xref: /openbmc/linux/arch/powerpc/mm/numa.c (revision b296a6d5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pSeries NUMA support
4  *
5  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6  */
7 #define pr_fmt(fmt) "numa: " fmt
8 
9 #include <linux/threads.h>
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/mmzone.h>
14 #include <linux/export.h>
15 #include <linux/nodemask.h>
16 #include <linux/cpu.h>
17 #include <linux/notifier.h>
18 #include <linux/of.h>
19 #include <linux/pfn.h>
20 #include <linux/cpuset.h>
21 #include <linux/node.h>
22 #include <linux/stop_machine.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <asm/cputhreads.h>
28 #include <asm/sparsemem.h>
29 #include <asm/prom.h>
30 #include <asm/smp.h>
31 #include <asm/topology.h>
32 #include <asm/firmware.h>
33 #include <asm/paca.h>
34 #include <asm/hvcall.h>
35 #include <asm/setup.h>
36 #include <asm/vdso.h>
37 #include <asm/drmem.h>
38 
39 static int numa_enabled = 1;
40 
41 static char *cmdline __initdata;
42 
43 static int numa_debug;
44 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
45 
46 int numa_cpu_lookup_table[NR_CPUS];
47 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
48 struct pglist_data *node_data[MAX_NUMNODES];
49 
50 EXPORT_SYMBOL(numa_cpu_lookup_table);
51 EXPORT_SYMBOL(node_to_cpumask_map);
52 EXPORT_SYMBOL(node_data);
53 
54 static int min_common_depth;
55 static int n_mem_addr_cells, n_mem_size_cells;
56 static int form1_affinity;
57 
58 #define MAX_DISTANCE_REF_POINTS 4
59 static int distance_ref_points_depth;
60 static const __be32 *distance_ref_points;
61 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
62 
63 /*
64  * Allocate node_to_cpumask_map based on number of available nodes
65  * Requires node_possible_map to be valid.
66  *
67  * Note: cpumask_of_node() is not valid until after this is done.
68  */
69 static void __init setup_node_to_cpumask_map(void)
70 {
71 	unsigned int node;
72 
73 	/* setup nr_node_ids if not done yet */
74 	if (nr_node_ids == MAX_NUMNODES)
75 		setup_nr_node_ids();
76 
77 	/* allocate the map */
78 	for_each_node(node)
79 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
80 
81 	/* cpumask_of_node() will now work */
82 	dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
83 }
84 
85 static int __init fake_numa_create_new_node(unsigned long end_pfn,
86 						unsigned int *nid)
87 {
88 	unsigned long long mem;
89 	char *p = cmdline;
90 	static unsigned int fake_nid;
91 	static unsigned long long curr_boundary;
92 
93 	/*
94 	 * Modify node id, iff we started creating NUMA nodes
95 	 * We want to continue from where we left of the last time
96 	 */
97 	if (fake_nid)
98 		*nid = fake_nid;
99 	/*
100 	 * In case there are no more arguments to parse, the
101 	 * node_id should be the same as the last fake node id
102 	 * (we've handled this above).
103 	 */
104 	if (!p)
105 		return 0;
106 
107 	mem = memparse(p, &p);
108 	if (!mem)
109 		return 0;
110 
111 	if (mem < curr_boundary)
112 		return 0;
113 
114 	curr_boundary = mem;
115 
116 	if ((end_pfn << PAGE_SHIFT) > mem) {
117 		/*
118 		 * Skip commas and spaces
119 		 */
120 		while (*p == ',' || *p == ' ' || *p == '\t')
121 			p++;
122 
123 		cmdline = p;
124 		fake_nid++;
125 		*nid = fake_nid;
126 		dbg("created new fake_node with id %d\n", fake_nid);
127 		return 1;
128 	}
129 	return 0;
130 }
131 
132 static void reset_numa_cpu_lookup_table(void)
133 {
134 	unsigned int cpu;
135 
136 	for_each_possible_cpu(cpu)
137 		numa_cpu_lookup_table[cpu] = -1;
138 }
139 
140 static void map_cpu_to_node(int cpu, int node)
141 {
142 	update_numa_cpu_lookup_table(cpu, node);
143 
144 	dbg("adding cpu %d to node %d\n", cpu, node);
145 
146 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
147 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
148 }
149 
150 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
151 static void unmap_cpu_from_node(unsigned long cpu)
152 {
153 	int node = numa_cpu_lookup_table[cpu];
154 
155 	dbg("removing cpu %lu from node %d\n", cpu, node);
156 
157 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
