xref: /openbmc/linux/arch/powerpc/mm/numa.c (revision c23b8e7a)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #define pr_fmt(fmt) "numa: " fmt
12 
13 #include <linux/threads.h>
14 #include <linux/memblock.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/mmzone.h>
18 #include <linux/export.h>
19 #include <linux/nodemask.h>
20 #include <linux/cpu.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/pfn.h>
24 #include <linux/cpuset.h>
25 #include <linux/node.h>
26 #include <linux/stop_machine.h>
27 #include <linux/proc_fs.h>
28 #include <linux/seq_file.h>
29 #include <linux/uaccess.h>
30 #include <linux/slab.h>
31 #include <asm/cputhreads.h>
32 #include <asm/sparsemem.h>
33 #include <asm/prom.h>
34 #include <asm/smp.h>
35 #include <asm/cputhreads.h>
36 #include <asm/topology.h>
37 #include <asm/firmware.h>
38 #include <asm/paca.h>
39 #include <asm/hvcall.h>
40 #include <asm/setup.h>
41 #include <asm/vdso.h>
42 #include <asm/drmem.h>
43 
44 static int numa_enabled = 1;
45 
46 static char *cmdline __initdata;
47 
48 static int numa_debug;
49 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
50 
51 int numa_cpu_lookup_table[NR_CPUS];
52 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
53 struct pglist_data *node_data[MAX_NUMNODES];
54 
55 EXPORT_SYMBOL(numa_cpu_lookup_table);
56 EXPORT_SYMBOL(node_to_cpumask_map);
57 EXPORT_SYMBOL(node_data);
58 
59 static int min_common_depth;
60 static int n_mem_addr_cells, n_mem_size_cells;
61 static int form1_affinity;
62 
63 #define MAX_DISTANCE_REF_POINTS 4
64 static int distance_ref_points_depth;
65 static const __be32 *distance_ref_points;
66 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
67 
68 /*
69  * Allocate node_to_cpumask_map based on number of available nodes
70  * Requires node_possible_map to be valid.
71  *
72  * Note: cpumask_of_node() is not valid until after this is done.
73  */
74 static void __init setup_node_to_cpumask_map(void)
75 {
76 	unsigned int node;
77 
78 	/* setup nr_node_ids if not done yet */
79 	if (nr_node_ids == MAX_NUMNODES)
80 		setup_nr_node_ids();
81 
82 	/* allocate the map */
83 	for_each_node(node)
84 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
85 
86 	/* cpumask_of_node() will now work */
87 	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
88 }
89 
90 static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 						unsigned int *nid)
92 {
93 	unsigned long long mem;
94 	char *p = cmdline;
95 	static unsigned int fake_nid;
96 	static unsigned long long curr_boundary;
97 
98 	/*
99 	 * Modify node id, iff we started creating NUMA nodes
100 	 * We want to continue from where we left of the last time
101 	 */
102 	if (fake_nid)
103 		*nid = fake_nid;
104 	/*
105 	 * In case there are no more arguments to parse, the
106 	 * node_id should be the same as the last fake node id
107 	 * (we've handled this above).
108 	 */
109 	if (!p)
110 		return 0;
111 
112 	mem = memparse(p, &p);
113 	if (!mem)
114 		return 0;
115 
116 	if (mem < curr_boundary)
117 		return 0;
118 
119 	curr_boundary = mem;
120 
121 	if ((end_pfn << PAGE_SHIFT) > mem) {
122 		/*
123 		 * Skip commas and spaces
124 		 */
125 		while (*p == ',' || *p == ' ' || *p == '\t')
126 			p++;
127 
128 		cmdline = p;
129 		fake_nid++;
130 		*nid = fake_nid;
131 		dbg("created new fake_node with id %d\n", fake_nid);
132 		return 1;
133 	}
134 	return 0;
135 }
136 
137 static void reset_numa_cpu_lookup_table(void)
138 {
139 	unsigned int cpu;
140 
141 	for_each_possible_cpu(cpu)
142 		numa_cpu_lookup_table[cpu] = -1;
143 }
144 
145 static void map_cpu_to_node(int cpu, int node)
146 {
147 	update_numa_cpu_lookup_table(cpu, node);
148 
149 	dbg("adding cpu %d to node %d\n", cpu, node);
150 
151 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
152 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
153 }
154 
155 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
156 static void unmap_cpu_from_node(unsigned long cpu)
157 {
158 	int node = numa_cpu_lookup_table[cpu];
159 
160 	dbg("removing cpu %lu from node %d\n", cpu, node);
161 
162 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
163 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
164 	} else {
165 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
166 		       cpu, node);
167 	}
168 }
169 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
170 
171 /* must hold reference to node during call */
172 static const __be32 *of_get_associativity(struct device_node *dev)
173 {
174 	return of_get_property(dev, "ibm,associativity", NULL);
175 }
176 
177 int __node_distance(int a, int b)
178 {
179 	int i;
180 	int distance = LOCAL_DISTANCE;
181 
182 	if (!form1_affinity)
183 		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
184 
185 	for (i = 0; i < distance_ref_points_depth; i++) {
186 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
187 			break;
188 
189 		/* Double the distance for each NUMA level */
190 		distance *= 2;
191 	}
192 
193 	return distance;
194 }
195 EXPORT_SYMBOL(__node_distance);
196 
197 static void initialize_distance_lookup_table(int nid,
198 		const __be32 *associativity)
199 {
200 	int i;
201 
202 	if (!form1_affinity)
203 		return;
204 
205 	for (i = 0; i < distance_ref_points_depth; i++) {
206 		const __be32 *entry;
207 
208 		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
209 		distance_lookup_table[nid][i] = of_read_number(entry, 1);
210 	}
211 }
212 
213 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
214  * info is found.
