xref: /openbmc/linux/arch/powerpc/mm/numa.c (revision c4a11bf4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pSeries NUMA support
4  *
5  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6  */
7 #define pr_fmt(fmt) "numa: " fmt
8 
9 #include <linux/threads.h>
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/mmzone.h>
14 #include <linux/export.h>
15 #include <linux/nodemask.h>
16 #include <linux/cpu.h>
17 #include <linux/notifier.h>
18 #include <linux/of.h>
19 #include <linux/pfn.h>
20 #include <linux/cpuset.h>
21 #include <linux/node.h>
22 #include <linux/stop_machine.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <asm/cputhreads.h>
28 #include <asm/sparsemem.h>
29 #include <asm/prom.h>
30 #include <asm/smp.h>
31 #include <asm/topology.h>
32 #include <asm/firmware.h>
33 #include <asm/paca.h>
34 #include <asm/hvcall.h>
35 #include <asm/setup.h>
36 #include <asm/vdso.h>
37 #include <asm/drmem.h>
38 
39 static int numa_enabled = 1;
40 
41 static char *cmdline __initdata;
42 
43 int numa_cpu_lookup_table[NR_CPUS];
44 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
45 struct pglist_data *node_data[MAX_NUMNODES];
46 
47 EXPORT_SYMBOL(numa_cpu_lookup_table);
48 EXPORT_SYMBOL(node_to_cpumask_map);
49 EXPORT_SYMBOL(node_data);
50 
51 static int primary_domain_index;
52 static int n_mem_addr_cells, n_mem_size_cells;
53 
54 #define FORM0_AFFINITY 0
55 #define FORM1_AFFINITY 1
56 #define FORM2_AFFINITY 2
57 static int affinity_form;
58 
59 #define MAX_DISTANCE_REF_POINTS 4
60 static int distance_ref_points_depth;
61 static const __be32 *distance_ref_points;
62 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
63 static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
64 	[0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
65 };
66 static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };
67 
68 /*
69  * Allocate node_to_cpumask_map based on number of available nodes
70  * Requires node_possible_map to be valid.
71  *
72  * Note: cpumask_of_node() is not valid until after this is done.
73  */
74 static void __init setup_node_to_cpumask_map(void)
75 {
76 	unsigned int node;
77 
78 	/* setup nr_node_ids if not done yet */
79 	if (nr_node_ids == MAX_NUMNODES)
80 		setup_nr_node_ids();
81 
82 	/* allocate the map */
83 	for_each_node(node)
84 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
85 
86 	/* cpumask_of_node() will now work */
87 	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
88 }
89 
90 static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 						unsigned int *nid)
92 {
93 	unsigned long long mem;
94 	char *p = cmdline;
95 	static unsigned int fake_nid;
96 	static unsigned long long curr_boundary;
97 
98 	/*
99 	 * Modify node id, iff we started creating NUMA nodes
100 	 * We want to continue from where we left of the last time
101 	 */
102 	if (fake_nid)
103 		*nid = fake_nid;
104 	/*
105 	 * In case there are no more arguments to parse, the
106 	 * node_id should be the same as the last fake node id
107 	 * (we've handled this above).
108 	 */
109 	if (!p)
110 		return 0;
111 
112 	mem = memparse(p, &p);
113 	if (!mem)
114 		return 0;
115 
116 	if (mem < curr_boundary)
117 		return 0;
118 
119 	curr_boundary = mem;
120 
121 	if ((end_pfn << PAGE_SHIFT) > mem) {
122 		/*
123 		 * Skip commas and spaces
124 		 */
125 		while (*p == ',' || *p == ' ' || *p == '\t')
126 			p++;
127 
128 		cmdline = p;
129 		fake_nid++;
130 		*nid = fake_nid;
131 		pr_debug("created new fake_node with id %d\n", fake_nid);
132 		return 1;
133 	}
134 	return 0;
135 }
136 
137 static void reset_numa_cpu_lookup_table(void)
138 {
139 	unsigned int cpu;
140 
141 	for_each_possible_cpu(cpu)
142 		numa_cpu_lookup_table[cpu] = -1;
143 }
144 
145 void map_cpu_to_node(int cpu, int node)
146 {
147 	update_numa_cpu_lookup_table(cpu, node);
148 
149 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) {
150 		pr_debug("adding cpu %d to node %d\n", cpu, node);
151 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
152 	}
153 }
154 
155 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
156 void unmap_cpu_from_node(unsigned long cpu)
157 {
158 	int node = numa_cpu_lookup_table[cpu];
159 
160 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
161 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
162 		pr_debug("removing cpu %lu from node %d\n", cpu, node);
163 	} else {
164 		pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node);
165 	}
166 }
167 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
168 
169 static int __associativity_to_nid(const __be32 *associativity,
170 				  int max_array_sz)
171 {
172 	int nid;
173 	/*
174 	 * primary_domain_index is 1 based array index.
175 	 */
176 	int index = primary_domain_index  - 1;
177 
178 	if (!numa_enabled || index >= max_array_sz)
179 		return NUMA_NO_NODE;
180 
181 	nid = of_read_number(&associativity[index], 1);
182 
183 	/* POWER4 LPAR uses 0xffff as invalid node */
184 	if (nid == 0xffff || nid >= nr_node_ids)
185 		nid = NUMA_NO_NODE;
186 	return nid;
187 }
188 /*
189  * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
190  * info is found.
