1 /* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/threads.h> 12 #include <linux/bootmem.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/mmzone.h> 16 #include <linux/export.h> 17 #include <linux/nodemask.h> 18 #include <linux/cpu.h> 19 #include <linux/notifier.h> 20 #include <linux/memblock.h> 21 #include <linux/of.h> 22 #include <linux/pfn.h> 23 #include <linux/cpuset.h> 24 #include <linux/node.h> 25 #include <linux/stop_machine.h> 26 #include <linux/proc_fs.h> 27 #include <linux/seq_file.h> 28 #include <linux/uaccess.h> 29 #include <linux/slab.h> 30 #include <asm/cputhreads.h> 31 #include <asm/sparsemem.h> 32 #include <asm/prom.h> 33 #include <asm/smp.h> 34 #include <asm/firmware.h> 35 #include <asm/paca.h> 36 #include <asm/hvcall.h> 37 #include <asm/setup.h> 38 #include <asm/vdso.h> 39 40 static int numa_enabled = 1; 41 42 static char *cmdline __initdata; 43 44 static int numa_debug; 45 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 46 47 int numa_cpu_lookup_table[NR_CPUS]; 48 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 49 struct pglist_data *node_data[MAX_NUMNODES]; 50 51 EXPORT_SYMBOL(numa_cpu_lookup_table); 52 EXPORT_SYMBOL(node_to_cpumask_map); 53 EXPORT_SYMBOL(node_data); 54 55 static int min_common_depth; 56 static int n_mem_addr_cells, n_mem_size_cells; 57 static int form1_affinity; 58 59 #define MAX_DISTANCE_REF_POINTS 4 60 static int distance_ref_points_depth; 61 static const __be32 *distance_ref_points; 62 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 63 64 /* 65 * Allocate node_to_cpumask_map based on number of available nodes 66 * Requires node_possible_map to be valid. 67 * 68 * Note: cpumask_of_node() is not valid until after this is done. 69 */ 70 static void __init setup_node_to_cpumask_map(void) 71 { 72 unsigned int node; 73 74 /* setup nr_node_ids if not done yet */ 75 if (nr_node_ids == MAX_NUMNODES) 76 setup_nr_node_ids(); 77 78 /* allocate the map */ 79 for (node = 0; node < nr_node_ids; node++) 80 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 81 82 /* cpumask_of_node() will now work */ 83 dbg("Node to cpumask map for %d nodes\n", nr_node_ids); 84 } 85 86 static int __init fake_numa_create_new_node(unsigned long end_pfn, 87 unsigned int *nid) 88 { 89 unsigned long long mem; 90 char *p = cmdline; 91 static unsigned int fake_nid; 92 static unsigned long long curr_boundary; 93 94 /* 95 * Modify node id, iff we started creating NUMA nodes 96 * We want to continue from where we left of the last time 97 */ 98 if (fake_nid) 99 *nid = fake_nid; 100 /* 101 * In case there are no more arguments to parse, the 102 * node_id should be the same as the last fake node id 103 * (we've handled this above). 104 */ 105 if (!p) 106 return 0; 107 108 mem = memparse(p, &p); 109 if (!mem) 110 return 0; 111 112 if (mem < curr_boundary) 113 return 0; 114 115 curr_boundary = mem; 116 117 if ((end_pfn << PAGE_SHIFT) > mem) { 118 /* 119 * Skip commas and spaces 120 */ 121 while (*p == ',' || *p == ' ' || *p == '\t') 122 p++; 123 124 cmdline = p; 125 fake_nid++; 126 *nid = fake_nid; 127 dbg("created new fake_node with id %d\n", fake_nid); 128 return 1; 129 } 130 return 0; 131 } 132 133 /* 134 * get_node_active_region - Return active region containing pfn 135 * Active range returned is empty if none found. 136 * @pfn: The page to return the region for 137 * @node_ar: Returned set to the active region containing @pfn 138 */ 139 static void __init get_node_active_region(unsigned long pfn, 140 struct node_active_region *node_ar) 141 { 142 unsigned long start_pfn, end_pfn; 143 int i, nid; 144 145 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 146 if (pfn >= start_pfn && pfn < end_pfn) { 147 node_ar->nid = nid; 148 node_ar->start_pfn = start_pfn; 149 node_ar->end_pfn = end_pfn; 150 break; 151 } 152 } 153 } 154 155 static void map_cpu_to_node(int cpu, int node) 156 { 157 numa_cpu_lookup_table[cpu] = node; 158 159 dbg("adding cpu %d to node %d\n", cpu, node); 160 161 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) 162 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 163 } 164 165 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 166 static void unmap_cpu_from_node(unsigned long cpu) 167 { 168 int node = numa_cpu_lookup_table[cpu]; 169 170 dbg("removing cpu %lu from node %d\n", cpu, node); 171 172 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 173 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 174 } else { 175 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 176 cpu, node); 177 } 178 } 179 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 180 181 /* must hold reference to node during call */ 182 static const __be32 *of_get_associativity(struct device_node *dev) 183 { 184 return of_get_property(dev, "ibm,associativity", NULL); 185 } 186 187 /* 188 * Returns the property linux,drconf-usable-memory if 189 * it exists (the property exists only in kexec/kdump kernels, 190 * added by kexec-tools) 191 */ 192 static const __be32 *of_get_usable_memory(struct device_node *memory) 193 { 194 const __be32 *prop; 195 u32 len; 196 prop = of_get_property(memory, "linux,drconf-usable-memory", &len); 197 if (!prop || len < sizeof(unsigned int)) 198 return NULL; 199 return prop; 200 } 201 202 int __node_distance(int a, int b) 203 { 204 int i; 205 int distance = LOCAL_DISTANCE; 206 207 if (!form1_affinity) 208 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); 209 210 for (i = 0; i < distance_ref_points_depth; i++) { 211 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 212 break; 213 214 /* Double the distance for each NUMA level */ 215 distance *= 2; 216 } 217 218 return distance; 219 } 220 221 static void initialize_distance_lookup_table(int nid, 222 const __be32 *associativity) 223 { 224 int i; 225 226 if (!form1_affinity) 227 return; 228 229 for (i = 0; i < distance_ref_points_depth; i++) { 230 const __be32 *entry; 231 232 entry = &associativity[be32_to_cpu(distance_ref_points[i])]; 233 distance_lookup_table[nid][i] = of_read_number(entry, 1); 234 } 235 } 236 237 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa 238 * info is found. 