xref: /openbmc/linux/arch/powerpc/mm/numa.c (revision 93df8a1e)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #define pr_fmt(fmt) "numa: " fmt
12 
13 #include <linux/threads.h>
14 #include <linux/bootmem.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/mmzone.h>
18 #include <linux/export.h>
19 #include <linux/nodemask.h>
20 #include <linux/cpu.h>
21 #include <linux/notifier.h>
22 #include <linux/memblock.h>
23 #include <linux/of.h>
24 #include <linux/pfn.h>
25 #include <linux/cpuset.h>
26 #include <linux/node.h>
27 #include <linux/stop_machine.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/uaccess.h>
31 #include <linux/slab.h>
32 #include <asm/cputhreads.h>
33 #include <asm/sparsemem.h>
34 #include <asm/prom.h>
35 #include <asm/smp.h>
36 #include <asm/cputhreads.h>
37 #include <asm/topology.h>
38 #include <asm/firmware.h>
39 #include <asm/paca.h>
40 #include <asm/hvcall.h>
41 #include <asm/setup.h>
42 #include <asm/vdso.h>
43 
44 static int numa_enabled = 1;
45 
46 static char *cmdline __initdata;
47 
48 static int numa_debug;
49 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
50 
51 int numa_cpu_lookup_table[NR_CPUS];
52 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
53 struct pglist_data *node_data[MAX_NUMNODES];
54 
55 EXPORT_SYMBOL(numa_cpu_lookup_table);
56 EXPORT_SYMBOL(node_to_cpumask_map);
57 EXPORT_SYMBOL(node_data);
58 
59 static int min_common_depth;
60 static int n_mem_addr_cells, n_mem_size_cells;
61 static int form1_affinity;
62 
63 #define MAX_DISTANCE_REF_POINTS 4
64 static int distance_ref_points_depth;
65 static const __be32 *distance_ref_points;
66 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
67 
68 /*
69  * Allocate node_to_cpumask_map based on number of available nodes
70  * Requires node_possible_map to be valid.
71  *
72  * Note: cpumask_of_node() is not valid until after this is done.
73  */
74 static void __init setup_node_to_cpumask_map(void)
75 {
76 	unsigned int node;
77 
78 	/* setup nr_node_ids if not done yet */
79 	if (nr_node_ids == MAX_NUMNODES)
80 		setup_nr_node_ids();
81 
82 	/* allocate the map */
83 	for (node = 0; node < nr_node_ids; node++)
84 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
85 
86 	/* cpumask_of_node() will now work */
87 	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
88 }
89 
90 static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 						unsigned int *nid)
92 {
93 	unsigned long long mem;
94 	char *p = cmdline;
95 	static unsigned int fake_nid;
96 	static unsigned long long curr_boundary;
97 
98 	/*
99 	 * Modify node id, iff we started creating NUMA nodes
100 	 * We want to continue from where we left of the last time
101 	 */
102 	if (fake_nid)
103 		*nid = fake_nid;
104 	/*
105 	 * In case there are no more arguments to parse, the
106 	 * node_id should be the same as the last fake node id
107 	 * (we've handled this above).
108 	 */
109 	if (!p)
110 		return 0;
111 
112 	mem = memparse(p, &p);
113 	if (!mem)
114 		return 0;
115 
116 	if (mem < curr_boundary)
117 		return 0;
118 
119 	curr_boundary = mem;
120 
121 	if ((end_pfn << PAGE_SHIFT) > mem) {
122 		/*
123 		 * Skip commas and spaces
124 		 */
125 		while (*p == ',' || *p == ' ' || *p == '\t')
126 			p++;
127 
128 		cmdline = p;
129 		fake_nid++;
130 		*nid = fake_nid;
131 		dbg("created new fake_node with id %d\n", fake_nid);
132 		return 1;
133 	}
134 	return 0;
135 }
136 
137 static void reset_numa_cpu_lookup_table(void)
138 {
139 	unsigned int cpu;
140 
141 	for_each_possible_cpu(cpu)
142 		numa_cpu_lookup_table[cpu] = -1;
143 }
144 
145 static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
146 {
147 	numa_cpu_lookup_table[cpu] = node;
148 }
149 
150 static void map_cpu_to_node(int cpu, int node)
151 {
152 	update_numa_cpu_lookup_table(cpu, node);
153 
154 	dbg("adding cpu %d to node %d\n", cpu, node);
155 
156 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
157 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
158 }
159 
160 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
161 static void unmap_cpu_from_node(unsigned long cpu)
162 {
163 	int node = numa_cpu_lookup_table[cpu];
164 
165 	dbg("removing cpu %lu from node %d\n", cpu, node);