158 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
159 	} else {
160 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
161 		       cpu, node);
162 	}
163 }
164 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
165 
166 int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
167 {
168 	int dist = 0;
169 
170 	int i, index;
171 
172 	for (i = 0; i < distance_ref_points_depth; i++) {
173 		index = be32_to_cpu(distance_ref_points[i]);
174 		if (cpu1_assoc[index] == cpu2_assoc[index])
175 			break;
176 		dist++;
177 	}
178 
179 	return dist;
180 }
181 
182 /* must hold reference to node during call */
183 static const __be32 *of_get_associativity(struct device_node *dev)
184 {
185 	return of_get_property(dev, "ibm,associativity", NULL);
186 }
187 
188 int __node_distance(int a, int b)
189 {
190 	int i;
191 	int distance = LOCAL_DISTANCE;
192 
193 	if (!form1_affinity)
194 		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
195 
196 	for (i = 0; i < distance_ref_points_depth; i++) {
197 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
198 			break;
199 
200 		/* Double the distance for each NUMA level */
201 		distance *= 2;
202 	}
203 
204 	return distance;
205 }
206 EXPORT_SYMBOL(__node_distance);
207 
208 static void initialize_distance_lookup_table(int nid,
209 		const __be32 *associativity)
210 {
211 	int i;
212 
213 	if (!form1_affinity)
214 		return;
215 
216 	for (i = 0; i < distance_ref_points_depth; i++) {
217 		const __be32 *entry;
218 
219 		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
220 		distance_lookup_table[nid][i] = of_read_number(entry, 1);
221 	}
222 }
223 
224 /*
225  * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
226  * info is found.
227  */
228 static int associativity_to_nid(const __be32 *associativity)
229 {
230 	int nid = NUMA_NO_NODE;
231 
232 	if (!numa_enabled)
233 		goto out;
234 
235 	if (of_read_number(associativity, 1) >= min_common_depth)
236 		nid = of_read_number(&associativity[min_common_depth], 1);
237 
238 	/* POWER4 LPAR uses 0xffff as invalid node */
239 	if (nid == 0xffff || nid >= nr_node_ids)
240 		nid = NUMA_NO_NODE;
241 
242 	if (nid > 0 &&
243 		of_read_number(associativity, 1) >= distance_ref_points_depth) {
244 		/*
245 		 * Skip the length field and send start of associativity array
246 		 */
247 		initialize_distance_lookup_table(nid, associativity + 1);
248 	}
249 
250 out:
251 	return nid;
252 }
253 
254 /* Returns the nid associated with the given device tree node,
255  * or -1 if not found.
256  */
257 static int of_node_to_nid_single(struct device_node *device)
258 {
259 	int nid = NUMA_NO_NODE;
260 	const __be32 *tmp;
261 
262 	tmp = of_get_associativity(device);
263 	if (tmp)
264 		nid = associativity_to_nid(tmp);
265 	return nid;
266 }
267 
268 /* Walk the device tree upwards, looking for an associativity id */
269 int of_node_to_nid(struct device_node *device)
270 {
271 	int nid = NUMA_NO_NODE;
272 
273 	of_node_get(device);
274 	while (device) {
275 		nid = of_node_to_nid_single(device);
276 		if (nid != -1)
277 			break;
278 
279 		device = of_get_next_parent(device);
280 	}
281 	of_node_put(device);
282 
283 	return nid;
284 }
285 EXPORT_SYMBOL(of_node_to_nid);
286 
287 static int __init find_min_common_depth(void)
288 {
289 	int depth;
290 	struct device_node *root;
291 
292 	if (firmware_has_feature(FW_FEATURE_OPAL))
293 		root = of_find_node_by_path("/ibm,opal");
294 	else
295 		root = of_find_node_by_path("/rtas");
296 	if (!root)
297 		root = of_find_node_by_path("/");
298 
299 	/*
300 	 * This property is a set of 32-bit integers, each representing
301 	 * an index into the ibm,associativity nodes.
302 	 *
303 	 * With form 0 affinity the first integer is for an SMP configuration
304 	 * (should be all 0's) and the second is for a normal NUMA
305 	 * configuration. We have only one level of NUMA.
306 	 *
307 	 * With form 1 affinity the first integer is the most significant
308 	 * NUMA boundary and the following are progressively less significant
309 	 * boundaries. There can be more than one level of NUMA.
