1 /* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/threads.h> 12 #include <linux/bootmem.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/mmzone.h> 16 #include <linux/module.h> 17 #include <linux/nodemask.h> 18 #include <linux/cpu.h> 19 #include <linux/notifier.h> 20 #include <linux/lmb.h> 21 #include <linux/of.h> 22 #include <asm/sparsemem.h> 23 #include <asm/prom.h> 24 #include <asm/system.h> 25 #include <asm/smp.h> 26 27 static int numa_enabled = 1; 28 29 static char *cmdline __initdata; 30 31 static int numa_debug; 32 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 33 34 int numa_cpu_lookup_table[NR_CPUS]; 35 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; 36 struct pglist_data *node_data[MAX_NUMNODES]; 37 38 EXPORT_SYMBOL(numa_cpu_lookup_table); 39 EXPORT_SYMBOL(numa_cpumask_lookup_table); 40 EXPORT_SYMBOL(node_data); 41 42 static int min_common_depth; 43 static int n_mem_addr_cells, n_mem_size_cells; 44 45 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn, 46 unsigned int *nid) 47 { 48 unsigned long long mem; 49 char *p = cmdline; 50 static unsigned int fake_nid; 51 static unsigned long long curr_boundary; 52 53 /* 54 * Modify node id, iff we started creating NUMA nodes 55 * We want to continue from where we left of the last time 56 */ 57 if (fake_nid) 58 *nid = fake_nid; 59 /* 60 * In case there are no more arguments to parse, the 61 * node_id should be the same as the last fake node id 62 * (we've handled this above). 63 */ 64 if (!p) 65 return 0; 66 67 mem = memparse(p, &p); 68 if (!mem) 69 return 0; 70 71 if (mem < curr_boundary) 72 return 0; 73 74 curr_boundary = mem; 75 76 if ((end_pfn << PAGE_SHIFT) > mem) { 77 /* 78 * Skip commas and spaces 79 */ 80 while (*p == ',' || *p == ' ' || *p == '\t') 81 p++; 82 83 cmdline = p; 84 fake_nid++; 85 *nid = fake_nid; 86 dbg("created new fake_node with id %d\n", fake_nid); 87 return 1; 88 } 89 return 0; 90 } 91 92 /* 93 * get_active_region_work_fn - A helper function for get_node_active_region 94 * Returns datax set to the start_pfn and end_pfn if they contain 95 * the initial value of datax->start_pfn between them 96 * @start_pfn: start page(inclusive) of region to check 97 * @end_pfn: end page(exclusive) of region to check 98 * @datax: comes in with ->start_pfn set to value to search for and 99 * goes out with active range if it contains it 100 * Returns 1 if search value is in range else 0 101 */ 102 static int __init get_active_region_work_fn(unsigned long start_pfn, 103 unsigned long end_pfn, void *datax) 104 { 105 struct node_active_region *data; 106 data = (struct node_active_region *)datax; 107 108 if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) { 109 data->start_pfn = start_pfn; 110 data->end_pfn = end_pfn; 111 return 1; 112 } 113 return 0; 114 115 } 116 117 /* 118 * get_node_active_region - Return active region containing start_pfn 119 * Active range returned is empty if none found. 120 * @start_pfn: The page to return the region for. 121 * @node_ar: Returned set to the active region containing start_pfn 122 */ 123 static void __init get_node_active_region(unsigned long start_pfn, 124 struct node_active_region *node_ar) 125 { 126 int nid = early_pfn_to_nid(start_pfn); 127 128 node_ar->nid = nid; 129 node_ar->start_pfn = start_pfn; 130 node_ar->end_pfn = start_pfn; 131 work_with_active_regions(nid, get_active_region_work_fn, node_ar); 132 } 133 134 static void __cpuinit map_cpu_to_node(int cpu, int node) 135 { 136 numa_cpu_lookup_table[cpu] = node; 137 138 dbg("adding cpu %d to node %d\n", cpu, node); 139 140 if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node]))) 141 cpu_set(cpu, numa_cpumask_lookup_table[node]); 142 } 143 144 #ifdef CONFIG_HOTPLUG_CPU 145 static void unmap_cpu_from_node(unsigned