166 
167 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
168 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
169 	} else {
170 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
171 		       cpu, node);
172 	}
173 }
174 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
175 
176 /* must hold reference to node during call */
177 static const __be32 *of_get_associativity(struct device_node *dev)
178 {
179 	return of_get_property(dev, "ibm,associativity", NULL);
180 }
181 
182 /*
183  * Returns the property linux,drconf-usable-memory if
184  * it exists (the property exists only in kexec/kdump kernels,
185  * added by kexec-tools)
186  */
187 static const __be32 *of_get_usable_memory(struct device_node *memory)
188 {
189 	const __be32 *prop;
190 	u32 len;
191 	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
192 	if (!prop || len < sizeof(unsigned int))
193 		return NULL;
194 	return prop;
195 }
196 
197 int __node_distance(int a, int b)
198 {
199 	int i;
200 	int distance = LOCAL_DISTANCE;
201 
202 	if (!form1_affinity)
203 		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
204 
205 	for (i = 0; i < distance_ref_points_depth; i++) {
206 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
207 			break;
208 
209 		/* Double the distance for each NUMA level */
210 		distance *= 2;
211 	}
212 
213 	return distance;
214 }
215 EXPORT_SYMBOL(__node_distance);
216 
217 static void initialize_distance_lookup_table(int nid,
218 		const __be32 *associativity)
219 {
220 	int i;
221 
222 	if (!form1_affinity)
223 		return;
224 
225 	for (i = 0; i < distance_ref_points_depth; i++) {
226 		const __be32 *entry;
227 
228 		entry = &associativity[be32_to_cpu(distance_ref_points[i])];
229 		distance_lookup_table[nid][i] = of_read_number(entry, 1);
230 	}
231 }
232 
233 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
234  * info is found.
235  */
236 static int associativity_to_nid(const __be32 *associativity)
237 {
238 	int nid = -1;
239 
240 	if (min_common_depth == -1)
241 		goto out;
242 
243 	if (of_read_number(associativity, 1) >= min_common_depth)
244 		nid = of_read_number(&associativity[min_common_depth], 1);
245 
246 	/* POWER4 LPAR uses 0xffff as invalid node */
247 	if (nid == 0xffff || nid >= MAX_NUMNODES)
248 		nid = -1;
249 
250 	if (nid > 0 &&
251 	    of_read_number(associativity, 1) >= distance_ref_points_depth)
252 		initialize_distance_lookup_table(nid, associativity);
253 
254 out:
255 	return nid;
256 }
257 
258 /* Returns the nid associated with the given device tree node,
259  * or -1 if not found.
260  */
261 static int of_node_to_nid_single(struct device_node *device)
262 {
263 	int nid = -1;
264 	const __be32 *tmp;
265 
266 	tmp = of_get_associativity(device);
267 	if (tmp)
268 		nid = associativity_to_nid(tmp);
269 	return nid;
270 }
271 
272 /* Walk the device tree upwards, looking for an associativity id */
273 int of_node_to_nid(struct device_node *device)
274 {
275 	struct device_node *tmp;
276 	int nid = -1;
277 
278 	of_node_get(device);
279 	while (device) {
280 		nid = of_node_to_nid_single(device);
281 		if (nid != -1)
282 			break;
283 
284 	        tmp = device;
285 		device = of_get_parent(tmp);
286 		of_node_put(tmp);
287 	}
288 	of_node_put(device);
289 
290 	return nid;
291 }
292 EXPORT_SYMBOL_GPL(of_node_to_nid);
293 
294 static int __init find_min_common_depth(void)
295 {
296 	int depth;
297 	struct device_node *root;
298 
299 	if (firmware_has_feature(FW_FEATURE_OPAL))
300 		root = of_find_node_by_path("/ibm,opal");
301 	else
302 		root = of_find_node_by_path("/rtas");
303 	if (!root)
304 		root = of_find_node_by_path("/");
305 
306 	/*
307 	 * This property is a set of 32-bit integers, each representing
308 	 * an index into the ibm,associativity nodes.
309 	 *
310 	 * With form 0 affinity the first integer is for an SMP configuration
311 	 * (should be all 0's) and the second is for a normal NUMA
312 	 * configuration. We have only one level of NUMA.
313 	 *
314 	 * With form 1 affinity the first integer is the most significant
315 	 * NUMA boundary and the following are progressively less significant
316 	 * boundaries. There can be more than one level of NUMA.