239 */ 240 static int associativity_to_nid(const __be32 *associativity) 241 { 242 int nid = -1; 243 244 if (min_common_depth == -1) 245 goto out; 246 247 if (of_read_number(associativity, 1) >= min_common_depth) 248 nid = of_read_number(&associativity[min_common_depth], 1); 249 250 /* POWER4 LPAR uses 0xffff as invalid node */ 251 if (nid == 0xffff || nid >= MAX_NUMNODES) 252 nid = -1; 253 254 if (nid > 0 && 255 of_read_number(associativity, 1) >= distance_ref_points_depth) 256 initialize_distance_lookup_table(nid, associativity); 257 258 out: 259 return nid; 260 } 261 262 /* Returns the nid associated with the given device tree node, 263 * or -1 if not found. 264 */ 265 static int of_node_to_nid_single(struct device_node *device) 266 { 267 int nid = -1; 268 const __be32 *tmp; 269 270 tmp = of_get_associativity(device); 271 if (tmp) 272 nid = associativity_to_nid(tmp); 273 return nid; 274 } 275 276 /* Walk the device tree upwards, looking for an associativity id */ 277 int of_node_to_nid(struct device_node *device) 278 { 279 struct device_node *tmp; 280 int nid = -1; 281 282 of_node_get(device); 283 while (device) { 284 nid = of_node_to_nid_single(device); 285 if (nid != -1) 286 break; 287 288 tmp = device; 289 device = of_get_parent(tmp); 290 of_node_put(tmp); 291 } 292 of_node_put(device); 293 294 return nid; 295 } 296 EXPORT_SYMBOL_GPL(of_node_to_nid); 297 298 static int __init find_min_common_depth(void) 299 { 300 int depth; 301 struct device_node *root; 302 303 if (firmware_has_feature(FW_FEATURE_OPAL)) 304 root = of_find_node_by_path("/ibm,opal"); 305 else 306 root = of_find_node_by_path("/rtas"); 307 if (!root) 308 root = of_find_node_by_path("/"); 309 310 /* 311 * This property is a set of 32-bit integers, each representing 312 * an index into the ibm,associativity nodes. 313 * 314 * With form 0 affinity the first integer is for an SMP configuration 315 * (should be all 0's) and the second is for a normal NUMA 316 * configuration. We have only one level of NUMA. 317 * 318 * With form 1 affinity the first integer is the most significant 319 * NUMA boundary and the following are progressively less significant 320 * boundaries. There can be more than one level of NUMA. 321 */ 322 distance_ref_points = of_get_property(root, 323 "ibm,associativity-reference-points", 324 &distance_ref_points_depth); 325 326 if (!distance_ref_points) { 327 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 328 goto err; 329 } 330 331 distance_ref_points_depth /= sizeof(int); 332 333 if (firmware_has_feature(FW_FEATURE_OPAL) || 334 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { 335 dbg("Using form 1 affinity\n"); 336 form1_affinity = 1; 337 } 338 339 if (form1_affinity) { 340 depth = of_read_number(distance_ref_points, 1); 341 } else { 342 if (distance_ref_points_depth < 2) { 343 printk(KERN_WARNING "NUMA: " 344 "short ibm,associativity-reference-points\n"); 345 goto err; 346 } 347 348 depth = of_read_number(&distance_ref_points[1], 1); 349 } 350 351 /* 352 * Warn and cap if the hardware supports more than 353 * MAX_DISTANCE_REF_POINTS domains. 354 */ 355 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 356 printk(KERN_WARNING "NUMA: distance array capped at " 357 "%d entries\n", MAX_DISTANCE_REF_POINTS); 358 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 359 } 360 361 of_node_put(root); 362 return depth; 363 364 err: 365 of_node_put(root); 366 return -1; 367 } 368 369 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 370 { 371 struct device_node *memory = NULL; 372 373 memory = of_find_node_by_type(memory, "memory"); 374 if (!memory) 375 panic("numa.c: No memory nodes found!"); 376 377 *n_addr_cells = of_n_addr_cells(memory); 378 *n_size_cells = of_n_size_cells(memory); 379 of_node_put(memory); 380 } 381 382 static unsigned long read_n_cells(int n, const __be32 **buf) 383 { 384 unsigned long result = 0; 385 386 while (n--) { 387 result = (result << 32) | of_read_number(*buf, 1); 388 (*buf)++; 389 } 390 return result; 391 } 392 393 /* 394 * Read the next memblock list entry from the ibm,dynamic-memory property 395 * and return the information in the provided of_drconf_cell structure. 396 */ 397 static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp) 398 { 399 const __be32 *cp; 400 401 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); 402 403 cp = *cellp; 404 drmem->drc_index = of_read_number(cp, 1); 405 drmem->reserved = of_read_number(&cp[1], 1); 406 drmem->aa_index = of_read_number(&cp[2], 1); 407 drmem->flags = of_read_number(&cp[3], 1); 408 409 *cellp = cp + 4; 410 } 411 412 /* 413 * Retrieve and validate the ibm,dynamic-memory property of the device tree. 414 * 415 * The layout of the ibm,dynamic-memory property is a number N of memblock 416 * list entries followed by N memblock list entries. Each memblock list entry 417 * contains information as laid out in the of_drconf_cell struct above. 