xref: /openbmc/linux/arch/powerpc/mm/numa.c (revision d0b73b48)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/export.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/memblock.h>
21 #include <linux/of.h>
22 #include <linux/pfn.h>
23 #include <linux/cpuset.h>
24 #include <linux/node.h>
25 #include <asm/sparsemem.h>
26 #include <asm/prom.h>
27 #include <asm/smp.h>
28 #include <asm/firmware.h>
29 #include <asm/paca.h>
30 #include <asm/hvcall.h>
31 #include <asm/setup.h>
32 
33 static int numa_enabled = 1;
34 
35 static char *cmdline __initdata;
36 
37 static int numa_debug;
38 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
39 
40 int numa_cpu_lookup_table[NR_CPUS];
41 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
42 struct pglist_data *node_data[MAX_NUMNODES];
43 
44 EXPORT_SYMBOL(numa_cpu_lookup_table);
45 EXPORT_SYMBOL(node_to_cpumask_map);
46 EXPORT_SYMBOL(node_data);
47 
48 static int min_common_depth;
49 static int n_mem_addr_cells, n_mem_size_cells;
50 static int form1_affinity;
51 
52 #define MAX_DISTANCE_REF_POINTS 4
53 static int distance_ref_points_depth;
54 static const unsigned int *distance_ref_points;
55 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
56 
57 /*
58  * Allocate node_to_cpumask_map based on number of available nodes
59  * Requires node_possible_map to be valid.
60  *
61  * Note: cpumask_of_node() is not valid until after this is done.
62  */
63 static void __init setup_node_to_cpumask_map(void)
64 {
65 	unsigned int node, num = 0;
66 
67 	/* setup nr_node_ids if not done yet */
68 	if (nr_node_ids == MAX_NUMNODES) {
69 		for_each_node_mask(node, node_possible_map)
70 			num = node;
71 		nr_node_ids = num + 1;
72 	}
73 
74 	/* allocate the map */
75 	for (node = 0; node < nr_node_ids; node++)
76 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
77 
78 	/* cpumask_of_node() will now work */
79 	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
80 }
81 
82 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
83 						unsigned int *nid)
84 {
85 	unsigned long long mem;
86 	char *p = cmdline;
87 	static unsigned int fake_nid;
88 	static unsigned long long curr_boundary;
89 
90 	/*
91 	 * Modify node id, iff we started creating NUMA nodes
92 	 * We want to continue from where we left of the last time
93 	 */
94 	if (fake_nid)
95 		*nid = fake_nid;
96 	/*
97 	 * In case there are no more arguments to parse, the
98 	 * node_id should be the same as the last fake node id
99 	 * (we've handled this above).
100 	 */
101 	if (!p)
102 		return 0;
103 
104 	mem = memparse(p, &p);
105 	if (!mem)
106 		return 0;
107 
108 	if (mem < curr_boundary)
109 		return 0;
110 
111 	curr_boundary = mem;
112 
113 	if ((end_pfn << PAGE_SHIFT) > mem) {
114 		/*
115 		 * Skip commas and spaces
116 		 */
117 		while (*p == ',' || *p == ' ' || *p == '\t')
118 			p++;
119 
120 		cmdline = p;
121 		fake_nid++;
122 		*nid = fake_nid;
123 		dbg("created new fake_node with id %d\n", fake_nid);
124 		return 1;
125 	}
126 	return 0;
127 }
128 
129 /*
130  * get_node_active_region - Return active region containing pfn
131  * Active range returned is empty if none found.
132  * @pfn: The page to return the region for
133  * @node_ar: Returned set to the active region containing @pfn
134  */
135 static void __init get_node_active_region(unsigned long pfn,
136 					  struct node_active_region *node_ar)
137 {
138 	unsigned long start_pfn, end_pfn;
139 	int i, nid;
140 
141 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
142 		if (pfn >= start_pfn && pfn < end_pfn) {
143 			node_ar->nid = nid;
144 			node_ar->start_pfn = start_pfn;
145 			node_ar->end_pfn = end_pfn;
146 			break;
147 		}
148 	}
149 }
150 
151 static void map_cpu_to_node(int cpu, int node)
152 {
153 	numa_cpu_lookup_table[cpu] = node;
154 
155 	dbg("adding cpu %d to node %d\n", cpu, node);
156 
157 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
158 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
159 }
160 
161 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
162 static void unmap_cpu_from_node(unsigned long cpu)
163 {
164 	int node = numa_cpu_lookup_table[cpu];
165 
166 	dbg("removing cpu %lu from node %d\n", cpu, node);
167 
168 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
169 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
170 	} else {
171 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
172 		       cpu, node);
173 	}
174 }
175 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
176 
177 /* must hold reference to node during call */
178 static const int *of_get_associativity(struct device_node *dev)
179 {
180 	return of_get_property(dev, "ibm,associativity", NULL);
181 }
182 
183 /*
184  * Returns the property linux,drconf-usable-memory if
185  * it exists (the property exists only in kexec/kdump kernels,
186  * added by kexec-tools)
187  */
188 static const u32 *of_get_usable_memory(struct device_node *memory)
189 {
190 	const u32 *prop;
191 	u32 len;
192 	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
193 	if (!prop || len < sizeof(unsigned int))
194 		return 0;
195 	return prop;
196 }
197 
198 int __node_distance(int a, int b)
199 {
200 	int i;
201 	int distance = LOCAL_DISTANCE;
202 
203 	if (!form1_affinity)
204 		return distance;
205 
206 	for (i = 0; i < distance_ref_points_depth; i++) {
207 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
208 			break;
209 
210 		/* Double the distance for each NUMA level */
211 		distance *= 2;
212 	}
213 
214 	return distance;
215 }
216 
217 static void initialize_distance_lookup_table(int nid,
218 		const unsigned int *associativity)
219 {
220 	int i;
221 
222 	if (!form1_affinity)
223 		return;
224 
225 	for (i = 0; i < distance_ref_points_depth; i++) {
226 		distance_lookup_table[nid][i] =
227 			associativity[distance_ref_points[i]];
228 	}
229 }
230 
231 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
232  * info is found.
