); 1336 stop_topology_update(); 1337 } 1338 1339 return rc; 1340 } 1341 1342 /* 1343 * Update the CPU maps and sysfs entries for a single CPU when its NUMA 1344 * characteristics change. This function doesn't perform any locking and is 1345 * only safe to call from stop_machine(). 1346 */ 1347 static int update_cpu_topology(void *data) 1348 { 1349 struct topology_update_data *update; 1350 unsigned long cpu; 1351 1352 if (!data) 1353 return -EINVAL; 1354 1355 cpu = smp_processor_id(); 1356 1357 for (update = data; update; update = update->next) { 1358 int new_nid = update->new_nid; 1359 if (cpu != update->cpu) 1360 continue; 1361 1362 unmap_cpu_from_node(cpu); 1363 map_cpu_to_node(cpu, new_nid); 1364 set_cpu_numa_node(cpu, new_nid); 1365 set_cpu_numa_mem(cpu, local_memory_node(new_nid)); 1366 vdso_getcpu_init(); 1367 } 1368 1369 return 0; 1370 } 1371 1372 static int update_lookup_table(void *data) 1373 { 1374 struct topology_update_data *update; 1375 1376 if (!data) 1377 return -EINVAL; 1378 1379 /* 1380 * Upon topology update, the numa-cpu lookup table needs to be updated 1381 * for all threads in the core, including offline CPUs, to ensure that 1382 * future hotplug operations respect the cpu-to-node associativity 1383 * properly. 1384 */ 1385 for (update = data; update; update = update->next) { 1386 int nid, base, j; 1387 1388 nid = update->new_nid; 1389 base = cpu_first_thread_sibling(update->cpu); 1390 1391 for (j = 0; j < threads_per_core; j++) { 1392 update_numa_cpu_lookup_table(base + j, nid); 1393 } 1394 } 1395 1396 return 0; 1397 } 1398 1399 /* 1400 * Update the node maps and sysfs entries for each cpu whose home node 1401 * has changed. Returns 1 when the topology has changed, and 0 otherwise. 1402 */ 1403 int arch_update_cpu_topology(void) 1404 { 1405 unsigned int cpu, sibling, changed = 0; 1406 struct topology_update_data *updates, *ud; 1407 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1408 cpumask_t updated_cpus; 1409 struct device *dev; 1410 int weight, new_nid, i = 0; 1411 1412 if (!prrn_enabled && !vphn_enabled) 1413 return 0; 1414 1415 weight = cpumask_weight(&cpu_associativity_changes_mask); 1416 if (!weight) 1417 return 0; 1418 1419 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL); 1420 if (!updates) 1421 return 0; 1422 1423 cpumask_clear(&updated_cpus); 1424 1425 for_each_cpu(cpu, &cpu_associativity_changes_mask) { 1426 /* 1427 * If siblings aren't flagged for changes, updates list 1428 * will be too short. Skip on this update and set for next 1429 * update. 1430 */ 1431 if (!cpumask_subset(cpu_sibling_mask(cpu), 1432 &cpu_associativity_changes_mask)) { 1433 pr_info("Sibling bits not set for associativity " 1434 "change, cpu%d\n", cpu); 1435 cpumask_or(&cpu_associativity_changes_mask, 1436 &cpu_associativity_changes_mask, 1437 cpu_sibling_mask(cpu)); 1438 cpu = cpu_last_thread_sibling(cpu); 1439 continue; 1440 } 1441 1442 /* Use associativity from first thread for all siblings */ 1443 vphn_get_associativity(cpu, associativity); 1444 new_nid = associativity_to_nid(associativity); 1445 if (new_nid < 0 || !node_online(new_nid)) 1446 new_nid = first_online_node; 1447 1448 if (new_nid == numa_cpu_lookup_table[cpu]) { 1449 cpumask_andnot(&cpu_associativity_changes_mask, 1450 &cpu_associativity_changes_mask, 1451 cpu_sibling_mask(cpu)); 1452 cpu = cpu_last_thread_sibling(cpu); 1453 continue; 1454 } 1455 1456 for_each_cpu(sibling, cpu_sibling_mask(cpu)) { 1457 ud = &updates[i++]; 1458 ud->cpu = sibling; 1459 ud->new_nid = new_nid; 1460 ud->old_nid = numa_cpu_lookup_table[sibling]; 1461 cpumask_set_cpu(sibling, &updated_cpus); 1462 if (i < weight) 1463 ud->next = &updates[i]; 1464 } 1465 cpu = cpu_last_thread_sibling(cpu); 1466 } 1467 1468 pr_debug("Topology update for the following CPUs:\n"); 1469 if (cpumask_weight(&updated_cpus)) { 1470 for (ud = &updates[0]; ud; ud = ud->next) { 1471 pr_debug("cpu %d moving from node %d " 1472 "to %d\n", ud->cpu, 1473 ud->old_nid, ud->new_nid); 1474 } 1475 } 1476 1477 /* 1478 * In cases where we have nothing to update (because the updates list 1479 * is too short or because the new topology is same as the old one), 1480 * skip invoking update_cpu_topology() via stop-machine(). This is 1481 * necessary (and not just a fast-path optimization) since stop-machine 1482 * can end up electing a random CPU to run update_cpu_topology(), and 1483 * thus trick us into setting up incorrect cpu-node mappings (since 1484 * 'updates' is kzalloc()'ed). 1485 * 1486 * And for the similar reason, we will skip all the following updating. 1487 */ 1488 if (!cpumask_weight(&updated_cpus)) 1489 goto out; 1490 1491 stop_machine(update_cpu_topology, &updates[0], &updated_cpus); 1492 1493 /* 1494 * Update the numa-cpu lookup table with the new mappings, even for 1495 * offline CPUs. It is best to perform this update from the stop- 1496 * machine context. 1497 */ 1498 stop_machine(update_lookup_table, &updates[0], 1499 cpumask_of(raw_smp_processor_id())); 1500 1501 for (ud = &updates[0]; ud; ud = ud->next) { 1502 unregister_cpu_under_node(ud->cpu, ud->old_nid); 1503 register_cpu_under_node(ud->cpu, ud->new_nid); 1504 1505 dev = get_cpu_device(ud->cpu); 1506 if (dev) 1507 kobject_uevent(&dev->kobj, KOBJ_CHANGE); 1508 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask); 1509 changed = 1; 1510 } 1511 1512 out: 1513 kfree(updates); 1514 return changed; 1515 } 1516 1517 static void topology_work_fn(struct work_struct *work) 1518 { 1519 rebuild_sched_domains(); 1520 } 1521 static DECLARE_WORK(topology_work, topology_work_fn); 1522 1523 static void topology_schedule_update(void) 1524 { 1525 schedule_work(&topology_work); 1526 } 1527 1528 static void topology_timer_fn(unsigned long ignored) 1529 { 1530 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask)) 1531 topology_schedule_update(); 1532 else if (vphn_enabled) { 1533 if (update_cpu_associativity_changes_mask() > 0) 1534 topology_schedule_update(); 1535 reset_topology_timer(); 1536 } 1537 } 1538 static struct timer_list topology_timer = 1539 TIMER_INITIALIZER(topology_timer_fn, 0, 0); 1540 1541 static void reset_topology_timer(void) 1542 { 1543 topology_timer.data = 0; 1544 topology_timer.expires = jiffies + 60 * HZ; 1545 mod_timer(&topology_timer, topology_timer.expires); 1546 } 1547 1548 #ifdef CONFIG_SMP 1549 1550 static void stage_topology_update(int core_id) 1551 { 1552 cpumask_or(&cpu_associativity_changes_mask, 1553 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id)); 1554 reset_topology_timer(); 1555 } 1556 1557 static int