215  */
216 static int associativity_to_nid(const __be32 *associativity)
217 {
218 	int nid = -1;
219 
220 	if (min_common_depth == -1)
221 		goto out;
222 
223 	if (of_read_number(associativity, 1) >= min_common_depth)
224 		nid = of_read_number(&associativity[min_common_depth], 1);
225 
226 	/* POWER4 LPAR uses 0xffff as invalid node */
227 	if (nid == 0xffff || nid >= MAX_NUMNODES)
228 		nid = -1;
229 
230 	if (nid > 0 &&
231 		of_read_number(associativity, 1) >= distance_ref_points_depth) {
232 		/*
233 		 * Skip the length field and send start of associativity array
234 		 */
235 		initialize_distance_lookup_table(nid, associativity + 1);
236 	}
237 
238 out:
239 	return nid;
240 }
241 
242 /* Returns the nid associated with the given device tree node,
243  * or -1 if not found.
244  */
245 static int of_node_to_nid_single(struct device_node *device)
246 {
247 	int nid = -1;
248 	const __be32 *tmp;
249 
250 	tmp = of_get_associativity(device);
251 	if (tmp)
252 		nid = associativity_to_nid(tmp);
253 	return nid;
254 }
255 
256 /* Walk the device tree upwards, looking for an associativity id */
257 int of_node_to_nid(struct device_node *device)
258 {
259 	int nid = -1;
260 
261 	of_node_get(device);
262 	while (device) {
263 		nid = of_node_to_nid_single(device);
264 		if (nid != -1)
265 			break;
266 
267 		device = of_get_next_parent(device);
268 	}
269 	of_node_put(device);
270 
271 	return nid;
272 }
273 EXPORT_SYMBOL(of_node_to_nid);
274 
275 static int __init find_min_common_depth(void)
276 {
277 	int depth;
278 	struct device_node *root;
279 
280 	if (firmware_has_feature(FW_FEATURE_OPAL))
281 		root = of_find_node_by_path("/ibm,opal");
282 	else
283 		root = of_find_node_by_path("/rtas");
284 	if (!root)
285 		root = of_find_node_by_path("/");
286 
287 	/*
288 	 * This property is a set of 32-bit integers, each representing
289 	 * an index into the ibm,associativity nodes.
290 	 *
291 	 * With form 0 affinity the first integer is for an SMP configuration
292 	 * (should be all 0's) and the second is for a normal NUMA
293 	 * configuration. We have only one level of NUMA.
294 	 *
295 	 * With form 1 affinity the first integer is the most significant
296 	 * NUMA boundary and the following are progressively less significant
297 	 * boundaries. There can be more than one level of NUMA.
298 	 */
299 	distance_ref_points = of_get_property(root,
300 					"ibm,associativity-reference-points",
301 					&distance_ref_points_depth);
302 
303 	if (!distance_ref_points) {
304 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
305 		goto err;
306 	}
307 
308 	distance_ref_points_depth /= sizeof(int);
309 
310 	if (firmware_has_feature(FW_FEATURE_OPAL) ||
311 	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
312 		dbg("Using form 1 affinity\n");
313 		form1_affinity = 1;
314 	}
315 
316 	if (form1_affinity) {
317 		depth = of_read_number(distance_ref_points, 1);
318 	} else {
319 		if (distance_ref_points_depth < 2) {
320 			printk(KERN_WARNING "NUMA: "
321 				"short ibm,associativity-reference-points\n");
322 			goto err;
323 		}
324 
325 		depth = of_read_number(&distance_ref_points[1], 1);
326 	}
327 
328 	/*
329 	 * Warn and cap if the hardware supports more than
330 	 * MAX_DISTANCE_REF_POINTS domains.
331 	 */
332 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
333 		printk(KERN_WARNING "NUMA: distance array capped at "
334 			"%d entries\n", MAX_DISTANCE_REF_POINTS);
335 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
336 	}
337 
338 	of_node_put(root);
339 	return depth;
340 
341 err:
342 	of_node_put(root);
343 	return -1;
344 }
345 
346 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
347 {
348 	struct device_node *memory = NULL;
349 
350 	memory = of_find_node_by_type(memory, "memory");
351 	if (!memory)
352 		panic("numa.c: No memory nodes found!");
353 
354 	*n_addr_cells = of_n_addr_cells(memory);
355 	*n_size_cells = of_n_size_cells(memory);
356 	of_node_put(memory);
357 }
358 
359 static unsigned long read_n_cells(int n, const __be32 **buf)
360 {
361 	unsigned long result = 0;
362 
363 	while (n--) {
364 		result = (result << 32) | of_read_number(*buf, 1);
365 		(*buf)++;
366 	}
367 	return result;
368 }
369 
370 struct assoc_arrays {
371 	u32	n_arrays;
372 	u32	array_sz;
373 	const __be32 *arrays;
374 };
375 
376 /*
377  * Retrieve and validate the list of associativity arrays for drconf
378  * memory from the ibm,associativity-lookup-arrays property of the
379  * device tree..
380  *
381  * The layout of the ibm,associativity-lookup-arrays property is a number N
382  * indicating the number of associativity arrays, followed by a number M
383  * indicating the size of each associativity array, followed by a list
384  * of N associativity arrays.
385  */
386 static int of_get_assoc_arrays(struct assoc_arrays *aa)
387 {
388 	struct device_node *memory;
389 	const __be32 *prop;
390 	u32 len;
391 
392 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
393 	if (!memory)
394 		return -1;
395 
396 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
397 	if (!prop || len < 2 * sizeof(unsigned int)) {
398 		of_node_put(memory);
399 		return -1;
400 	}
401 
402 	aa->n_arrays = of_read_number(prop++, 1);
403 	aa->array_sz = of_read_number(prop++, 1);
404 
405 	of_node_put(memory);
406 
407 	/* Now that we know the number of arrays and size of each array,
408 	 * revalidate the size of the property read in.
409 	 */
410 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
411 		return -1;
412 
413 	aa->arrays = prop;
414 	return 0;
415 }
416 
417 /*
418  * This is like of_node_to_nid_single() for memory represented in the
419  * ibm,dynamic-reconfiguration-memory node.