317 	 */
318 	distance_ref_points = of_get_property(root,
319 					"ibm,associativity-reference-points",
320 					&distance_ref_points_depth);
321 
322 	if (!distance_ref_points) {
323 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
324 		goto err;
325 	}
326 
327 	distance_ref_points_depth /= sizeof(int);
328 
329 	if (firmware_has_feature(FW_FEATURE_OPAL) ||
330 	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
331 		dbg("Using form 1 affinity\n");
332 		form1_affinity = 1;
333 	}
334 
335 	if (form1_affinity) {
336 		depth = of_read_number(distance_ref_points, 1);
337 	} else {
338 		if (distance_ref_points_depth < 2) {
339 			printk(KERN_WARNING "NUMA: "
340 				"short ibm,associativity-reference-points\n");
341 			goto err;
342 		}
343 
344 		depth = of_read_number(&distance_ref_points[1], 1);
345 	}
346 
347 	/*
348 	 * Warn and cap if the hardware supports more than
349 	 * MAX_DISTANCE_REF_POINTS domains.
350 	 */
351 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
352 		printk(KERN_WARNING "NUMA: distance array capped at "
353 			"%d entries\n", MAX_DISTANCE_REF_POINTS);
354 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
355 	}
356 
357 	of_node_put(root);
358 	return depth;
359 
360 err:
361 	of_node_put(root);
362 	return -1;
363 }
364 
365 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
366 {
367 	struct device_node *memory = NULL;
368 
369 	memory = of_find_node_by_type(memory, "memory");
370 	if (!memory)
371 		panic("numa.c: No memory nodes found!");
372 
373 	*n_addr_cells = of_n_addr_cells(memory);
374 	*n_size_cells = of_n_size_cells(memory);
375 	of_node_put(memory);
376 }
377 
378 static unsigned long read_n_cells(int n, const __be32 **buf)
379 {
380 	unsigned long result = 0;
381 
382 	while (n--) {
383 		result = (result << 32) | of_read_number(*buf, 1);
384 		(*buf)++;
385 	}
386 	return result;
387 }
388 
389 /*
390  * Read the next memblock list entry from the ibm,dynamic-memory property
391  * and return the information in the provided of_drconf_cell structure.
392  */
393 static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
394 {
395 	const __be32 *cp;
396 
397 	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
398 
399 	cp = *cellp;
400 	drmem->drc_index = of_read_number(cp, 1);
401 	drmem->reserved = of_read_number(&cp[1], 1);
402 	drmem->aa_index = of_read_number(&cp[2], 1);
403 	drmem->flags = of_read_number(&cp[3], 1);
404 
405 	*cellp = cp + 4;
406 }
407 
408 /*
409  * Retrieve and validate the ibm,dynamic-memory property of the device tree.
410  *
411  * The layout of the ibm,dynamic-memory property is a number N of memblock
412  * list entries followed by N memblock list entries.  Each memblock list entry
413  * contains information as laid out in the of_drconf_cell struct above.
414  */
415 static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
416 {
417 	const __be32 *prop;
418 	u32 len, entries;
419 
420 	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
421 	if (!prop || len < sizeof(unsigned int))
422 		return 0;
423 
424 	entries = of_read_number(prop++, 1);
425 
426 	/* Now that we know the number of entries, revalidate the size
427 	 * of the property read in to ensure we have everything
428 	 */
429 	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
430 		return 0;
431 
432 	*dm = prop;
433 	return entries;
434 }
435 
436 /*
437  * Retrieve and validate the ibm,lmb-size property for drconf memory
438  * from the device tree.
439  */
440 static u64 of_get_lmb_size(struct device_node *memory)
441 {
442 	const __be32 *prop;
443 	u32 len;
444 
445 	prop = of_get_property(memory, "ibm,lmb-size", &len);
446 	if (!prop || len < sizeof(unsigned int))
447 		return 0;
448 
449 	return read_n_cells(n_mem_size_cells, &prop);
450 }
451 
452 struct assoc_arrays {
453 	u32	n_arrays;
454 	u32	array_sz;
455 	const __be32 *arrays;
456 };
457 
458 /*
459  * Retrieve and validate the list of associativity arrays for drconf
460  * memory from the ibm,associativity-lookup-arrays property of the
461  * device tree..
462  *
463  * The layout of the ibm,associativity-lookup-arrays property is a number N
464  * indicating the number of associativity arrays, followed by a number M
465  * indicating the size of each associativity array, followed by a list
466  * of N associativity arrays.
