1 /* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #define pr_fmt(fmt) "numa: " fmt 12 13 #include <linux/threads.h> 14 #include <linux/bootmem.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/mmzone.h> 18 #include <linux/export.h> 19 #include <linux/nodemask.h> 20 #include <linux/cpu.h> 21 #include <linux/notifier.h> 22 #include <linux/memblock.h> 23 #include <linux/of.h> 24 #include <linux/pfn.h> 25 #include <linux/cpuset.h> 26 #include <linux/node.h> 27 #include <linux/stop_machine.h> 28 #include <linux/proc_fs.h> 29 #include <linux/seq_file.h> 30 #include <linux/uaccess.h> 31 #include <linux/slab.h> 32 #include <asm/cputhreads.h> 33 #include <asm/sparsemem.h> 34 #include <asm/prom.h> 35 #include <asm/smp.h> 36 #include <asm/cputhreads.h> 37 #include <asm/topology.h> 38 #include <asm/firmware.h> 39 #include <asm/paca.h> 40 #include <asm/hvcall.h> 41 #include <asm/setup.h> 42 #include <asm/vdso.h> 43 44 static int numa_enabled = 1; 45 46 static char *cmdline __initdata; 47 48 static int numa_debug; 49 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 50 51 int numa_cpu_lookup_table[NR_CPUS]; 52 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 53 struct pglist_data *node_data[MAX_NUMNODES]; 54 55 EXPORT_SYMBOL(numa_cpu_lookup_table); 56 EXPORT_SYMBOL(node_to_cpumask_map); 57 EXPORT_SYMBOL(node_data); 58 59 static int min_common_depth; 60 static int n_mem_addr_cells, n_mem_size_cells; 61 static int form1_affinity; 62 63 #define MAX_DISTANCE_REF_POINTS 4 64 static int distance_ref_points_depth; 65 static const __be32 *distance_ref_points; 66 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 67 68 /* 69 * Allocate node_to_cpumask_map based on number of available nodes 70 * Requires node_possible_map to be valid. 71 * 72 * Note: cpumask_of_node() is not valid until after this is done. 73 */ 74 static void __init setup_node_to_cpumask_map(void) 75 { 76 unsigned int node; 77 78 /* setup nr_node_ids if not done yet */ 79 if (nr_node_ids == MAX_NUMNODES) 80 setup_nr_node_ids(); 81 82 /* allocate the map */ 83 for_each_node(node) 84 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 85 86 /* cpumask_of_node() will now work */ 87 dbg("Node to cpumask map for %d nodes\n", nr_node_ids); 88 } 89 90 static int __init fake_numa_create_new_node(unsigned long end_pfn, 91 unsigned int *nid) 92 { 93 unsigned long long mem; 94 char *p = cmdline; 95 static unsigned int fake_nid; 96 static unsigned long long curr_boundary; 97 98 /* 99 * Modify node id, iff we started creating NUMA nodes 100 * We want to continue from where we left of the last time 101 */ 102 if (fake_nid) 103 *nid = fake_nid; 104 /* 105 * In case there are no more arguments to parse, the 106 * node_id should be the same as the last fake node id 107 * (we've handled this above). 108 */ 109 if (!p) 110 return 0; 111 112 mem = memparse(p, &p); 113 if (!mem) 114 return 0; 115 116 if (mem < curr_boundary) 117 return 0; 118 119 curr_boundary = mem; 120 121 if ((end_pfn << PAGE_SHIFT) > mem) { 122 /* 123 * Skip commas and spaces 124 */ 125 while (*p == ',' || *p == ' ' || *p == '\t') 126 p++; 127 128 cmdline = p; 129 fake_nid++; 130 *nid = fake_nid; 131 dbg("created new fake_node with id %d\n", fake_nid); 132 return 1; 133 } 134 return 0; 135 } 136 137 static void reset_numa_cpu_lookup_table(void) 138 { 139 unsigned int cpu; 140 141 for_each_possible_cpu(cpu) 142 numa_cpu_lookup_table[cpu] = -1; 143 } 144 145 static void update_numa_cpu_lookup_table(unsigned int cpu, int node) 146 { 147 numa_cpu_lookup_table[cpu] = node; 148 } 149 150 static void map_cpu_to_node(int cpu, int node) 151 { 152 update_numa_cpu_lookup_table(cpu, node); 153 154 dbg("adding cpu %d to node %d\n", cpu, node); 155 156 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) 157 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 158 } 159 160 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 161 static void unmap_cpu_from_node(unsigned long cpu) 162 { 163 int node = numa_cpu_lookup_table[cpu]; 164 165 dbg("removing cpu %lu from node %d\n", cpu, node); 166 167 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 168 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 169 } else { 170 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 171 cpu, node); 172 } 173 } 174 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 175 176 /* must hold reference to node during call */ 177 static const __be32 *of_get_associativity(struct device_node *dev) 178 { 179 return of_get_property(dev, "ibm,associativity", NULL); 180 } 181 182 /* 183 * Returns the property linux,drconf-usable-memory if 184 * it exists (the property exists only in kexec/kdump kernels, 185 * added by kexec-tools) 186 */ 187 static const __be32 *of_get_usable_memory(struct device_node *memory) 188 { 189 const __be32 *prop; 190 u32 len; 191 prop = of_get_property(memory, "linux,drconf-usable-memory", &len); 192 if (!prop || len < sizeof(unsigned int)) 193 return NULL; 194 return prop; 195 } 196 197 int __node_distance(int a, int b) 198 { 199 int i; 200 int distance = LOCAL_DISTANCE; 201 202 if (!form1_affinity) 203 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); 204 205 for (i = 0; i < distance_ref_points_depth; i++) { 206 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 207 break; 208 209 /* Double the distance for each NUMA level */ 210 distance *= 2; 211 } 212 213 return distance; 214 } 215 EXPORT_SYMBOL(__node_distance); 216 217 static void initialize_distance_lookup_table(int nid, 218 const __be32 *associativity) 219 { 220 int i; 221 222 if (!form1_affinity) 223 return; 224 225 for (i = 0; i < distance_ref_points_depth; i++) { 226 const __be32 *entry; 227 228 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1]; 229 distance_lookup_table[nid][i] = of_read_number(entry, 1); 230 } 231 } 232 233 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa 234 * info is found. 