long cpu) 146 { 147 int node = numa_cpu_lookup_table[cpu]; 148 149 dbg("removing cpu %lu from node %d\n", cpu, node); 150 151 if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) { 152 cpu_clear(cpu, numa_cpumask_lookup_table[node]); 153 } else { 154 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 155 cpu, node); 156 } 157 } 158 #endif /* CONFIG_HOTPLUG_CPU */ 159 160 static struct device_node * __cpuinit find_cpu_node(unsigned int cpu) 161 { 162 unsigned int hw_cpuid = get_hard_smp_processor_id(cpu); 163 struct device_node *cpu_node = NULL; 164 const unsigned int *interrupt_server, *reg; 165 int len; 166 167 while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) { 168 /* Try interrupt server first */ 169 interrupt_server = of_get_property(cpu_node, 170 "ibm,ppc-interrupt-server#s", &len); 171 172 len = len / sizeof(u32); 173 174 if (interrupt_server && (len > 0)) { 175 while (len--) { 176 if (interrupt_server[len] == hw_cpuid) 177 return cpu_node; 178 } 179 } else { 180 reg = of_get_property(cpu_node, "reg", &len); 181 if (reg && (len > 0) && (reg[0] == hw_cpuid)) 182 return cpu_node; 183 } 184 } 185 186 return NULL; 187 } 188 189 /* must hold reference to node during call */ 190 static const int *of_get_associativity(struct device_node *dev) 191 { 192 return of_get_property(dev, "ibm,associativity", NULL); 193 } 194 195 /* 196 * Returns the property linux,drconf-usable-memory if 197 * it exists (the property exists only in kexec/kdump kernels, 198 * added by kexec-tools) 199 */ 200 static const u32 *of_get_usable_memory(struct device_node *memory) 201 { 202 const u32 *prop; 203 u32 len; 204 prop = of_get_property(memory, "linux,drconf-usable-memory", &len); 205 if (!prop || len < sizeof(unsigned int)) 206 return 0; 207 return prop; 208 } 209 210 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa 211 * info is found. 212 */ 213 static int of_node_to_nid_single(struct device_node *device) 214 { 215 int nid = -1; 216 const unsigned int *tmp; 217 218 if (min_common_depth == -1) 219 goto out; 220 221 tmp = of_get_associativity(device); 222 if (!tmp) 223 goto out; 224 225 if (tmp[0] >= min_common_depth) 226 nid = tmp[min_common_depth]; 227 228 /* POWER4 LPAR uses 0xffff as invalid node */ 229 if (nid == 0xffff || nid >= MAX_NUMNODES) 230 nid = -1; 231 out: 232 return nid; 233 } 234 235 /* Walk the device tree upwards, looking for an associativity id */ 236 int of_node_to_nid(struct device_node *device) 237 { 238 struct device_node *tmp; 239 int nid = -1; 240 241 of_node_get(device); 242 while (device) { 243 nid = of_node_to_nid_single(device); 244 if (nid != -1) 245 break; 246 247 tmp = device; 248 device = of_get_parent(tmp); 249 of_node_put(tmp); 250 } 251 of_node_put(device); 252 253 return nid; 254 } 255 EXPORT_SYMBOL_GPL(of_node_to_nid); 256 257 /* 258 * In theory, the "ibm,associativity" property may contain multiple 259 * associativity lists because a resource may be multiply connected 260 * into the machine. This resource then has different associativity 261 * characteristics relative to its multiple connections. We ignore 262 * this for now. We also assume that all cpu and memory sets have 263 * their distances represented at a common level. This won't be 264 * true for hierarchical NUMA. 265 * 266 * In any case the ibm,associativity-reference-points should give 267 * the correct depth for a normal NUMA system. 268 * 269 * - Dave Hansen <haveblue@us.ibm.com> 270 */ 271 static int __init find_min_common_depth(void) 272 { 273 int depth; 274 const unsigned int *ref_points; 275 struct device_node *rtas_root; 276 unsigned int len; 277 278 rtas_root = of_find_node_by_path("/rtas"); 279 280 if (!rtas_root) 281 return -1; 282 283 /* 284 * this property is 2 32-bit integers, each representing a level of 285 * depth in the associativity nodes. The first is for an SMP 286 * configuration (should be all 0's) and the second is for a normal 287 * NUMA configuration. 