310 	 */
311 	distance_ref_points = of_get_property(root,
312 					"ibm,associativity-reference-points",
313 					&distance_ref_points_depth);
314 
315 	if (!distance_ref_points) {
316 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
317 		goto err;
318 	}
319 
320 	distance_ref_points_depth /= sizeof(int);
321 
322 	if (firmware_has_feature(FW_FEATURE_OPAL) ||
323 	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
324 		dbg("Using form 1 affinity\n");
325 		form1_affinity = 1;
326 	}
327 
328 	if (form1_affinity) {
329 		depth = of_read_number(distance_ref_points, 1);
330 	} else {
331 		if (distance_ref_points_depth < 2) {
332 			printk(KERN_WARNING "NUMA: "
333 				"short ibm,associativity-reference-points\n");
334 			goto err;
335 		}
336 
337 		depth = of_read_number(&distance_ref_points[1], 1);
338 	}
339 
340 	/*
341 	 * Warn and cap if the hardware supports more than
342 	 * MAX_DISTANCE_REF_POINTS domains.
343 	 */
344 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
345 		printk(KERN_WARNING "NUMA: distance array capped at "
346 			"%d entries\n", MAX_DISTANCE_REF_POINTS);
347 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
348 	}
349 
350 	of_node_put(root);
351 	return depth;
352 
353 err:
354 	of_node_put(root);
355 	return -1;
356 }
357 
358 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
359 {
360 	struct device_node *memory = NULL;
361 
362 	memory = of_find_node_by_type(memory, "memory");
363 	if (!memory)
364 		panic("numa.c: No memory nodes found!");
365 
366 	*n_addr_cells = of_n_addr_cells(memory);
367 	*n_size_cells = of_n_size_cells(memory);
368 	of_node_put(memory);
369 }
370 
371 static unsigned long read_n_cells(int n, const __be32 **buf)
372 {
373 	unsigned long result = 0;
374 
375 	while (n--) {
376 		result = (result << 32) | of_read_number(*buf, 1);
377 		(*buf)++;
378 	}
379 	return result;
380 }
381 
382 struct assoc_arrays {
383 	u32	n_arrays;
384 	u32	array_sz;
385 	const __be32 *arrays;
386 };
387 
388 /*
389  * Retrieve and validate the list of associativity arrays for drconf
390  * memory from the ibm,associativity-lookup-arrays property of the
391  * device tree..
392  *
393  * The layout of the ibm,associativity-lookup-arrays property is a number N
394  * indicating the number of associativity arrays, followed by a number M
395  * indicating the size of each associativity array, followed by a list
396  * of N associativity arrays.
397  */
398 static int of_get_assoc_arrays(struct assoc_arrays *aa)
399 {
400 	struct device_node *memory;
401 	const __be32 *prop;
402 	u32 len;
403 
404 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
405 	if (!memory)
406 		return -1;
407 
408 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
409 	if (!prop || len < 2 * sizeof(unsigned int)) {
410 		of_node_put(memory);
411 		return -1;
412 	}
413 
414 	aa->n_arrays = of_read_number(prop++, 1);
415 	aa->array_sz = of_read_number(prop++, 1);
416 
417 	of_node_put(memory);
418 
419 	/* Now that we know the number of arrays and size of each array,
420 	 * revalidate the size of the property read in.
421 	 */
422 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
423 		return -1;
424 
425 	aa->arrays = prop;
426 	return 0;
427 }
428 
429 /*
430  * This is like of_node_to_nid_single() for memory represented in the
431  * ibm,dynamic-reconfiguration-memory node.
432  */
433 static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
434 {
435 	struct assoc_arrays aa = { .arrays = NULL };
436 	int default_nid = NUMA_NO_NODE;
437 	int nid = default_nid;
438 	int rc, index;
439 
440 	if ((min_common_depth < 0) || !numa_enabled)
441 		return default_nid;
442 
443 	rc = of_get_assoc_arrays(&aa);
444 	if (rc)
445 		return default_nid;
446 
447 	if (min_common_depth <= aa.array_sz &&
448 	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
449 		index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
450 		nid = of_read_number(&aa.arrays[index], 1);
451 
452 		if (nid == 0xffff || nid >= nr_node_ids)
453 			nid = default_nid;
454 
455 		if (nid > 0) {
456 			index = lmb->aa_index * aa.array_sz;
457 			initialize_distance_lookup_table(nid,
458 							&aa.arrays[index]);
459 		}
460 	}
461 
462 	return nid;
463 }
464 
465 #ifdef CONFIG_PPC_SPLPAR
466 static int vphn_get_nid(long lcpu)
467 {
468 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
469 	long rc, hwid;
470 
471 	/*
472 	 * On a shared lpar, device tree will not have node associativity.