235 */ 236 static int associativity_to_nid(const __be32 *associativity) 237 { 238 int nid = -1; 239 240 if (min_common_depth == -1) 241 goto out; 242 243 if (of_read_number(associativity, 1) >= min_common_depth) 244 nid = of_read_number(&associativity[min_common_depth], 1); 245 246 /* POWER4 LPAR uses 0xffff as invalid node */ 247 if (nid == 0xffff || nid >= MAX_NUMNODES) 248 nid = -1; 249 250 if (nid > 0 && 251 of_read_number(associativity, 1) >= distance_ref_points_depth) { 252 /* 253 * Skip the length field and send start of associativity array 254 */ 255 initialize_distance_lookup_table(nid, associativity + 1); 256 } 257 258 out: 259 return nid; 260 } 261 262 /* Returns the nid associated with the given device tree node, 263 * or -1 if not found. 264 */ 265 static int of_node_to_nid_single(struct device_node *device) 266 { 267 int nid = -1; 268 const __be32 *tmp; 269 270 tmp = of_get_associativity(device); 271 if (tmp) 272 nid = associativity_to_nid(tmp); 273 return nid; 274 } 275 276 /* Walk the device tree upwards, looking for an associativity id */ 277 int of_node_to_nid(struct device_node *device) 278 { 279 int nid = -1; 280 281 of_node_get(device); 282 while (device) { 283 nid = of_node_to_nid_single(device); 284 if (nid != -1) 285 break; 286 287 device = of_get_next_parent(device); 288 } 289 of_node_put(device); 290 291 return nid; 292 } 293 EXPORT_SYMBOL_GPL(of_node_to_nid); 294 295 static int __init find_min_common_depth(void) 296 { 297 int depth; 298 struct device_node *root; 299 300 if (firmware_has_feature(FW_FEATURE_OPAL)) 301 root = of_find_node_by_path("/ibm,opal"); 302 else 303 root = of_find_node_by_path("/rtas"); 304 if (!root) 305 root = of_find_node_by_path("/"); 306 307 /* 308 * This property is a set of 32-bit integers, each representing 309 * an index into the ibm,associativity nodes. 310 * 311 * With form 0 affinity the first integer is for an SMP configuration 312 * (should be all 0's) and the second is for a normal NUMA 313 * configuration. We have only one level of NUMA. 314 * 315 * With form 1 affinity the first integer is the most significant 316 * NUMA boundary and the following are progressively less significant 317 * boundaries. There can be more than one level of NUMA. 318 */ 319 distance_ref_points = of_get_property(root, 320 "ibm,associativity-reference-points", 321 &distance_ref_points_depth); 322 323 if (!distance_ref_points) { 324 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 325 goto err; 326 } 327 328 distance_ref_points_depth /= sizeof(int); 329 330 if (firmware_has_feature(FW_FEATURE_OPAL) || 331 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { 332 dbg("Using form 1 affinity\n"); 333 form1_affinity = 1; 334 } 335 336 if (form1_affinity) { 337 depth = of_read_number(distance_ref_points, 1); 338 } else { 339 if (distance_ref_points_depth < 2) { 340 printk(KERN_WARNING "NUMA: " 341 "short ibm,associativity-reference-points\n"); 342 goto err; 343 } 344 345 depth = of_read_number(&distance_ref_points[1], 1); 346 } 347 348 /* 349 * Warn and cap if the hardware supports more than 350 * MAX_DISTANCE_REF_POINTS domains. 351 */ 352 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 353 printk(KERN_WARNING "NUMA: distance array capped at " 354 "%d entries\n", MAX_DISTANCE_REF_POINTS); 355 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 356 } 357 358 of_node_put(root); 359 return depth; 360 361 err: 362 of_node_put(root); 363 return -1; 364 } 365 366 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 367 { 368 struct device_node *memory = NULL; 369 370 memory = of_find_node_by_type(memory, "memory"); 371 if (!memory) 372 panic("numa.c: No memory nodes found!"); 373 374 *n_addr_cells = of_n_addr_cells(memory); 375 *n_size_cells = of_n_size_cells(memory); 376 of_node_put(memory); 377 } 378 379 static unsigned long read_n_cells(int n, const __be32 **buf) 380 { 381 unsigned long result = 0; 382 383 while (n--) { 384 result = (result << 32) | of_read_number(*buf, 1); 385 (*buf)++; 386 } 387 return result; 388 } 389 390 /* 391 * Read the next memblock list entry from the ibm,dynamic-memory property 392 * and return the information in the provided of_drconf_cell structure. 393 */ 394 static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp) 395 { 396 const __be32 *cp; 397 398 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); 399 400 cp = *cellp; 401 drmem->drc_index = of_read_number(cp, 1); 402 drmem->reserved = of_read_number(&cp[1], 1); 403 drmem->aa_index = of_read_number(&cp[2], 1); 404 drmem->flags = of_read_number(&cp[3], 1); 405 406 *cellp = cp + 4; 407 } 408 409 /* 410 * Retrieve and validate the ibm,dynamic-memory property of the device tree. 411 * 412 * The layout of the ibm,dynamic-memory property is a number N of memblock 413 * list entries followed by N memblock list entries. Each memblock list entry 414 * contains information as laid out in the of_drconf_cell struct above. 