191  */
192 static int associativity_to_nid(const __be32 *associativity)
193 {
194 	int array_sz = of_read_number(associativity, 1);
195 
196 	/* Skip the first element in the associativity array */
197 	return __associativity_to_nid((associativity + 1), array_sz);
198 }
199 
200 static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
201 {
202 	int dist;
203 	int node1, node2;
204 
205 	node1 = associativity_to_nid(cpu1_assoc);
206 	node2 = associativity_to_nid(cpu2_assoc);
207 
208 	dist = numa_distance_table[node1][node2];
209 	if (dist <= LOCAL_DISTANCE)
210 		return 0;
211 	else if (dist <= REMOTE_DISTANCE)
212 		return 1;
213 	else
214 		return 2;
215 }
216 
217 static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
218 {
219 	int dist = 0;
220 
221 	int i, index;
222 
223 	for (i = 0; i < distance_ref_points_depth; i++) {
224 		index = be32_to_cpu(distance_ref_points[i]);
225 		if (cpu1_assoc[index] == cpu2_assoc[index])
226 			break;
227 		dist++;
228 	}
229 
230 	return dist;
231 }
232 
233 int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
234 {
235 	/* We should not get called with FORM0 */
236 	VM_WARN_ON(affinity_form == FORM0_AFFINITY);
237 	if (affinity_form == FORM1_AFFINITY)
238 		return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
239 	return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
240 }
241 
242 /* must hold reference to node during call */
243 static const __be32 *of_get_associativity(struct device_node *dev)
244 {
245 	return of_get_property(dev, "ibm,associativity", NULL);
246 }
247 
248 int __node_distance(int a, int b)
249 {
250 	int i;
251 	int distance = LOCAL_DISTANCE;
252 
253 	if (affinity_form == FORM2_AFFINITY)
254 		return numa_distance_table[a][b];
255 	else if (affinity_form == FORM0_AFFINITY)
256 		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
257 
258 	for (i = 0; i < distance_ref_points_depth; i++) {
259 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
260 			break;
261 
262 		/* Double the distance for each NUMA level */
263 		distance *= 2;
264 	}
265 
266 	return distance;
267 }
268 EXPORT_SYMBOL(__node_distance);
269 
270 /* Returns the nid associated with the given device tree node,
271  * or -1 if not found.
272  */
273 static int of_node_to_nid_single(struct device_node *device)
274 {
275 	int nid = NUMA_NO_NODE;
276 	const __be32 *tmp;
277 
278 	tmp = of_get_associativity(device);
279 	if (tmp)
280 		nid = associativity_to_nid(tmp);
281 	return nid;
282 }
283 
284 /* Walk the device tree upwards, looking for an associativity id */
285 int of_node_to_nid(struct device_node *device)
286 {
287 	int nid = NUMA_NO_NODE;
288 
289 	of_node_get(device);
290 	while (device) {
291 		nid = of_node_to_nid_single(device);
292 		if (nid != -1)
293 			break;
294 
295 		device = of_get_next_parent(device);
296 	}
297 	of_node_put(device);
298 
299 	return nid;
300 }
301 EXPORT_SYMBOL(of_node_to_nid);
302 
303 static void __initialize_form1_numa_distance(const __be32 *associativity,
304 					     int max_array_sz)
305 {
306 	int i, nid;
307 
308 	if (affinity_form != FORM1_AFFINITY)
309 		return;
310 
311 	nid = __associativity_to_nid(associativity, max_array_sz);
312 	if (nid != NUMA_NO_NODE) {
313 		for (i = 0; i < distance_ref_points_depth; i++) {
314 			const __be32 *entry;
315 			int index = be32_to_cpu(distance_ref_points[i]) - 1;
316 
317 			/*
318 			 * broken hierarchy, return with broken distance table
319 			 */
320 			if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
321 				return;
322 
323 			entry = &associativity[index];
324 			distance_lookup_table[nid][i] = of_read_number(entry, 1);
325 		}
326 	}
327 }
328 
329 static void initialize_form1_numa_distance(const __be32 *associativity)
330 {
331 	int array_sz;
332 
333 	array_sz = of_read_number(associativity, 1);
334 	/* Skip the first element in the associativity array */
335 	__initialize_form1_numa_distance(associativity + 1, array_sz);
336 }
337 
338 /*
339  * Used to update distance information w.r.t newly added node.
340  */
341 void update_numa_distance(struct device_node *node)
342 {
343 	int nid;
344 
345 	if (affinity_form == FORM0_AFFINITY)
346 		return;
347 	else if (affinity_form == FORM1_AFFINITY) {
348 		const __be32 *associativity;
349 
350 		associativity = of_get_associativity(node);
351 		if (!associativity)
352 			return;
353 
354 		initialize_form1_numa_distance(associativity);
355 		return;
356 	}
357 
358 	/* FORM2 affinity  */
359 	nid = of_node_to_nid_single(node);
360 	if (nid == NUMA_NO_NODE)
361 		return;
362 
363 	/*
364 	 * With FORM2 we expect NUMA distance of all possible NUMA
365 	 * nodes to be provided during boot.