418 */ 419 static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm) 420 { 421 const __be32 *prop; 422 u32 len, entries; 423 424 prop = of_get_property(memory, "ibm,dynamic-memory", &len); 425 if (!prop || len < sizeof(unsigned int)) 426 return 0; 427 428 entries = of_read_number(prop++, 1); 429 430 /* Now that we know the number of entries, revalidate the size 431 * of the property read in to ensure we have everything 432 */ 433 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) 434 return 0; 435 436 *dm = prop; 437 return entries; 438 } 439 440 /* 441 * Retrieve and validate the ibm,lmb-size property for drconf memory 442 * from the device tree. 443 */ 444 static u64 of_get_lmb_size(struct device_node *memory) 445 { 446 const __be32 *prop; 447 u32 len; 448 449 prop = of_get_property(memory, "ibm,lmb-size", &len); 450 if (!prop || len < sizeof(unsigned int)) 451 return 0; 452 453 return read_n_cells(n_mem_size_cells, &prop); 454 } 455 456 struct assoc_arrays { 457 u32 n_arrays; 458 u32 array_sz; 459 const __be32 *arrays; 460 }; 461 462 /* 463 * Retrieve and validate the list of associativity arrays for drconf 464 * memory from the ibm,associativity-lookup-arrays property of the 465 * device tree.. 466 * 467 * The layout of the ibm,associativity-lookup-arrays property is a number N 468 * indicating the number of associativity arrays, followed by a number M 469 * indicating the size of each associativity array, followed by a list 470 * of N associativity arrays. 471 */ 472 static int of_get_assoc_arrays(struct device_node *memory, 473 struct assoc_arrays *aa) 474 { 475 const __be32 *prop; 476 u32 len; 477 478 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 479 if (!prop || len < 2 * sizeof(unsigned int)) 480 return -1; 481 482 aa->n_arrays = of_read_number(prop++, 1); 483 aa->array_sz = of_read_number(prop++, 1); 484 485 /* Now that we know the number of arrays and size of each array, 486 * revalidate the size of the property read in. 487 */ 488 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 489 return -1; 490 491 aa->arrays = prop; 492 return 0; 493 } 494 495 /* 496 * This is like of_node_to_nid_single() for memory represented in the 497 * ibm,dynamic-reconfiguration-memory node. 498 */ 499 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, 500 struct assoc_arrays *aa) 501 { 502 int default_nid = 0; 503 int nid = default_nid; 504 int index; 505 506 if (min_common_depth > 0 && min_common_depth <= aa->array_sz && 507 !(drmem->flags & DRCONF_MEM_AI_INVALID) && 508 drmem->aa_index < aa->n_arrays) { 509 index = drmem->aa_index * aa->array_sz + min_common_depth - 1; 510 nid = of_read_number(&aa->arrays[index], 1); 511 512 if (nid == 0xffff || nid >= MAX_NUMNODES) 513 nid = default_nid; 514 } 515 516 return nid; 517 } 518 519 /* 520 * Figure out to which domain a cpu belongs and stick it there. 521 * Return the id of the domain used. 522 */ 523 static int numa_setup_cpu(unsigned long lcpu) 524 { 525 int nid = 0; 526 struct device_node *cpu = of_get_cpu_node(lcpu, NULL); 527 528 if (!cpu) { 529 WARN_ON(1); 530 goto out; 531 } 532 533 nid = of_node_to_nid_single(cpu); 534 535 if (nid < 0 || !node_online(nid)) 536 nid = first_online_node; 537 out: 538 map_cpu_to_node(lcpu, nid); 539 540 of_node_put(cpu); 541 542 return nid; 543 } 544 545 static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action, 546 void *hcpu) 547 { 548 unsigned long lcpu = (unsigned long)hcpu; 549 int ret = NOTIFY_DONE; 550 551 switch (action) { 552 case CPU_UP_PREPARE: 553 case CPU_UP_PREPARE_FROZEN: 554 numa_setup_cpu(lcpu); 555 ret = NOTIFY_OK; 556 break; 557 #ifdef CONFIG_HOTPLUG_CPU 558 case CPU_DEAD: 559 case CPU_DEAD_FROZEN: 560 case CPU_UP_CANCELED: 561 case CPU_UP_CANCELED_FROZEN: 562 unmap_cpu_from_node(lcpu); 563 break; 564 ret = NOTIFY_OK; 565 #endif 566 } 567 return ret; 568 } 569 570 /* 571 * Check and possibly modify a memory region to enforce the memory limit. 572 * 573 * Returns the size the region should have to enforce the memory limit. 574 * This will either be the original value of size, a truncated value, 575 * or zero. If the returned value of size is 0 the region should be 576 * discarded as it lies wholly above the memory limit. 577 */ 578 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 579 unsigned long size) 580 { 581 /* 582 * We use memblock_end_of_DRAM() in here instead of memory_limit because 583 * we've already adjusted it for the limit and it takes care of 584 * having memory holes below the limit. Also, in the case of 585 * iommu_is_off, memory_limit is not set but is implicitly enforced. 586 */ 587 588 if (start + size <= memblock_end_of_DRAM()) 589 return size; 590 591 if (start >= memblock_end_of_DRAM()) 592 return 0; 593 594 return memblock_end_of_DRAM() - start; 595 } 596 597 /* 598 * Reads the counter for a given entry in 599 * linux,drconf-usable-memory property 600 */ 601 static inline int __init read_usm_ranges(const __be32 **usm) 602 { 603 /* 604 * For each lmb in ibm,dynamic-memory a corresponding 605 * entry in linux,drconf-usable-memory property contains 606 * a counter followed by that many (base, size) duple. 607 * read the counter from linux,drconf-usable-memory 608 */ 609 return read_n_cells(n_mem_size_cells, usm); 610 } 611 612 /* 613 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 614 * node. This assumes n_mem_{addr,size}_cells have been set. 615 */ 616 static void __init parse_drconf_memory(struct device_node *memory) 617 { 618 const __be32 *uninitialized_var(dm), *usm; 619 unsigned int n, rc, ranges, is_kexec_kdump = 0; 620 unsigned long lmb_size, base, size, sz; 621 int nid; 622 struct assoc_arrays aa = { .arrays = NULL }; 623 624 n = of_get_drconf_memory(memory, &dm); 625 if (!n) 626 return; 627 628 lmb_size = of_get_lmb_size(memory); 629 if (!lmb_size) 630 return; 631 632 rc = of_get_assoc_arrays(memory, &aa); 633 if (rc) 634 return; 635 636 /* check if this is a kexec/kdump kernel */ 637 usm = of_get_usable_memory(memory); 638 if (usm != NULL) 639 is_kexec_kdump = 1; 640 641 for (; n != 0; --n) { 642 struct of_drconf_cell drmem; 643 644 read_drconf_cell(&drmem, &dm); 645 646 /* skip this block if the reserved bit is set in flags (0x80) 647 or if the block is not assigned to this partition (0x8) */ 648 if ((drmem.flags & DRCONF_MEM_RESERVED) 649 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 650 continue; 651 652 base = drmem.base_addr; 653 size = lmb_size; 654 ranges = 1; 655 656 if (is_kexec_kdump) { 657 ranges = read_usm_ranges(&usm); 658 if (!ranges) /* there are no (base, size) duple */ 659 continue; 660 } 661 do { 662 if (is_kexec_kdump) { 663 base = read_n_cells(n_mem_addr_cells, &usm); 664 size = read_n_cells(n_mem_size_cells, &usm); 665 } 666 nid = of_drconf_to_nid_single(&drmem, &aa); 667 fake_numa_create_new_node( 668 ((base + size) >> PAGE_SHIFT), 669 &nid); 670 node_set_online(nid); 671 sz = numa_enforce_memory_limit(base, size); 672 if (sz) 673 memblock_set_node(base, sz, nid); 674 } while (--ranges); 675 } 676 } 677 678 static int __init parse_numa_properties(void) 679 { 680 struct device_node *memory; 681 int default_nid = 0; 682 unsigned long i; 683 684 if (numa_enabled == 0) { 685 printk(KERN_WARNING "NUMA disabled by user\n"); 686 return -1; 687 } 688 689 min_common_depth = find_min_common_depth(); 690 691 if (min_common_depth < 0) 692 return min_common_depth; 693 694 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 695 696 /* 697 * Even though we connect cpus to numa domains later in SMP 698 * init, we need to know the node ids now. This is because 699 * each node to be onlined must have NODE_DATA etc backing it. 700 */ 701 for_each_present_cpu(i) { 702 struct device_node *cpu; 703 int nid; 704 705 cpu = of_get_cpu_node(i, NULL); 706 BUG_ON(!cpu); 707 nid = of_node_to_nid_single(cpu); 708 of_node_put(cpu); 709 710 /* 711 * Don't fall back to default_nid yet -- we will plug 712 * cpus into nodes once the memory scan has discovered 713 * the topology. 714 */ 715 if (nid < 0) 716 continue; 717 node_set_online(nid); 718 } 719 720 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 721 722 for_each_node_by_type(memory, "memory") { 723 unsigned long start; 724 unsigned long size; 725 int nid; 726 int ranges; 727 const __be32 *memcell_buf; 728 unsigned int len; 729 730 memcell_buf = of_get_property(memory, 731 "linux,usable-memory", &len); 732 if (!memcell_buf || len <= 0) 733 memcell_buf = of_get_property(memory, "reg", &len); 734 if (!memcell_buf || len <= 0) 735 continue; 736 737 /* ranges in cell */ 738 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 739 new_range: 740 /* these are order-sensitive, and modify the buffer pointer */ 741 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 742 size = read_n_cells(n_mem_size_cells, &memcell_buf); 743 744 /* 745 * Assumption: either all memory nodes or none will 746 * have associativity properties. If none, then 747 * everything goes to default_nid. 748 */ 749 nid = of_node_to_nid_single(memory); 750 if (nid < 0) 751 nid = default_nid; 752 753 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 754 node_set_online(nid); 755 756 if (!(size = numa_enforce_memory_limit(start, size))) { 757 if (--ranges) 758 goto new_range; 759 else 760 continue; 761 } 762 763 memblock_set_node(start, size, nid); 764 765 if (--ranges) 766 goto new_range; 767 } 768 769 /* 770 * Now do the same thing for each MEMBLOCK listed in the 771 * ibm,dynamic-memory property in the 772 * ibm,dynamic-reconfiguration-memory node. 773 */ 774 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 775 if (memory) 776 parse_drconf_memory(memory); 777 778 return 0; 779 } 780 781 static void __init setup_nonnuma(void) 782 { 783 unsigned long top_of_ram = memblock_end_of_DRAM(); 784 unsigned long total_ram = memblock_phys_mem_size(); 785 unsigned long start_pfn, end_pfn; 786 unsigned int nid = 0; 787 struct memblock_region *reg; 788 789 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 790 top_of_ram, total_ram); 791 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 792 (top_of_ram - total_ram) >> 20); 793 794 for_each_memblock(memory, reg) { 795 start_pfn = memblock_region_memory_base_pfn(reg); 796 end_pfn = memblock_region_memory_end_pfn(reg); 797 798 fake_numa_create_new_node(end_pfn, &nid); 799 memblock_set_node(PFN_PHYS(start_pfn), 800 PFN_PHYS(end_pfn - start_pfn), nid); 801 node_set_online(nid); 802 } 803 } 804 805 void __init dump_numa_cpu_topology(void) 806 { 807 unsigned int node; 808 unsigned int cpu, count; 809 810 if (min_common_depth == -1 || !numa_enabled) 811 return; 812 813 for_each_online_node(node) { 814 printk(KERN_DEBUG "Node %d CPUs:", node); 815 816 count = 0; 817 /* 818 * If we used a CPU iterator here we would miss printing 819 * the holes in the cpumap. 820 */ 821 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 822 if (cpumask_test_cpu(cpu, 823 node_to_cpumask_map[node])) { 824 if (count == 0) 825 printk(" %u", cpu); 826 ++count; 827 } else { 828 if (count > 1) 829 printk("-%u", cpu - 1); 830 count = 0; 831 } 832 } 833 834 if (count > 1) 835 printk("-%u", nr_cpu_ids - 1); 836 printk("\n"); 837 } 838 } 839 840 static void __init dump_numa_memory_topology(void) 841 { 842 unsigned int node; 843 unsigned int count; 844 845 if (min_common_depth == -1 || !numa_enabled) 846 return; 847 848 for_each_online_node(node) { 849 unsigned long i; 850 851 printk(KERN_DEBUG "Node %d Memory:", node); 852 853 count = 0; 854 855 for (i = 0; i < memblock_end_of_DRAM(); 856 i += (1 << SECTION_SIZE_BITS)) { 857 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { 858 if (count == 0) 859 printk(" 0x%lx", i); 860 ++count; 861 } else { 862 if (count > 0) 863 printk("-0x%lx", i); 864 count = 0; 865 } 866 } 867 868 if (count > 0) 869 printk("-0x%lx", i); 870 printk("\n"); 871 } 872 } 873 874 /* 875 * Allocate some memory, satisfying the memblock or bootmem allocator where 876 * required. nid is the preferred node and end is the physical address of 877 * the highest address in the node. 878 * 879 * Returns the virtual address of the memory. 