473 	 * At this time lppaca, or its __old_status field may not be
474 	 * updated. Hence kernel cannot detect if its on a shared lpar. So
475 	 * request an explicit associativity irrespective of whether the
476 	 * lpar is shared or dedicated. Use the device tree property as a
477 	 * fallback. cpu_to_phys_id is only valid between
478 	 * smp_setup_cpu_maps() and smp_setup_pacas().
479 	 */
480 	if (firmware_has_feature(FW_FEATURE_VPHN)) {
481 		if (cpu_to_phys_id)
482 			hwid = cpu_to_phys_id[lcpu];
483 		else
484 			hwid = get_hard_smp_processor_id(lcpu);
485 
486 		rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
487 		if (rc == H_SUCCESS)
488 			return associativity_to_nid(associativity);
489 	}
490 
491 	return NUMA_NO_NODE;
492 }
493 #else
494 static int vphn_get_nid(long unused)
495 {
496 	return NUMA_NO_NODE;
497 }
498 #endif  /* CONFIG_PPC_SPLPAR */
499 
500 /*
501  * Figure out to which domain a cpu belongs and stick it there.
502  * Return the id of the domain used.
503  */
504 static int numa_setup_cpu(unsigned long lcpu)
505 {
506 	struct device_node *cpu;
507 	int fcpu = cpu_first_thread_sibling(lcpu);
508 	int nid = NUMA_NO_NODE;
509 
510 	/*
511 	 * If a valid cpu-to-node mapping is already available, use it
512 	 * directly instead of querying the firmware, since it represents
513 	 * the most recent mapping notified to us by the platform (eg: VPHN).
514 	 * Since cpu_to_node binding remains the same for all threads in the
515 	 * core. If a valid cpu-to-node mapping is already available, for
516 	 * the first thread in the core, use it.
517 	 */
518 	nid = numa_cpu_lookup_table[fcpu];
519 	if (nid >= 0) {
520 		map_cpu_to_node(lcpu, nid);
521 		return nid;
522 	}
523 
524 	nid = vphn_get_nid(lcpu);
525 	if (nid != NUMA_NO_NODE)
526 		goto out_present;
527 
528 	cpu = of_get_cpu_node(lcpu, NULL);
529 
530 	if (!cpu) {
531 		WARN_ON(1);
532 		if (cpu_present(lcpu))
533 			goto out_present;
534 		else
535 			goto out;
536 	}
537 
538 	nid = of_node_to_nid_single(cpu);
539 	of_node_put(cpu);
540 
541 out_present:
542 	if (nid < 0 || !node_possible(nid))
543 		nid = first_online_node;
544 
545 	/*
546 	 * Update for the first thread of the core. All threads of a core
547 	 * have to be part of the same node. This not only avoids querying
548 	 * for every other thread in the core, but always avoids a case
549 	 * where virtual node associativity change causes subsequent threads
550 	 * of a core to be associated with different nid. However if first
551 	 * thread is already online, expect it to have a valid mapping.
552 	 */
553 	if (fcpu != lcpu) {
554 		WARN_ON(cpu_online(fcpu));
555 		map_cpu_to_node(fcpu, nid);
556 	}
557 
558 	map_cpu_to_node(lcpu, nid);
559 out:
560 	return nid;
561 }
562 
563 static void verify_cpu_node_mapping(int cpu, int node)
564 {
565 	int base, sibling, i;
566 
567 	/* Verify that all the threads in the core belong to the same node */
568 	base = cpu_first_thread_sibling(cpu);
569 
570 	for (i = 0; i < threads_per_core; i++) {
571 		sibling = base + i;
572 
573 		if (sibling == cpu || cpu_is_offline(sibling))
574 			continue;
575 
576 		if (cpu_to_node(sibling) != node) {
577 			WARN(1, "CPU thread siblings %d and %d don't belong"
578 				" to the same node!\n", cpu, sibling);
579 			break;
580 		}
581 	}
582 }
583 
584 /* Must run before sched domains notifier. */
585 static int ppc_numa_cpu_prepare(unsigned int cpu)
586 {
587 	int nid;
588 
589 	nid = numa_setup_cpu(cpu);
590 	verify_cpu_node_mapping(cpu, nid);
591 	return 0;
592 }
593 
594 static int ppc_numa_cpu_dead(unsigned int cpu)
595 {
596 #ifdef CONFIG_HOTPLUG_CPU
597 	unmap_cpu_from_node(cpu);
598 #endif
599 	return 0;
600 }
601 
602 /*
603  * Check and possibly modify a memory region to enforce the memory limit.