366 	 */
367 	WARN(numa_distance_table[nid][nid] == -1,
368 	     "NUMA distance details for node %d not provided\n", nid);
369 }
370 
371 /*
372  * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
373  * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
374  */
375 static void initialize_form2_numa_distance_lookup_table(void)
376 {
377 	int i, j;
378 	struct device_node *root;
379 	const __u8 *numa_dist_table;
380 	const __be32 *numa_lookup_index;
381 	int numa_dist_table_length;
382 	int max_numa_index, distance_index;
383 
384 	if (firmware_has_feature(FW_FEATURE_OPAL))
385 		root = of_find_node_by_path("/ibm,opal");
386 	else
387 		root = of_find_node_by_path("/rtas");
388 	if (!root)
389 		root = of_find_node_by_path("/");
390 
391 	numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
392 	max_numa_index = of_read_number(&numa_lookup_index[0], 1);
393 
394 	/* first element of the array is the size and is encode-int */
395 	numa_dist_table = of_get_property(root, "ibm,numa-distance-table", NULL);
396 	numa_dist_table_length = of_read_number((const __be32 *)&numa_dist_table[0], 1);
397 	/* Skip the size which is encoded int */
398 	numa_dist_table += sizeof(__be32);
399 
400 	pr_debug("numa_dist_table_len = %d, numa_dist_indexes_len = %d\n",
401 		 numa_dist_table_length, max_numa_index);
402 
403 	for (i = 0; i < max_numa_index; i++)
404 		/* +1 skip the max_numa_index in the property */
405 		numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);
406 
407 
408 	if (numa_dist_table_length != max_numa_index * max_numa_index) {
409 		WARN(1, "Wrong NUMA distance information\n");
410 		/* consider everybody else just remote. */
411 		for (i = 0;  i < max_numa_index; i++) {
412 			for (j = 0; j < max_numa_index; j++) {
413 				int nodeA = numa_id_index_table[i];
414 				int nodeB = numa_id_index_table[j];
415 
416 				if (nodeA == nodeB)
417 					numa_distance_table[nodeA][nodeB] = LOCAL_DISTANCE;
418 				else
419 					numa_distance_table[nodeA][nodeB] = REMOTE_DISTANCE;
420 			}
421 		}
422 	}
423 
424 	distance_index = 0;
425 	for (i = 0;  i < max_numa_index; i++) {
426 		for (j = 0; j < max_numa_index; j++) {
427 			int nodeA = numa_id_index_table[i];
428 			int nodeB = numa_id_index_table[j];
429 
430 			numa_distance_table[nodeA][nodeB] = numa_dist_table[distance_index++];
431 			pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, numa_distance_table[nodeA][nodeB]);
432 		}
433 	}
434 	of_node_put(root);
435 }
436 
437 static int __init find_primary_domain_index(void)
438 {
439 	int index;
440 	struct device_node *root;
441 
442 	/*
443 	 * Check for which form of affinity.
444 	 */
445 	if (firmware_has_feature(FW_FEATURE_OPAL)) {
446 		affinity_form = FORM1_AFFINITY;
447 	} else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
448 		pr_debug("Using form 2 affinity\n");
449 		affinity_form = FORM2_AFFINITY;
450 	} else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
451 		pr_debug("Using form 1 affinity\n");
452 		affinity_form = FORM1_AFFINITY;
453 	} else
454 		affinity_form = FORM0_AFFINITY;
455 
456 	if (firmware_has_feature(FW_FEATURE_OPAL))
457 		root = of_find_node_by_path("/ibm,opal");
458 	else
459 		root = of_find_node_by_path("/rtas");
460 	if (!root)
461 		root = of_find_node_by_path("/");
462 
463 	/*
464 	 * This property is a set of 32-bit integers, each representing
465 	 * an index into the ibm,associativity nodes.
466 	 *
467 	 * With form 0 affinity the first integer is for an SMP configuration
468 	 * (should be all 0's) and the second is for a normal NUMA
469 	 * configuration. We have only one level of NUMA.
470 	 *
471 	 * With form 1 affinity the first integer is the most significant
472 	 * NUMA boundary and the following are progressively less significant
473 	 * boundaries. There can be more than one level of NUMA.
474 	 */
475 	distance_ref_points = of_get_property(root,
476 					"ibm,associativity-reference-points",
477 					&distance_ref_points_depth);
478 
479 	if (!distance_ref_points) {
480 		pr_debug("ibm,associativity-reference-points not found.\n");
481 		goto err;
482 	}
483 
484 	distance_ref_points_depth /= sizeof(int);
485 	if (affinity_form == FORM0_AFFINITY) {
486 		if (distance_ref_points_depth < 2) {
487 			pr_warn("short ibm,associativity-reference-points\n");
488 			goto err;
489 		}
490 
491 		index = of_read_number(&distance_ref_points[1], 1);
492 	} else {
493 		/*
494 		 * Both FORM1 and FORM2 affinity find the primary domain details
495 		 * at the same offset.
496 		 */
497 		index = of_read_number(distance_ref_points, 1);
498 	}
499 	/*
500 	 * Warn and cap if the hardware supports more than
501 	 * MAX_DISTANCE_REF_POINTS domains.
502 	 */
503 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
504 		pr_warn("distance array capped at %d entries\n",
505 			MAX_DISTANCE_REF_POINTS);
506 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
507 	}
508 
509 	of_node_put(root);
510 	return index;
511 
512 err:
513 	of_node_put(root);
514 	return -1;
515 }
516 
517 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
518 {
519 	struct device_node *memory = NULL;
520 
521 	memory = of_find_node_by_type(memory, "memory");
522 	if (!memory)
523 		panic("numa.c: No memory nodes found!");
524 
525 	*n_addr_cells = of_n_addr_cells(memory);
526 	*n_size_cells = of_n_size_cells(memory);
527 	of_node_put(memory);
528 }
529 
530 static unsigned long read_n_cells(int n, const __be32 **buf)
531 {
532 	unsigned long result = 0;
533 
534 	while (n--) {
535 		result = (result << 32) | of_read_number(*buf, 1);
536 		(*buf)++;
537 	}
538 	return result;
539 }
540 
541 struct assoc_arrays {
542 	u32	n_arrays;
543 	u32	array_sz;
544 	const __be32 *arrays;
545 };
546 
547 /*
548  * Retrieve and validate the list of associativity arrays for drconf
549  * memory from the ibm,associativity-lookup-arrays property of the
550  * device tree..
551  *
552  * The layout of the ibm,associativity-lookup-arrays property is a number N
553  * indicating the number of associativity arrays, followed by a number M
554  * indicating the size of each associativity array, followed by a list
555  * of N associativity arrays.