233  */
234 static int associativity_to_nid(const unsigned int *associativity)
235 {
236 	int nid = -1;
237 
238 	if (min_common_depth == -1)
239 		goto out;
240 
241 	if (associativity[0] >= min_common_depth)
242 		nid = associativity[min_common_depth];
243 
244 	/* POWER4 LPAR uses 0xffff as invalid node */
245 	if (nid == 0xffff || nid >= MAX_NUMNODES)
246 		nid = -1;
247 
248 	if (nid > 0 && associativity[0] >= distance_ref_points_depth)
249 		initialize_distance_lookup_table(nid, associativity);
250 
251 out:
252 	return nid;
253 }
254 
255 /* Returns the nid associated with the given device tree node,
256  * or -1 if not found.
257  */
258 static int of_node_to_nid_single(struct device_node *device)
259 {
260 	int nid = -1;
261 	const unsigned int *tmp;
262 
263 	tmp = of_get_associativity(device);
264 	if (tmp)
265 		nid = associativity_to_nid(tmp);
266 	return nid;
267 }
268 
269 /* Walk the device tree upwards, looking for an associativity id */
270 int of_node_to_nid(struct device_node *device)
271 {
272 	struct device_node *tmp;
273 	int nid = -1;
274 
275 	of_node_get(device);
276 	while (device) {
277 		nid = of_node_to_nid_single(device);
278 		if (nid != -1)
279 			break;
280 
281 	        tmp = device;
282 		device = of_get_parent(tmp);
283 		of_node_put(tmp);
284 	}
285 	of_node_put(device);
286 
287 	return nid;
288 }
289 EXPORT_SYMBOL_GPL(of_node_to_nid);
290 
291 static int __init find_min_common_depth(void)
292 {
293 	int depth;
294 	struct device_node *chosen;
295 	struct device_node *root;
296 	const char *vec5;
297 
298 	if (firmware_has_feature(FW_FEATURE_OPAL))
299 		root = of_find_node_by_path("/ibm,opal");
300 	else
301 		root = of_find_node_by_path("/rtas");
302 	if (!root)
303 		root = of_find_node_by_path("/");
304 
305 	/*
306 	 * This property is a set of 32-bit integers, each representing
307 	 * an index into the ibm,associativity nodes.
308 	 *
309 	 * With form 0 affinity the first integer is for an SMP configuration
310 	 * (should be all 0's) and the second is for a normal NUMA
311 	 * configuration. We have only one level of NUMA.
312 	 *
313 	 * With form 1 affinity the first integer is the most significant
314 	 * NUMA boundary and the following are progressively less significant
315 	 * boundaries. There can be more than one level of NUMA.
316 	 */
317 	distance_ref_points = of_get_property(root,
318 					"ibm,associativity-reference-points",
319 					&distance_ref_points_depth);
320 
321 	if (!distance_ref_points) {
322 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
323 		goto err;
324 	}
325 
326 	distance_ref_points_depth /= sizeof(int);
327 
328 #define VEC5_AFFINITY_BYTE	5
329 #define VEC5_AFFINITY		0x80
330 
331 	if (firmware_has_feature(FW_FEATURE_OPAL))
332 		form1_affinity = 1;
333 	else {
334 		chosen = of_find_node_by_path("/chosen");
335 		if (chosen) {
336 			vec5 = of_get_property(chosen,
337 					       "ibm,architecture-vec-5", NULL);
338 			if (vec5 && (vec5[VEC5_AFFINITY_BYTE] &
339 							VEC5_AFFINITY)) {
340 				dbg("Using form 1 affinity\n");
341 				form1_affinity = 1;
342 			}
343 
344 			of_node_put(chosen);
345 		}
346 	}
347 
348 	if (form1_affinity) {
349 		depth = distance_ref_points[0];
350 	} else {
351 		if (distance_ref_points_depth < 2) {
352 			printk(KERN_WARNING "NUMA: "
353 				"short ibm,associativity-reference-points\n");
354 			goto err;
355 		}
356 
357 		depth = distance_ref_points[1];
358 	}
359 
360 	/*
361 	 * Warn and cap if the hardware supports more than
362 	 * MAX_DISTANCE_REF_POINTS domains.
363 	 */
364 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
365 		printk(KERN_WARNING "NUMA: distance array capped at "
366 			"%d entries\n", MAX_DISTANCE_REF_POINTS);
367 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
368 	}
369 
370 	of_node_put(root);
371 	return depth;
372 
373 err:
374 	of_node_put(root);
375 	return -1;
376 }
377 
378 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
379 {
380 	struct device_node *memory = NULL;
381 
382 	memory = of_find_node_by_type(memory, "memory");
383 	if (!memory)
384 		panic("numa.c: No memory nodes found!");
385 
386 	*n_addr_cells = of_n_addr_cells(memory);
387 	*n_size_cells = of_n_size_cells(memory);
388 	of_node_put(memory);
389 }
390 
391 static unsigned long read_n_cells(int n, const unsigned int **buf)
392 {
393 	unsigned long result = 0;
394 
395 	while (n--) {
396 		result = (result << 32) | **buf;
397 		(*buf)++;
398 	}
399 	return result;
400 }
401 
402 /*
403  * Read the next memblock list entry from the ibm,dynamic-memory property
404  * and return the information in the provided of_drconf_cell structure.