604  *
605  * Returns the size the region should have to enforce the memory limit.
606  * This will either be the original value of size, a truncated value,
607  * or zero. If the returned value of size is 0 the region should be
608  * discarded as it lies wholly above the memory limit.
609  */
610 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
611 						      unsigned long size)
612 {
613 	/*
614 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
615 	 * we've already adjusted it for the limit and it takes care of
616 	 * having memory holes below the limit.  Also, in the case of
617 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
618 	 */
619 
620 	if (start + size <= memblock_end_of_DRAM())
621 		return size;
622 
623 	if (start >= memblock_end_of_DRAM())
624 		return 0;
625 
626 	return memblock_end_of_DRAM() - start;
627 }
628 
629 /*
630  * Reads the counter for a given entry in
631  * linux,drconf-usable-memory property
632  */
633 static inline int __init read_usm_ranges(const __be32 **usm)
634 {
635 	/*
636 	 * For each lmb in ibm,dynamic-memory a corresponding
637 	 * entry in linux,drconf-usable-memory property contains
638 	 * a counter followed by that many (base, size) duple.
639 	 * read the counter from linux,drconf-usable-memory
640 	 */
641 	return read_n_cells(n_mem_size_cells, usm);
642 }
643 
644 /*
645  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
646  * node.  This assumes n_mem_{addr,size}_cells have been set.
647  */
648 static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
649 					const __be32 **usm,
650 					void *data)
651 {
652 	unsigned int ranges, is_kexec_kdump = 0;
653 	unsigned long base, size, sz;
654 	int nid;
655 
656 	/*
657 	 * Skip this block if the reserved bit is set in flags (0x80)
658 	 * or if the block is not assigned to this partition (0x8)
659 	 */
660 	if ((lmb->flags & DRCONF_MEM_RESERVED)
661 	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
662 		return 0;
663 
664 	if (*usm)
665 		is_kexec_kdump = 1;
666 
667 	base = lmb->base_addr;
668 	size = drmem_lmb_size();
669 	ranges = 1;
670 
671 	if (is_kexec_kdump) {
672 		ranges = read_usm_ranges(usm);
673 		if (!ranges) /* there are no (base, size) duple */
674 			return 0;
675 	}
676 
677 	do {
678 		if (is_kexec_kdump) {
679 			base = read_n_cells(n_mem_addr_cells, usm);
680 			size = read_n_cells(n_mem_size_cells, usm);
681 		}
682 
683 		nid = of_drconf_to_nid_single(lmb);
684 		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
685 					  &nid);
686 		node_set_online(nid);
687 		sz = numa_enforce_memory_limit(base, size);
688 		if (sz)
689 			memblock_set_node(base, sz, &memblock.memory, nid);
690 	} while (--ranges);
691 
692 	return 0;
693 }
694 
695 static int __init parse_numa_properties(void)
696 {
697 	struct device_node *memory;
698 	int default_nid = 0;
699 	unsigned long i;
700 
701 	if (numa_enabled == 0) {
702 		printk(KERN_WARNING "NUMA disabled by user\n");
703 		return -1;
704 	}
705 
706 	min_common_depth = find_min_common_depth();
707 
708 	if (min_common_depth < 0) {
709 		/*
710 		 * if we fail to parse min_common_depth from device tree
711 		 * mark the numa disabled, boot with numa disabled.
712 		 */
713 		numa_enabled = false;
714 		return min_common_depth;
715 	}
716 
717 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
718 
719 	/*
720 	 * Even though we connect cpus to numa domains later in SMP
721 	 * init, we need to know the node ids now. This is because
722 	 * each node to be onlined must have NODE_DATA etc backing it.
723 	 */
724 	for_each_present_cpu(i) {
725 		struct device_node *cpu;
726 		int nid;
727 
728 		cpu = of_get_cpu_node(i, NULL);
729 		BUG_ON(!cpu);
730 		nid = of_node_to_nid_single(cpu);
731 		of_node_put(cpu);
732 
733 		/*
734 		 * Don't fall back to default_nid yet -- we will plug
735 		 * cpus into nodes once the memory scan has discovered
736 		 * the topology.