556  */
557 static int of_get_assoc_arrays(struct assoc_arrays *aa)
558 {
559 	struct device_node *memory;
560 	const __be32 *prop;
561 	u32 len;
562 
563 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
564 	if (!memory)
565 		return -1;
566 
567 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
568 	if (!prop || len < 2 * sizeof(unsigned int)) {
569 		of_node_put(memory);
570 		return -1;
571 	}
572 
573 	aa->n_arrays = of_read_number(prop++, 1);
574 	aa->array_sz = of_read_number(prop++, 1);
575 
576 	of_node_put(memory);
577 
578 	/* Now that we know the number of arrays and size of each array,
579 	 * revalidate the size of the property read in.
580 	 */
581 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
582 		return -1;
583 
584 	aa->arrays = prop;
585 	return 0;
586 }
587 
588 static int get_nid_and_numa_distance(struct drmem_lmb *lmb)
589 {
590 	struct assoc_arrays aa = { .arrays = NULL };
591 	int default_nid = NUMA_NO_NODE;
592 	int nid = default_nid;
593 	int rc, index;
594 
595 	if ((primary_domain_index < 0) || !numa_enabled)
596 		return default_nid;
597 
598 	rc = of_get_assoc_arrays(&aa);
599 	if (rc)
600 		return default_nid;
601 
602 	if (primary_domain_index <= aa.array_sz &&
603 	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
604 		const __be32 *associativity;
605 
606 		index = lmb->aa_index * aa.array_sz;
607 		associativity = &aa.arrays[index];
608 		nid = __associativity_to_nid(associativity, aa.array_sz);
609 		if (nid > 0 && affinity_form == FORM1_AFFINITY) {
610 			/*
611 			 * lookup array associativity entries have
612 			 * no length of the array as the first element.
613 			 */
614 			__initialize_form1_numa_distance(associativity, aa.array_sz);
615 		}
616 	}
617 	return nid;
618 }
619 
620 /*
621  * This is like of_node_to_nid_single() for memory represented in the
622  * ibm,dynamic-reconfiguration-memory node.
623  */
624 int of_drconf_to_nid_single(struct drmem_lmb *lmb)
625 {
626 	struct assoc_arrays aa = { .arrays = NULL };
627 	int default_nid = NUMA_NO_NODE;
628 	int nid = default_nid;
629 	int rc, index;
630 
631 	if ((primary_domain_index < 0) || !numa_enabled)
632 		return default_nid;
633 
634 	rc = of_get_assoc_arrays(&aa);
635 	if (rc)
636 		return default_nid;
637 
638 	if (primary_domain_index <= aa.array_sz &&
639 	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
640 		const __be32 *associativity;
641 
642 		index = lmb->aa_index * aa.array_sz;
643 		associativity = &aa.arrays[index];
644 		nid = __associativity_to_nid(associativity, aa.array_sz);
645 	}
646 	return nid;
647 }
648 
649 #ifdef CONFIG_PPC_SPLPAR
650 
651 static int __vphn_get_associativity(long lcpu, __be32 *associativity)
652 {
653 	long rc, hwid;
654 
655 	/*
656 	 * On a shared lpar, device tree will not have node associativity.
657 	 * At this time lppaca, or its __old_status field may not be
658 	 * updated. Hence kernel cannot detect if its on a shared lpar. So
659 	 * request an explicit associativity irrespective of whether the
660 	 * lpar is shared or dedicated. Use the device tree property as a
661 	 * fallback. cpu_to_phys_id is only valid between
662 	 * smp_setup_cpu_maps() and smp_setup_pacas().
663 	 */
664 	if (firmware_has_feature(FW_FEATURE_VPHN)) {
665 		if (cpu_to_phys_id)
666 			hwid = cpu_to_phys_id[lcpu];
667 		else
668 			hwid = get_hard_smp_processor_id(lcpu);
669 
670 		rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
671 		if (rc == H_SUCCESS)
672 			return 0;
673 	}
674 
675 	return -1;
676 }
677 
678 static int vphn_get_nid(long lcpu)
679 {
680 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
681 
682 
683 	if (!__vphn_get_associativity(lcpu, associativity))
684 		return associativity_to_nid(associativity);
685 
686 	return NUMA_NO_NODE;
687 
688 }
689 #else
690 
691 static int __vphn_get_associativity(long lcpu, __be32 *associativity)
692 {
693 	return -1;
694 }
695 
696 static int vphn_get_nid(long unused)
697 {
698 	return NUMA_NO_NODE;
699 }
700 #endif  /* CONFIG_PPC_SPLPAR */
701 
702 /*
703  * Figure out to which domain a cpu belongs and stick it there.
704  * Return the id of the domain used.
705  */
706 static int numa_setup_cpu(unsigned long lcpu)
707 {
708 	struct device_node *cpu;
709 	int fcpu = cpu_first_thread_sibling(lcpu);
710 	int nid = NUMA_NO_NODE;
711 
712 	if (!cpu_present(lcpu)) {
713 		set_cpu_numa_node(lcpu, first_online_node);
714 		return first_online_node;
715 	}
716 
717 	/*
718 	 * If a valid cpu-to-node mapping is already available, use it
719 	 * directly instead of querying the firmware, since it represents
720 	 * the most recent mapping notified to us by the platform (eg: VPHN).
721 	 * Since cpu_to_node binding remains the same for all threads in the
722 	 * core. If a valid cpu-to-node mapping is already available, for
723 	 * the first thread in the core, use it.
724 	 */
725 	nid = numa_cpu_lookup_table[fcpu];
726 	if (nid >= 0) {
727 		map_cpu_to_node(lcpu, nid);
728 		return nid;
729 	}
730 
731 	nid = vphn_get_nid(lcpu);
732 	if (nid != NUMA_NO_NODE)
733 		goto out_present;
734 
735 	cpu = of_get_cpu_node(lcpu, NULL);
736 
737 	if (!cpu) {
738 		WARN_ON(1);
739 		if (cpu_present(lcpu))
740 			goto out_present;
741 		else
742 			goto out;
743 	}
744 
745 	nid = of_node_to_nid_single(cpu);
746 	of_node_put(cpu);
747 
748 out_present:
749 	if (nid < 0 || !node_possible(nid))
750 		nid = first_online_node;
751 
752 	/*
753 	 * Update for the first thread of the core. All threads of a core
754 	 * have to be part of the same node. This not only avoids querying
755 	 * for every other thread in the core, but always avoids a case
756 	 * where virtual node associativity change causes subsequent threads
757 	 * of a core to be associated with different nid. However if first
758 	 * thread is already online, expect it to have a valid mapping.