415 */ 416 static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm) 417 { 418 const __be32 *prop; 419 u32 len, entries; 420 421 prop = of_get_property(memory, "ibm,dynamic-memory", &len); 422 if (!prop || len < sizeof(unsigned int)) 423 return 0; 424 425 entries = of_read_number(prop++, 1); 426 427 /* Now that we know the number of entries, revalidate the size 428 * of the property read in to ensure we have everything 429 */ 430 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) 431 return 0; 432 433 *dm = prop; 434 return entries; 435 } 436 437 /* 438 * Retrieve and validate the ibm,lmb-size property for drconf memory 439 * from the device tree. 440 */ 441 static u64 of_get_lmb_size(struct device_node *memory) 442 { 443 const __be32 *prop; 444 u32 len; 445 446 prop = of_get_property(memory, "ibm,lmb-size", &len); 447 if (!prop || len < sizeof(unsigned int)) 448 return 0; 449 450 return read_n_cells(n_mem_size_cells, &prop); 451 } 452 453 struct assoc_arrays { 454 u32 n_arrays; 455 u32 array_sz; 456 const __be32 *arrays; 457 }; 458 459 /* 460 * Retrieve and validate the list of associativity arrays for drconf 461 * memory from the ibm,associativity-lookup-arrays property of the 462 * device tree.. 463 * 464 * The layout of the ibm,associativity-lookup-arrays property is a number N 465 * indicating the number of associativity arrays, followed by a number M 466 * indicating the size of each associativity array, followed by a list 467 * of N associativity arrays. 468 */ 469 static int of_get_assoc_arrays(struct device_node *memory, 470 struct assoc_arrays *aa) 471 { 472 const __be32 *prop; 473 u32 len; 474 475 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 476 if (!prop || len < 2 * sizeof(unsigned int)) 477 return -1; 478 479 aa->n_arrays = of_read_number(prop++, 1); 480 aa->array_sz = of_read_number(prop++, 1); 481 482 /* Now that we know the number of arrays and size of each array, 483 * revalidate the size of the property read in. 484 */ 485 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 486 return -1; 487 488 aa->arrays = prop; 489 return 0; 490 } 491 492 /* 493 * This is like of_node_to_nid_single() for memory represented in the 494 * ibm,dynamic-reconfiguration-memory node. 495 */ 496 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, 497 struct assoc_arrays *aa) 498 { 499 int default_nid = 0; 500 int nid = default_nid; 501 int index; 502 503 if (min_common_depth > 0 && min_common_depth <= aa->array_sz && 504 !(drmem->flags & DRCONF_MEM_AI_INVALID) && 505 drmem->aa_index < aa->n_arrays) { 506 index = drmem->aa_index * aa->array_sz + min_common_depth - 1; 507 nid = of_read_number(&aa->arrays[index], 1); 508 509 if (nid == 0xffff || nid >= MAX_NUMNODES) 510 nid = default_nid; 511 512 if (nid > 0) { 513 index = drmem->aa_index * aa->array_sz; 514 initialize_distance_lookup_table(nid, 515 &aa->arrays[index]); 516 } 517 } 518 519 return nid; 520 } 521 522 /* 523 * Figure out to which domain a cpu belongs and stick it there. 524 * Return the id of the domain used. 525 */ 526 static int numa_setup_cpu(unsigned long lcpu) 527 { 528 int nid = -1; 529 struct device_node *cpu; 530 531 /* 532 * If a valid cpu-to-node mapping is already available, use it 533 * directly instead of querying the firmware, since it represents 534 * the most recent mapping notified to us by the platform (eg: VPHN). 535 */ 536 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) { 537 map_cpu_to_node(lcpu, nid); 538 return nid; 539 } 540 541 cpu = of_get_cpu_node(lcpu, NULL); 542 543 if (!cpu) { 544 WARN_ON(1); 545 if (cpu_present(lcpu)) 546 goto out_present; 547 else 548 goto out; 549 } 550 551 nid = of_node_to_nid_single(cpu); 552 553 out_present: 554 if (nid < 0 || !node_online(nid)) 555 nid = first_online_node; 556 557 map_cpu_to_node(lcpu, nid); 558 of_node_put(cpu); 559 out: 560 return nid; 561 } 562 563 static void verify_cpu_node_mapping(int cpu, int node) 564 { 565 int base, sibling, i; 566 567 /* Verify that all the threads in the core belong to the same node */ 568 base = cpu_first_thread_sibling(cpu); 569 570 for (i = 0; i < threads_per_core; i++) { 571 sibling = base + i; 572 573 if (sibling == cpu || cpu_is_offline(sibling)) 574 continue; 575 576 if (cpu_to_node(sibling) != node) { 577 WARN(1, "CPU thread siblings %d and %d don't belong" 578 " to the same node!\n", cpu, sibling); 579 break; 580 } 581 } 582 } 583 584 /* Must run before sched domains notifier. */ 585 static int ppc_numa_cpu_prepare(unsigned int cpu) 586 { 587 int nid; 588 589 nid = numa_setup_cpu(cpu); 590 verify_cpu_node_mapping(cpu, nid); 591 return 0; 592 } 593 594 static int ppc_numa_cpu_dead(unsigned int cpu) 595 { 596 #ifdef CONFIG_HOTPLUG_CPU 597 unmap_cpu_from_node(cpu); 598 #endif 599 return 0; 600 } 601 602 /* 603 * Check and possibly modify a memory region to enforce the memory limit. 604 * 605 * Returns the size the region should have to enforce the memory limit. 606 * This will either be the original value of size, a truncated value, 607 * or zero. If the returned value of size is 0 the region should be 608 * discarded as it lies wholly above the memory limit. 609 */ 610 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 611 unsigned long size) 612 { 613 /* 614 * We use memblock_end_of_DRAM() in here instead of memory_limit because 615 * we've already adjusted it for the limit and it takes care of 616 * having memory holes below the limit. Also, in the case of 617 * iommu_is_off, memory_limit is not set but is implicitly enforced. 618 */ 619 620 if (start + size <= memblock_end_of_DRAM()) 621 return size; 622 623 if (start >= memblock_end_of_DRAM()) 624 return 0; 625 626 return memblock_end_of_DRAM() - start; 627 } 628 629 /* 630 * Reads the counter for a given entry in 631 * linux,drconf-usable-memory property 632 */ 633 static inline int __init read_usm_ranges(const __be32 **usm) 634 { 635 /* 636 * For each lmb in ibm,dynamic-memory a corresponding 637 * entry in linux,drconf-usable-memory property contains 638 * a counter followed by that many (base, size) duple. 