880 */ 881 static void __init *careful_zallocation(int nid, unsigned long size, 882 unsigned long align, 883 unsigned long end_pfn) 884 { 885 void *ret; 886 int new_nid; 887 unsigned long ret_paddr; 888 889 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT); 890 891 /* retry over all memory */ 892 if (!ret_paddr) 893 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM()); 894 895 if (!ret_paddr) 896 panic("numa.c: cannot allocate %lu bytes for node %d", 897 size, nid); 898 899 ret = __va(ret_paddr); 900 901 /* 902 * We initialize the nodes in numeric order: 0, 1, 2... 903 * and hand over control from the MEMBLOCK allocator to the 904 * bootmem allocator. If this function is called for 905 * node 5, then we know that all nodes <5 are using the 906 * bootmem allocator instead of the MEMBLOCK allocator. 907 * 908 * So, check the nid from which this allocation came 909 * and double check to see if we need to use bootmem 910 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory 911 * since it would be useless. 912 */ 913 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT); 914 if (new_nid < nid) { 915 ret = __alloc_bootmem_node(NODE_DATA(new_nid), 916 size, align, 0); 917 918 dbg("alloc_bootmem %p %lx\n", ret, size); 919 } 920 921 memset(ret, 0, size); 922 return ret; 923 } 924 925 static struct notifier_block ppc64_numa_nb = { 926 .notifier_call = cpu_numa_callback, 927 .priority = 1 /* Must run before sched domains notifier. */ 928 }; 929 930 static void __init mark_reserved_regions_for_nid(int nid) 931 { 932 struct pglist_data *node = NODE_DATA(nid); 933 struct memblock_region *reg; 934 935 for_each_memblock(reserved, reg) { 936 unsigned long physbase = reg->base; 937 unsigned long size = reg->size; 938 unsigned long start_pfn = physbase >> PAGE_SHIFT; 939 unsigned long end_pfn = PFN_UP(physbase + size); 940 struct node_active_region node_ar; 941 unsigned long node_end_pfn = pgdat_end_pfn(node); 942 943 /* 944 * Check to make sure that this memblock.reserved area is 945 * within the bounds of the node that we care about. 946 * Checking the nid of the start and end points is not 947 * sufficient because the reserved area could span the 948 * entire node. 949 */ 950 if (end_pfn <= node->node_start_pfn || 951 start_pfn >= node_end_pfn) 952 continue; 953 954 get_node_active_region(start_pfn, &node_ar); 955 while (start_pfn < end_pfn && 956 node_ar.start_pfn < node_ar.end_pfn) { 957 unsigned long reserve_size = size; 958 /* 959 * if reserved region extends past active region 960 * then trim size to active region 961 */ 962 if (end_pfn > node_ar.end_pfn) 963 reserve_size = (node_ar.end_pfn << PAGE_SHIFT) 964 - physbase; 965 /* 966 * Only worry about *this* node, others may not 967 * yet have valid NODE_DATA(). 968 */ 969 if (node_ar.nid == nid) { 970 dbg("reserve_bootmem %lx %lx nid=%d\n", 971 physbase, reserve_size, node_ar.nid); 972 reserve_bootmem_node(NODE_DATA(node_ar.nid), 973 physbase, reserve_size, 974 BOOTMEM_DEFAULT); 975 } 976 /* 977 * if reserved region is contained in the active region 978 * then done. 979 */ 980 if (end_pfn <= node_ar.end_pfn) 981 break; 982 983 /* 984 * reserved region extends past the active region 985 * get next active region that contains this 986 * reserved region 987 */ 988 start_pfn = node_ar.end_pfn; 989 physbase = start_pfn << PAGE_SHIFT; 990 size = size - reserve_size; 991 get_node_active_region(start_pfn, &node_ar); 992 } 993 } 994 } 995 996 997 void __init do_init_bootmem(void) 998 { 999 int nid; 1000 1001 min_low_pfn = 0; 1002 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1003 max_pfn = max_low_pfn; 1004 1005 if (parse_numa_properties()) 1006 setup_nonnuma(); 1007 else 1008 dump_numa_memory_topology(); 1009 1010 for_each_online_node(nid) { 1011 unsigned long start_pfn, end_pfn; 1012 void *bootmem_vaddr; 1013 unsigned long bootmap_pages; 1014 1015 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1016 1017 /* 1018 * Allocate the node structure node local if possible 1019 * 1020 * Be careful moving this around, as it relies on all 1021 * previous nodes' bootmem to be initialized and have 1022 * all reserved areas marked. 1023 */ 1024 NODE_DATA(nid) = careful_zallocation(nid, 1025 sizeof(struct pglist_data), 1026 SMP_CACHE_BYTES, end_pfn); 1027 1028 dbg("node %d\n", nid); 1029 dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); 1030 1031 NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; 1032 NODE_DATA(nid)->node_start_pfn = start_pfn; 1033 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; 1034 1035 if (NODE_DATA(nid)->node_spanned_pages == 0) 1036 continue; 1037 1038 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); 1039 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); 1040 1041 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); 1042 bootmem_vaddr = careful_zallocation(nid, 1043 bootmap_pages << PAGE_SHIFT, 1044 PAGE_SIZE, end_pfn); 1045 1046 dbg("bootmap_vaddr = %p\n", bootmem_vaddr); 1047 1048 init_bootmem_node(NODE_DATA(nid), 1049 __pa(bootmem_vaddr) >> PAGE_SHIFT, 1050 start_pfn, end_pfn); 1051 1052 free_bootmem_with_active_regions(nid, end_pfn); 1053 /* 1054 * Be very careful about moving this around. Future 1055 * calls to careful_zallocation() depend on this getting 1056 * done correctly. 