420  */
421 static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
422 {
423 	struct assoc_arrays aa = { .arrays = NULL };
424 	int default_nid = 0;
425 	int nid = default_nid;
426 	int rc, index;
427 
428 	rc = of_get_assoc_arrays(&aa);
429 	if (rc)
430 		return default_nid;
431 
432 	if (min_common_depth > 0 && min_common_depth <= aa.array_sz &&
433 	    !(lmb->flags & DRCONF_MEM_AI_INVALID) &&
434 	    lmb->aa_index < aa.n_arrays) {
435 		index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
436 		nid = of_read_number(&aa.arrays[index], 1);
437 
438 		if (nid == 0xffff || nid >= MAX_NUMNODES)
439 			nid = default_nid;
440 
441 		if (nid > 0) {
442 			index = lmb->aa_index * aa.array_sz;
443 			initialize_distance_lookup_table(nid,
444 							&aa.arrays[index]);
445 		}
446 	}
447 
448 	return nid;
449 }
450 
451 /*
452  * Figure out to which domain a cpu belongs and stick it there.
453  * Return the id of the domain used.
454  */
455 static int numa_setup_cpu(unsigned long lcpu)
456 {
457 	int nid = -1;
458 	struct device_node *cpu;
459 
460 	/*
461 	 * If a valid cpu-to-node mapping is already available, use it
462 	 * directly instead of querying the firmware, since it represents
463 	 * the most recent mapping notified to us by the platform (eg: VPHN).
464 	 */
465 	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
466 		map_cpu_to_node(lcpu, nid);
467 		return nid;
468 	}
469 
470 	cpu = of_get_cpu_node(lcpu, NULL);
471 
472 	if (!cpu) {
473 		WARN_ON(1);
474 		if (cpu_present(lcpu))
475 			goto out_present;
476 		else
477 			goto out;
478 	}
479 
480 	nid = of_node_to_nid_single(cpu);
481 
482 out_present:
483 	if (nid < 0 || !node_possible(nid))
484 		nid = first_online_node;
485 
486 	map_cpu_to_node(lcpu, nid);
487 	of_node_put(cpu);
488 out:
489 	return nid;
490 }
491 
492 static void verify_cpu_node_mapping(int cpu, int node)
493 {
494 	int base, sibling, i;
495 
496 	/* Verify that all the threads in the core belong to the same node */
497 	base = cpu_first_thread_sibling(cpu);
498 
499 	for (i = 0; i < threads_per_core; i++) {
500 		sibling = base + i;
501 
502 		if (sibling == cpu || cpu_is_offline(sibling))
503 			continue;
504 
505 		if (cpu_to_node(sibling) != node) {
506 			WARN(1, "CPU thread siblings %d and %d don't belong"
507 				" to the same node!\n", cpu, sibling);
508 			break;
509 		}
510 	}
511 }
512 
513 /* Must run before sched domains notifier. */
514 static int ppc_numa_cpu_prepare(unsigned int cpu)
515 {
516 	int nid;
517 
518 	nid = numa_setup_cpu(cpu);
519 	verify_cpu_node_mapping(cpu, nid);
520 	return 0;
521 }
522 
523 static int ppc_numa_cpu_dead(unsigned int cpu)
524 {
525 #ifdef CONFIG_HOTPLUG_CPU
526 	unmap_cpu_from_node(cpu);
527 #endif
528 	return 0;
529 }
530 
531 /*
532  * Check and possibly modify a memory region to enforce the memory limit.
533  *
534  * Returns the size the region should have to enforce the memory limit.
535  * This will either be the original value of size, a truncated value,
536  * or zero. If the returned value of size is 0 the region should be
537  * discarded as it lies wholly above the memory limit.
538  */
539 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
540 						      unsigned long size)
541 {
542 	/*
543 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
544 	 * we've already adjusted it for the limit and it takes care of
545 	 * having memory holes below the limit.  Also, in the case of
546 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
547 	 */
548 
549 	if (start + size <= memblock_end_of_DRAM())
550 		return size;
551 
552 	if (start >= memblock_end_of_DRAM())
553 		return 0;
554 
555 	return memblock_end_of_DRAM() - start;
556 }
557 
558 /*
559  * Reads the counter for a given entry in
560  * linux,drconf-usable-memory property
561  */
562 static inline int __init read_usm_ranges(const __be32 **usm)
563 {
564 	/*
565 	 * For each lmb in ibm,dynamic-memory a corresponding
566 	 * entry in linux,drconf-usable-memory property contains
567 	 * a counter followed by that many (base, size) duple.
568 	 * read the counter from linux,drconf-usable-memory
569 	 */
570 	return read_n_cells(n_mem_size_cells, usm);
571 }
572 
573 /*
574  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
575  * node.  This assumes n_mem_{addr,size}_cells have been set.
576  */
577 static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
578 					const __be32 **usm)
579 {
580 	unsigned int ranges, is_kexec_kdump = 0;
581 	unsigned long base, size, sz;
582 	int nid;
583 
584 	/*
585 	 * Skip this block if the reserved bit is set in flags (0x80)
586 	 * or if the block is not assigned to this partition (0x8)
587 	 */
588 	if ((lmb->flags & DRCONF_MEM_RESERVED)
589 	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
590 		return;
591 
592 	if (*usm)
593 		is_kexec_kdump = 1;
594 
595 	base = lmb->base_addr;
596 	size = drmem_lmb_size();
597 	ranges = 1;
598 
599 	if (is_kexec_kdump) {
600 		ranges = read_usm_ranges(usm);
601 		if (!ranges) /* there are no (base, size) duple */
602 			return;
603 	}
604 
605 	do {
606 		if (is_kexec_kdump) {
607 			base = read_n_cells(n_mem_addr_cells, usm);
608 			size = read_n_cells(n_mem_size_cells, usm);
609 		}
610 
611 		nid = of_drconf_to_nid_single(lmb);
612 		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
613 					  &nid);
614 		node_set_online(nid);
615 		sz = numa_enforce_memory_limit(base, size);
616 		if (sz)
617 			memblock_set_node(base, sz, &memblock.memory, nid);
618 	} while (--ranges);
619 }
620 
621 static int __init parse_numa_properties(void)
622 {
623 	struct device_node *memory;
624 	int default_nid = 0;
625 	unsigned long i;
626 
627 	if (numa_enabled == 0) {
628 		printk(KERN_WARNING "NUMA disabled by user\n");
629 		return -1;
630 	}
631 
632 	min_common_depth = find_min_common_depth();
633 
634 	if (min_common_depth < 0)
635 		return min_common_depth;
636 
637 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
638 
639 	/*
640 	 * Even though we connect cpus to numa domains later in SMP
641 	 * init, we need to know the node ids now. This is because
642 	 * each node to be onlined must have NODE_DATA etc backing it.