639 * read the counter from linux,drconf-usable-memory 640 */ 641 return read_n_cells(n_mem_size_cells, usm); 642 } 643 644 /* 645 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 646 * node. This assumes n_mem_{addr,size}_cells have been set. 647 */ 648 static void __init parse_drconf_memory(struct device_node *memory) 649 { 650 const __be32 *uninitialized_var(dm), *usm; 651 unsigned int n, rc, ranges, is_kexec_kdump = 0; 652 unsigned long lmb_size, base, size, sz; 653 int nid; 654 struct assoc_arrays aa = { .arrays = NULL }; 655 656 n = of_get_drconf_memory(memory, &dm); 657 if (!n) 658 return; 659 660 lmb_size = of_get_lmb_size(memory); 661 if (!lmb_size) 662 return; 663 664 rc = of_get_assoc_arrays(memory, &aa); 665 if (rc) 666 return; 667 668 /* check if this is a kexec/kdump kernel */ 669 usm = of_get_usable_memory(memory); 670 if (usm != NULL) 671 is_kexec_kdump = 1; 672 673 for (; n != 0; --n) { 674 struct of_drconf_cell drmem; 675 676 read_drconf_cell(&drmem, &dm); 677 678 /* skip this block if the reserved bit is set in flags (0x80) 679 or if the block is not assigned to this partition (0x8) */ 680 if ((drmem.flags & DRCONF_MEM_RESERVED) 681 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 682 continue; 683 684 base = drmem.base_addr; 685 size = lmb_size; 686 ranges = 1; 687 688 if (is_kexec_kdump) { 689 ranges = read_usm_ranges(&usm); 690 if (!ranges) /* there are no (base, size) duple */ 691 continue; 692 } 693 do { 694 if (is_kexec_kdump) { 695 base = read_n_cells(n_mem_addr_cells, &usm); 696 size = read_n_cells(n_mem_size_cells, &usm); 697 } 698 nid = of_drconf_to_nid_single(&drmem, &aa); 699 fake_numa_create_new_node( 700 ((base + size) >> PAGE_SHIFT), 701 &nid); 702 node_set_online(nid); 703 sz = numa_enforce_memory_limit(base, size); 704 if (sz) 705 memblock_set_node(base, sz, 706 &memblock.memory, nid); 707 } while (--ranges); 708 } 709 } 710 711 static int __init parse_numa_properties(void) 712 { 713 struct device_node *memory; 714 int default_nid = 0; 715 unsigned long i; 716 717 if (numa_enabled == 0) { 718 printk(KERN_WARNING "NUMA disabled by user\n"); 719 return -1; 720 } 721 722 min_common_depth = find_min_common_depth(); 723 724 if (min_common_depth < 0) 725 return min_common_depth; 726 727 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 728 729 /* 730 * Even though we connect cpus to numa domains later in SMP 731 * init, we need to know the node ids now. This is because 732 * each node to be onlined must have NODE_DATA etc backing it. 733 */ 734 for_each_present_cpu(i) { 735 struct device_node *cpu; 736 int nid; 737 738 cpu = of_get_cpu_node(i, NULL); 739 BUG_ON(!cpu); 740 nid = of_node_to_nid_single(cpu); 741 of_node_put(cpu); 742 743 /* 744 * Don't fall back to default_nid yet -- we will plug 745 * cpus into nodes once the memory scan has discovered 746 * the topology. 747 */ 748 if (nid < 0) 749 continue; 750 node_set_online(nid); 751 } 752 753 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 754 755 for_each_node_by_type(memory, "memory") { 756 unsigned long start; 757 unsigned long size; 758 int nid; 759 int ranges; 760 const __be32 *memcell_buf; 761 unsigned int len; 762 763 memcell_buf = of_get_property(memory, 764 "linux,usable-memory", &len); 765 if (!memcell_buf || len <= 0) 766 memcell_buf = of_get_property(memory, "reg", &len); 767 if (!memcell_buf || len <= 0) 768 continue; 769 770 /* ranges in cell */ 771 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 772 new_range: 773 /* these are order-sensitive, and modify the buffer pointer */ 774 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 775 size = read_n_cells(n_mem_size_cells, &memcell_buf); 776 777 /* 778 * Assumption: either all memory nodes or none will 779 * have associativity properties. If none, then 780 * everything goes to default_nid. 781 */ 782 nid = of_node_to_nid_single(memory); 783 if (nid < 0) 784 nid = default_nid; 785 786 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 787 node_set_online(nid); 788 789 if (!(size = numa_enforce_memory_limit(start, size))) { 790 if (--ranges) 791 goto new_range; 792 else 793 continue; 794 } 795 796 memblock_set_node(start, size, &memblock.memory, nid); 797 798 if (--ranges) 799 goto new_range; 800 } 801 802 /* 803 * Now do the same thing for each MEMBLOCK listed in the 804 * ibm,dynamic-memory property in the 805 * ibm,dynamic-reconfiguration-memory node. 806 */ 807 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 808 if (memory) 809 parse_drconf_memory(memory); 810 811 return 0; 812 } 813 814 static void __init setup_nonnuma(void) 815 { 816 unsigned long top_of_ram = memblock_end_of_DRAM(); 817 unsigned long total_ram = memblock_phys_mem_size(); 818 unsigned long start_pfn, end_pfn; 819 unsigned int nid = 0; 820 struct memblock_region *reg; 821 822 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 823 top_of_ram, total_ram); 824 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 825 (top_of_ram - total_ram) >> 20); 826 827 for_each_memblock(memory, reg) { 828 start_pfn = memblock_region_memory_base_pfn(reg); 829 end_pfn = memblock_region_memory_end_pfn(reg); 830 831 fake_numa_create_new_node(end_pfn, &nid); 832 memblock_set_node(PFN_PHYS(start_pfn), 833 PFN_PHYS(end_pfn - start_pfn), 834 &memblock.memory, nid); 835 node_set_online(nid); 836 } 837 } 838 839 void __init dump_numa_cpu_topology(void) 840 { 841 unsigned int node; 842 unsigned int cpu, count; 843 844 if (min_common_depth == -1 || !numa_enabled) 845 return; 846 847 for_each_online_node(node) { 848 printk(KERN_DEBUG "Node %d CPUs:", node); 849 850 count = 0; 851 /* 852 * If we used a CPU iterator here we would miss printing 853 * the holes in the cpumap. 