1057 */ 1058 mark_reserved_regions_for_nid(nid); 1059 sparse_memory_present_with_active_regions(nid); 1060 } 1061 1062 init_bootmem_done = 1; 1063 1064 /* 1065 * Now bootmem is initialised we can create the node to cpumask 1066 * lookup tables and setup the cpu callback to populate them. 1067 */ 1068 setup_node_to_cpumask_map(); 1069 1070 register_cpu_notifier(&ppc64_numa_nb); 1071 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, 1072 (void *)(unsigned long)boot_cpuid); 1073 } 1074 1075 void __init paging_init(void) 1076 { 1077 unsigned long max_zone_pfns[MAX_NR_ZONES]; 1078 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 1079 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT; 1080 free_area_init_nodes(max_zone_pfns); 1081 } 1082 1083 static int __init early_numa(char *p) 1084 { 1085 if (!p) 1086 return 0; 1087 1088 if (strstr(p, "off")) 1089 numa_enabled = 0; 1090 1091 if (strstr(p, "debug")) 1092 numa_debug = 1; 1093 1094 p = strstr(p, "fake="); 1095 if (p) 1096 cmdline = p + strlen("fake="); 1097 1098 return 0; 1099 } 1100 early_param("numa", early_numa); 1101 1102 #ifdef CONFIG_MEMORY_HOTPLUG 1103 /* 1104 * Find the node associated with a hot added memory section for 1105 * memory represented in the device tree by the property 1106 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 1107 */ 1108 static int hot_add_drconf_scn_to_nid(struct device_node *memory, 1109 unsigned long scn_addr) 1110 { 1111 const __be32 *dm; 1112 unsigned int drconf_cell_cnt, rc; 1113 unsigned long lmb_size; 1114 struct assoc_arrays aa; 1115 int nid = -1; 1116 1117 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1118 if (!drconf_cell_cnt) 1119 return -1; 1120 1121 lmb_size = of_get_lmb_size(memory); 1122 if (!lmb_size) 1123 return -1; 1124 1125 rc = of_get_assoc_arrays(memory, &aa); 1126 if (rc) 1127 return -1; 1128 1129 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { 1130 struct of_drconf_cell drmem; 1131 1132 read_drconf_cell(&drmem, &dm); 1133 1134 /* skip this block if it is reserved or not assigned to 1135 * this partition */ 1136 if ((drmem.flags & DRCONF_MEM_RESERVED) 1137 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 1138 continue; 1139 1140 if ((scn_addr < drmem.base_addr) 1141 || (scn_addr >= (drmem.base_addr + lmb_size))) 1142 continue; 1143 1144 nid = of_drconf_to_nid_single(&drmem, &aa); 1145 break; 1146 } 1147 1148 return nid; 1149 } 1150 1151 /* 1152 * Find the node associated with a hot added memory section for memory 1153 * represented in the device tree as a node (i.e. memory@XXXX) for 1154 * each memblock. 1155 */ 1156 static int hot_add_node_scn_to_nid(unsigned long scn_addr) 1157 { 1158 struct device_node *memory; 1159 int nid = -1; 1160 1161 for_each_node_by_type(memory, "memory") { 1162 unsigned long start, size; 1163 int ranges; 1164 const __be32 *memcell_buf; 1165 unsigned int len; 1166 1167 memcell_buf = of_get_property(memory, "reg", &len); 1168 if (!memcell_buf || len <= 0) 1169 continue; 1170 1171 /* ranges in cell */ 1172 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 1173 1174 while (ranges--) { 1175 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 1176 size = read_n_cells(n_mem_size_cells, &memcell_buf); 1177 1178 if ((scn_addr < start) || (scn_addr >= (start + size))) 1179 continue; 1180 1181 nid = of_node_to_nid_single(memory); 1182 break; 1183 } 1184 1185 if (nid >= 0) 1186 break; 1187 } 1188 1189 of_node_put(memory); 1190 1191 return nid; 1192 } 1193 1194 /* 1195 * Find the node associated with a hot added memory section. Section 1196 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1197 * sections are fully contained within a single MEMBLOCK. 1198 */ 1199 int hot_add_scn_to_nid(unsigned long scn_addr) 1200 { 1201 struct device_node *memory = NULL; 1202 int nid, found = 0; 1203 1204 if (!numa_enabled || (min_common_depth < 0)) 1205 return first_online_node; 1206 1207 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1208 if (memory) { 1209 nid = hot_add_drconf_scn_to_nid(memory, scn_addr); 1210 of_node_put(memory); 1211 } else { 1212 nid = hot_add_node_scn_to_nid(scn_addr); 1213 } 1214 1215 if (nid < 0 || !node_online(nid)) 1216 nid = first_online_node; 1217 1218 if (NODE_DATA(nid)->node_spanned_pages) 1219 return nid; 1220 1221 for_each_online_node(nid) { 1222 if (NODE_DATA(nid)->node_spanned_pages) { 1223 found = 1; 1224 break; 1225 } 1226 } 1227 1228 BUG_ON(!found); 1229 return nid; 1230 } 1231 1232 static u64 hot_add_drconf_memory_max(void) 1233 { 1234 struct device_node *memory = NULL; 1235 unsigned int drconf_cell_cnt = 0; 1236 u64 lmb_size = 0; 1237 const __be32 *dm = NULL; 1238 1239 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1240 if (memory) { 1241 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1242 lmb_size = of_get_lmb_size(memory); 1243 of_node_put(memory); 1244 } 1245 return lmb_size * drconf_cell_cnt; 1246 } 1247 1248 /* 1249 * memory_hotplug_max - return max address of memory that may be added 1250 * 1251 * This is currently only used on systems that support drconfig memory 1252 * hotplug. 1253 */ 1254 u64 memory_hotplug_max(void) 1255 { 1256 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1257 } 1258 #endif /* CONFIG_MEMORY_HOTPLUG */ 1259 1260 /* Virtual Processor Home Node (VPHN) support */ 1261 #ifdef CONFIG_PPC_SPLPAR 1262 struct topology_update_data { 1263 struct topology_update_data *next; 1264 unsigned int cpu; 1265 int old_nid; 1266 int new_nid; 1267 }; 1268 1269 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; 1270 static cpumask_t cpu_associativity_changes_mask; 1271 static int vphn_enabled; 1272 static int prrn_enabled; 1273 static void reset_topology_timer(void); 1274 1275 /* 1276 * Store the current values of the associativity change counters in the 1277 * hypervisor. 