405  */
406 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
407 {
408 	const u32 *cp;
409 
410 	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
411 
412 	cp = *cellp;
413 	drmem->drc_index = cp[0];
414 	drmem->reserved = cp[1];
415 	drmem->aa_index = cp[2];
416 	drmem->flags = cp[3];
417 
418 	*cellp = cp + 4;
419 }
420 
421 /*
422  * Retrieve and validate the ibm,dynamic-memory property of the device tree.
423  *
424  * The layout of the ibm,dynamic-memory property is a number N of memblock
425  * list entries followed by N memblock list entries.  Each memblock list entry
426  * contains information as laid out in the of_drconf_cell struct above.
427  */
428 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
429 {
430 	const u32 *prop;
431 	u32 len, entries;
432 
433 	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
434 	if (!prop || len < sizeof(unsigned int))
435 		return 0;
436 
437 	entries = *prop++;
438 
439 	/* Now that we know the number of entries, revalidate the size
440 	 * of the property read in to ensure we have everything
441 	 */
442 	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
443 		return 0;
444 
445 	*dm = prop;
446 	return entries;
447 }
448 
449 /*
450  * Retrieve and validate the ibm,lmb-size property for drconf memory
451  * from the device tree.
452  */
453 static u64 of_get_lmb_size(struct device_node *memory)
454 {
455 	const u32 *prop;
456 	u32 len;
457 
458 	prop = of_get_property(memory, "ibm,lmb-size", &len);
459 	if (!prop || len < sizeof(unsigned int))
460 		return 0;
461 
462 	return read_n_cells(n_mem_size_cells, &prop);
463 }
464 
465 struct assoc_arrays {
466 	u32	n_arrays;
467 	u32	array_sz;
468 	const u32 *arrays;
469 };
470 
471 /*
472  * Retrieve and validate the list of associativity arrays for drconf
473  * memory from the ibm,associativity-lookup-arrays property of the
474  * device tree..
475  *
476  * The layout of the ibm,associativity-lookup-arrays property is a number N
477  * indicating the number of associativity arrays, followed by a number M
478  * indicating the size of each associativity array, followed by a list
479  * of N associativity arrays.
480  */
481 static int of_get_assoc_arrays(struct device_node *memory,
482 			       struct assoc_arrays *aa)
483 {
484 	const u32 *prop;
485 	u32 len;
486 
487 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
488 	if (!prop || len < 2 * sizeof(unsigned int))
489 		return -1;
490 
491 	aa->n_arrays = *prop++;
492 	aa->array_sz = *prop++;
493 
494 	/* Now that we know the number of arrays and size of each array,
495 	 * revalidate the size of the property read in.
496 	 */
497 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
498 		return -1;
499 
500 	aa->arrays = prop;
501 	return 0;
502 }
503 
504 /*
505  * This is like of_node_to_nid_single() for memory represented in the
506  * ibm,dynamic-reconfiguration-memory node.
507  */
508 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
509 				   struct assoc_arrays *aa)
510 {
511 	int default_nid = 0;
512 	int nid = default_nid;
513 	int index;
514 
515 	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
516 	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
517 	    drmem->aa_index < aa->n_arrays) {
518 		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
519 		nid = aa->arrays[index];
520 
521 		if (nid == 0xffff || nid >= MAX_NUMNODES)
522 			nid = default_nid;
523 	}
524 
525 	return nid;
526 }
527 
528 /*
529  * Figure out to which domain a cpu belongs and stick it there.
530  * Return the id of the domain used.
531  */
532 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
533 {
534 	int nid = 0;
535 	struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
536 
537 	if (!cpu) {
538 		WARN_ON(1);
539 		goto out;
540 	}
541 
542 	nid = of_node_to_nid_single(cpu);
543 
544 	if (nid < 0 || !node_online(nid))
545 		nid = first_online_node;
546 out:
547 	map_cpu_to_node(lcpu, nid);
548 
549 	of_node_put(cpu);
550 
551 	return nid;
552 }
553 
554 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
555 			     unsigned long action,
556 			     void *hcpu)
557 {
558 	unsigned long lcpu = (unsigned long)hcpu;
559 	int ret = NOTIFY_DONE;
560 
561 	switch (action) {
562 	case CPU_UP_PREPARE:
563 	case CPU_UP_PREPARE_FROZEN:
564 		numa_setup_cpu(lcpu);
565 		ret = NOTIFY_OK;
566 		break;
567 #ifdef CONFIG_HOTPLUG_CPU
568 	case CPU_DEAD:
569 	case CPU_DEAD_FROZEN:
570 	case CPU_UP_CANCELED:
571 	case CPU_UP_CANCELED_FROZEN:
572 		unmap_cpu_from_node(lcpu);
573 		break;
574 		ret = NOTIFY_OK;
575 #endif
576 	}
577 	return ret;
578 }
579 
580 /*
581  * Check and possibly modify a memory region to enforce the memory limit.
582  *
583  * Returns the size the region should have to enforce the memory limit.
584  * This will either be the original value of size, a truncated value,
585  * or zero. If the returned value of size is 0 the region should be
586  * discarded as it lies wholly above the memory limit.
587  */
588 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
589 						      unsigned long size)
590 {
591 	/*
592 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
593 	 * we've already adjusted it for the limit and it takes care of
594 	 * having memory holes below the limit.  Also, in the case of
595 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
596 	 */
597 
598 	if (start + size <= memblock_end_of_DRAM())
599 		return size;
600 
601 	if (start >= memblock_end_of_DRAM())
602 		return 0;
603 
604 	return memblock_end_of_DRAM() - start;
605 }
606 
607 /*
608  * Reads the counter for a given entry in
609  * linux,drconf-usable-memory property
610  */
611 static inline int __init read_usm_ranges(const u32 **usm)
612 {
613 	/*
614 	 * For each lmb in ibm,dynamic-memory a corresponding
615 	 * entry in linux,drconf-usable-memory property contains
616 	 * a counter followed by that many (base, size) duple.