737 		 */
738 		if (nid < 0)
739 			continue;
740 		node_set_online(nid);
741 	}
742 
743 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
744 
745 	for_each_node_by_type(memory, "memory") {
746 		unsigned long start;
747 		unsigned long size;
748 		int nid;
749 		int ranges;
750 		const __be32 *memcell_buf;
751 		unsigned int len;
752 
753 		memcell_buf = of_get_property(memory,
754 			"linux,usable-memory", &len);
755 		if (!memcell_buf || len <= 0)
756 			memcell_buf = of_get_property(memory, "reg", &len);
757 		if (!memcell_buf || len <= 0)
758 			continue;
759 
760 		/* ranges in cell */
761 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
762 new_range:
763 		/* these are order-sensitive, and modify the buffer pointer */
764 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
765 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
766 
767 		/*
768 		 * Assumption: either all memory nodes or none will
769 		 * have associativity properties.  If none, then
770 		 * everything goes to default_nid.
771 		 */
772 		nid = of_node_to_nid_single(memory);
773 		if (nid < 0)
774 			nid = default_nid;
775 
776 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
777 		node_set_online(nid);
778 
779 		size = numa_enforce_memory_limit(start, size);
780 		if (size)
781 			memblock_set_node(start, size, &memblock.memory, nid);
782 
783 		if (--ranges)
784 			goto new_range;
785 	}
786 
787 	/*
788 	 * Now do the same thing for each MEMBLOCK listed in the
789 	 * ibm,dynamic-memory property in the
790 	 * ibm,dynamic-reconfiguration-memory node.
791 	 */
792 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
793 	if (memory) {
794 		walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
795 		of_node_put(memory);
796 	}
797 
798 	return 0;
799 }
800 
801 static void __init setup_nonnuma(void)
802 {
803 	unsigned long top_of_ram = memblock_end_of_DRAM();
804 	unsigned long total_ram = memblock_phys_mem_size();
805 	unsigned long start_pfn, end_pfn;
806 	unsigned int nid = 0;
807 	int i;
808 
809 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
810 	       top_of_ram, total_ram);
811 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
812 	       (top_of_ram - total_ram) >> 20);
813 
814 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
815 		fake_numa_create_new_node(end_pfn, &nid);
816 		memblock_set_node(PFN_PHYS(start_pfn),
817 				  PFN_PHYS(end_pfn - start_pfn),
818 				  &memblock.memory, nid);
819 		node_set_online(nid);
820 	}
821 }
822 
823 void __init dump_numa_cpu_topology(void)
824 {
825 	unsigned int node;
826 	unsigned int cpu, count;
827 
828 	if (!numa_enabled)
829 		return;
830 
831 	for_each_online_node(node) {
832 		pr_info("Node %d CPUs:", node);
833 
834 		count = 0;
835 		/*
836 		 * If we used a CPU iterator here we would miss printing
837 		 * the holes in the cpumap.
838 		 */
839 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
840 			if (cpumask_test_cpu(cpu,
841 					node_to_cpumask_map[node])) {
842 				if (count == 0)
843 					pr_cont(" %u", cpu);
844 				++count;
845 			} else {
846 				if (count > 1)
847 					pr_cont("-%u", cpu - 1);
848 				count = 0;
849 			}
850 		}
851 
852 		if (count > 1)
853 			pr_cont("-%u", nr_cpu_ids - 1);
854 		pr_cont("\n");
855 	}
856 }
857 
858 /* Initialize NODE_DATA for a node on the local memory */
859 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
860 {
861 	u64 spanned_pages = end_pfn - start_pfn;
862 	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
863 	u64 nd_pa;
864 	void *nd;
865 	int tnid;
866 
867 	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
868 	if (!nd_pa)
869 		panic("Cannot allocate %zu bytes for node %d data\n",
870 		      nd_size, nid);
871 
872 	nd = __va(nd_pa);
873 
874 	/* report and initialize */
875 	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
876 		nd_pa, nd_pa + nd_size - 1);
877 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
878 	if (tnid != nid)
879 		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
880 
881 	node_data[nid] = nd;
882 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
883 	NODE_DATA(nid)->node_id = nid;
884 	NODE_DATA(nid)->node_start_pfn = start_pfn;
885 	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
886 }
887 
888 static void __init find_possible_nodes(void)
889 {
890 	struct device_node *rtas;
891 	u32 numnodes, i;
892 
893 	if (!numa_enabled)
894 		return;
895 
896 	rtas = of_find_node_by_path("/rtas");
897 	if (!rtas)
898 		return;
899 
900 	if (of_property_read_u32_index(rtas,
901 				"ibm,max-associativity-domains",
902 				min_common_depth, &numnodes))
903 		goto out;
904 
905 	for (i = 0; i < numnodes; i++) {
906 		if (!node_possible(i))
907 			node_set(i, node_possible_map);
908 	}
909 
910 out:
911 	of_node_put(rtas);
912 }
913 
914 void __init mem_topology_setup(void)
915 {
916 	int cpu;
917 
918 	if (parse_numa_properties())
919 		setup_nonnuma();
920 
921 	/*
922 	 * Modify the set of possible NUMA nodes to reflect information
923 	 * available about the set of online nodes, and the set of nodes
924 	 * that we expect to make use of for this platform's affinity
925 	 * calculations.