1278 */ 1279 static void setup_cpu_associativity_change_counters(void) 1280 { 1281 int cpu; 1282 1283 /* The VPHN feature supports a maximum of 8 reference points */ 1284 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); 1285 1286 for_each_possible_cpu(cpu) { 1287 int i; 1288 u8 *counts = vphn_cpu_change_counts[cpu]; 1289 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1290 1291 for (i = 0; i < distance_ref_points_depth; i++) 1292 counts[i] = hypervisor_counts[i]; 1293 } 1294 } 1295 1296 /* 1297 * The hypervisor maintains a set of 8 associativity change counters in 1298 * the VPA of each cpu that correspond to the associativity levels in the 1299 * ibm,associativity-reference-points property. When an associativity 1300 * level changes, the corresponding counter is incremented. 1301 * 1302 * Set a bit in cpu_associativity_changes_mask for each cpu whose home 1303 * node associativity levels have changed. 1304 * 1305 * Returns the number of cpus with unhandled associativity changes. 1306 */ 1307 static int update_cpu_associativity_changes_mask(void) 1308 { 1309 int cpu; 1310 cpumask_t *changes = &cpu_associativity_changes_mask; 1311 1312 for_each_possible_cpu(cpu) { 1313 int i, changed = 0; 1314 u8 *counts = vphn_cpu_change_counts[cpu]; 1315 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1316 1317 for (i = 0; i < distance_ref_points_depth; i++) { 1318 if (hypervisor_counts[i] != counts[i]) { 1319 counts[i] = hypervisor_counts[i]; 1320 changed = 1; 1321 } 1322 } 1323 if (changed) { 1324 cpumask_or(changes, changes, cpu_sibling_mask(cpu)); 1325 cpu = cpu_last_thread_sibling(cpu); 1326 } 1327 } 1328 1329 return cpumask_weight(changes); 1330 } 1331 1332 /* 1333 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form 1334 * the complete property we have to add the length in the first cell. 1335 */ 1336 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1) 1337 1338 /* 1339 * Convert the associativity domain numbers returned from the hypervisor 1340 * to the sequence they would appear in the ibm,associativity property. 1341 */ 1342 static int vphn_unpack_associativity(const long *packed, __be32 *unpacked) 1343 { 1344 int i, nr_assoc_doms = 0; 1345 const __be16 *field = (const __be16 *) packed; 1346 1347 #define VPHN_FIELD_UNUSED (0xffff) 1348 #define VPHN_FIELD_MSB (0x8000) 1349 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB) 1350 1351 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) { 1352 if (be16_to_cpup(field) == VPHN_FIELD_UNUSED) { 1353 /* All significant fields processed, and remaining 1354 * fields contain the reserved value of all 1's. 1355 * Just store them. 1356 */ 1357 unpacked[i] = *((__be32 *)field); 1358 field += 2; 1359 } else if (be16_to_cpup(field) & VPHN_FIELD_MSB) { 1360 /* Data is in the lower 15 bits of this field */ 1361 unpacked[i] = cpu_to_be32( 1362 be16_to_cpup(field) & VPHN_FIELD_MASK); 1363 field++; 1364 nr_assoc_doms++; 1365 } else { 1366 /* Data is in the lower 15 bits of this field 1367 * concatenated with the next 16 bit field 1368 */ 1369 unpacked[i] = *((__be32 *)field); 1370 field += 2; 1371 nr_assoc_doms++; 1372 } 1373 } 1374 1375 /* The first cell contains the length of the property */ 1376 unpacked[0] = cpu_to_be32(nr_assoc_doms); 1377 1378 return nr_assoc_doms; 1379 } 1380 1381 /* 1382 * Retrieve the new associativity information for a virtual processor's 1383 * home node. 1384 */ 1385 static long hcall_vphn(unsigned long cpu, __be32 *associativity) 1386 { 1387 long rc; 1388 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; 1389 u64 flags = 1; 1390 int hwcpu = get_hard_smp_processor_id(cpu); 1391 1392 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); 1393 vphn_unpack_associativity(retbuf, associativity); 1394 1395 return rc; 1396 } 1397 1398 static long vphn_get_associativity(unsigned long cpu, 1399 __be32 *associativity) 1400 { 1401 long rc; 1402 1403 rc = hcall_vphn(cpu, associativity); 1404 1405 switch (rc) { 1406 case H_FUNCTION: 1407 printk(KERN_INFO 1408 "VPHN is not supported. Disabling polling...\n"); 1409 stop_topology_update(); 1410 break; 1411 case H_HARDWARE: 1412 printk(KERN_ERR 1413 "hcall_vphn() experienced a hardware fault " 1414 "preventing VPHN. Disabling polling...\n"); 1415 stop_topology_update(); 1416 } 1417 1418 return rc; 1419 } 1420 1421 /* 1422 * Update the CPU maps and sysfs entries for a single CPU when its NUMA 1423 * characteristics change. This function doesn't perform any locking and is 1424 * only safe to call from stop_machine(). 1425 */ 1426 static int update_cpu_topology(void *data) 1427 { 1428 struct topology_update_data *update; 1429 unsigned long cpu; 1430 1431 if (!data) 1432 return -EINVAL; 1433 1434 cpu = smp_processor_id(); 1435 1436 for (update = data; update; update = update->next) { 1437 if (cpu != update->cpu) 1438 continue; 1439 1440 unmap_cpu_from_node(update->cpu); 1441 map_cpu_to_node(update->cpu, update->new_nid); 1442 vdso_getcpu_init(); 1443 } 1444 1445 return 0; 1446 } 1447 1448 /* 1449 * Update the node maps and sysfs entries for each cpu whose home node 1450 * has changed. Returns 1 when the topology has changed, and 0 otherwise. 1451 */ 1452 int arch_update_cpu_topology(void) 1453 { 1454 unsigned int cpu, sibling, changed = 0; 1455 struct topology_update_data *updates, *ud; 1456 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1457 cpumask_t updated_cpus; 1458 struct device *dev; 1459 int weight, new_nid, i = 0; 1460 1461 weight = cpumask_weight(&cpu_associativity_changes_mask); 1462 if (!weight) 1463 return 0; 1464 1465 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL); 1466 if (!updates) 1467 return 0; 1468 1469 cpumask_clear(&updated_cpus); 1470 1471 for_each_cpu(cpu, &cpu_associativity_changes_mask) { 1472 /* 1473 * If siblings aren't flagged for changes, updates list 1474 * will be too short. Skip on this update and set for next 1475 * update. 