617 	 * read the counter from linux,drconf-usable-memory
618 	 */
619 	return read_n_cells(n_mem_size_cells, usm);
620 }
621 
622 /*
623  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
624  * node.  This assumes n_mem_{addr,size}_cells have been set.
625  */
626 static void __init parse_drconf_memory(struct device_node *memory)
627 {
628 	const u32 *uninitialized_var(dm), *usm;
629 	unsigned int n, rc, ranges, is_kexec_kdump = 0;
630 	unsigned long lmb_size, base, size, sz;
631 	int nid;
632 	struct assoc_arrays aa = { .arrays = NULL };
633 
634 	n = of_get_drconf_memory(memory, &dm);
635 	if (!n)
636 		return;
637 
638 	lmb_size = of_get_lmb_size(memory);
639 	if (!lmb_size)
640 		return;
641 
642 	rc = of_get_assoc_arrays(memory, &aa);
643 	if (rc)
644 		return;
645 
646 	/* check if this is a kexec/kdump kernel */
647 	usm = of_get_usable_memory(memory);
648 	if (usm != NULL)
649 		is_kexec_kdump = 1;
650 
651 	for (; n != 0; --n) {
652 		struct of_drconf_cell drmem;
653 
654 		read_drconf_cell(&drmem, &dm);
655 
656 		/* skip this block if the reserved bit is set in flags (0x80)
657 		   or if the block is not assigned to this partition (0x8) */
658 		if ((drmem.flags & DRCONF_MEM_RESERVED)
659 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
660 			continue;
661 
662 		base = drmem.base_addr;
663 		size = lmb_size;
664 		ranges = 1;
665 
666 		if (is_kexec_kdump) {
667 			ranges = read_usm_ranges(&usm);
668 			if (!ranges) /* there are no (base, size) duple */
669 				continue;
670 		}
671 		do {
672 			if (is_kexec_kdump) {
673 				base = read_n_cells(n_mem_addr_cells, &usm);
674 				size = read_n_cells(n_mem_size_cells, &usm);
675 			}
676 			nid = of_drconf_to_nid_single(&drmem, &aa);
677 			fake_numa_create_new_node(
678 				((base + size) >> PAGE_SHIFT),
679 					   &nid);
680 			node_set_online(nid);
681 			sz = numa_enforce_memory_limit(base, size);
682 			if (sz)
683 				memblock_set_node(base, sz, nid);
684 		} while (--ranges);
685 	}
686 }
687 
688 static int __init parse_numa_properties(void)
689 {
690 	struct device_node *memory;
691 	int default_nid = 0;
692 	unsigned long i;
693 
694 	if (numa_enabled == 0) {
695 		printk(KERN_WARNING "NUMA disabled by user\n");
696 		return -1;
697 	}
698 
699 	min_common_depth = find_min_common_depth();
700 
701 	if (min_common_depth < 0)
702 		return min_common_depth;
703 
704 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
705 
706 	/*
707 	 * Even though we connect cpus to numa domains later in SMP
708 	 * init, we need to know the node ids now. This is because
709 	 * each node to be onlined must have NODE_DATA etc backing it.
710 	 */
711 	for_each_present_cpu(i) {
712 		struct device_node *cpu;
713 		int nid;
714 
715 		cpu = of_get_cpu_node(i, NULL);
716 		BUG_ON(!cpu);
717 		nid = of_node_to_nid_single(cpu);
718 		of_node_put(cpu);
719 
720 		/*
721 		 * Don't fall back to default_nid yet -- we will plug
722 		 * cpus into nodes once the memory scan has discovered
723 		 * the topology.
724 		 */
725 		if (nid < 0)
726 			continue;
727 		node_set_online(nid);
728 	}
729 
730 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
731 
732 	for_each_node_by_type(memory, "memory") {
733 		unsigned long start;
734 		unsigned long size;
735 		int nid;
736 		int ranges;
737 		const unsigned int *memcell_buf;
738 		unsigned int len;
739 
740 		memcell_buf = of_get_property(memory,
741 			"linux,usable-memory", &len);
742 		if (!memcell_buf || len <= 0)
743 			memcell_buf = of_get_property(memory, "reg", &len);
744 		if (!memcell_buf || len <= 0)
745 			continue;
746 
747 		/* ranges in cell */
748 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
749 new_range:
750 		/* these are order-sensitive, and modify the buffer pointer */
751 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
752 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
753 
754 		/*
755 		 * Assumption: either all memory nodes or none will
756 		 * have associativity properties.  If none, then
757 		 * everything goes to default_nid.
758 		 */
759 		nid = of_node_to_nid_single(memory);
760 		if (nid < 0)
761 			nid = default_nid;
762 
763 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
764 		node_set_online(nid);
765 
766 		if (!(size = numa_enforce_memory_limit(start, size))) {
767 			if (--ranges)
768 				goto new_range;
769 			else
770 				continue;
771 		}
772 
773 		memblock_set_node(start, size, nid);
774 
775 		if (--ranges)
776 			goto new_range;
777 	}
778 
779 	/*
780 	 * Now do the same thing for each MEMBLOCK listed in the
781 	 * ibm,dynamic-memory property in the
782 	 * ibm,dynamic-reconfiguration-memory node.