759 	 */
760 	if (fcpu != lcpu) {
761 		WARN_ON(cpu_online(fcpu));
762 		map_cpu_to_node(fcpu, nid);
763 	}
764 
765 	map_cpu_to_node(lcpu, nid);
766 out:
767 	return nid;
768 }
769 
770 static void verify_cpu_node_mapping(int cpu, int node)
771 {
772 	int base, sibling, i;
773 
774 	/* Verify that all the threads in the core belong to the same node */
775 	base = cpu_first_thread_sibling(cpu);
776 
777 	for (i = 0; i < threads_per_core; i++) {
778 		sibling = base + i;
779 
780 		if (sibling == cpu || cpu_is_offline(sibling))
781 			continue;
782 
783 		if (cpu_to_node(sibling) != node) {
784 			WARN(1, "CPU thread siblings %d and %d don't belong"
785 				" to the same node!\n", cpu, sibling);
786 			break;
787 		}
788 	}
789 }
790 
791 /* Must run before sched domains notifier. */
792 static int ppc_numa_cpu_prepare(unsigned int cpu)
793 {
794 	int nid;
795 
796 	nid = numa_setup_cpu(cpu);
797 	verify_cpu_node_mapping(cpu, nid);
798 	return 0;
799 }
800 
801 static int ppc_numa_cpu_dead(unsigned int cpu)
802 {
803 	return 0;
804 }
805 
806 /*
807  * Check and possibly modify a memory region to enforce the memory limit.
808  *
809  * Returns the size the region should have to enforce the memory limit.
810  * This will either be the original value of size, a truncated value,
811  * or zero. If the returned value of size is 0 the region should be
812  * discarded as it lies wholly above the memory limit.
813  */
814 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
815 						      unsigned long size)
816 {
817 	/*
818 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
819 	 * we've already adjusted it for the limit and it takes care of
820 	 * having memory holes below the limit.  Also, in the case of
821 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
822 	 */
823 
824 	if (start + size <= memblock_end_of_DRAM())
825 		return size;
826 
827 	if (start >= memblock_end_of_DRAM())
828 		return 0;
829 
830 	return memblock_end_of_DRAM() - start;
831 }
832 
833 /*
834  * Reads the counter for a given entry in
835  * linux,drconf-usable-memory property
836  */
837 static inline int __init read_usm_ranges(const __be32 **usm)
838 {
839 	/*
840 	 * For each lmb in ibm,dynamic-memory a corresponding
841 	 * entry in linux,drconf-usable-memory property contains
842 	 * a counter followed by that many (base, size) duple.
843 	 * read the counter from linux,drconf-usable-memory
844 	 */
845 	return read_n_cells(n_mem_size_cells, usm);
846 }
847 
848 /*
849  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
850  * node.  This assumes n_mem_{addr,size}_cells have been set.
851  */
852 static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
853 					const __be32 **usm,
854 					void *data)
855 {
856 	unsigned int ranges, is_kexec_kdump = 0;
857 	unsigned long base, size, sz;
858 	int nid;
859 
860 	/*
861 	 * Skip this block if the reserved bit is set in flags (0x80)
862 	 * or if the block is not assigned to this partition (0x8)
863 	 */
864 	if ((lmb->flags & DRCONF_MEM_RESERVED)
865 	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
866 		return 0;
867 
868 	if (*usm)
869 		is_kexec_kdump = 1;
870 
871 	base = lmb->base_addr;
872 	size = drmem_lmb_size();
873 	ranges = 1;
874 
875 	if (is_kexec_kdump) {
876 		ranges = read_usm_ranges(usm);
877 		if (!ranges) /* there are no (base, size) duple */
878 			return 0;
879 	}
880 
881 	do {
882 		if (is_kexec_kdump) {
883 			base = read_n_cells(n_mem_addr_cells, usm);
884 			size = read_n_cells(n_mem_size_cells, usm);
885 		}
886 
887 		nid = get_nid_and_numa_distance(lmb);
888 		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
889 					  &nid);
890 		node_set_online(nid);
891 		sz = numa_enforce_memory_limit(base, size);
892 		if (sz)
893 			memblock_set_node(base, sz, &memblock.memory, nid);
894 	} while (--ranges);
895 
896 	return 0;
897 }
898 
899 static int __init parse_numa_properties(void)
900 {
901 	struct device_node *memory;
902 	int default_nid = 0;
903 	unsigned long i;
904 	const __be32 *associativity;
905 
906 	if (numa_enabled == 0) {
907 		pr_warn("disabled by user\n");
908 		return -1;
909 	}
910 
911 	primary_domain_index = find_primary_domain_index();
912 
913 	if (primary_domain_index < 0) {
914 		/*
915 		 * if we fail to parse primary_domain_index from device tree
916 		 * mark the numa disabled, boot with numa disabled.
917 		 */
918 		numa_enabled = false;
919 		return primary_domain_index;
920 	}
921 
922 	pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index);
923 
924 	/*
925 	 * If it is FORM2 initialize the distance table here.
926 	 */
927 	if (affinity_form == FORM2_AFFINITY)
928 		initialize_form2_numa_distance_lookup_table();
929 
930 	/*
931 	 * Even though we connect cpus to numa domains later in SMP
932 	 * init, we need to know the node ids now. This is because
933 	 * each node to be onlined must have NODE_DATA etc backing it.