643 	 */
644 	for_each_present_cpu(i) {
645 		struct device_node *cpu;
646 		int nid;
647 
648 		cpu = of_get_cpu_node(i, NULL);
649 		BUG_ON(!cpu);
650 		nid = of_node_to_nid_single(cpu);
651 		of_node_put(cpu);
652 
653 		/*
654 		 * Don't fall back to default_nid yet -- we will plug
655 		 * cpus into nodes once the memory scan has discovered
656 		 * the topology.
657 		 */
658 		if (nid < 0)
659 			continue;
660 		node_set_online(nid);
661 	}
662 
663 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
664 
665 	for_each_node_by_type(memory, "memory") {
666 		unsigned long start;
667 		unsigned long size;
668 		int nid;
669 		int ranges;
670 		const __be32 *memcell_buf;
671 		unsigned int len;
672 
673 		memcell_buf = of_get_property(memory,
674 			"linux,usable-memory", &len);
675 		if (!memcell_buf || len <= 0)
676 			memcell_buf = of_get_property(memory, "reg", &len);
677 		if (!memcell_buf || len <= 0)
678 			continue;
679 
680 		/* ranges in cell */
681 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
682 new_range:
683 		/* these are order-sensitive, and modify the buffer pointer */
684 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
685 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
686 
687 		/*
688 		 * Assumption: either all memory nodes or none will
689 		 * have associativity properties.  If none, then
690 		 * everything goes to default_nid.
691 		 */
692 		nid = of_node_to_nid_single(memory);
693 		if (nid < 0)
694 			nid = default_nid;
695 
696 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
697 		node_set_online(nid);
698 
699 		size = numa_enforce_memory_limit(start, size);
700 		if (size)
701 			memblock_set_node(start, size, &memblock.memory, nid);
702 
703 		if (--ranges)
704 			goto new_range;
705 	}
706 
707 	/*
708 	 * Now do the same thing for each MEMBLOCK listed in the
709 	 * ibm,dynamic-memory property in the
710 	 * ibm,dynamic-reconfiguration-memory node.
711 	 */
712 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
713 	if (memory) {
714 		walk_drmem_lmbs(memory, numa_setup_drmem_lmb);
715 		of_node_put(memory);
716 	}
717 
718 	return 0;
719 }
720 
721 static void __init setup_nonnuma(void)
722 {
723 	unsigned long top_of_ram = memblock_end_of_DRAM();
724 	unsigned long total_ram = memblock_phys_mem_size();
725 	unsigned long start_pfn, end_pfn;
726 	unsigned int nid = 0;
727 	struct memblock_region *reg;
728 
729 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
730 	       top_of_ram, total_ram);
731 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
732 	       (top_of_ram - total_ram) >> 20);
733 
734 	for_each_memblock(memory, reg) {
735 		start_pfn = memblock_region_memory_base_pfn(reg);
736 		end_pfn = memblock_region_memory_end_pfn(reg);
737 
738 		fake_numa_create_new_node(end_pfn, &nid);
739 		memblock_set_node(PFN_PHYS(start_pfn),
740 				  PFN_PHYS(end_pfn - start_pfn),
741 				  &memblock.memory, nid);
742 		node_set_online(nid);
743 	}
744 }
745 
746 void __init dump_numa_cpu_topology(void)
747 {
748 	unsigned int node;
749 	unsigned int cpu, count;
750 
751 	if (min_common_depth == -1 || !numa_enabled)
752 		return;
753 
754 	for_each_online_node(node) {
755 		pr_info("Node %d CPUs:", node);
756 
757 		count = 0;
758 		/*
759 		 * If we used a CPU iterator here we would miss printing
760 		 * the holes in the cpumap.
761 		 */
762 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
763 			if (cpumask_test_cpu(cpu,
764 					node_to_cpumask_map[node])) {
765 				if (count == 0)
766 					pr_cont(" %u", cpu);
767 				++count;
768 			} else {
769 				if (count > 1)
770 					pr_cont("-%u", cpu - 1);
771 				count = 0;
772 			}
773 		}
774 
775 		if (count > 1)
776 			pr_cont("-%u", nr_cpu_ids - 1);
777 		pr_cont("\n");
778 	}
779 }
780 
781 /* Initialize NODE_DATA for a node on the local memory */
782 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
783 {
784 	u64 spanned_pages = end_pfn - start_pfn;
785 	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
786 	u64 nd_pa;
787 	void *nd;
788 	int tnid;
789 
790 	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
791 	nd = __va(nd_pa);
792 
793 	/* report and initialize */
794 	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
795 		nd_pa, nd_pa + nd_size - 1);
796 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
797 	if (tnid != nid)
798 		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
799 
800 	node_data[nid] = nd;
801 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
802 	NODE_DATA(nid)->node_id = nid;
803 	NODE_DATA(nid)->node_start_pfn = start_pfn;
804 	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
805 }
806 
807 static void __init find_possible_nodes(void)
808 {
809 	struct device_node *rtas;
810 	u32 numnodes, i;
811 
812 	if (min_common_depth <= 0)
813 		return;
814 
815 	rtas = of_find_node_by_path("/rtas");
816 	if (!rtas)
817 		return;
818 
819 	if (of_property_read_u32_index(rtas,
820 				"ibm,max-associativity-domains",
821 				min_common_depth, &numnodes))
822 		goto out;
823 
824 	for (i = 0; i < numnodes; i++) {
825 		if (!node_possible(i))
826 			node_set(i, node_possible_map);
827 	}
828 
829 out:
830 	of_node_put(rtas);
831 }
832 
833 void __init mem_topology_setup(void)
834 {
835 	int cpu;
836 
837 	if (parse_numa_properties())
838 		setup_nonnuma();
839 
840 	/*
841 	 * Modify the set of possible NUMA nodes to reflect information
842 	 * available about the set of online nodes, and the set of nodes
843 	 * that we expect to make use of for this platform's affinity
844 	 * calculations.