783 	 */
784 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
785 	if (memory)
786 		parse_drconf_memory(memory);
787 
788 	return 0;
789 }
790 
791 static void __init setup_nonnuma(void)
792 {
793 	unsigned long top_of_ram = memblock_end_of_DRAM();
794 	unsigned long total_ram = memblock_phys_mem_size();
795 	unsigned long start_pfn, end_pfn;
796 	unsigned int nid = 0;
797 	struct memblock_region *reg;
798 
799 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
800 	       top_of_ram, total_ram);
801 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
802 	       (top_of_ram - total_ram) >> 20);
803 
804 	for_each_memblock(memory, reg) {
805 		start_pfn = memblock_region_memory_base_pfn(reg);
806 		end_pfn = memblock_region_memory_end_pfn(reg);
807 
808 		fake_numa_create_new_node(end_pfn, &nid);
809 		memblock_set_node(PFN_PHYS(start_pfn),
810 				  PFN_PHYS(end_pfn - start_pfn), nid);
811 		node_set_online(nid);
812 	}
813 }
814 
815 void __init dump_numa_cpu_topology(void)
816 {
817 	unsigned int node;
818 	unsigned int cpu, count;
819 
820 	if (min_common_depth == -1 || !numa_enabled)
821 		return;
822 
823 	for_each_online_node(node) {
824 		printk(KERN_DEBUG "Node %d CPUs:", node);
825 
826 		count = 0;
827 		/*
828 		 * If we used a CPU iterator here we would miss printing
829 		 * the holes in the cpumap.
830 		 */
831 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
832 			if (cpumask_test_cpu(cpu,
833 					node_to_cpumask_map[node])) {
834 				if (count == 0)
835 					printk(" %u", cpu);
836 				++count;
837 			} else {
838 				if (count > 1)
839 					printk("-%u", cpu - 1);
840 				count = 0;
841 			}
842 		}
843 
844 		if (count > 1)
845 			printk("-%u", nr_cpu_ids - 1);
846 		printk("\n");
847 	}
848 }
849 
850 static void __init dump_numa_memory_topology(void)
851 {
852 	unsigned int node;
853 	unsigned int count;
854 
855 	if (min_common_depth == -1 || !numa_enabled)
856 		return;
857 
858 	for_each_online_node(node) {
859 		unsigned long i;
860 
861 		printk(KERN_DEBUG "Node %d Memory:", node);
862 
863 		count = 0;
864 
865 		for (i = 0; i < memblock_end_of_DRAM();
866 		     i += (1 << SECTION_SIZE_BITS)) {
867 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
868 				if (count == 0)
869 					printk(" 0x%lx", i);
870 				++count;
871 			} else {
872 				if (count > 0)
873 					printk("-0x%lx", i);
874 				count = 0;
875 			}
876 		}
877 
878 		if (count > 0)
879 			printk("-0x%lx", i);
880 		printk("\n");
881 	}
882 }
883 
884 /*
885  * Allocate some memory, satisfying the memblock or bootmem allocator where
886  * required. nid is the preferred node and end is the physical address of
887  * the highest address in the node.
888  *
889  * Returns the virtual address of the memory.
890  */
891 static void __init *careful_zallocation(int nid, unsigned long size,
892 				       unsigned long align,
893 				       unsigned long end_pfn)
894 {
895 	void *ret;
896 	int new_nid;
897 	unsigned long ret_paddr;
898 
899 	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
900 
901 	/* retry over all memory */
902 	if (!ret_paddr)
903 		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
904 
905 	if (!ret_paddr)
906 		panic("numa.c: cannot allocate %lu bytes for node %d",
907 		      size, nid);
908 
909 	ret = __va(ret_paddr);
910 
911 	/*
912 	 * We initialize the nodes in numeric order: 0, 1, 2...
913 	 * and hand over control from the MEMBLOCK allocator to the
914 	 * bootmem allocator.  If this function is called for
915 	 * node 5, then we know that all nodes <5 are using the
916 	 * bootmem allocator instead of the MEMBLOCK allocator.
917 	 *
918 	 * So, check the nid from which this allocation came
919 	 * and double check to see if we need to use bootmem
920 	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
921 	 * since it would be useless.
922 	 */
923 	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
924 	if (new_nid < nid) {
925 		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
926 				size, align, 0);
927 
928 		dbg("alloc_bootmem %p %lx\n", ret, size);
929 	}
930 
931 	memset(ret, 0, size);
932 	return ret;
933 }
934 
935 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
936 	.notifier_call = cpu_numa_callback,
937 	.priority = 1 /* Must run before sched domains notifier. */
938 };
939 
940 static void __init mark_reserved_regions_for_nid(int nid)
941 {
942 	struct pglist_data *node = NODE_DATA(nid);
943 	struct memblock_region *reg;
944 
945 	for_each_memblock(reserved, reg) {
946 		unsigned long physbase = reg->base;
947 		unsigned long size = reg->size;
948 		unsigned long start_pfn = physbase >> PAGE_SHIFT;
949 		unsigned long end_pfn = PFN_UP(physbase + size);
950 		struct node_active_region node_ar;
951 		unsigned long node_end_pfn = node->node_start_pfn +
952 					     node->node_spanned_pages;
953 
954 		/*
955 		 * Check to make sure that this memblock.reserved area is
956 		 * within the bounds of the node that we care about.
957 		 * Checking the nid of the start and end points is not
958 		 * sufficient because the reserved area could span the
959 		 * entire node.
960 		 */
961 		if (end_pfn <= node->node_start_pfn ||
962 		    start_pfn >= node_end_pfn)
963 			continue;
964 
965 		get_node_active_region(start_pfn, &node_ar);
966 		while (start_pfn < end_pfn &&
967 			node_ar.start_pfn < node_ar.end_pfn) {
968 			unsigned long reserve_size = size;
969 			/*
970 			 * if reserved region extends past active region
971 			 * then trim size to active region
972 			 */
973 			if (end_pfn > node_ar.end_pfn)
974 				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
975 					- physbase;
976 			/*
977 			 * Only worry about *this* node, others may not
978 			 * yet have valid NODE_DATA().