934 	 */
935 	for_each_present_cpu(i) {
936 		__be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
937 		struct device_node *cpu;
938 		int nid = NUMA_NO_NODE;
939 
940 		memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));
941 
942 		if (__vphn_get_associativity(i, vphn_assoc) == 0) {
943 			nid = associativity_to_nid(vphn_assoc);
944 			initialize_form1_numa_distance(vphn_assoc);
945 		} else {
946 
947 			/*
948 			 * Don't fall back to default_nid yet -- we will plug
949 			 * cpus into nodes once the memory scan has discovered
950 			 * the topology.
951 			 */
952 			cpu = of_get_cpu_node(i, NULL);
953 			BUG_ON(!cpu);
954 
955 			associativity = of_get_associativity(cpu);
956 			if (associativity) {
957 				nid = associativity_to_nid(associativity);
958 				initialize_form1_numa_distance(associativity);
959 			}
960 			of_node_put(cpu);
961 		}
962 
963 		node_set_online(nid);
964 	}
965 
966 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
967 
968 	for_each_node_by_type(memory, "memory") {
969 		unsigned long start;
970 		unsigned long size;
971 		int nid;
972 		int ranges;
973 		const __be32 *memcell_buf;
974 		unsigned int len;
975 
976 		memcell_buf = of_get_property(memory,
977 			"linux,usable-memory", &len);
978 		if (!memcell_buf || len <= 0)
979 			memcell_buf = of_get_property(memory, "reg", &len);
980 		if (!memcell_buf || len <= 0)
981 			continue;
982 
983 		/* ranges in cell */
984 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
985 new_range:
986 		/* these are order-sensitive, and modify the buffer pointer */
987 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
988 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
989 
990 		/*
991 		 * Assumption: either all memory nodes or none will
992 		 * have associativity properties.  If none, then
993 		 * everything goes to default_nid.
994 		 */
995 		associativity = of_get_associativity(memory);
996 		if (associativity) {
997 			nid = associativity_to_nid(associativity);
998 			initialize_form1_numa_distance(associativity);
999 		} else
1000 			nid = default_nid;
1001 
1002 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
1003 		node_set_online(nid);
1004 
1005 		size = numa_enforce_memory_limit(start, size);
1006 		if (size)
1007 			memblock_set_node(start, size, &memblock.memory, nid);
1008 
1009 		if (--ranges)
1010 			goto new_range;
1011 	}
1012 
1013 	/*
1014 	 * Now do the same thing for each MEMBLOCK listed in the
1015 	 * ibm,dynamic-memory property in the
1016 	 * ibm,dynamic-reconfiguration-memory node.
1017 	 */
1018 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1019 	if (memory) {
1020 		walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
1021 		of_node_put(memory);
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 static void __init setup_nonnuma(void)
1028 {
1029 	unsigned long top_of_ram = memblock_end_of_DRAM();
1030 	unsigned long total_ram = memblock_phys_mem_size();
1031 	unsigned long start_pfn, end_pfn;
1032 	unsigned int nid = 0;
1033 	int i;
1034 
1035 	pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram);
1036 	pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20);
1037 
1038 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1039 		fake_numa_create_new_node(end_pfn, &nid);
1040 		memblock_set_node(PFN_PHYS(start_pfn),
1041 				  PFN_PHYS(end_pfn - start_pfn),
1042 				  &memblock.memory, nid);
1043 		node_set_online(nid);
1044 	}
1045 }
1046 
1047 void __init dump_numa_cpu_topology(void)
1048 {
1049 	unsigned int node;
1050 	unsigned int cpu, count;
1051 
1052 	if (!numa_enabled)
1053 		return;
1054 
1055 	for_each_online_node(node) {
1056 		pr_info("Node %d CPUs:", node);
1057 
1058 		count = 0;
1059 		/*
1060 		 * If we used a CPU iterator here we would miss printing
1061 		 * the holes in the cpumap.
1062 		 */
1063 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1064 			if (cpumask_test_cpu(cpu,
1065 					node_to_cpumask_map[node])) {
1066 				if (count == 0)
1067 					pr_cont(" %u", cpu);
1068 				++count;
1069 			} else {
1070 				if (count > 1)
1071 					pr_cont("-%u", cpu - 1);
1072 				count = 0;
1073 			}
1074 		}
1075 
1076 		if (count > 1)
1077 			pr_cont("-%u", nr_cpu_ids - 1);
1078 		pr_cont("\n");
1079 	}
1080 }
1081 
1082 /* Initialize NODE_DATA for a node on the local memory */
1083 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
1084 {
1085 	u64 spanned_pages = end_pfn - start_pfn;
1086 	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
1087 	u64 nd_pa;
1088 	void *nd;
1089 	int tnid;
1090 
1091 	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
1092 	if (!nd_pa)
1093 		panic("Cannot allocate %zu bytes for node %d data\n",
1094 		      nd_size, nid);
1095 
1096 	nd = __va(nd_pa);
1097 
1098 	/* report and initialize */
1099 	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
1100 		nd_pa, nd_pa + nd_size - 1);
1101 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
1102 	if (tnid != nid)
1103 		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
1104 
1105 	node_data[nid] = nd;
1106 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
1107 	NODE_DATA(nid)->node_id = nid;
1108 	NODE_DATA(nid)->node_start_pfn = start_pfn;
1109 	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
1110 }
1111 
1112 static void __init find_possible_nodes(void)
1113 {
1114 	struct device_node *rtas;
1115 	const __be32 *domains = NULL;
1116 	int prop_length, max_nodes;
1117 	u32 i;
1118 
1119 	if (!numa_enabled)
1120 		return;
1121 
1122 	rtas = of_find_node_by_path("/rtas");
1123 	if (!rtas)
1124 		return;
1125 
1126 	/*
1127 	 * ibm,current-associativity-domains is a fairly recent property. If
1128 	 * it doesn't exist, then fallback on ibm,max-associativity-domains.