288 */ 289 ref_points = of_get_property(rtas_root, 290 "ibm,associativity-reference-points", &len); 291 292 if ((len >= 1) && ref_points) { 293 depth = ref_points[1]; 294 } else { 295 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 296 depth = -1; 297 } 298 of_node_put(rtas_root); 299 300 return depth; 301 } 302 303 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 304 { 305 struct device_node *memory = NULL; 306 307 memory = of_find_node_by_type(memory, "memory"); 308 if (!memory) 309 panic("numa.c: No memory nodes found!"); 310 311 *n_addr_cells = of_n_addr_cells(memory); 312 *n_size_cells = of_n_size_cells(memory); 313 of_node_put(memory); 314 } 315 316 static unsigned long __devinit read_n_cells(int n, const unsigned int **buf) 317 { 318 unsigned long result = 0; 319 320 while (n--) { 321 result = (result << 32) | **buf; 322 (*buf)++; 323 } 324 return result; 325 } 326 327 struct of_drconf_cell { 328 u64 base_addr; 329 u32 drc_index; 330 u32 reserved; 331 u32 aa_index; 332 u32 flags; 333 }; 334 335 #define DRCONF_MEM_ASSIGNED 0x00000008 336 #define DRCONF_MEM_AI_INVALID 0x00000040 337 #define DRCONF_MEM_RESERVED 0x00000080 338 339 /* 340 * Read the next lmb list entry from the ibm,dynamic-memory property 341 * and return the information in the provided of_drconf_cell structure. 342 */ 343 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp) 344 { 345 const u32 *cp; 346 347 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); 348 349 cp = *cellp; 350 drmem->drc_index = cp[0]; 351 drmem->reserved = cp[1]; 352 drmem->aa_index = cp[2]; 353 drmem->flags = cp[3]; 354 355 *cellp = cp + 4; 356 } 357 358 /* 359 * Retreive and validate the ibm,dynamic-memory property of the device tree. 360 * 361 * The layout of the ibm,dynamic-memory property is a number N of lmb 362 * list entries followed by N lmb list entries. Each lmb list entry 363 * contains information as layed out in the of_drconf_cell struct above. 364 */ 365 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm) 366 { 367 const u32 *prop; 368 u32 len, entries; 369 370 prop = of_get_property(memory, "ibm,dynamic-memory", &len); 371 if (!prop || len < sizeof(unsigned int)) 372 return 0; 373 374 entries = *prop++; 375 376 /* Now that we know the number of entries, revalidate the size 377 * of the property read in to ensure we have everything 378 */ 379 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) 380 return 0; 381 382 *dm = prop; 383 return entries; 384 } 385 386 /* 387 * Retreive and validate the ibm,lmb-size property for drconf memory 388 * from the device tree. 389 */ 390 static u64 of_get_lmb_size(struct device_node *memory) 391 { 392 const u32 *prop; 393 u32 len; 394 395 prop = of_get_property(memory, "ibm,lmb-size", &len); 396 if (!prop || len < sizeof(unsigned int)) 397 return 0; 398 399 return read_n_cells(n_mem_size_cells, &prop); 400 } 401 402 struct assoc_arrays { 403 u32 n_arrays; 404 u32 array_sz; 405 const u32 *arrays; 406 }; 407 408 /* 409 * Retreive and validate the list of associativity arrays for drconf 410 * memory from the ibm,associativity-lookup-arrays property of the 411 * device tree.. 412 * 413 * The layout of the ibm,associativity-lookup-arrays property is a number N 414 * indicating the number of associativity arrays, followed by a number M 415 * indicating the size of each associativity array, followed by a list 416 * of N associativity arrays. 