979 			 */
980 			if (node_ar.nid == nid) {
981 				dbg("reserve_bootmem %lx %lx nid=%d\n",
982 					physbase, reserve_size, node_ar.nid);
983 				reserve_bootmem_node(NODE_DATA(node_ar.nid),
984 						physbase, reserve_size,
985 						BOOTMEM_DEFAULT);
986 			}
987 			/*
988 			 * if reserved region is contained in the active region
989 			 * then done.
990 			 */
991 			if (end_pfn <= node_ar.end_pfn)
992 				break;
993 
994 			/*
995 			 * reserved region extends past the active region
996 			 *   get next active region that contains this
997 			 *   reserved region
998 			 */
999 			start_pfn = node_ar.end_pfn;
1000 			physbase = start_pfn << PAGE_SHIFT;
1001 			size = size - reserve_size;
1002 			get_node_active_region(start_pfn, &node_ar);
1003 		}
1004 	}
1005 }
1006 
1007 
1008 void __init do_init_bootmem(void)
1009 {
1010 	int nid;
1011 
1012 	min_low_pfn = 0;
1013 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1014 	max_pfn = max_low_pfn;
1015 
1016 	if (parse_numa_properties())
1017 		setup_nonnuma();
1018 	else
1019 		dump_numa_memory_topology();
1020 
1021 	for_each_online_node(nid) {
1022 		unsigned long start_pfn, end_pfn;
1023 		void *bootmem_vaddr;
1024 		unsigned long bootmap_pages;
1025 
1026 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1027 
1028 		/*
1029 		 * Allocate the node structure node local if possible
1030 		 *
1031 		 * Be careful moving this around, as it relies on all
1032 		 * previous nodes' bootmem to be initialized and have
1033 		 * all reserved areas marked.
1034 		 */
1035 		NODE_DATA(nid) = careful_zallocation(nid,
1036 					sizeof(struct pglist_data),
1037 					SMP_CACHE_BYTES, end_pfn);
1038 
1039   		dbg("node %d\n", nid);
1040 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1041 
1042 		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1043 		NODE_DATA(nid)->node_start_pfn = start_pfn;
1044 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1045 
1046 		if (NODE_DATA(nid)->node_spanned_pages == 0)
1047   			continue;
1048 
1049   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1050   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1051 
1052 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1053 		bootmem_vaddr = careful_zallocation(nid,
1054 					bootmap_pages << PAGE_SHIFT,
1055 					PAGE_SIZE, end_pfn);
1056 
1057 		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1058 
1059 		init_bootmem_node(NODE_DATA(nid),
1060 				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1061 				  start_pfn, end_pfn);
1062 
1063 		free_bootmem_with_active_regions(nid, end_pfn);
1064 		/*
1065 		 * Be very careful about moving this around.  Future
1066 		 * calls to careful_zallocation() depend on this getting
1067 		 * done correctly.
1068 		 */
1069 		mark_reserved_regions_for_nid(nid);
1070 		sparse_memory_present_with_active_regions(nid);
1071 	}
1072 
1073 	init_bootmem_done = 1;
1074 
1075 	/*
1076 	 * Now bootmem is initialised we can create the node to cpumask
1077 	 * lookup tables and setup the cpu callback to populate them.
1078 	 */
1079 	setup_node_to_cpumask_map();
1080 
1081 	register_cpu_notifier(&ppc64_numa_nb);
1082 	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1083 			  (void *)(unsigned long)boot_cpuid);
1084 }
1085 
1086 void __init paging_init(void)
1087 {
1088 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1089 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1090 	max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1091 	free_area_init_nodes(max_zone_pfns);
1092 }
1093 
1094 static int __init early_numa(char *p)
1095 {
1096 	if (!p)
1097 		return 0;
1098 
1099 	if (strstr(p, "off"))
1100 		numa_enabled = 0;
1101 
1102 	if (strstr(p, "debug"))
1103 		numa_debug = 1;
1104 
1105 	p = strstr(p, "fake=");
1106 	if (p)
1107 		cmdline = p + strlen("fake=");
1108 
1109 	return 0;
1110 }
1111 early_param("numa", early_numa);
1112 
1113 #ifdef CONFIG_MEMORY_HOTPLUG
1114 /*
1115  * Find the node associated with a hot added memory section for
1116  * memory represented in the device tree by the property
1117  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1118  */
1119 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1120 				     unsigned long scn_addr)
1121 {
1122 	const u32 *dm;
1123 	unsigned int drconf_cell_cnt, rc;
1124 	unsigned long lmb_size;
1125 	struct assoc_arrays aa;
1126 	int nid = -1;
1127 
1128 	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1129 	if (!drconf_cell_cnt)
1130 		return -1;
1131 
1132 	lmb_size = of_get_lmb_size(memory);
1133 	if (!lmb_size)
1134 		return -1;
1135 
1136 	rc = of_get_assoc_arrays(memory, &aa);
1137 	if (rc)
1138 		return -1;
1139 
1140 	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1141 		struct of_drconf_cell drmem;
1142 
1143 		read_drconf_cell(&drmem, &dm);
1144 
1145 		/* skip this block if it is reserved or not assigned to
1146 		 * this partition */
1147 		if ((drmem.flags & DRCONF_MEM_RESERVED)
1148 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1149 			continue;
1150 
1151 		if ((scn_addr < drmem.base_addr)
1152 		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1153 			continue;
1154 
1155 		nid = of_drconf_to_nid_single(&drmem, &aa);
1156 		break;
1157 	}
1158 
1159 	return nid;
1160 }
1161 
1162 /*
1163  * Find the node associated with a hot added memory section for memory
1164  * represented in the device tree as a node (i.e. memory@XXXX) for
1165  * each memblock.