845 	 */
846 	nodes_and(node_possible_map, node_possible_map, node_online_map);
847 
848 	find_possible_nodes();
849 
850 	setup_node_to_cpumask_map();
851 
852 	reset_numa_cpu_lookup_table();
853 
854 	for_each_present_cpu(cpu)
855 		numa_setup_cpu(cpu);
856 }
857 
858 void __init initmem_init(void)
859 {
860 	int nid;
861 
862 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
863 	max_pfn = max_low_pfn;
864 
865 	memblock_dump_all();
866 
867 	for_each_online_node(nid) {
868 		unsigned long start_pfn, end_pfn;
869 
870 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
871 		setup_node_data(nid, start_pfn, end_pfn);
872 		sparse_memory_present_with_active_regions(nid);
873 	}
874 
875 	sparse_init();
876 
877 	/*
878 	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
879 	 * even before we online them, so that we can use cpu_to_{node,mem}
880 	 * early in boot, cf. smp_prepare_cpus().
881 	 * _nocalls() + manual invocation is used because cpuhp is not yet
882 	 * initialized for the boot CPU.
883 	 */
884 	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
885 				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
886 }
887 
888 static int __init early_numa(char *p)
889 {
890 	if (!p)
891 		return 0;
892 
893 	if (strstr(p, "off"))
894 		numa_enabled = 0;
895 
896 	if (strstr(p, "debug"))
897 		numa_debug = 1;
898 
899 	p = strstr(p, "fake=");
900 	if (p)
901 		cmdline = p + strlen("fake=");
902 
903 	return 0;
904 }
905 early_param("numa", early_numa);
906 
907 static bool topology_updates_enabled = true;
908 
909 static int __init early_topology_updates(char *p)
910 {
911 	if (!p)
912 		return 0;
913 
914 	if (!strcmp(p, "off")) {
915 		pr_info("Disabling topology updates\n");
916 		topology_updates_enabled = false;
917 	}
918 
919 	return 0;
920 }
921 early_param("topology_updates", early_topology_updates);
922 
923 #ifdef CONFIG_MEMORY_HOTPLUG
924 /*
925  * Find the node associated with a hot added memory section for
926  * memory represented in the device tree by the property
927  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
928  */
929 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
930 {
931 	struct drmem_lmb *lmb;
932 	unsigned long lmb_size;
933 	int nid = -1;
934 
935 	lmb_size = drmem_lmb_size();
936 
937 	for_each_drmem_lmb(lmb) {
938 		/* skip this block if it is reserved or not assigned to
939 		 * this partition */
940 		if ((lmb->flags & DRCONF_MEM_RESERVED)
941 		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
942 			continue;
943 
944 		if ((scn_addr < lmb->base_addr)
945 		    || (scn_addr >= (lmb->base_addr + lmb_size)))
946 			continue;
947 
948 		nid = of_drconf_to_nid_single(lmb);
949 		break;
950 	}
951 
952 	return nid;
953 }
954 
955 /*
956  * Find the node associated with a hot added memory section for memory
957  * represented in the device tree as a node (i.e. memory@XXXX) for
958  * each memblock.
959  */
960 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
961 {
962 	struct device_node *memory;
963 	int nid = -1;
964 
965 	for_each_node_by_type(memory, "memory") {
966 		unsigned long start, size;
967 		int ranges;
968 		const __be32 *memcell_buf;
969 		unsigned int len;
970 
971 		memcell_buf = of_get_property(memory, "reg", &len);
972 		if (!memcell_buf || len <= 0)
973 			continue;
974 
975 		/* ranges in cell */
976 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
977 
978 		while (ranges--) {
979 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
980 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
981 
982 			if ((scn_addr < start) || (scn_addr >= (start + size)))
983 				continue;
984 
985 			nid = of_node_to_nid_single(memory);
986 			break;
987 		}
988 
989 		if (nid >= 0)
990 			break;
991 	}
992 
993 	of_node_put(memory);
994 
995 	return nid;
996 }
997 
998 /*
999  * Find the node associated with a hot added memory section.  Section
1000  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1001  * sections are fully contained within a single MEMBLOCK.
1002  */
1003 int hot_add_scn_to_nid(unsigned long scn_addr)
1004 {
1005 	struct device_node *memory = NULL;
1006 	int nid;
1007 
1008 	if (!numa_enabled || (min_common_depth < 0))
1009 		return first_online_node;
1010 
1011 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1012 	if (memory) {
1013 		nid = hot_add_drconf_scn_to_nid(scn_addr);
1014 		of_node_put(memory);
1015 	} else {
1016 		nid = hot_add_node_scn_to_nid(scn_addr);
1017 	}
1018 
1019 	if (nid < 0 || !node_possible(nid))
1020 		nid = first_online_node;
1021 
1022 	return nid;
1023 }
1024 
1025 static u64 hot_add_drconf_memory_max(void)
1026 {
1027 	struct device_node *memory = NULL;
1028 	struct device_node *dn = NULL;
1029 	const __be64 *lrdr = NULL;
1030 
1031 	dn = of_find_node_by_path("/rtas");
1032 	if (dn) {
1033 		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1034 		of_node_put(dn);
1035 		if (lrdr)
1036 			return be64_to_cpup(lrdr);
1037 	}
1038 
1039 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1040 	if (memory) {
1041 		of_node_put(memory);
1042 		return drmem_lmb_memory_max();
1043 	}
1044 	return 0;
1045 }
1046 
1047 /*
1048  * memory_hotplug_max - return max address of memory that may be added
1049  *
1050  * This is currently only used on systems that support drconfig memory
1051  * hotplug.