467  */
468 static int of_get_assoc_arrays(struct device_node *memory,
469 			       struct assoc_arrays *aa)
470 {
471 	const __be32 *prop;
472 	u32 len;
473 
474 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
475 	if (!prop || len < 2 * sizeof(unsigned int))
476 		return -1;
477 
478 	aa->n_arrays = of_read_number(prop++, 1);
479 	aa->array_sz = of_read_number(prop++, 1);
480 
481 	/* Now that we know the number of arrays and size of each array,
482 	 * revalidate the size of the property read in.
483 	 */
484 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
485 		return -1;
486 
487 	aa->arrays = prop;
488 	return 0;
489 }
490 
491 /*
492  * This is like of_node_to_nid_single() for memory represented in the
493  * ibm,dynamic-reconfiguration-memory node.
494  */
495 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
496 				   struct assoc_arrays *aa)
497 {
498 	int default_nid = 0;
499 	int nid = default_nid;
500 	int index;
501 
502 	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
503 	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
504 	    drmem->aa_index < aa->n_arrays) {
505 		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
506 		nid = of_read_number(&aa->arrays[index], 1);
507 
508 		if (nid == 0xffff || nid >= MAX_NUMNODES)
509 			nid = default_nid;
510 	}
511 
512 	return nid;
513 }
514 
515 /*
516  * Figure out to which domain a cpu belongs and stick it there.
517  * Return the id of the domain used.
518  */
519 static int numa_setup_cpu(unsigned long lcpu)
520 {
521 	int nid = -1;
522 	struct device_node *cpu;
523 
524 	/*
525 	 * If a valid cpu-to-node mapping is already available, use it
526 	 * directly instead of querying the firmware, since it represents
527 	 * the most recent mapping notified to us by the platform (eg: VPHN).
528 	 */
529 	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
530 		map_cpu_to_node(lcpu, nid);
531 		return nid;
532 	}
533 
534 	cpu = of_get_cpu_node(lcpu, NULL);
535 
536 	if (!cpu) {
537 		WARN_ON(1);
538 		if (cpu_present(lcpu))
539 			goto out_present;
540 		else
541 			goto out;
542 	}
543 
544 	nid = of_node_to_nid_single(cpu);
545 
546 out_present:
547 	if (nid < 0 || !node_online(nid))
548 		nid = first_online_node;
549 
550 	map_cpu_to_node(lcpu, nid);
551 	of_node_put(cpu);
552 out:
553 	return nid;
554 }
555 
556 static void verify_cpu_node_mapping(int cpu, int node)
557 {
558 	int base, sibling, i;
559 
560 	/* Verify that all the threads in the core belong to the same node */
561 	base = cpu_first_thread_sibling(cpu);
562 
563 	for (i = 0; i < threads_per_core; i++) {
564 		sibling = base + i;
565 
566 		if (sibling == cpu || cpu_is_offline(sibling))
567 			continue;
568 
569 		if (cpu_to_node(sibling) != node) {
570 			WARN(1, "CPU thread siblings %d and %d don't belong"
571 				" to the same node!\n", cpu, sibling);
572 			break;
573 		}
574 	}
575 }
576 
577 static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
578 			     void *hcpu)
579 {
580 	unsigned long lcpu = (unsigned long)hcpu;
581 	int ret = NOTIFY_DONE, nid;
582 
583 	switch (action) {
584 	case CPU_UP_PREPARE:
585 	case CPU_UP_PREPARE_FROZEN:
586 		nid = numa_setup_cpu(lcpu);
587 		verify_cpu_node_mapping((int)lcpu, nid);
588 		ret = NOTIFY_OK;
589 		break;
590 #ifdef CONFIG_HOTPLUG_CPU
591 	case CPU_DEAD:
592 	case CPU_DEAD_FROZEN:
593 	case CPU_UP_CANCELED:
594 	case CPU_UP_CANCELED_FROZEN:
595 		unmap_cpu_from_node(lcpu);
596 		ret = NOTIFY_OK;
597 		break;
598 #endif
599 	}
600 	return ret;
601 }
602 
603 /*
604  * Check and possibly modify a memory region to enforce the memory limit.
605  *
606  * Returns the size the region should have to enforce the memory limit.
607  * This will either be the original value of size, a truncated value,
608  * or zero. If the returned value of size is 0 the region should be
609  * discarded as it lies wholly above the memory limit.