dt_update_callback(struct notifier_block *nb, 1558 unsigned long action, void *data) 1559 { 1560 struct of_reconfig_data *update = data; 1561 int rc = NOTIFY_DONE; 1562 1563 switch (action) { 1564 case OF_RECONFIG_UPDATE_PROPERTY: 1565 if (!of_prop_cmp(update->dn->type, "cpu") && 1566 !of_prop_cmp(update->prop->name, "ibm,associativity")) { 1567 u32 core_id; 1568 of_property_read_u32(update->dn, "reg", &core_id); 1569 stage_topology_update(core_id); 1570 rc = NOTIFY_OK; 1571 } 1572 break; 1573 } 1574 1575 return rc; 1576 } 1577 1578 static struct notifier_block dt_update_nb = { 1579 .notifier_call = dt_update_callback, 1580 }; 1581 1582 #endif 1583 1584 /* 1585 * Start polling for associativity changes. 1586 */ 1587 int start_topology_update(void) 1588 { 1589 int rc = 0; 1590 1591 if (firmware_has_feature(FW_FEATURE_PRRN)) { 1592 if (!prrn_enabled) { 1593 prrn_enabled = 1; 1594 vphn_enabled = 0; 1595 #ifdef CONFIG_SMP 1596 rc = of_reconfig_notifier_register(&dt_update_nb); 1597 #endif 1598 } 1599 } else if (firmware_has_feature(FW_FEATURE_VPHN) && 1600 lppaca_shared_proc(get_lppaca())) { 1601 if (!vphn_enabled) { 1602 prrn_enabled = 0; 1603 vphn_enabled = 1; 1604 setup_cpu_associativity_change_counters(); 1605 init_timer_deferrable(&topology_timer); 1606 reset_topology_timer(); 1607 } 1608 } 1609 1610 return rc; 1611 } 1612 1613 /* 1614 * Disable polling for VPHN associativity changes. 1615 */ 1616 int stop_topology_update(void) 1617 { 1618 int rc = 0; 1619 1620 if (prrn_enabled) { 1621 prrn_enabled = 0; 1622 #ifdef CONFIG_SMP 1623 rc = of_reconfig_notifier_unregister(&dt_update_nb); 1624 #endif 1625 } else if (vphn_enabled) { 1626 vphn_enabled = 0; 1627 rc = del_timer_sync(&topology_timer); 1628 } 1629 1630 return rc; 1631 } 1632 1633 int prrn_is_enabled(void) 1634 { 1635 return prrn_enabled; 1636 } 1637 1638 static int topology_read(struct seq_file *file, void *v) 1639 { 1640 if (vphn_enabled || prrn_enabled) 1641 seq_puts(file, "on\n"); 1642 else 1643 seq_puts(file, "off\n"); 1644 1645 return 0; 1646 } 1647 1648 static int topology_open(struct inode *inode, struct file *file) 1649 { 1650 return single_open(file, topology_read, NULL); 1651 } 1652 1653 static ssize_t topology_write(struct file *file, const char __user *buf, 1654 size_t count, loff_t *off) 1655 { 1656 char kbuf[4]; /* "on" or "off" plus null. */ 1657 int read_len; 1658 1659 read_len = count < 3 ? count : 3; 1660 if (copy_from_user(kbuf, buf, read_len)) 1661 return -EINVAL; 1662 1663 kbuf[read_len] = '\0'; 1664 1665 if (!strncmp(kbuf, "on", 2)) 1666 start_topology_update(); 1667 else if (!strncmp(kbuf, "off", 3)) 1668 stop_topology_update(); 1669 else 1670 return -EINVAL; 1671 1672 return count; 1673 } 1674 1675 static const struct file_operations topology_ops = { 1676 .read = seq_read, 1677 .write = topology_write, 1678 .open = topology_open, 1679 .release = single_release 1680 }; 1681 1682 static int topology_update_init(void) 1683 { 1684 /* Do not poll for changes if disabled at boot */ 1685 if (topology_updates_enabled) 1686 start_topology_update(); 1687 1688 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops)) 1689 return -ENOMEM; 1690 1691 return 0; 1692 } 1693 device_initcall(topology_update_init); 1694 #endif /* CONFIG_PPC_SPLPAR */ 1695