854 */ 855 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 856 if (cpumask_test_cpu(cpu, 857 node_to_cpumask_map[node])) { 858 if (count == 0) 859 printk(" %u", cpu); 860 ++count; 861 } else { 862 if (count > 1) 863 printk("-%u", cpu - 1); 864 count = 0; 865 } 866 } 867 868 if (count > 1) 869 printk("-%u", nr_cpu_ids - 1); 870 printk("\n"); 871 } 872 } 873 874 static void __init dump_numa_memory_topology(void) 875 { 876 unsigned int node; 877 unsigned int count; 878 879 if (min_common_depth == -1 || !numa_enabled) 880 return; 881 882 for_each_online_node(node) { 883 unsigned long i; 884 885 printk(KERN_DEBUG "Node %d Memory:", node); 886 887 count = 0; 888 889 for (i = 0; i < memblock_end_of_DRAM(); 890 i += (1 << SECTION_SIZE_BITS)) { 891 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { 892 if (count == 0) 893 printk(" 0x%lx", i); 894 ++count; 895 } else { 896 if (count > 0) 897 printk("-0x%lx", i); 898 count = 0; 899 } 900 } 901 902 if (count > 0) 903 printk("-0x%lx", i); 904 printk("\n"); 905 } 906 } 907 908 /* Initialize NODE_DATA for a node on the local memory */ 909 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) 910 { 911 u64 spanned_pages = end_pfn - start_pfn; 912 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); 913 u64 nd_pa; 914 void *nd; 915 int tnid; 916 917 if (spanned_pages) 918 pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n", 919 nid, start_pfn << PAGE_SHIFT, 920 (end_pfn << PAGE_SHIFT) - 1); 921 else 922 pr_info("Initmem setup node %d\n", nid); 923 924 nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); 925 nd = __va(nd_pa); 926 927 /* report and initialize */ 928 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n", 929 nd_pa, nd_pa + nd_size - 1); 930 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); 931 if (tnid != nid) 932 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid); 933 934 node_data[nid] = nd; 935 memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); 936 NODE_DATA(nid)->node_id = nid; 937 NODE_DATA(nid)->node_start_pfn = start_pfn; 938 NODE_DATA(nid)->node_spanned_pages = spanned_pages; 939 } 940 941 void __init initmem_init(void) 942 { 943 int nid, cpu; 944 945 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 946 max_pfn = max_low_pfn; 947 948 if (parse_numa_properties()) 949 setup_nonnuma(); 950 else 951 dump_numa_memory_topology(); 952 953 memblock_dump_all(); 954 955 /* 956 * Reduce the possible NUMA nodes to the online NUMA nodes, 957 * since we do not support node hotplug. This ensures that we 958 * lower the maximum NUMA node ID to what is actually present. 959 */ 960 nodes_and(node_possible_map, node_possible_map, node_online_map); 961 962 for_each_online_node(nid) { 963 unsigned long start_pfn, end_pfn; 964 965 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 966 setup_node_data(nid, start_pfn, end_pfn); 967 sparse_memory_present_with_active_regions(nid); 968 } 969 970 sparse_init(); 971 972 setup_node_to_cpumask_map(); 973 974 reset_numa_cpu_lookup_table(); 975 976 /* 977 * We need the numa_cpu_lookup_table to be accurate for all CPUs, 978 * even before we online them, so that we can use cpu_to_{node,mem} 979 * early in boot, cf. smp_prepare_cpus(). 980 * _nocalls() + manual invocation is used because cpuhp is not yet 981 * initialized for the boot CPU. 982 */ 983 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "POWER_NUMA_PREPARE", 984 ppc_numa_cpu_prepare, ppc_numa_cpu_dead); 985 for_each_present_cpu(cpu) 986 numa_setup_cpu(cpu); 987 } 988 989 static int __init early_numa(char *p) 990 { 991 if (!p) 992 return 0; 993 994 if (strstr(p, "off")) 995 numa_enabled = 0; 996 997 if (strstr(p, "debug")) 998 numa_debug = 1; 999 1000 p = strstr(p, "fake="); 1001 if (p) 1002 cmdline = p + strlen("fake="); 1003 1004 return 0; 1005 } 1006 early_param("numa", early_numa); 1007 1008 static bool topology_updates_enabled = true; 1009 1010 static int __init early_topology_updates(char *p) 1011 { 1012 if (!p) 1013 return 0; 1014 1015 if (!strcmp(p, "off")) { 1016 pr_info("Disabling topology updates\n"); 1017 topology_updates_enabled = false; 1018 } 1019 1020 return 0; 1021 } 1022 early_param("topology_updates", early_topology_updates); 1023 1024 #ifdef CONFIG_MEMORY_HOTPLUG 1025 /* 1026 * Find the node associated with a hot added memory section for 1027 * memory represented in the device tree by the property 1028 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 1029 */ 1030 static int hot_add_drconf_scn_to_nid(struct device_node *memory, 1031 unsigned long scn_addr) 1032 { 1033 const __be32 *dm; 1034 unsigned int drconf_cell_cnt, rc; 1035 unsigned long lmb_size; 1036 struct assoc_arrays aa; 1037 int nid = -1; 1038 1039 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1040 if (!drconf_cell_cnt) 1041 return -1; 1042 1043 lmb_size = of_get_lmb_size(memory); 1044 if (!lmb_size) 1045 return -1; 1046 1047 rc = of_get_assoc_arrays(memory, &aa); 1048 if (rc) 1049 return -1; 1050 1051 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { 1052 struct of_drconf_cell drmem; 1053 1054 read_drconf_cell(&drmem, &dm); 1055 1056 /* skip this block if it is reserved or not assigned to 1057 * this partition */ 1058 if ((drmem.flags & DRCONF_MEM_RESERVED) 1059 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 1060 continue; 1061 1062 if ((scn_addr < drmem.base_addr) 1063 || (scn_addr >= (drmem.base_addr + lmb_size))) 1064 continue; 1065 1066 nid = of_drconf_to_nid_single(&drmem, &aa); 1067 break; 1068 } 1069 1070 return nid; 1071 } 1072 1073 /* 1074 * Find the node associated with a hot added memory section for memory 1075 * represented in the device tree as a node (i.e. memory@XXXX) for 1076 * each memblock. 