610  */
611 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
612 						      unsigned long size)
613 {
614 	/*
615 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
616 	 * we've already adjusted it for the limit and it takes care of
617 	 * having memory holes below the limit.  Also, in the case of
618 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
619 	 */
620 
621 	if (start + size <= memblock_end_of_DRAM())
622 		return size;
623 
624 	if (start >= memblock_end_of_DRAM())
625 		return 0;
626 
627 	return memblock_end_of_DRAM() - start;
628 }
629 
630 /*
631  * Reads the counter for a given entry in
632  * linux,drconf-usable-memory property
633  */
634 static inline int __init read_usm_ranges(const __be32 **usm)
635 {
636 	/*
637 	 * For each lmb in ibm,dynamic-memory a corresponding
638 	 * entry in linux,drconf-usable-memory property contains
639 	 * a counter followed by that many (base, size) duple.
640 	 * read the counter from linux,drconf-usable-memory
641 	 */
642 	return read_n_cells(n_mem_size_cells, usm);
643 }
644 
645 /*
646  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
647  * node.  This assumes n_mem_{addr,size}_cells have been set.
648  */
649 static void __init parse_drconf_memory(struct device_node *memory)
650 {
651 	const __be32 *uninitialized_var(dm), *usm;
652 	unsigned int n, rc, ranges, is_kexec_kdump = 0;
653 	unsigned long lmb_size, base, size, sz;
654 	int nid;
655 	struct assoc_arrays aa = { .arrays = NULL };
656 
657 	n = of_get_drconf_memory(memory, &dm);
658 	if (!n)
659 		return;
660 
661 	lmb_size = of_get_lmb_size(memory);
662 	if (!lmb_size)
663 		return;
664 
665 	rc = of_get_assoc_arrays(memory, &aa);
666 	if (rc)
667 		return;
668 
669 	/* check if this is a kexec/kdump kernel */
670 	usm = of_get_usable_memory(memory);
671 	if (usm != NULL)
672 		is_kexec_kdump = 1;
673 
674 	for (; n != 0; --n) {
675 		struct of_drconf_cell drmem;
676 
677 		read_drconf_cell(&drmem, &dm);
678 
679 		/* skip this block if the reserved bit is set in flags (0x80)
680 		   or if the block is not assigned to this partition (0x8) */
681 		if ((drmem.flags & DRCONF_MEM_RESERVED)
682 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
683 			continue;
684 
685 		base = drmem.base_addr;
686 		size = lmb_size;
687 		ranges = 1;
688 
689 		if (is_kexec_kdump) {
690 			ranges = read_usm_ranges(&usm);
691 			if (!ranges) /* there are no (base, size) duple */
692 				continue;
693 		}
694 		do {
695 			if (is_kexec_kdump) {
696 				base = read_n_cells(n_mem_addr_cells, &usm);
697 				size = read_n_cells(n_mem_size_cells, &usm);
698 			}
699 			nid = of_drconf_to_nid_single(&drmem, &aa);
700 			fake_numa_create_new_node(
701 				((base + size) >> PAGE_SHIFT),
702 					   &nid);
703 			node_set_online(nid);
704 			sz = numa_enforce_memory_limit(base, size);
705 			if (sz)
706 				memblock_set_node(base, sz,
707 						  &memblock.memory, nid);
708 		} while (--ranges);
709 	}
710 }
711 
712 static int __init parse_numa_properties(void)
713 {
714 	struct device_node *memory;
715 	int default_nid = 0;
716 	unsigned long i;
717 
718 	if (numa_enabled == 0) {
719 		printk(KERN_WARNING "NUMA disabled by user\n");
720 		return -1;
721 	}
722 
723 	min_common_depth = find_min_common_depth();
724 
725 	if (min_common_depth < 0)
726 		return min_common_depth;
727 
728 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
729 
730 	/*
731 	 * Even though we connect cpus to numa domains later in SMP
732 	 * init, we need to know the node ids now. This is because
733 	 * each node to be onlined must have NODE_DATA etc backing it.
734 	 */
735 	for_each_present_cpu(i) {
736 		struct device_node *cpu;
737 		int nid;
738 
739 		cpu = of_get_cpu_node(i, NULL);
740 		BUG_ON(!cpu);
741 		nid = of_node_to_nid_single(cpu);
742 		of_node_put(cpu);
743 
744 		/*
745 		 * Don't fall back to default_nid yet -- we will plug
746 		 * cpus into nodes once the memory scan has discovered
747 		 * the topology.