1052  */
1053 u64 memory_hotplug_max(void)
1054 {
1055         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1056 }
1057 #endif /* CONFIG_MEMORY_HOTPLUG */
1058 
1059 /* Virtual Processor Home Node (VPHN) support */
1060 #ifdef CONFIG_PPC_SPLPAR
1061 
1062 #include "vphn.h"
1063 
1064 struct topology_update_data {
1065 	struct topology_update_data *next;
1066 	unsigned int cpu;
1067 	int old_nid;
1068 	int new_nid;
1069 };
1070 
1071 #define TOPOLOGY_DEF_TIMER_SECS	60
1072 
1073 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1074 static cpumask_t cpu_associativity_changes_mask;
1075 static int vphn_enabled;
1076 static int prrn_enabled;
1077 static void reset_topology_timer(void);
1078 static int topology_timer_secs = 1;
1079 static int topology_inited;
1080 
1081 /*
1082  * Change polling interval for associativity changes.
1083  */
1084 int timed_topology_update(int nsecs)
1085 {
1086 	if (vphn_enabled) {
1087 		if (nsecs > 0)
1088 			topology_timer_secs = nsecs;
1089 		else
1090 			topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;
1091 
1092 		reset_topology_timer();
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 /*
1099  * Store the current values of the associativity change counters in the
1100  * hypervisor.
1101  */
1102 static void setup_cpu_associativity_change_counters(void)
1103 {
1104 	int cpu;
1105 
1106 	/* The VPHN feature supports a maximum of 8 reference points */
1107 	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1108 
1109 	for_each_possible_cpu(cpu) {
1110 		int i;
1111 		u8 *counts = vphn_cpu_change_counts[cpu];
1112 		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1113 
1114 		for (i = 0; i < distance_ref_points_depth; i++)
1115 			counts[i] = hypervisor_counts[i];
1116 	}
1117 }
1118 
1119 /*
1120  * The hypervisor maintains a set of 8 associativity change counters in
1121  * the VPA of each cpu that correspond to the associativity levels in the
1122  * ibm,associativity-reference-points property. When an associativity
1123  * level changes, the corresponding counter is incremented.
1124  *
1125  * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1126  * node associativity levels have changed.
1127  *
1128  * Returns the number of cpus with unhandled associativity changes.
1129  */
1130 static int update_cpu_associativity_changes_mask(void)
1131 {
1132 	int cpu;
1133 	cpumask_t *changes = &cpu_associativity_changes_mask;
1134 
1135 	for_each_possible_cpu(cpu) {
1136 		int i, changed = 0;
1137 		u8 *counts = vphn_cpu_change_counts[cpu];
1138 		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1139 
1140 		for (i = 0; i < distance_ref_points_depth; i++) {
1141 			if (hypervisor_counts[i] != counts[i]) {
1142 				counts[i] = hypervisor_counts[i];
1143 				changed = 1;
1144 			}
1145 		}
1146 		if (changed) {
1147 			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1148 			cpu = cpu_last_thread_sibling(cpu);
1149 		}
1150 	}
1151 
1152 	return cpumask_weight(changes);
1153 }
1154 
1155 /*
1156  * Retrieve the new associativity information for a virtual processor's
1157  * home node.
1158  */
1159 static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1160 {
1161 	long rc;
1162 	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1163 	u64 flags = 1;
1164 	int hwcpu = get_hard_smp_processor_id(cpu);
1165 
1166 	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1167 	vphn_unpack_associativity(retbuf, associativity);
1168 
1169 	return rc;
1170 }
1171 
1172 static long vphn_get_associativity(unsigned long cpu,
1173 					__be32 *associativity)
1174 {
1175 	long rc;
1176 
1177 	rc = hcall_vphn(cpu, associativity);
1178 
1179 	switch (rc) {
1180 	case H_FUNCTION:
1181 		printk_once(KERN_INFO
1182 			"VPHN is not supported. Disabling polling...\n");
1183 		stop_topology_update();
1184 		break;
1185 	case H_HARDWARE:
1186 		printk(KERN_ERR
1187 			"hcall_vphn() experienced a hardware fault "
1188 			"preventing VPHN. Disabling polling...\n");
1189 		stop_topology_update();
1190 		break;
1191 	case H_SUCCESS:
1192 		dbg("VPHN hcall succeeded. Reset polling...\n");
1193 		timed_topology_update(0);
1194 		break;
1195 	}
1196 
1197 	return rc;
1198 }
1199 
1200 int find_and_online_cpu_nid(int cpu)
1201 {
1202 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1203 	int new_nid;
1204 
1205 	/* Use associativity from first thread for all siblings */
1206 	if (vphn_get_associativity(cpu, associativity))
1207 		return cpu_to_node(cpu);
1208 
1209 	new_nid = associativity_to_nid(associativity);
1210 	if (new_nid < 0 || !node_possible(new_nid))
1211 		new_nid = first_online_node;
1212 
1213 	if (NODE_DATA(new_nid) == NULL) {
1214 #ifdef CONFIG_MEMORY_HOTPLUG
1215 		/*
1216 		 * Need to ensure that NODE_DATA is initialized for a node from
1217 		 * available memory (see memblock_alloc_try_nid). If unable to
1218 		 * init the node, then default to nearest node that has memory
1219 		 * installed. Skip onlining a node if the subsystems are not
1220 		 * yet initialized.
1221 		 */
1222 		if (!topology_inited || try_online_node(new_nid))
1223 			new_nid = first_online_node;
1224 #else
1225 		/*
1226 		 * Default to using the nearest node that has memory installed.
1227 		 * Otherwise, it would be necessary to patch the kernel MM code
1228 		 * to deal with more memoryless-node error conditions.
1229 		 */
1230 		new_nid = first_online_node;
1231 #endif
1232 	}
1233 
1234 	pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1235 		cpu, new_nid);
1236 	return new_nid;
1237 }
1238 
1239 /*
1240  * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1241  * characteristics change. This function doesn't perform any locking and is
1242  * only safe to call from stop_machine().
1243  */
1244 static int update_cpu_topology(void *data)
1245 {
1246 	struct topology_update_data *update;
1247 	unsigned long cpu;
1248 
1249 	if (!data)
1250 		return -EINVAL;
1251 
1252 	cpu = smp_processor_id();
1253 
1254 	for (update = data; update; update = update->next) {
1255 		int new_nid = update->new_nid;
1256 		if (cpu != update->cpu)
1257 			continue;
1258 
1259 		unmap_cpu_from_node(cpu);
1260 		map_cpu_to_node(cpu, new_nid);
1261 		set_cpu_numa_node(cpu, new_nid);
1262 		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1263 		vdso_getcpu_init();
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 static int update_lookup_table(void *data)
1270 {
1271 	struct topology_update_data *update;
1272 
1273 	if (!data)
1274 		return -EINVAL;
1275 
1276 	/*
1277 	 * Upon topology update, the numa-cpu lookup table needs to be updated
1278 	 * for all threads in the core, including offline CPUs, to ensure that
1279 	 * future hotplug operations respect the cpu-to-node associativity
1280 	 * properly.