1077 */ 1078 static int hot_add_node_scn_to_nid(unsigned long scn_addr) 1079 { 1080 struct device_node *memory; 1081 int nid = -1; 1082 1083 for_each_node_by_type(memory, "memory") { 1084 unsigned long start, size; 1085 int ranges; 1086 const __be32 *memcell_buf; 1087 unsigned int len; 1088 1089 memcell_buf = of_get_property(memory, "reg", &len); 1090 if (!memcell_buf || len <= 0) 1091 continue; 1092 1093 /* ranges in cell */ 1094 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 1095 1096 while (ranges--) { 1097 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 1098 size = read_n_cells(n_mem_size_cells, &memcell_buf); 1099 1100 if ((scn_addr < start) || (scn_addr >= (start + size))) 1101 continue; 1102 1103 nid = of_node_to_nid_single(memory); 1104 break; 1105 } 1106 1107 if (nid >= 0) 1108 break; 1109 } 1110 1111 of_node_put(memory); 1112 1113 return nid; 1114 } 1115 1116 /* 1117 * Find the node associated with a hot added memory section. Section 1118 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1119 * sections are fully contained within a single MEMBLOCK. 1120 */ 1121 int hot_add_scn_to_nid(unsigned long scn_addr) 1122 { 1123 struct device_node *memory = NULL; 1124 int nid, found = 0; 1125 1126 if (!numa_enabled || (min_common_depth < 0)) 1127 return first_online_node; 1128 1129 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1130 if (memory) { 1131 nid = hot_add_drconf_scn_to_nid(memory, scn_addr); 1132 of_node_put(memory); 1133 } else { 1134 nid = hot_add_node_scn_to_nid(scn_addr); 1135 } 1136 1137 if (nid < 0 || !node_online(nid)) 1138 nid = first_online_node; 1139 1140 if (NODE_DATA(nid)->node_spanned_pages) 1141 return nid; 1142 1143 for_each_online_node(nid) { 1144 if (NODE_DATA(nid)->node_spanned_pages) { 1145 found = 1; 1146 break; 1147 } 1148 } 1149 1150 BUG_ON(!found); 1151 return nid; 1152 } 1153 1154 static u64 hot_add_drconf_memory_max(void) 1155 { 1156 struct device_node *memory = NULL; 1157 struct device_node *dn = NULL; 1158 unsigned int drconf_cell_cnt = 0; 1159 u64 lmb_size = 0; 1160 const __be32 *dm = NULL; 1161 const __be64 *lrdr = NULL; 1162 struct of_drconf_cell drmem; 1163 1164 dn = of_find_node_by_path("/rtas"); 1165 if (dn) { 1166 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL); 1167 of_node_put(dn); 1168 if (lrdr) 1169 return be64_to_cpup(lrdr); 1170 } 1171 1172 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1173 if (memory) { 1174 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1175 lmb_size = of_get_lmb_size(memory); 1176 1177 /* Advance to the last cell, each cell has 6 32 bit integers */ 1178 dm += (drconf_cell_cnt - 1) * 6; 1179 read_drconf_cell(&drmem, &dm); 1180 of_node_put(memory); 1181 return drmem.base_addr + lmb_size; 1182 } 1183 return 0; 1184 } 1185 1186 /* 1187 * memory_hotplug_max - return max address of memory that may be added 1188 * 1189 * This is currently only used on systems that support drconfig memory 1190 * hotplug. 1191 */ 1192 u64 memory_hotplug_max(void) 1193 { 1194 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1195 } 1196 #endif /* CONFIG_MEMORY_HOTPLUG */ 1197 1198 /* Virtual Processor Home Node (VPHN) support */ 1199 #ifdef CONFIG_PPC_SPLPAR 1200 1201 #include "vphn.h" 1202 1203 struct topology_update_data { 1204 struct topology_update_data *next; 1205 unsigned int cpu; 1206 int old_nid; 1207 int new_nid; 1208 }; 1209 1210 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; 1211 static cpumask_t cpu_associativity_changes_mask; 1212 static int vphn_enabled; 1213 static int prrn_enabled; 1214 static void reset_topology_timer(void); 1215 1216 /* 1217 * Store the current values of the associativity change counters in the 1218 * hypervisor. 1219 */ 1220 static void setup_cpu_associativity_change_counters(void) 1221 { 1222 int cpu; 1223 1224 /* The VPHN feature supports a maximum of 8 reference points */ 1225 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); 1226 1227 for_each_possible_cpu(cpu) { 1228 int i; 1229 u8 *counts = vphn_cpu_change_counts[cpu]; 1230 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1231 1232 for (i = 0; i < distance_ref_points_depth; i++) 1233 counts[i] = hypervisor_counts[i]; 1234 } 1235 } 1236 1237 /* 1238 * The hypervisor maintains a set of 8 associativity change counters in 1239 * the VPA of each cpu that correspond to the associativity levels in the 1240 * ibm,associativity-reference-points property. When an associativity 1241 * level changes, the corresponding counter is incremented. 1242 * 1243 * Set a bit in cpu_associativity_changes_mask for each cpu whose home 1244 * node associativity levels have changed. 1245 * 1246 * Returns the number of cpus with unhandled associativity changes. 