748 		 */
749 		if (nid < 0)
750 			continue;
751 		node_set_online(nid);
752 	}
753 
754 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
755 
756 	for_each_node_by_type(memory, "memory") {
757 		unsigned long start;
758 		unsigned long size;
759 		int nid;
760 		int ranges;
761 		const __be32 *memcell_buf;
762 		unsigned int len;
763 
764 		memcell_buf = of_get_property(memory,
765 			"linux,usable-memory", &len);
766 		if (!memcell_buf || len <= 0)
767 			memcell_buf = of_get_property(memory, "reg", &len);
768 		if (!memcell_buf || len <= 0)
769 			continue;
770 
771 		/* ranges in cell */
772 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
773 new_range:
774 		/* these are order-sensitive, and modify the buffer pointer */
775 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
776 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
777 
778 		/*
779 		 * Assumption: either all memory nodes or none will
780 		 * have associativity properties.  If none, then
781 		 * everything goes to default_nid.
782 		 */
783 		nid = of_node_to_nid_single(memory);
784 		if (nid < 0)
785 			nid = default_nid;
786 
787 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
788 		node_set_online(nid);
789 
790 		if (!(size = numa_enforce_memory_limit(start, size))) {
791 			if (--ranges)
792 				goto new_range;
793 			else
794 				continue;
795 		}
796 
797 		memblock_set_node(start, size, &memblock.memory, nid);
798 
799 		if (--ranges)
800 			goto new_range;
801 	}
802 
803 	/*
804 	 * Now do the same thing for each MEMBLOCK listed in the
805 	 * ibm,dynamic-memory property in the
806 	 * ibm,dynamic-reconfiguration-memory node.
807 	 */
808 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
809 	if (memory)
810 		parse_drconf_memory(memory);
811 
812 	return 0;
813 }
814 
815 static void __init setup_nonnuma(void)
816 {
817 	unsigned long top_of_ram = memblock_end_of_DRAM();
818 	unsigned long total_ram = memblock_phys_mem_size();
819 	unsigned long start_pfn, end_pfn;
820 	unsigned int nid = 0;
821 	struct memblock_region *reg;
822 
823 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
824 	       top_of_ram, total_ram);
825 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
826 	       (top_of_ram - total_ram) >> 20);
827 
828 	for_each_memblock(memory, reg) {
829 		start_pfn = memblock_region_memory_base_pfn(reg);
830 		end_pfn = memblock_region_memory_end_pfn(reg);
831 
832 		fake_numa_create_new_node(end_pfn, &nid);
833 		memblock_set_node(PFN_PHYS(start_pfn),
834 				  PFN_PHYS(end_pfn - start_pfn),
835 				  &memblock.memory, nid);
836 		node_set_online(nid);
837 	}
838 }
839 
840 void __init dump_numa_cpu_topology(void)
841 {
842 	unsigned int node;
843 	unsigned int cpu, count;
844 
845 	if (min_common_depth == -1 || !numa_enabled)
846 		return;
847 
848 	for_each_online_node(node) {
849 		printk(KERN_DEBUG "Node %d CPUs:", node);
850 
851 		count = 0;
852 		/*
853 		 * If we used a CPU iterator here we would miss printing
854 		 * the holes in the cpumap.
855 		 */
856 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
857 			if (cpumask_test_cpu(cpu,
858 					node_to_cpumask_map[node])) {
859 				if (count == 0)
860 					printk(" %u", cpu);
861 				++count;
862 			} else {
863 				if (count > 1)
864 					printk("-%u", cpu - 1);
865 				count = 0;
866 			}
867 		}
868 
869 		if (count > 1)
870 			printk("-%u", nr_cpu_ids - 1);
871 		printk("\n");
872 	}
873 }
874 
875 static void __init dump_numa_memory_topology(void)
876 {
877 	unsigned int node;
878 	unsigned int count;
879 
880 	if (min_common_depth == -1 || !numa_enabled)
881 		return;
882 
883 	for_each_online_node(node) {
884 		unsigned long i;
885 
886 		printk(KERN_DEBUG "Node %d Memory:", node);
887 
888 		count = 0;
889 
890 		for (i = 0; i < memblock_end_of_DRAM();
891 		     i += (1 << SECTION_SIZE_BITS)) {
892 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
893 				if (count == 0)
894 					printk(" 0x%lx", i);
895 				++count;
896 			} else {
897 				if (count > 0)
898 					printk("-0x%lx", i);
899 				count = 0;
900 			}
901 		}
902 
903 		if (count > 0)
904 			printk("-0x%lx", i);
905 		printk("\n");
906 	}
907 }
908 
909 static struct notifier_block ppc64_numa_nb = {
910 	.notifier_call = cpu_numa_callback,
911 	.priority = 1 /* Must run before sched domains notifier. */
912 };
913 
914 /* Initialize NODE_DATA for a node on the local memory */
915 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
916 {