1281 	 */
1282 	for (update = data; update; update = update->next) {
1283 		int nid, base, j;
1284 
1285 		nid = update->new_nid;
1286 		base = cpu_first_thread_sibling(update->cpu);
1287 
1288 		for (j = 0; j < threads_per_core; j++) {
1289 			update_numa_cpu_lookup_table(base + j, nid);
1290 		}
1291 	}
1292 
1293 	return 0;
1294 }
1295 
1296 /*
1297  * Update the node maps and sysfs entries for each cpu whose home node
1298  * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1299  *
1300  * cpus_locked says whether we already hold cpu_hotplug_lock.
1301  */
1302 int numa_update_cpu_topology(bool cpus_locked)
1303 {
1304 	unsigned int cpu, sibling, changed = 0;
1305 	struct topology_update_data *updates, *ud;
1306 	cpumask_t updated_cpus;
1307 	struct device *dev;
1308 	int weight, new_nid, i = 0;
1309 
1310 	if (!prrn_enabled && !vphn_enabled && topology_inited)
1311 		return 0;
1312 
1313 	weight = cpumask_weight(&cpu_associativity_changes_mask);
1314 	if (!weight)
1315 		return 0;
1316 
1317 	updates = kcalloc(weight, sizeof(*updates), GFP_KERNEL);
1318 	if (!updates)
1319 		return 0;
1320 
1321 	cpumask_clear(&updated_cpus);
1322 
1323 	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1324 		/*
1325 		 * If siblings aren't flagged for changes, updates list
1326 		 * will be too short. Skip on this update and set for next
1327 		 * update.
1328 		 */
1329 		if (!cpumask_subset(cpu_sibling_mask(cpu),
1330 					&cpu_associativity_changes_mask)) {
1331 			pr_info("Sibling bits not set for associativity "
1332 					"change, cpu%d\n", cpu);
1333 			cpumask_or(&cpu_associativity_changes_mask,
1334 					&cpu_associativity_changes_mask,
1335 					cpu_sibling_mask(cpu));
1336 			cpu = cpu_last_thread_sibling(cpu);
1337 			continue;
1338 		}
1339 
1340 		new_nid = find_and_online_cpu_nid(cpu);
1341 
1342 		if (new_nid == numa_cpu_lookup_table[cpu]) {
1343 			cpumask_andnot(&cpu_associativity_changes_mask,
1344 					&cpu_associativity_changes_mask,
1345 					cpu_sibling_mask(cpu));
1346 			dbg("Assoc chg gives same node %d for cpu%d\n",
1347 					new_nid, cpu);
1348 			cpu = cpu_last_thread_sibling(cpu);
1349 			continue;
1350 		}
1351 
1352 		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1353 			ud = &updates[i++];
1354 			ud->next = &updates[i];
1355 			ud->cpu = sibling;
1356 			ud->new_nid = new_nid;
1357 			ud->old_nid = numa_cpu_lookup_table[sibling];
1358 			cpumask_set_cpu(sibling, &updated_cpus);
1359 		}
1360 		cpu = cpu_last_thread_sibling(cpu);
1361 	}
1362 
1363 	/*
1364 	 * Prevent processing of 'updates' from overflowing array
1365 	 * where last entry filled in a 'next' pointer.
1366 	 */
1367 	if (i)
1368 		updates[i-1].next = NULL;
1369 
1370 	pr_debug("Topology update for the following CPUs:\n");
1371 	if (cpumask_weight(&updated_cpus)) {
1372 		for (ud = &updates[0]; ud; ud = ud->next) {
1373 			pr_debug("cpu %d moving from node %d "
1374 					  "to %d\n", ud->cpu,
1375 					  ud->old_nid, ud->new_nid);
1376 		}
1377 	}
1378 
1379 	/*
1380 	 * In cases where we have nothing to update (because the updates list
1381 	 * is too short or because the new topology is same as the old one),
1382 	 * skip invoking update_cpu_topology() via stop-machine(). This is
1383 	 * necessary (and not just a fast-path optimization) since stop-machine
1384 	 * can end up electing a random CPU to run update_cpu_topology(), and
1385 	 * thus trick us into setting up incorrect cpu-node mappings (since
1386 	 * 'updates' is kzalloc()'ed).
1387 	 *
1388 	 * And for the similar reason, we will skip all the following updating.
1389 	 */
1390 	if (!cpumask_weight(&updated_cpus))
1391 		goto out;
1392 
1393 	if (cpus_locked)
1394 		stop_machine_cpuslocked(update_cpu_topology, &updates[0],
1395 					&updated_cpus);
1396 	else
1397 		stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1398 
1399 	/*
1400 	 * Update the numa-cpu lookup table with the new mappings, even for
1401 	 * offline CPUs. It is best to perform this update from the stop-
1402 	 * machine context.