417 */ 418 static int of_get_assoc_arrays(struct device_node *memory, 419 struct assoc_arrays *aa) 420 { 421 const u32 *prop; 422 u32 len; 423 424 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 425 if (!prop || len < 2 * sizeof(unsigned int)) 426 return -1; 427 428 aa->n_arrays = *prop++; 429 aa->array_sz = *prop++; 430 431 /* Now that we know the number of arrrays and size of each array, 432 * revalidate the size of the property read in. 433 */ 434 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 435 return -1; 436 437 aa->arrays = prop; 438 return 0; 439 } 440 441 /* 442 * This is like of_node_to_nid_single() for memory represented in the 443 * ibm,dynamic-reconfiguration-memory node. 444 */ 445 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, 446 struct assoc_arrays *aa) 447 { 448 int default_nid = 0; 449 int nid = default_nid; 450 int index; 451 452 if (min_common_depth > 0 && min_common_depth <= aa->array_sz && 453 !(drmem->flags & DRCONF_MEM_AI_INVALID) && 454 drmem->aa_index < aa->n_arrays) { 455 index = drmem->aa_index * aa->array_sz + min_common_depth - 1; 456 nid = aa->arrays[index]; 457 458 if (nid == 0xffff || nid >= MAX_NUMNODES) 459 nid = default_nid; 460 } 461 462 return nid; 463 } 464 465 /* 466 * Figure out to which domain a cpu belongs and stick it there. 467 * Return the id of the domain used. 468 */ 469 static int __cpuinit numa_setup_cpu(unsigned long lcpu) 470 { 471 int nid = 0; 472 struct device_node *cpu = find_cpu_node(lcpu); 473 474 if (!cpu) { 475 WARN_ON(1); 476 goto out; 477 } 478 479 nid = of_node_to_nid_single(cpu); 480 481 if (nid < 0 || !node_online(nid)) 482 nid = any_online_node(NODE_MASK_ALL); 483 out: 484 map_cpu_to_node(lcpu, nid); 485 486 of_node_put(cpu); 487 488 return nid; 489 } 490 491 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb, 492 unsigned long action, 493 void *hcpu) 494 { 495 unsigned long lcpu = (unsigned long)hcpu; 496 int ret = NOTIFY_DONE; 497 498 switch (action) { 499 case CPU_UP_PREPARE: 500 case CPU_UP_PREPARE_FROZEN: 501 numa_setup_cpu(lcpu); 502 ret = NOTIFY_OK; 503 break; 504 #ifdef CONFIG_HOTPLUG_CPU 505 case CPU_DEAD: 506 case CPU_DEAD_FROZEN: 507 case CPU_UP_CANCELED: 508 case CPU_UP_CANCELED_FROZEN: 509 unmap_cpu_from_node(lcpu); 510 break; 511 ret = NOTIFY_OK; 512 #endif 513 } 514 return ret; 515 } 516 517 /* 518 * Check and possibly modify a memory region to enforce the memory limit. 519 * 520 * Returns the size the region should have to enforce the memory limit. 521 * This will either be the original value of size, a truncated value, 522 * or zero. If the returned value of size is 0 the region should be 523 * discarded as it lies wholy above the memory limit. 524 */ 525 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 526 unsigned long size) 527 { 528 /* 529 * We use lmb_end_of_DRAM() in here instead of memory_limit because 530 * we've already adjusted it for the limit and it takes care of 531 * having memory holes below the limit. Also, in the case of 532 * iommu_is_off, memory_limit is not set but is implicitly enforced. 533 */ 534 535 if (start + size <= lmb_end_of_DRAM()) 536 return size; 537 538 if (start >= lmb_end_of_DRAM()) 539 return 0; 540 541 return lmb_end_of_DRAM() - start; 542 } 543 544 /* 545 * Reads the counter for a given entry in 546 * linux,drconf-usable-memory property 547 */ 548 static inline int __init read_usm_ranges(const u32 **usm) 549 { 550 /* 551 * For each lmb in ibm,dynamic-memory a corresponding 552 * entry in linux,drconf-usable-memory property contains 553 * a counter followed by that many (base, size) duple. 