1166  */
1167 int hot_add_node_scn_to_nid(unsigned long scn_addr)
1168 {
1169 	struct device_node *memory;
1170 	int nid = -1;
1171 
1172 	for_each_node_by_type(memory, "memory") {
1173 		unsigned long start, size;
1174 		int ranges;
1175 		const unsigned int *memcell_buf;
1176 		unsigned int len;
1177 
1178 		memcell_buf = of_get_property(memory, "reg", &len);
1179 		if (!memcell_buf || len <= 0)
1180 			continue;
1181 
1182 		/* ranges in cell */
1183 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1184 
1185 		while (ranges--) {
1186 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1187 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1188 
1189 			if ((scn_addr < start) || (scn_addr >= (start + size)))
1190 				continue;
1191 
1192 			nid = of_node_to_nid_single(memory);
1193 			break;
1194 		}
1195 
1196 		if (nid >= 0)
1197 			break;
1198 	}
1199 
1200 	of_node_put(memory);
1201 
1202 	return nid;
1203 }
1204 
1205 /*
1206  * Find the node associated with a hot added memory section.  Section
1207  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1208  * sections are fully contained within a single MEMBLOCK.
1209  */
1210 int hot_add_scn_to_nid(unsigned long scn_addr)
1211 {
1212 	struct device_node *memory = NULL;
1213 	int nid, found = 0;
1214 
1215 	if (!numa_enabled || (min_common_depth < 0))
1216 		return first_online_node;
1217 
1218 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1219 	if (memory) {
1220 		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1221 		of_node_put(memory);
1222 	} else {
1223 		nid = hot_add_node_scn_to_nid(scn_addr);
1224 	}
1225 
1226 	if (nid < 0 || !node_online(nid))
1227 		nid = first_online_node;
1228 
1229 	if (NODE_DATA(nid)->node_spanned_pages)
1230 		return nid;
1231 
1232 	for_each_online_node(nid) {
1233 		if (NODE_DATA(nid)->node_spanned_pages) {
1234 			found = 1;
1235 			break;
1236 		}
1237 	}
1238 
1239 	BUG_ON(!found);
1240 	return nid;
1241 }
1242 
1243 static u64 hot_add_drconf_memory_max(void)
1244 {
1245         struct device_node *memory = NULL;
1246         unsigned int drconf_cell_cnt = 0;
1247         u64 lmb_size = 0;
1248         const u32 *dm = 0;
1249 
1250         memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1251         if (memory) {
1252                 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1253                 lmb_size = of_get_lmb_size(memory);
1254                 of_node_put(memory);
1255         }
1256         return lmb_size * drconf_cell_cnt;
1257 }
1258 
1259 /*
1260  * memory_hotplug_max - return max address of memory that may be added
1261  *
1262  * This is currently only used on systems that support drconfig memory
1263  * hotplug.
1264  */
1265 u64 memory_hotplug_max(void)
1266 {
1267         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1268 }
1269 #endif /* CONFIG_MEMORY_HOTPLUG */
1270 
1271 /* Virtual Processor Home Node (VPHN) support */
1272 #ifdef CONFIG_PPC_SPLPAR
1273 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1274 static cpumask_t cpu_associativity_changes_mask;
1275 static int vphn_enabled;
1276 static void set_topology_timer(void);
1277 
1278 /*
1279  * Store the current values of the associativity change counters in the
1280  * hypervisor.
1281  */
1282 static void setup_cpu_associativity_change_counters(void)
1283 {
1284 	int cpu;
1285 
1286 	/* The VPHN feature supports a maximum of 8 reference points */
1287 	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1288 
1289 	for_each_possible_cpu(cpu) {
1290 		int i;
1291 		u8 *counts = vphn_cpu_change_counts[cpu];
1292 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1293 
1294 		for (i = 0; i < distance_ref_points_depth; i++)
1295 			counts[i] = hypervisor_counts[i];
1296 	}
1297 }
1298 
1299 /*
1300  * The hypervisor maintains a set of 8 associativity change counters in
1301  * the VPA of each cpu that correspond to the associativity levels in the
1302  * ibm,associativity-reference-points property. When an associativity
1303  * level changes, the corresponding counter is incremented.
1304  *
1305  * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1306  * node associativity levels have changed.
1307  *
1308  * Returns the number of cpus with unhandled associativity changes.
1309  */
1310 static int update_cpu_associativity_changes_mask(void)
1311 {
1312 	int cpu, nr_cpus = 0;
1313 	cpumask_t *changes = &cpu_associativity_changes_mask;
1314 
1315 	cpumask_clear(changes);
1316 
1317 	for_each_possible_cpu(cpu) {
1318 		int i, changed = 0;
1319 		u8 *counts = vphn_cpu_change_counts[cpu];
1320 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1321 
1322 		for (i = 0; i < distance_ref_points_depth; i++) {
1323 			if (hypervisor_counts[i] != counts[i]) {
1324 				counts[i] = hypervisor_counts[i];
1325 				changed = 1;
1326 			}
1327 		}
1328 		if (changed) {
1329 			cpumask_set_cpu(cpu, changes);
1330 			nr_cpus++;
1331 		}
1332 	}
1333 
1334 	return nr_cpus;
1335 }
1336 
1337 /*
1338  * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1339  * the complete property we have to add the length in the first cell.
1340  */
1341 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1342 
1343 /*
1344  * Convert the associativity domain numbers returned from the hypervisor
1345  * to the sequence they would appear in the ibm,associativity property.