926 	 */
927 	nodes_and(node_possible_map, node_possible_map, node_online_map);
928 
929 	find_possible_nodes();
930 
931 	setup_node_to_cpumask_map();
932 
933 	reset_numa_cpu_lookup_table();
934 
935 	for_each_present_cpu(cpu)
936 		numa_setup_cpu(cpu);
937 }
938 
939 void __init initmem_init(void)
940 {
941 	int nid;
942 
943 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
944 	max_pfn = max_low_pfn;
945 
946 	memblock_dump_all();
947 
948 	for_each_online_node(nid) {
949 		unsigned long start_pfn, end_pfn;
950 
951 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
952 		setup_node_data(nid, start_pfn, end_pfn);
953 	}
954 
955 	sparse_init();
956 
957 	/*
958 	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
959 	 * even before we online them, so that we can use cpu_to_{node,mem}
960 	 * early in boot, cf. smp_prepare_cpus().
961 	 * _nocalls() + manual invocation is used because cpuhp is not yet
962 	 * initialized for the boot CPU.
963 	 */
964 	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
965 				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
966 }
967 
968 static int __init early_numa(char *p)
969 {
970 	if (!p)
971 		return 0;
972 
973 	if (strstr(p, "off"))
974 		numa_enabled = 0;
975 
976 	if (strstr(p, "debug"))
977 		numa_debug = 1;
978 
979 	p = strstr(p, "fake=");
980 	if (p)
981 		cmdline = p + strlen("fake=");
982 
983 	return 0;
984 }
985 early_param("numa", early_numa);
986 
987 #ifdef CONFIG_MEMORY_HOTPLUG
988 /*
989  * Find the node associated with a hot added memory section for
990  * memory represented in the device tree by the property
991  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
992  */
993 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
994 {
995 	struct drmem_lmb *lmb;
996 	unsigned long lmb_size;
997 	int nid = NUMA_NO_NODE;
998 
999 	lmb_size = drmem_lmb_size();
1000 
1001 	for_each_drmem_lmb(lmb) {
1002 		/* skip this block if it is reserved or not assigned to
1003 		 * this partition */
1004 		if ((lmb->flags & DRCONF_MEM_RESERVED)
1005 		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1006 			continue;
1007 
1008 		if ((scn_addr < lmb->base_addr)
1009 		    || (scn_addr >= (lmb->base_addr + lmb_size)))
1010 			continue;
1011 
1012 		nid = of_drconf_to_nid_single(lmb);
1013 		break;
1014 	}
1015 
1016 	return nid;
1017 }
1018 
1019 /*
1020  * Find the node associated with a hot added memory section for memory
1021  * represented in the device tree as a node (i.e. memory@XXXX) for
1022  * each memblock.
1023  */
1024 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1025 {
1026 	struct device_node *memory;
1027 	int nid = NUMA_NO_NODE;
1028 
1029 	for_each_node_by_type(memory, "memory") {
1030 		unsigned long start, size;
1031 		int ranges;
1032 		const __be32 *memcell_buf;
1033 		unsigned int len;
1034 
1035 		memcell_buf = of_get_property(memory, "reg", &len);
1036 		if (!memcell_buf || len <= 0)
1037 			continue;
1038 
1039 		/* ranges in cell */
1040 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1041 
1042 		while (ranges--) {
1043 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1044 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1045 
1046 			if ((scn_addr < start) || (scn_addr >= (start + size)))
1047 				continue;
1048 
1049 			nid = of_node_to_nid_single(memory);
1050 			break;
1051 		}
1052 
1053 		if (nid >= 0)
1054 			break;
1055 	}
1056 
1057 	of_node_put(memory);
1058 
1059 	return nid;
1060 }
1061 
1062 /*
1063  * Find the node associated with a hot added memory section.  Section
1064  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1065  * sections are fully contained within a single MEMBLOCK.