1476 */ 1477 if (!cpumask_subset(cpu_sibling_mask(cpu), 1478 &cpu_associativity_changes_mask)) { 1479 pr_info("Sibling bits not set for associativity " 1480 "change, cpu%d\n", cpu); 1481 cpumask_or(&cpu_associativity_changes_mask, 1482 &cpu_associativity_changes_mask, 1483 cpu_sibling_mask(cpu)); 1484 cpu = cpu_last_thread_sibling(cpu); 1485 continue; 1486 } 1487 1488 /* Use associativity from first thread for all siblings */ 1489 vphn_get_associativity(cpu, associativity); 1490 new_nid = associativity_to_nid(associativity); 1491 if (new_nid < 0 || !node_online(new_nid)) 1492 new_nid = first_online_node; 1493 1494 if (new_nid == numa_cpu_lookup_table[cpu]) { 1495 cpumask_andnot(&cpu_associativity_changes_mask, 1496 &cpu_associativity_changes_mask, 1497 cpu_sibling_mask(cpu)); 1498 cpu = cpu_last_thread_sibling(cpu); 1499 continue; 1500 } 1501 1502 for_each_cpu(sibling, cpu_sibling_mask(cpu)) { 1503 ud = &updates[i++]; 1504 ud->cpu = sibling; 1505 ud->new_nid = new_nid; 1506 ud->old_nid = numa_cpu_lookup_table[sibling]; 1507 cpumask_set_cpu(sibling, &updated_cpus); 1508 if (i < weight) 1509 ud->next = &updates[i]; 1510 } 1511 cpu = cpu_last_thread_sibling(cpu); 1512 } 1513 1514 stop_machine(update_cpu_topology, &updates[0], &updated_cpus); 1515 1516 for (ud = &updates[0]; ud; ud = ud->next) { 1517 unregister_cpu_under_node(ud->cpu, ud->old_nid); 1518 register_cpu_under_node(ud->cpu, ud->new_nid); 1519 1520 dev = get_cpu_device(ud->cpu); 1521 if (dev) 1522 kobject_uevent(&dev->kobj, KOBJ_CHANGE); 1523 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask); 1524 changed = 1; 1525 } 1526 1527 kfree(updates); 1528 return changed; 1529 } 1530 1531 static void topology_work_fn(struct work_struct *work) 1532 { 1533 rebuild_sched_domains(); 1534 } 1535 static DECLARE_WORK(topology_work, topology_work_fn); 1536 1537 static void topology_schedule_update(void) 1538 { 1539 schedule_work(&topology_work); 1540 } 1541 1542 static void topology_timer_fn(unsigned long ignored) 1543 { 1544 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask)) 1545 topology_schedule_update(); 1546 else if (vphn_enabled) { 1547 if (update_cpu_associativity_changes_mask() > 0) 1548 topology_schedule_update(); 1549 reset_topology_timer(); 1550 } 1551 } 1552 static struct timer_list topology_timer = 1553 TIMER_INITIALIZER(topology_timer_fn, 0, 0); 1554 1555 static void reset_topology_timer(void) 1556 { 1557 topology_timer.data = 0; 1558 topology_timer.expires = jiffies + 60 * HZ; 1559 mod_timer(&topology_timer, topology_timer.expires); 1560 } 1561 1562 #ifdef CONFIG_SMP 1563 1564 static void stage_topology_update(int core_id) 1565 { 1566 cpumask_or(&cpu_associativity_changes_mask, 1567 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id)); 1568 reset_topology_timer(); 1569 } 1570 1571 static int dt_update_callback(struct notifier_block *nb, 1572 unsigned long action, void *data) 1573 { 1574 struct of_prop_reconfig *update; 1575 int rc = NOTIFY_DONE; 1576 1577 switch (action) { 1578 case OF_RECONFIG_UPDATE_PROPERTY: 1579 update = (struct of_prop_reconfig *)data; 1580 if (!of_prop_cmp(update->dn->type, "cpu") && 1581 !of_prop_cmp(update->prop->name, "ibm,associativity")) { 1582 u32 core_id; 1583 of_property_read_u32(update->dn, "reg", &core_id); 1584 stage_topology_update(core_id); 1585 rc = NOTIFY_OK; 1586 } 1587 break; 1588 } 1589 1590 return rc; 1591 } 1592 1593 static struct notifier_block dt_update_nb = { 1594 .notifier_call = dt_update_callback, 1595 }; 1596 1597 #endif 1598 1599 /* 1600 * Start polling for associativity changes. 1601 */ 1602 int start_topology_update(void) 1603 { 1604 int rc = 0; 1605 1606 if (firmware_has_feature(FW_FEATURE_PRRN)) { 1607 if (!prrn_enabled) { 1608 prrn_enabled = 1; 1609 vphn_enabled = 0; 1610 #ifdef CONFIG_SMP 1611 rc = of_reconfig_notifier_register(&dt_update_nb); 1612 #endif 1613 } 1614 } else if (firmware_has_feature(FW_FEATURE_VPHN) && 1615 lppaca_shared_proc(get_lppaca())) { 1616 if (!vphn_enabled) { 1617 prrn_enabled = 0; 1618 vphn_enabled = 1; 1619 setup_cpu_associativity_change_counters(); 1620 init_timer_deferrable(&topology_timer); 1621 reset_topology_timer(); 1622 } 1623 } 1624 1625 return rc; 1626 } 1627 1628 /* 1629 * Disable polling for VPHN associativity changes. 1630 */ 1631 int stop_topology_update(void) 1632 { 1633 int rc = 0; 1634 1635 if (prrn_enabled) { 1636 prrn_enabled = 0; 1637 #ifdef CONFIG_SMP 1638 rc = of_reconfig_notifier_unregister(&dt_update_nb); 1639 #endif 1640 } else if (vphn_enabled) { 1641 vphn_enabled = 0; 1642 rc = del_timer_sync(&topology_timer); 1643 } 1644 1645 return rc; 1646 } 1647 1648 int prrn_is_enabled(void) 1649 { 1650 return prrn_enabled; 1651 } 1652 1653 static int topology_read(struct seq_file *file, void *v) 1654 { 1655 if (vphn_enabled || prrn_enabled) 1656 seq_puts(file, "on\n"); 1657 else 1658 seq_puts(file, "off\n"); 1659 1660 return 0; 1661 } 1662 1663 static int topology_open(struct inode *inode, struct file *file) 1664 { 1665 return single_open(file, topology_read, NULL); 1666 } 1667 1668 static ssize_t topology_write(struct file *file, const char __user *buf, 1669 size_t count, loff_t *off) 1670 { 1671 char kbuf[4]; /* "on" or "off" plus null. */ 1672 int read_len; 1673 1674 read_len = count < 3 ? count : 3; 1675 if (copy_from_user(kbuf, buf, read_len)) 1676 return -EINVAL; 1677 1678 kbuf[read_len] = '\0'; 1679 1680 if (!strncmp(kbuf, "on", 2)) 1681 start_topology_update(); 1682 else if (!strncmp(kbuf, "off", 3)) 1683 stop_topology_update(); 1684 else 1685 return -EINVAL; 1686 1687 return count; 1688 } 1689 1690 static const struct file_operations topology_ops = { 1691 .read = seq_read, 1692 .write = topology_write, 1693 .open = topology_open, 1694 .release = single_release 1695 }; 1696 1697 static int topology_update_init(void) 1698 { 1699 start_topology_update(); 1700 proc_create("powerpc/topology_updates", 644, NULL, &topology_ops); 1701 1702 return 0; 1703 } 1704 device_initcall(topology_update_init); 1705 #endif /* CONFIG_PPC_SPLPAR */ 1706