1129 	 * Current denotes what the platform can support compared to max
1130 	 * which denotes what the Hypervisor can support.
1131 	 *
1132 	 * If the LPAR is migratable, new nodes might be activated after a LPM,
1133 	 * so we should consider the max number in that case.
1134 	 */
1135 	if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
1136 		domains = of_get_property(rtas,
1137 					  "ibm,current-associativity-domains",
1138 					  &prop_length);
1139 	if (!domains) {
1140 		domains = of_get_property(rtas, "ibm,max-associativity-domains",
1141 					&prop_length);
1142 		if (!domains)
1143 			goto out;
1144 	}
1145 
1146 	max_nodes = of_read_number(&domains[primary_domain_index], 1);
1147 	pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
1148 
1149 	for (i = 0; i < max_nodes; i++) {
1150 		if (!node_possible(i))
1151 			node_set(i, node_possible_map);
1152 	}
1153 
1154 	prop_length /= sizeof(int);
1155 	if (prop_length > primary_domain_index + 2)
1156 		coregroup_enabled = 1;
1157 
1158 out:
1159 	of_node_put(rtas);
1160 }
1161 
1162 void __init mem_topology_setup(void)
1163 {
1164 	int cpu;
1165 
1166 	/*
1167 	 * Linux/mm assumes node 0 to be online at boot. However this is not
1168 	 * true on PowerPC, where node 0 is similar to any other node, it
1169 	 * could be cpuless, memoryless node. So force node 0 to be offline
1170 	 * for now. This will prevent cpuless, memoryless node 0 showing up
1171 	 * unnecessarily as online. If a node has cpus or memory that need
1172 	 * to be online, then node will anyway be marked online.
1173 	 */
1174 	node_set_offline(0);
1175 
1176 	if (parse_numa_properties())
1177 		setup_nonnuma();
1178 
1179 	/*
1180 	 * Modify the set of possible NUMA nodes to reflect information
1181 	 * available about the set of online nodes, and the set of nodes
1182 	 * that we expect to make use of for this platform's affinity
1183 	 * calculations.
1184 	 */
1185 	nodes_and(node_possible_map, node_possible_map, node_online_map);
1186 
1187 	find_possible_nodes();
1188 
1189 	setup_node_to_cpumask_map();
1190 
1191 	reset_numa_cpu_lookup_table();
1192 
1193 	for_each_possible_cpu(cpu) {
1194 		/*
1195 		 * Powerpc with CONFIG_NUMA always used to have a node 0,
1196 		 * even if it was memoryless or cpuless. For all cpus that
1197 		 * are possible but not present, cpu_to_node() would point
1198 		 * to node 0. To remove a cpuless, memoryless dummy node,
1199 		 * powerpc need to make sure all possible but not present
1200 		 * cpu_to_node are set to a proper node.
1201 		 */
1202 		numa_setup_cpu(cpu);
1203 	}
1204 }
1205 
1206 void __init initmem_init(void)
1207 {
1208 	int nid;
1209 
1210 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1211 	max_pfn = max_low_pfn;
1212 
1213 	memblock_dump_all();
1214 
1215 	for_each_online_node(nid) {
1216 		unsigned long start_pfn, end_pfn;
1217 
1218 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1219 		setup_node_data(nid, start_pfn, end_pfn);
1220 	}
1221 
1222 	sparse_init();
1223 
1224 	/*
1225 	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1226 	 * even before we online them, so that we can use cpu_to_{node,mem}
1227 	 * early in boot, cf. smp_prepare_cpus().
1228 	 * _nocalls() + manual invocation is used because cpuhp is not yet
1229 	 * initialized for the boot CPU.
1230 	 */
1231 	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1232 				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1233 }
1234 
1235 static int __init early_numa(char *p)
1236 {
1237 	if (!p)
1238 		return 0;
1239 
1240 	if (strstr(p, "off"))
1241 		numa_enabled = 0;
1242 
1243 	p = strstr(p, "fake=");
1244 	if (p)
1245 		cmdline = p + strlen("fake=");
1246 
1247 	return 0;
1248 }
1249 early_param("numa", early_numa);
1250 
1251 #ifdef CONFIG_MEMORY_HOTPLUG
1252 /*
1253  * Find the node associated with a hot added memory section for
1254  * memory represented in the device tree by the property
1255  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1256  */
1257 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1258 {
1259 	struct drmem_lmb *lmb;
1260 	unsigned long lmb_size;
1261 	int nid = NUMA_NO_NODE;
1262 
1263 	lmb_size = drmem_lmb_size();
1264 
1265 	for_each_drmem_lmb(lmb) {
1266 		/* skip this block if it is reserved or not assigned to
1267 		 * this partition */
1268 		if ((lmb->flags & DRCONF_MEM_RESERVED)
1269 		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1270 			continue;
1271 
1272 		if ((scn_addr < lmb->base_addr)
1273 		    || (scn_addr >= (lmb->base_addr + lmb_size)))
1274 			continue;
1275 
1276 		nid = of_drconf_to_nid_single(lmb);
1277 		break;
1278 	}
1279 
1280 	return nid;
1281 }
1282 
1283 /*
1284  * Find the node associated with a hot added memory section for memory
1285  * represented in the device tree as a node (i.e. memory@XXXX) for
1286  * each memblock.