917 	u64 spanned_pages = end_pfn - start_pfn;
918 	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
919 	u64 nd_pa;
920 	void *nd;
921 	int tnid;
922 
923 	if (spanned_pages)
924 		pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
925 			nid, start_pfn << PAGE_SHIFT,
926 			(end_pfn << PAGE_SHIFT) - 1);
927 	else
928 		pr_info("Initmem setup node %d\n", nid);
929 
930 	nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
931 	nd = __va(nd_pa);
932 
933 	/* report and initialize */
934 	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
935 		nd_pa, nd_pa + nd_size - 1);
936 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
937 	if (tnid != nid)
938 		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
939 
940 	node_data[nid] = nd;
941 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
942 	NODE_DATA(nid)->node_id = nid;
943 	NODE_DATA(nid)->node_start_pfn = start_pfn;
944 	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
945 }
946 
947 void __init initmem_init(void)
948 {
949 	int nid, cpu;
950 
951 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
952 	max_pfn = max_low_pfn;
953 
954 	if (parse_numa_properties())
955 		setup_nonnuma();
956 	else
957 		dump_numa_memory_topology();
958 
959 	memblock_dump_all();
960 
961 	/*
962 	 * Reduce the possible NUMA nodes to the online NUMA nodes,
963 	 * since we do not support node hotplug. This ensures that  we
964 	 * lower the maximum NUMA node ID to what is actually present.
965 	 */
966 	nodes_and(node_possible_map, node_possible_map, node_online_map);
967 
968 	for_each_online_node(nid) {
969 		unsigned long start_pfn, end_pfn;
970 
971 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
972 		setup_node_data(nid, start_pfn, end_pfn);
973 		sparse_memory_present_with_active_regions(nid);
974 	}
975 
976 	sparse_init();
977 
978 	setup_node_to_cpumask_map();
979 
980 	reset_numa_cpu_lookup_table();
981 	register_cpu_notifier(&ppc64_numa_nb);
982 	/*
983 	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
984 	 * even before we online them, so that we can use cpu_to_{node,mem}
985 	 * early in boot, cf. smp_prepare_cpus().
986 	 */
987 	for_each_present_cpu(cpu) {
988 		numa_setup_cpu((unsigned long)cpu);
989 	}
990 }
991 
992 static int __init early_numa(char *p)
993 {
994 	if (!p)
995 		return 0;
996 
997 	if (strstr(p, "off"))
998 		numa_enabled = 0;
999 
1000 	if (strstr(p, "debug"))
1001 		numa_debug = 1;
1002 
1003 	p = strstr(p, "fake=");
1004 	if (p)
1005 		cmdline = p + strlen("fake=");
1006 
1007 	return 0;
1008 }
1009 early_param("numa", early_numa);
1010 
1011 static bool topology_updates_enabled = true;
1012 
1013 static int __init early_topology_updates(char *p)
1014 {
1015 	if (!p)
1016 		return 0;
1017 
1018 	if (!strcmp(p, "off")) {
1019 		pr_info("Disabling topology updates\n");
1020 		topology_updates_enabled = false;
1021 	}
1022 
1023 	return 0;
1024 }
1025 early_param("topology_updates", early_topology_updates);
1026 
1027 #ifdef CONFIG_MEMORY_HOTPLUG
1028 /*
1029  * Find the node associated with a hot added memory section for
1030  * memory represented in the device tree by the property
1031  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1032  */
1033 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1034 				     unsigned long scn_addr)
1035 {
1036 	const __be32 *dm;
1037 	unsigned int drconf_cell_cnt, rc;
1038 	unsigned long lmb_size;
1039 	struct assoc_arrays aa;
1040 	int nid = -1;
1041 
1042 	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1043 	if (!drconf_cell_cnt)
1044 		return -1;
1045 
1046 	lmb_size = of_get_lmb_size(memory);
1047 	if (!lmb_size)
1048 		return -1;
1049 
1050 	rc = of_get_assoc_arrays(memory, &aa);
1051 	if (rc)
1052 		return -1;
1053 
1054 	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1055 		struct of_drconf_cell drmem;
1056 
1057 		read_drconf_cell(&drmem, &dm);
1058 
1059 		/* skip this block if it is reserved or not assigned to
1060 		 * this partition */
1061 		if ((drmem.flags & DRCONF_MEM_RESERVED)
1062 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1063 			continue;
1064 
1065 		if ((scn_addr < drmem.base_addr)
1066 		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1067 			continue;
1068 
1069 		nid = of_drconf_to_nid_single(&drmem, &aa);
1070 		break;
1071 	}
1072 
1073 	return nid;
1074 }
1075 
1076 /*
1077  * Find the node associated with a hot added memory section for memory
1078  * represented in the device tree as a node (i.e. memory@XXXX) for
1079  * each memblock.