1346  */
1347 static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1348 {
1349 	int i, nr_assoc_doms = 0;
1350 	const u16 *field = (const u16*) packed;
1351 
1352 #define VPHN_FIELD_UNUSED	(0xffff)
1353 #define VPHN_FIELD_MSB		(0x8000)
1354 #define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)
1355 
1356 	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1357 		if (*field == VPHN_FIELD_UNUSED) {
1358 			/* All significant fields processed, and remaining
1359 			 * fields contain the reserved value of all 1's.
1360 			 * Just store them.
1361 			 */
1362 			unpacked[i] = *((u32*)field);
1363 			field += 2;
1364 		} else if (*field & VPHN_FIELD_MSB) {
1365 			/* Data is in the lower 15 bits of this field */
1366 			unpacked[i] = *field & VPHN_FIELD_MASK;
1367 			field++;
1368 			nr_assoc_doms++;
1369 		} else {
1370 			/* Data is in the lower 15 bits of this field
1371 			 * concatenated with the next 16 bit field
1372 			 */
1373 			unpacked[i] = *((u32*)field);
1374 			field += 2;
1375 			nr_assoc_doms++;
1376 		}
1377 	}
1378 
1379 	/* The first cell contains the length of the property */
1380 	unpacked[0] = nr_assoc_doms;
1381 
1382 	return nr_assoc_doms;
1383 }
1384 
1385 /*
1386  * Retrieve the new associativity information for a virtual processor's
1387  * home node.
1388  */
1389 static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1390 {
1391 	long rc;
1392 	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1393 	u64 flags = 1;
1394 	int hwcpu = get_hard_smp_processor_id(cpu);
1395 
1396 	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1397 	vphn_unpack_associativity(retbuf, associativity);
1398 
1399 	return rc;
1400 }
1401 
1402 static long vphn_get_associativity(unsigned long cpu,
1403 					unsigned int *associativity)
1404 {
1405 	long rc;
1406 
1407 	rc = hcall_vphn(cpu, associativity);
1408 
1409 	switch (rc) {
1410 	case H_FUNCTION:
1411 		printk(KERN_INFO
1412 			"VPHN is not supported. Disabling polling...\n");
1413 		stop_topology_update();
1414 		break;
1415 	case H_HARDWARE:
1416 		printk(KERN_ERR
1417 			"hcall_vphn() experienced a hardware fault "
1418 			"preventing VPHN. Disabling polling...\n");
1419 		stop_topology_update();
1420 	}
1421 
1422 	return rc;
1423 }
1424 
1425 /*
1426  * Update the node maps and sysfs entries for each cpu whose home node
1427  * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1428  */
1429 int arch_update_cpu_topology(void)
1430 {
1431 	int cpu, nid, old_nid, changed = 0;
1432 	unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1433 	struct device *dev;
1434 
1435 	for_each_cpu(cpu,&cpu_associativity_changes_mask) {
1436 		vphn_get_associativity(cpu, associativity);
1437 		nid = associativity_to_nid(associativity);
1438 
1439 		if (nid < 0 || !node_online(nid))
1440 			nid = first_online_node;
1441 
1442 		old_nid = numa_cpu_lookup_table[cpu];
1443 
1444 		/* Disable hotplug while we update the cpu
1445 		 * masks and sysfs.
1446 		 */
1447 		get_online_cpus();
1448 		unregister_cpu_under_node(cpu, old_nid);
1449 		unmap_cpu_from_node(cpu);
1450 		map_cpu_to_node(cpu, nid);
1451 		register_cpu_under_node(cpu, nid);
1452 		put_online_cpus();
1453 
1454 		dev = get_cpu_device(cpu);
1455 		if (dev)
1456 			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1457 		changed = 1;
1458 	}
1459 
1460 	return changed;
1461 }
1462 
1463 static void topology_work_fn(struct work_struct *work)
1464 {
1465 	rebuild_sched_domains();
1466 }
1467 static DECLARE_WORK(topology_work, topology_work_fn);
1468 
1469 void topology_schedule_update(void)
1470 {
1471 	schedule_work(&topology_work);
1472 }
1473 
1474 static void topology_timer_fn(unsigned long ignored)
1475 {
1476 	if (!vphn_enabled)
1477 		return;
1478 	if (update_cpu_associativity_changes_mask() > 0)
1479 		topology_schedule_update();
1480 	set_topology_timer();
1481 }
1482 static struct timer_list topology_timer =
1483 	TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1484 
1485 static void set_topology_timer(void)
1486 {
1487 	topology_timer.data = 0;
1488 	topology_timer.expires = jiffies + 60 * HZ;
1489 	add_timer(&topology_timer);
1490 }
1491 
1492 /*
1493  * Start polling for VPHN associativity changes.
1494  */
1495 int start_topology_update(void)
1496 {
1497 	int rc = 0;
1498 
1499 	/* Disabled until races with load balancing are fixed */
1500 	if (0 && firmware_has_feature(FW_FEATURE_VPHN) &&
1501 	    get_lppaca()->shared_proc) {
1502 		vphn_enabled = 1;
1503 		setup_cpu_associativity_change_counters();
1504 		init_timer_deferrable(&topology_timer);
1505 		set_topology_timer();
1506 		rc = 1;
1507 	}
1508 
1509 	return rc;
1510 }
1511 __initcall(start_topology_update);
1512 
1513 /*
1514  * Disable polling for VPHN associativity changes.
1515  */
1516 int stop_topology_update(void)
1517 {
1518 	vphn_enabled = 0;
1519 	return del_timer_sync(&topology_timer);
1520 }
1521 #endif /* CONFIG_PPC_SPLPAR */
1522