554 * read the counter from linux,drconf-usable-memory 555 */ 556 return read_n_cells(n_mem_size_cells, usm); 557 } 558 559 /* 560 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 561 * node. This assumes n_mem_{addr,size}_cells have been set. 562 */ 563 static void __init parse_drconf_memory(struct device_node *memory) 564 { 565 const u32 *dm, *usm; 566 unsigned int n, rc, ranges, is_kexec_kdump = 0; 567 unsigned long lmb_size, base, size, sz; 568 int nid; 569 struct assoc_arrays aa; 570 571 n = of_get_drconf_memory(memory, &dm); 572 if (!n) 573 return; 574 575 lmb_size = of_get_lmb_size(memory); 576 if (!lmb_size) 577 return; 578 579 rc = of_get_assoc_arrays(memory, &aa); 580 if (rc) 581 return; 582 583 /* check if this is a kexec/kdump kernel */ 584 usm = of_get_usable_memory(memory); 585 if (usm != NULL) 586 is_kexec_kdump = 1; 587 588 for (; n != 0; --n) { 589 struct of_drconf_cell drmem; 590 591 read_drconf_cell(&drmem, &dm); 592 593 /* skip this block if the reserved bit is set in flags (0x80) 594 or if the block is not assigned to this partition (0x8) */ 595 if ((drmem.flags & DRCONF_MEM_RESERVED) 596 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 597 continue; 598 599 base = drmem.base_addr; 600 size = lmb_size; 601 ranges = 1; 602 603 if (is_kexec_kdump) { 604 ranges = read_usm_ranges(&usm); 605 if (!ranges) /* there are no (base, size) duple */ 606 continue; 607 } 608 do { 609 if (is_kexec_kdump) { 610 base = read_n_cells(n_mem_addr_cells, &usm); 611 size = read_n_cells(n_mem_size_cells, &usm); 612 } 613 nid = of_drconf_to_nid_single(&drmem, &aa); 614 fake_numa_create_new_node( 615 ((base + size) >> PAGE_SHIFT), 616 &nid); 617 node_set_online(nid); 618 sz = numa_enforce_memory_limit(base, size); 619 if (sz) 620 add_active_range(nid, base >> PAGE_SHIFT, 621 (base >> PAGE_SHIFT) 622 + (sz >> PAGE_SHIFT)); 623 } while (--ranges); 624 } 625 } 626 627 static int __init parse_numa_properties(void) 628 { 629 struct device_node *cpu = NULL; 630 struct device_node *memory = NULL; 631 int default_nid = 0; 632 unsigned long i; 633 634 if (numa_enabled == 0) { 635 printk(KERN_WARNING "NUMA disabled by user\n"); 636 return -1; 637 } 638 639 min_common_depth = find_min_common_depth(); 640 641 if (min_common_depth < 0) 642 return min_common_depth; 643 644 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 645 646 /* 647 * Even though we connect cpus to numa domains later in SMP 648 * init, we need to know the node ids now. This is because 649 * each node to be onlined must have NODE_DATA etc backing it. 650 */ 651 for_each_present_cpu(i) { 652 int nid; 653 654 cpu = find_cpu_node(i); 655 BUG_ON(!cpu); 656 nid = of_node_to_nid_single(cpu); 657 of_node_put(cpu); 658 659 /* 660 * Don't fall back to default_nid yet -- we will plug 661 * cpus into nodes once the memory scan has discovered 662 * the topology. 663 */ 664 if (nid < 0) 665 continue; 666 node_set_online(nid); 667 } 668 669 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 670 memory = NULL; 671 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { 672 unsigned long start; 673 unsigned long size; 674 int nid; 675 int ranges; 676 const unsigned int *memcell_buf; 677 unsigned int len; 678 679 memcell_buf = of_get_property(memory, 680 "linux,usable-memory", &len); 681 if (!memcell_buf || len <= 0) 682 memcell_buf = of_get_property(memory, "reg", &len); 683 if (!memcell_buf || len <= 0) 684 continue; 685 686 /* ranges in cell */ 687 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 688 new_range: 689 /* these are order-sensitive, and modify the buffer pointer */ 690 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 691 size = read_n_cells(n_mem_size_cells, &memcell_buf); 692 693 /* 694 * Assumption: either all memory nodes or none will 695 * have associativity properties. If none, then 696 * everything goes to default_nid. 697 */ 698 nid = of_node_to_nid_single(memory); 699 if (nid < 0) 700 nid = default_nid; 701 702 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 703 node_set_online(nid); 704 705 if (!