1247 */ 1248 static int update_cpu_associativity_changes_mask(void) 1249 { 1250 int cpu; 1251 cpumask_t *changes = &cpu_associativity_changes_mask; 1252 1253 for_each_possible_cpu(cpu) { 1254 int i, changed = 0; 1255 u8 *counts = vphn_cpu_change_counts[cpu]; 1256 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1257 1258 for (i = 0; i < distance_ref_points_depth; i++) { 1259 if (hypervisor_counts[i] != counts[i]) { 1260 counts[i] = hypervisor_counts[i]; 1261 changed = 1; 1262 } 1263 } 1264 if (changed) { 1265 cpumask_or(changes, changes, cpu_sibling_mask(cpu)); 1266 cpu = cpu_last_thread_sibling(cpu); 1267 } 1268 } 1269 1270 return cpumask_weight(changes); 1271 } 1272 1273 /* 1274 * Retrieve the new associativity information for a virtual processor's 1275 * home node. 1276 */ 1277 static long hcall_vphn(unsigned long cpu, __be32 *associativity) 1278 { 1279 long rc; 1280 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; 1281 u64 flags = 1; 1282 int hwcpu = get_hard_smp_processor_id(cpu); 1283 1284 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); 1285 vphn_unpack_associativity(retbuf, associativity); 1286 1287 return rc; 1288 } 1289 1290 static long vphn_get_associativity(unsigned long cpu, 1291 __be32 *associativity) 1292 { 1293 long rc; 1294 1295 rc = hcall_vphn(cpu, associativity); 1296 1297 switch (rc) { 1298 case H_FUNCTION: 1299 printk(KERN_INFO 1300 "VPHN is not supported. Disabling polling...\n"); 1301 stop_topology_update(); 1302 break; 1303 case H_HARDWARE: 1304 printk(KERN_ERR 1305 "hcall_vphn() experienced a hardware fault " 1306 "preventing VPHN. Disabling polling...\n"); 1307 stop_topology_update(); 1308 } 1309 1310 return rc; 1311 } 1312 1313 /* 1314 * Update the CPU maps and sysfs entries for a single CPU when its NUMA 1315 * characteristics change. This function doesn't perform any locking and is 1316 * only safe to call from stop_machine(). 1317 */ 1318 static int update_cpu_topology(void *data) 1319 { 1320 struct topology_update_data *update; 1321 unsigned long cpu; 1322 1323 if (!data) 1324 return -EINVAL; 1325 1326 cpu = smp_processor_id(); 1327 1328 for (update = data; update; update = update->next) { 1329 int new_nid = update->new_nid; 1330 if (cpu != update->cpu) 1331 continue; 1332 1333 unmap_cpu_from_node(cpu); 1334 map_cpu_to_node(cpu, new_nid); 1335 set_cpu_numa_node(cpu, new_nid); 1336 set_cpu_numa_mem(cpu, local_memory_node(new_nid)); 1337 vdso_getcpu_init(); 1338 } 1339 1340 return 0; 1341 } 1342 1343 static int update_lookup_table(void *data) 1344 { 1345 struct topology_update_data *update; 1346 1347 if (!data) 1348 return -EINVAL; 1349 1350 /* 1351 * Upon topology update, the numa-cpu lookup table needs to be updated 1352 * for all threads in the core, including offline CPUs, to ensure that 1353 * future hotplug operations respect the cpu-to-node associativity 1354 * properly. 1355 */ 1356 for (update = data; update; update = update->next) { 1357 int nid, base, j; 1358 1359 nid = update->new_nid; 1360 base = cpu_first_thread_sibling(update->cpu); 1361 1362 for (j = 0; j < threads_per_core; j++) { 1363 update_numa_cpu_lookup_table(base + j, nid); 1364 } 1365 } 1366 1367 return 0; 1368 } 1369 1370 /* 1371 * Update the node maps and sysfs entries for each cpu whose home node 1372 * has changed. Returns 1 when the topology has changed, and 0 otherwise. 1373 */ 1374 int arch_update_cpu_topology(void) 1375 { 1376 unsigned int cpu, sibling, changed = 0; 1377 struct topology_update_data *updates, *ud; 1378 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1379 cpumask_t updated_cpus; 1380 struct device *dev; 1381 int weight, new_nid, i = 0; 1382 1383 if (!prrn_enabled && !vphn_enabled) 1384 return 0; 1385 1386 weight = cpumask_weight(&cpu_associativity_changes_mask); 1387 if (!weight) 1388 return 0; 1389 1390 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL); 1391 if (!updates) 1392 return 0; 1393 1394 cpumask_clear(&updated_cpus); 1395 1396 for_each_cpu(cpu, &cpu_associativity_changes_mask) { 1397 /* 1398 * If siblings aren't flagged for changes, updates list 1399 * will be too short. Skip on this update and set for next 1400 * update. 1401 */ 1402 if (!cpumask_subset(cpu_sibling_mask(cpu), 1403 &cpu_associativity_changes_mask)) { 1404 pr_info("Sibling bits not set for associativity " 1405 "change, cpu%d\n", cpu); 1406 cpumask_or(&cpu_associativity_changes_mask, 1407 &cpu_associativity_changes_mask, 1408 cpu_sibling_mask(cpu)); 1409 cpu = cpu_last_thread_sibling(cpu); 1410 continue; 1411 } 1412 1413 /* Use associativity from first thread for all siblings */ 1414 vphn_get_associativity(cpu, associativity); 1415 new_nid = associativity_to_nid(associativity); 1416 if (new_nid < 0 || !node_online(new_nid)) 1417 new_nid = first_online_node; 1418 1419 if (new_nid == numa_cpu_lookup_table[cpu]) { 1420 cpumask_andnot(&cpu_associativity_changes_mask, 1421 &cpu_associativity_changes_mask, 1422 cpu_sibling_mask(cpu)); 1423 cpu = cpu_last_thread_sibling(cpu); 1424 continue; 1425 } 1426 1427 for_each_cpu(sibling, cpu_sibling_mask(cpu)) { 1428 ud = &updates[i++]; 1429 ud->cpu = sibling; 1430 ud->new_nid = new_nid; 1431 ud->old_nid = numa_cpu_lookup_table[sibling]; 1432 cpumask_set_cpu(sibling, &updated_cpus); 1433 if (i < weight) 1434 ud->next = &updates[i]; 1435 } 1436 cpu = cpu_last_thread_sibling(cpu); 1437 } 1438 1439 pr_debug("Topology update for the following CPUs:\n"); 1440 if (cpumask_weight(&updated_cpus)) { 1441 for (ud = &updates[0]; ud; ud = ud->next) { 1442 pr_debug("cpu %d moving from node %d " 1443 "to %d\n", ud->cpu, 1444 ud->old_nid, ud->new_nid); 1445 } 1446 } 1447 1448 /* 1449 * In cases where we have nothing to update (because the updates list 1450 * is too short or because the new topology is same as the old one), 1451 * skip invoking update_cpu_topology() via stop-machine(). This is 1452 * necessary (and not just a fast-path optimization) since stop-machine 1453 * can end up electing a random CPU to run update_cpu_topology(), and 1454 * thus trick us into setting up incorrect cpu-node mappings (since 1455 * 'updates' is kzalloc()'ed). 