1287  */
1288 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1289 {
1290 	struct device_node *memory;
1291 	int nid = NUMA_NO_NODE;
1292 
1293 	for_each_node_by_type(memory, "memory") {
1294 		unsigned long start, size;
1295 		int ranges;
1296 		const __be32 *memcell_buf;
1297 		unsigned int len;
1298 
1299 		memcell_buf = of_get_property(memory, "reg", &len);
1300 		if (!memcell_buf || len <= 0)
1301 			continue;
1302 
1303 		/* ranges in cell */
1304 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1305 
1306 		while (ranges--) {
1307 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1308 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1309 
1310 			if ((scn_addr < start) || (scn_addr >= (start + size)))
1311 				continue;
1312 
1313 			nid = of_node_to_nid_single(memory);
1314 			break;
1315 		}
1316 
1317 		if (nid >= 0)
1318 			break;
1319 	}
1320 
1321 	of_node_put(memory);
1322 
1323 	return nid;
1324 }
1325 
1326 /*
1327  * Find the node associated with a hot added memory section.  Section
1328  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1329  * sections are fully contained within a single MEMBLOCK.
1330  */
1331 int hot_add_scn_to_nid(unsigned long scn_addr)
1332 {
1333 	struct device_node *memory = NULL;
1334 	int nid;
1335 
1336 	if (!numa_enabled)
1337 		return first_online_node;
1338 
1339 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1340 	if (memory) {
1341 		nid = hot_add_drconf_scn_to_nid(scn_addr);
1342 		of_node_put(memory);
1343 	} else {
1344 		nid = hot_add_node_scn_to_nid(scn_addr);
1345 	}
1346 
1347 	if (nid < 0 || !node_possible(nid))
1348 		nid = first_online_node;
1349 
1350 	return nid;
1351 }
1352 
1353 static u64 hot_add_drconf_memory_max(void)
1354 {
1355 	struct device_node *memory = NULL;
1356 	struct device_node *dn = NULL;
1357 	const __be64 *lrdr = NULL;
1358 
1359 	dn = of_find_node_by_path("/rtas");
1360 	if (dn) {
1361 		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1362 		of_node_put(dn);
1363 		if (lrdr)
1364 			return be64_to_cpup(lrdr);
1365 	}
1366 
1367 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1368 	if (memory) {
1369 		of_node_put(memory);
1370 		return drmem_lmb_memory_max();
1371 	}
1372 	return 0;
1373 }
1374 
1375 /*
1376  * memory_hotplug_max - return max address of memory that may be added
1377  *
1378  * This is currently only used on systems that support drconfig memory
1379  * hotplug.
1380  */
1381 u64 memory_hotplug_max(void)
1382 {
1383         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1384 }
1385 #endif /* CONFIG_MEMORY_HOTPLUG */
1386 
1387 /* Virtual Processor Home Node (VPHN) support */
1388 #ifdef CONFIG_PPC_SPLPAR
1389 static int topology_inited;
1390 
1391 /*
1392  * Retrieve the new associativity information for a virtual processor's
1393  * home node.
1394  */
1395 static long vphn_get_associativity(unsigned long cpu,
1396 					__be32 *associativity)
1397 {
1398 	long rc;
1399 
1400 	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1401 				VPHN_FLAG_VCPU, associativity);
1402 
1403 	switch (rc) {
1404 	case H_SUCCESS:
1405 		pr_debug("VPHN hcall succeeded. Reset polling...\n");
1406 		goto out;
1407 
1408 	case H_FUNCTION:
1409 		pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1410 		break;
1411 	case H_HARDWARE:
1412 		pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1413 			"preventing VPHN. Disabling polling...\n");
1414 		break;
1415 	case H_PARAMETER:
1416 		pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1417 			"Disabling polling...\n");
1418 		break;
1419 	default:
1420 		pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1421 			, rc);
1422 		break;
1423 	}
1424 out:
1425 	return rc;
1426 }
1427 
1428 int find_and_online_cpu_nid(int cpu)
1429 {
1430 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1431 	int new_nid;
1432 
1433 	/* Use associativity from first thread for all siblings */
1434 	if (vphn_get_associativity(cpu, associativity))
1435 		return cpu_to_node(cpu);
1436 
1437 	new_nid = associativity_to_nid(associativity);
1438 	if (new_nid < 0 || !node_possible(new_nid))
1439 		new_nid = first_online_node;
1440 
1441 	if (NODE_DATA(new_nid) == NULL) {
1442 #ifdef CONFIG_MEMORY_HOTPLUG
1443 		/*
1444 		 * Need to ensure that NODE_DATA is initialized for a node from
1445 		 * available memory (see memblock_alloc_try_nid). If unable to
1446 		 * init the node, then default to nearest node that has memory
1447 		 * installed. Skip onlining a node if the subsystems are not
1448 		 * yet initialized.
1449 		 */
1450 		if (!topology_inited || try_online_node(new_nid))
1451 			new_nid = first_online_node;
1452 #else
1453 		/*
1454 		 * Default to using the nearest node that has memory installed.
1455 		 * Otherwise, it would be necessary to patch the kernel MM code
1456 		 * to deal with more memoryless-node error conditions.
1457 		 */
1458 		new_nid = first_online_node;
1459 #endif
1460 	}
1461 
1462 	pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1463 		cpu, new_nid);
1464 	return new_nid;
1465 }
1466 
1467 int cpu_to_coregroup_id(int cpu)
1468 {
1469 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1470 	int index;
1471 
1472 	if (cpu < 0 || cpu > nr_cpu_ids)
1473 		return -1;
1474 
1475 	if (!coregroup_enabled)
1476 		goto out;
1477 
1478 	if (!firmware_has_feature(FW_FEATURE_VPHN))
1479 		goto out;
1480 
1481 	if (vphn_get_associativity(cpu, associativity))
1482 		goto out;
1483 
1484 	index = of_read_number(associativity, 1);
1485 	if (index > primary_domain_index + 1)
1486 		return of_read_number(&associativity[index - 1], 1);
1487 
1488 out:
1489 	return cpu_to_core_id(cpu);
1490 }
1491 
1492 static int topology_update_init(void)
1493 {
1494 	topology_inited = 1;
1495 	return 0;
1496 }
1497 device_initcall(topology_update_init);
1498 #endif /* CONFIG_PPC_SPLPAR */
1499