(size = numa_enforce_memory_limit(start, size))) { 706 if (--ranges) 707 goto new_range; 708 else 709 continue; 710 } 711 712 add_active_range(nid, start >> PAGE_SHIFT, 713 (start >> PAGE_SHIFT) + (size >> PAGE_SHIFT)); 714 715 if (--ranges) 716 goto new_range; 717 } 718 719 /* 720 * Now do the same thing for each LMB listed in the ibm,dynamic-memory 721 * property in the ibm,dynamic-reconfiguration-memory node. 722 */ 723 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 724 if (memory) 725 parse_drconf_memory(memory); 726 727 return 0; 728 } 729 730 static void __init setup_nonnuma(void) 731 { 732 unsigned long top_of_ram = lmb_end_of_DRAM(); 733 unsigned long total_ram = lmb_phys_mem_size(); 734 unsigned long start_pfn, end_pfn; 735 unsigned int i, nid = 0; 736 737 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 738 top_of_ram, total_ram); 739 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 740 (top_of_ram - total_ram) >> 20); 741 742 for (i = 0; i < lmb.memory.cnt; ++i) { 743 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT; 744 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i); 745 746 fake_numa_create_new_node(end_pfn, &nid); 747 add_active_range(nid, start_pfn, end_pfn); 748 node_set_online(nid); 749 } 750 } 751 752 void __init dump_numa_cpu_topology(void) 753 { 754 unsigned int node; 755 unsigned int cpu, count; 756 757 if (min_common_depth == -1 || !numa_enabled) 758 return; 759 760 for_each_online_node(node) { 761 printk(KERN_DEBUG "Node %d CPUs:", node); 762 763 count = 0; 764 /* 765 * If we used a CPU iterator here we would miss printing 766 * the holes in the cpumap. 767 */ 768 for (cpu = 0; cpu < NR_CPUS; cpu++) { 769 if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) { 770 if (count == 0) 771 printk(" %u", cpu); 772 ++count; 773 } else { 774 if (count > 1) 775 printk("-%u", cpu - 1); 776 count = 0; 777 } 778 } 779 780 if (count > 1) 781 printk("-%u", NR_CPUS - 1); 782 printk("\n"); 783 } 784 } 785 786 static void __init dump_numa_memory_topology(void) 787 { 788 unsigned int node; 789 unsigned int count; 790 791 if (min_common_depth == -1 || !numa_enabled) 792 return; 793 794 for_each_online_node(node) { 795 unsigned long i; 796 797 printk(KERN_DEBUG "Node %d Memory:", node); 798 799 count = 0; 800 801 for (i = 0; i < lmb_end_of_DRAM(); 802 i += (1 << SECTION_SIZE_BITS)) { 803 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { 804 if (count == 0) 805 printk(" 0x%lx", i); 806 ++count; 807 } else { 808 if (count > 0) 809 printk("-0x%lx", i); 810 count = 0; 811 } 812 } 813 814 if (count > 0) 815 printk("-0x%lx", i); 816 printk("\n"); 817 } 818 } 819 820 /* 821 * Allocate some memory, satisfying the lmb or bootmem allocator where 822 * required. nid is the preferred node and end is the physical address of 823 * the highest address in the node. 824 * 825 * Returns the physical address of the memory. 826 */ 827 static void __init *careful_allocation(int nid, unsigned long size, 828 unsigned long align, 829 unsigned long end_pfn) 830 { 831 int new_nid; 832 unsigned long ret = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT); 833 834 /* retry over all memory */ 835 if (!ret) 836 ret = __lmb_alloc_base(size, align, lmb_end_of_DRAM()); 837 838 if (!ret) 839 panic("numa.c: cannot allocate %lu bytes on node %d", 840 size, nid); 841 842 /* 843 * If the memory came from a previously allocated node, we must 844 * retry with the bootmem allocator. 