1456 * 1457 * And for the similar reason, we will skip all the following updating. 1458 */ 1459 if (!cpumask_weight(&updated_cpus)) 1460 goto out; 1461 1462 stop_machine(update_cpu_topology, &updates[0], &updated_cpus); 1463 1464 /* 1465 * Update the numa-cpu lookup table with the new mappings, even for 1466 * offline CPUs. It is best to perform this update from the stop- 1467 * machine context. 1468 */ 1469 stop_machine(update_lookup_table, &updates[0], 1470 cpumask_of(raw_smp_processor_id())); 1471 1472 for (ud = &updates[0]; ud; ud = ud->next) { 1473 unregister_cpu_under_node(ud->cpu, ud->old_nid); 1474 register_cpu_under_node(ud->cpu, ud->new_nid); 1475 1476 dev = get_cpu_device(ud->cpu); 1477 if (dev) 1478 kobject_uevent(&dev->kobj, KOBJ_CHANGE); 1479 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask); 1480 changed = 1; 1481 } 1482 1483 out: 1484 kfree(updates); 1485 return changed; 1486 } 1487 1488 static void topology_work_fn(struct work_struct *work) 1489 { 1490 rebuild_sched_domains(); 1491 } 1492 static DECLARE_WORK(topology_work, topology_work_fn); 1493 1494 static void topology_schedule_update(void) 1495 { 1496 schedule_work(&topology_work); 1497 } 1498 1499 static void topology_timer_fn(unsigned long ignored) 1500 { 1501 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask)) 1502 topology_schedule_update(); 1503 else if (vphn_enabled) { 1504 if (update_cpu_associativity_changes_mask() > 0) 1505 topology_schedule_update(); 1506 reset_topology_timer(); 1507 } 1508 } 1509 static struct timer_list topology_timer = 1510 TIMER_INITIALIZER(topology_timer_fn, 0, 0); 1511 1512 static void reset_topology_timer(void) 1513 { 1514 topology_timer.data = 0; 1515 topology_timer.expires = jiffies + 60 * HZ; 1516 mod_timer(&topology_timer, topology_timer.expires); 1517 } 1518 1519 #ifdef CONFIG_SMP 1520 1521 static void stage_topology_update(int core_id) 1522 { 1523 cpumask_or(&cpu_associativity_changes_mask, 1524 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id)); 1525 reset_topology_timer(); 1526 } 1527 1528 static int dt_update_callback(struct notifier_block *nb, 1529 unsigned long action, void *data) 1530 { 1531 struct of_reconfig_data *update = data; 1532 int rc = NOTIFY_DONE; 1533 1534 switch (action) { 1535 case OF_RECONFIG_UPDATE_PROPERTY: 1536 if (!of_prop_cmp(update->dn->type, "cpu") && 1537 !of_prop_cmp(update->prop->name, "ibm,associativity")) { 1538 u32 core_id; 1539 of_property_read_u32(update->dn, "reg", &core_id); 1540 stage_topology_update(core_id); 1541 rc = NOTIFY_OK; 1542 } 1543 break; 1544 } 1545 1546 return rc; 1547 } 1548 1549 static struct notifier_block dt_update_nb = { 1550 .notifier_call = dt_update_callback, 1551 }; 1552 1553 #endif 1554 1555 /* 1556 * Start polling for associativity changes. 1557 */ 1558 int start_topology_update(void) 1559 { 1560 int rc = 0; 1561 1562 if (firmware_has_feature(FW_FEATURE_PRRN)) { 1563 if (!prrn_enabled) { 1564 prrn_enabled = 1; 1565 vphn_enabled = 0; 1566 #ifdef CONFIG_SMP 1567 rc = of_reconfig_notifier_register(&dt_update_nb); 1568 #endif 1569 } 1570 } else if (firmware_has_feature(FW_FEATURE_VPHN) && 1571 lppaca_shared_proc(get_lppaca())) { 1572 if (!vphn_enabled) { 1573 prrn_enabled = 0; 1574 vphn_enabled = 1; 1575 setup_cpu_associativity_change_counters(); 1576 init_timer_deferrable(&topology_timer); 1577 reset_topology_timer(); 1578 } 1579 } 1580 1581 return rc; 1582 } 1583 1584 /* 1585 * Disable polling for VPHN associativity changes. 1586 */ 1587 int stop_topology_update(void) 1588 { 1589 int rc = 0; 1590 1591 if (prrn_enabled) { 1592 prrn_enabled = 0; 1593 #ifdef CONFIG_SMP 1594 rc = of_reconfig_notifier_unregister(&dt_update_nb); 1595 #endif 1596 } else if (vphn_enabled) { 1597 vphn_enabled = 0; 1598 rc = del_timer_sync(&topology_timer); 1599 } 1600 1601 return rc; 1602 } 1603 1604 int prrn_is_enabled(void) 1605 { 1606 return prrn_enabled; 1607 } 1608 1609 static int topology_read(struct seq_file *file, void *v) 1610 { 1611 if (vphn_enabled || prrn_enabled) 1612 seq_puts(file, "on\n"); 1613 else 1614 seq_puts(file, "off\n"); 1615 1616 return 0; 1617 } 1618 1619 static int topology_open(struct inode *inode, struct file *file) 1620 { 1621 return single_open(file, topology_read, NULL); 1622 } 1623 1624 static ssize_t topology_write(struct file *file, const char __user *buf, 1625 size_t count, loff_t *off) 1626 { 1627 char kbuf[4]; /* "on" or "off" plus null. */ 1628 int read_len; 1629 1630 read_len = count < 3 ? count : 3; 1631 if (copy_from_user(kbuf, buf, read_len)) 1632 return -EINVAL; 1633 1634 kbuf[read_len] = '\0'; 1635 1636 if (!strncmp(kbuf, "on", 2)) 1637 start_topology_update(); 1638 else if (!strncmp(kbuf, "off", 3)) 1639 stop_topology_update(); 1640 else 1641 return -EINVAL; 1642 1643 return count; 1644 } 1645 1646 static const struct file_operations topology_ops = { 1647 .read = seq_read, 1648 .write = topology_write, 1649 .open = topology_open, 1650 .release = single_release 1651 }; 1652 1653 static int topology_update_init(void) 1654 { 1655 /* Do not poll for changes if disabled at boot */ 1656 if (topology_updates_enabled) 1657 start_topology_update(); 1658 1659 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops)) 1660 return -ENOMEM; 1661 1662 return 0; 1663 } 1664 device_initcall(topology_update_init); 1665 #endif /* CONFIG_PPC_SPLPAR */ 1666