1066  */
1067 int hot_add_scn_to_nid(unsigned long scn_addr)
1068 {
1069 	struct device_node *memory = NULL;
1070 	int nid;
1071 
1072 	if (!numa_enabled)
1073 		return first_online_node;
1074 
1075 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1076 	if (memory) {
1077 		nid = hot_add_drconf_scn_to_nid(scn_addr);
1078 		of_node_put(memory);
1079 	} else {
1080 		nid = hot_add_node_scn_to_nid(scn_addr);
1081 	}
1082 
1083 	if (nid < 0 || !node_possible(nid))
1084 		nid = first_online_node;
1085 
1086 	return nid;
1087 }
1088 
1089 static u64 hot_add_drconf_memory_max(void)
1090 {
1091 	struct device_node *memory = NULL;
1092 	struct device_node *dn = NULL;
1093 	const __be64 *lrdr = NULL;
1094 
1095 	dn = of_find_node_by_path("/rtas");
1096 	if (dn) {
1097 		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1098 		of_node_put(dn);
1099 		if (lrdr)
1100 			return be64_to_cpup(lrdr);
1101 	}
1102 
1103 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1104 	if (memory) {
1105 		of_node_put(memory);
1106 		return drmem_lmb_memory_max();
1107 	}
1108 	return 0;
1109 }
1110 
1111 /*
1112  * memory_hotplug_max - return max address of memory that may be added
1113  *
1114  * This is currently only used on systems that support drconfig memory
1115  * hotplug.
1116  */
1117 u64 memory_hotplug_max(void)
1118 {
1119         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1120 }
1121 #endif /* CONFIG_MEMORY_HOTPLUG */
1122 
1123 /* Virtual Processor Home Node (VPHN) support */
1124 #ifdef CONFIG_PPC_SPLPAR
1125 static int topology_inited;
1126 
1127 /*
1128  * Retrieve the new associativity information for a virtual processor's
1129  * home node.
1130  */
1131 static long vphn_get_associativity(unsigned long cpu,
1132 					__be32 *associativity)
1133 {
1134 	long rc;
1135 
1136 	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1137 				VPHN_FLAG_VCPU, associativity);
1138 
1139 	switch (rc) {
1140 	case H_SUCCESS:
1141 		dbg("VPHN hcall succeeded. Reset polling...\n");
1142 		goto out;
1143 
1144 	case H_FUNCTION:
1145 		pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1146 		break;
1147 	case H_HARDWARE:
1148 		pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1149 			"preventing VPHN. Disabling polling...\n");
1150 		break;
1151 	case H_PARAMETER:
1152 		pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1153 			"Disabling polling...\n");
1154 		break;
1155 	default:
1156 		pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1157 			, rc);
1158 		break;
1159 	}
1160 out:
1161 	return rc;
1162 }
1163 
1164 int find_and_online_cpu_nid(int cpu)
1165 {
1166 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1167 	int new_nid;
1168 
1169 	/* Use associativity from first thread for all siblings */
1170 	if (vphn_get_associativity(cpu, associativity))
1171 		return cpu_to_node(cpu);
1172 
1173 	new_nid = associativity_to_nid(associativity);
1174 	if (new_nid < 0 || !node_possible(new_nid))
1175 		new_nid = first_online_node;
1176 
1177 	if (NODE_DATA(new_nid) == NULL) {
1178 #ifdef CONFIG_MEMORY_HOTPLUG
1179 		/*
1180 		 * Need to ensure that NODE_DATA is initialized for a node from
1181 		 * available memory (see memblock_alloc_try_nid). If unable to
1182 		 * init the node, then default to nearest node that has memory
1183 		 * installed. Skip onlining a node if the subsystems are not
1184 		 * yet initialized.
1185 		 */
1186 		if (!topology_inited || try_online_node(new_nid))
1187 			new_nid = first_online_node;
1188 #else
1189 		/*
1190 		 * Default to using the nearest node that has memory installed.
1191 		 * Otherwise, it would be necessary to patch the kernel MM code
1192 		 * to deal with more memoryless-node error conditions.
1193 		 */
1194 		new_nid = first_online_node;
1195 #endif
1196 	}
1197 
1198 	pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1199 		cpu, new_nid);
1200 	return new_nid;
1201 }
1202 
1203 static int topology_update_init(void)
1204 {
1205 	topology_inited = 1;
1206 	return 0;
1207 }
1208 device_initcall(topology_update_init);
1209 #endif /* CONFIG_PPC_SPLPAR */
1210