845 */ 846 new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT); 847 if (new_nid < nid) { 848 ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid), 849 size, align, 0); 850 851 if (!ret) 852 panic("numa.c: cannot allocate %lu bytes on node %d", 853 size, new_nid); 854 855 ret = __pa(ret); 856 857 dbg("alloc_bootmem %lx %lx\n", ret, size); 858 } 859 860 return (void *)ret; 861 } 862 863 static struct notifier_block __cpuinitdata ppc64_numa_nb = { 864 .notifier_call = cpu_numa_callback, 865 .priority = 1 /* Must run before sched domains notifier. */ 866 }; 867 868 void __init do_init_bootmem(void) 869 { 870 int nid; 871 unsigned int i; 872 873 min_low_pfn = 0; 874 max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT; 875 max_pfn = max_low_pfn; 876 877 if (parse_numa_properties()) 878 setup_nonnuma(); 879 else 880 dump_numa_memory_topology(); 881 882 register_cpu_notifier(&ppc64_numa_nb); 883 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, 884 (void *)(unsigned long)boot_cpuid); 885 886 for_each_online_node(nid) { 887 unsigned long start_pfn, end_pfn; 888 unsigned long bootmem_paddr; 889 unsigned long bootmap_pages; 890 891 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 892 893 /* Allocate the node structure node local if possible */ 894 NODE_DATA(nid) = careful_allocation(nid, 895 sizeof(struct pglist_data), 896 SMP_CACHE_BYTES, end_pfn); 897 NODE_DATA(nid) = __va(NODE_DATA(nid)); 898 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); 899 900 dbg("node %d\n", nid); 901 dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); 902 903 NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; 904 NODE_DATA(nid)->node_start_pfn = start_pfn; 905 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; 906 907 if (NODE_DATA(nid)->node_spanned_pages == 0) 908 continue; 909 910 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); 911 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); 912 913 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); 914 bootmem_paddr = (unsigned long)careful_allocation(nid, 915 bootmap_pages << PAGE_SHIFT, 916 PAGE_SIZE, end_pfn); 917 memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT); 918 919 dbg("bootmap_paddr = %lx\n", bootmem_paddr); 920 921 init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT, 922 start_pfn, end_pfn); 923 924 free_bootmem_with_active_regions(nid, end_pfn); 925 } 926 927 /* Mark reserved regions */ 928 for (i = 0; i < lmb.reserved.cnt; i++) { 929 unsigned long physbase = lmb.reserved.region[i].base; 930 unsigned long size = lmb.reserved.region[i].size; 931 unsigned long start_pfn = physbase >> PAGE_SHIFT; 932 unsigned long end_pfn = ((physbase + size) >> PAGE_SHIFT); 933 struct node_active_region node_ar; 934 935 get_node_active_region(start_pfn, &node_ar); 936 while (start_pfn < end_pfn && 937 node_ar.start_pfn < node_ar.end_pfn) { 938 unsigned long reserve_size = size; 939 /* 940 * if reserved region extends past active region 941 * then trim size to active region 942 */ 943 if (end_pfn > node_ar.end_pfn) 944 reserve_size = (node_ar.end_pfn << PAGE_SHIFT) 945 - (start_pfn << PAGE_SHIFT); 946 dbg("reserve_bootmem %lx %lx nid=%d\n", physbase, 947 reserve_size, node_ar.nid); 948 reserve_bootmem_node(NODE_DATA(node_ar.nid), physbase, 949 reserve_size, BOOTMEM_DEFAULT); 950 /* 951 * if reserved region is contained in the active region 952 * then done. 953 */ 954 if (end_pfn <= node_ar.end_pfn) 955 break; 956 957 /* 958 * reserved region extends past the active region 959 * get next active region that contains this 960 * reserved region 961 */ 962 start_pfn = node_ar.end_pfn; 963 physbase = start_pfn << PAGE_SHIFT; 964 size = size - reserve_size; 965 get_node_active_region(start_pfn, &node_ar); 966 } 967 968 } 969 970 for_each_online_node(nid) 971 sparse_memory_present_with_active_regions(nid); 972 } 973 974 void __init paging_init(void) 975 { 976 unsigned long max_zone_pfns[MAX_NR_ZONES]; 977 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 978 max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT; 979 