1403 	 */
1404 	if (cpus_locked)
1405 		stop_machine_cpuslocked(update_lookup_table, &updates[0],
1406 					cpumask_of(raw_smp_processor_id()));
1407 	else
1408 		stop_machine(update_lookup_table, &updates[0],
1409 			     cpumask_of(raw_smp_processor_id()));
1410 
1411 	for (ud = &updates[0]; ud; ud = ud->next) {
1412 		unregister_cpu_under_node(ud->cpu, ud->old_nid);
1413 		register_cpu_under_node(ud->cpu, ud->new_nid);
1414 
1415 		dev = get_cpu_device(ud->cpu);
1416 		if (dev)
1417 			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1418 		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1419 		changed = 1;
1420 	}
1421 
1422 out:
1423 	kfree(updates);
1424 	return changed;
1425 }
1426 
1427 int arch_update_cpu_topology(void)
1428 {
1429 	return numa_update_cpu_topology(true);
1430 }
1431 
1432 static void topology_work_fn(struct work_struct *work)
1433 {
1434 	rebuild_sched_domains();
1435 }
1436 static DECLARE_WORK(topology_work, topology_work_fn);
1437 
1438 static void topology_schedule_update(void)
1439 {
1440 	schedule_work(&topology_work);
1441 }
1442 
1443 static void topology_timer_fn(struct timer_list *unused)
1444 {
1445 	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1446 		topology_schedule_update();
1447 	else if (vphn_enabled) {
1448 		if (update_cpu_associativity_changes_mask() > 0)
1449 			topology_schedule_update();
1450 		reset_topology_timer();
1451 	}
1452 }
1453 static struct timer_list topology_timer;
1454 
1455 static void reset_topology_timer(void)
1456 {
1457 	if (vphn_enabled)
1458 		mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
1459 }
1460 
1461 #ifdef CONFIG_SMP
1462 
1463 static void stage_topology_update(int core_id)
1464 {
1465 	cpumask_or(&cpu_associativity_changes_mask,
1466 		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1467 	reset_topology_timer();
1468 }
1469 
1470 static int dt_update_callback(struct notifier_block *nb,
1471 				unsigned long action, void *data)
1472 {
1473 	struct of_reconfig_data *update = data;
1474 	int rc = NOTIFY_DONE;
1475 
1476 	switch (action) {
1477 	case OF_RECONFIG_UPDATE_PROPERTY:
1478 		if (!of_prop_cmp(update->dn->type, "cpu") &&
1479 		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1480 			u32 core_id;
1481 			of_property_read_u32(update->dn, "reg", &core_id);
1482 			stage_topology_update(core_id);
1483 			rc = NOTIFY_OK;
1484 		}
1485 		break;
1486 	}
1487 
1488 	return rc;
1489 }
1490 
1491 static struct notifier_block dt_update_nb = {
1492 	.notifier_call = dt_update_callback,
1493 };
1494 
1495 #endif
1496 
1497 /*
1498  * Start polling for associativity changes.
1499  */
1500 int start_topology_update(void)
1501 {
1502 	int rc = 0;
1503 
1504 	if (firmware_has_feature(FW_FEATURE_PRRN)) {
1505 		if (!prrn_enabled) {
1506 			prrn_enabled = 1;
1507 #ifdef CONFIG_SMP
1508 			rc = of_reconfig_notifier_register(&dt_update_nb);
1509 #endif
1510 		}
1511 	}
1512 	if (firmware_has_feature(FW_FEATURE_VPHN) &&
1513 		   lppaca_shared_proc(get_lppaca())) {
1514 		if (!vphn_enabled) {
1515 			vphn_enabled = 1;
1516 			setup_cpu_associativity_change_counters();
1517 			timer_setup(&topology_timer, topology_timer_fn,
1518 				    TIMER_DEFERRABLE);
1519 			reset_topology_timer();
1520 		}
1521 	}
1522 
1523 	pr_info("Starting topology update%s%s\n",
1524 		(prrn_enabled ? " prrn_enabled" : ""),
1525 		(vphn_enabled ? " vphn_enabled" : ""));
1526 
1527 	return rc;
1528 }
1529 
1530 /*
1531  * Disable polling for VPHN associativity changes.
1532  */
1533 int stop_topology_update(void)
1534 {
1535 	int rc = 0;
1536 
1537 	if (prrn_enabled) {
1538 		prrn_enabled = 0;
1539 #ifdef CONFIG_SMP
1540 		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1541 #endif
1542 	}
1543 	if (vphn_enabled) {
1544 		vphn_enabled = 0;
1545 		rc = del_timer_sync(&topology_timer);
1546 	}
1547 
1548 	pr_info("Stopping topology update\n");
1549 
1550 	return rc;
1551 }
1552 
1553 int prrn_is_enabled(void)
1554 {
1555 	return prrn_enabled;
1556 }
1557 
1558 void __init shared_proc_topology_init(void)
1559 {
1560 	if (lppaca_shared_proc(get_lppaca())) {
1561 		bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask),
1562 			    nr_cpumask_bits);
1563 		numa_update_cpu_topology(false);
1564 	}
1565 }
1566 
1567 static int topology_read(struct seq_file *file, void *v)
1568 {
1569 	if (vphn_enabled || prrn_enabled)
1570 		seq_puts(file, "on\n");
1571 	else
1572 		seq_puts(file, "off\n");
1573 
1574 	return 0;
1575 }
1576 
1577 static int topology_open(struct inode *inode, struct file *file)
1578 {
1579 	return single_open(file, topology_read, NULL);
1580 }
1581 
1582 static ssize_t topology_write(struct file *file, const char __user *buf,
1583 			      size_t count, loff_t *off)
1584 {
1585 	char kbuf[4]; /* "on" or "off" plus null. */
1586 	int read_len;
1587 
1588 	read_len = count < 3 ? count : 3;
1589 	if (copy_from_user(kbuf, buf, read_len))
1590 		return -EINVAL;
1591 
1592 	kbuf[read_len] = '\0';
1593 
1594 	if (!strncmp(kbuf, "on", 2))
1595 		start_topology_update();
1596 	else if (!strncmp(kbuf, "off", 3))
1597 		stop_topology_update();
1598 	else
1599 		return -EINVAL;
1600 
1601 	return count;
1602 }
1603 
1604 static const struct file_operations topology_ops = {
1605 	.read = seq_read,
1606 	.write = topology_write,
1607 	.open = topology_open,
1608 	.release = single_release
1609 };
1610 
1611 static int topology_update_init(void)
1612 {
1613 	/* Do not poll for changes if disabled at boot */
1614 	if (topology_updates_enabled)
1615 		start_topology_update();
1616 
1617 	if (vphn_enabled)
1618 		topology_schedule_update();
1619 
1620 	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1621 		return -ENOMEM;
1622 
1623 	topology_inited = 1;
1624 	return 0;
1625 }
1626 device_initcall(topology_update_init);
1627 #endif /* CONFIG_PPC_SPLPAR */
1628