free_area_init_nodes(max_zone_pfns); 980 } 981 982 static int __init early_numa(char *p) 983 { 984 if (!p) 985 return 0; 986 987 if (strstr(p, "off")) 988 numa_enabled = 0; 989 990 if (strstr(p, "debug")) 991 numa_debug = 1; 992 993 p = strstr(p, "fake="); 994 if (p) 995 cmdline = p + strlen("fake="); 996 997 return 0; 998 } 999 early_param("numa", early_numa); 1000 1001 #ifdef CONFIG_MEMORY_HOTPLUG 1002 /* 1003 * Validate the node associated with the memory section we are 1004 * trying to add. 1005 */ 1006 int valid_hot_add_scn(int *nid, unsigned long start, u32 lmb_size, 1007 unsigned long scn_addr) 1008 { 1009 nodemask_t nodes; 1010 1011 if (*nid < 0 || !node_online(*nid)) 1012 *nid = any_online_node(NODE_MASK_ALL); 1013 1014 if ((scn_addr >= start) && (scn_addr < (start + lmb_size))) { 1015 nodes_setall(nodes); 1016 while (NODE_DATA(*nid)->node_spanned_pages == 0) { 1017 node_clear(*nid, nodes); 1018 *nid = any_online_node(nodes); 1019 } 1020 1021 return 1; 1022 } 1023 1024 return 0; 1025 } 1026 1027 /* 1028 * Find the node associated with a hot added memory section represented 1029 * by the ibm,dynamic-reconfiguration-memory node. 1030 */ 1031 static int hot_add_drconf_scn_to_nid(struct device_node *memory, 1032 unsigned long scn_addr) 1033 { 1034 const u32 *dm; 1035 unsigned int n, rc; 1036 unsigned long lmb_size; 1037 int default_nid = any_online_node(NODE_MASK_ALL); 1038 int nid; 1039 struct assoc_arrays aa; 1040 1041 n = of_get_drconf_memory(memory, &dm); 1042 if (!n) 1043 return default_nid;; 1044 1045 lmb_size = of_get_lmb_size(memory); 1046 if (!lmb_size) 1047 return default_nid; 1048 1049 rc = of_get_assoc_arrays(memory, &aa); 1050 if (rc) 1051 return default_nid; 1052 1053 for (; n != 0; --n) { 1054 struct of_drconf_cell drmem; 1055 1056 read_drconf_cell(&drmem, &dm); 1057 1058 /* skip this block if it is reserved or not assigned to 1059 * this partition */ 1060 if ((drmem.flags & DRCONF_MEM_RESERVED) 1061 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 1062 continue; 1063 1064 nid = of_drconf_to_nid_single(&drmem, &aa); 1065 1066 if (valid_hot_add_scn(&nid, drmem.base_addr, lmb_size, 1067 scn_addr)) 1068 return nid; 1069 } 1070 1071 BUG(); /* section address should be found above */ 1072 return 0; 1073 } 1074 1075 /* 1076 * Find the node associated with a hot added memory section. Section 1077 * corresponds to a SPARSEMEM section, not an LMB. It is assumed that 1078 * sections are fully contained within a single LMB. 1079 */ 1080 int hot_add_scn_to_nid(unsigned long scn_addr) 1081 { 1082 struct device_node *memory = NULL; 1083 int nid; 1084 1085 if (!numa_enabled || (min_common_depth < 0)) 1086 return any_online_node(NODE_MASK_ALL); 1087 1088 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1089 if (memory) { 1090 nid = hot_add_drconf_scn_to_nid(memory, scn_addr); 1091 of_node_put(memory); 1092 return nid; 1093 } 1094 1095 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { 1096 unsigned long start, size; 1097 int ranges; 1098 const unsigned int *memcell_buf; 1099 unsigned int len; 1100 1101 memcell_buf = of_get_property(memory, "reg", &len); 1102 if (!memcell_buf || len <= 0) 1103 continue; 1104 1105 /* ranges in cell */ 1106 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 1107 ha_new_range: 1108 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 1109 size = read_n_cells(n_mem_size_cells, &memcell_buf); 1110 nid = of_node_to_nid_single(memory); 1111 1112 if (valid_hot_add_scn(&nid, start, size, scn_addr)) { 1113 of_node_put(memory); 1114 return nid; 1115 } 1116 1117 if (--ranges) /* process all ranges in cell */ 1118 goto ha_new_range; 1119 } 1120 BUG(); /* section address should be found above */ 1121 return 0; 1122 } 1123 #endif /* CONFIG_MEMORY_HOTPLUG */ 1124