1080  */
1081 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1082 {
1083 	struct device_node *memory;
1084 	int nid = -1;
1085 
1086 	for_each_node_by_type(memory, "memory") {
1087 		unsigned long start, size;
1088 		int ranges;
1089 		const __be32 *memcell_buf;
1090 		unsigned int len;
1091 
1092 		memcell_buf = of_get_property(memory, "reg", &len);
1093 		if (!memcell_buf || len <= 0)
1094 			continue;
1095 
1096 		/* ranges in cell */
1097 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1098 
1099 		while (ranges--) {
1100 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1101 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1102 
1103 			if ((scn_addr < start) || (scn_addr >= (start + size)))
1104 				continue;
1105 
1106 			nid = of_node_to_nid_single(memory);
1107 			break;
1108 		}
1109 
1110 		if (nid >= 0)
1111 			break;
1112 	}
1113 
1114 	of_node_put(memory);
1115 
1116 	return nid;
1117 }
1118 
1119 /*
1120  * Find the node associated with a hot added memory section.  Section
1121  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1122  * sections are fully contained within a single MEMBLOCK.
1123  */
1124 int hot_add_scn_to_nid(unsigned long scn_addr)
1125 {
1126 	struct device_node *memory = NULL;
1127 	int nid, found = 0;
1128 
1129 	if (!numa_enabled || (min_common_depth < 0))
1130 		return first_online_node;
1131 
1132 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1133 	if (memory) {
1134 		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1135 		of_node_put(memory);
1136 	} else {
1137 		nid = hot_add_node_scn_to_nid(scn_addr);
1138 	}
1139 
1140 	if (nid < 0 || !node_online(nid))
1141 		nid = first_online_node;
1142 
1143 	if (NODE_DATA(nid)->node_spanned_pages)
1144 		return nid;
1145 
1146 	for_each_online_node(nid) {
1147 		if (NODE_DATA(nid)->node_spanned_pages) {
1148 			found = 1;
1149 			break;
1150 		}
1151 	}
1152 
1153 	BUG_ON(!found);
1154 	return nid;
1155 }
1156 
1157 static u64 hot_add_drconf_memory_max(void)
1158 {
1159         struct device_node *memory = NULL;
1160         unsigned int drconf_cell_cnt = 0;
1161         u64 lmb_size = 0;
1162 	const __be32 *dm = NULL;
1163 
1164         memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1165         if (memory) {
1166                 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1167                 lmb_size = of_get_lmb_size(memory);
1168                 of_node_put(memory);
1169         }
1170         return lmb_size * drconf_cell_cnt;
1171 }
1172 
1173 /*
1174  * memory_hotplug_max - return max address of memory that may be added
1175  *
1176  * This is currently only used on systems that support drconfig memory
1177  * hotplug.
1178  */
1179 u64 memory_hotplug_max(void)
1180 {
1181         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1182 }
1183 #endif /* CONFIG_MEMORY_HOTPLUG */
1184 
1185 /* Virtual Processor Home Node (VPHN) support */
1186 #ifdef CONFIG_PPC_SPLPAR
1187 
1188 #include "vphn.h"
1189 
1190 struct topology_update_data {
1191 	struct topology_update_data *next;
1192 	unsigned int cpu;
1193 	int old_nid;
1194 	int new_nid;
1195 };
1196 
1197 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1198 static cpumask_t cpu_associativity_changes_mask;
1199 static int vphn_enabled;
1200 static int prrn_enabled;
1201 static void reset_topology_timer(void);
1202 
1203 /*
1204  * Store the current values of the associativity change counters in the
1205  * hypervisor.
1206  */
1207 static void setup_cpu_associativity_change_counters(void)
1208 {
1209 	int cpu;
1210 
1211 	/* The VPHN feature supports a maximum of 8 reference points */
1212 	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1213 
1214 	for_each_possible_cpu(cpu) {
1215 		int i;
1216 		u8 *counts = vphn_cpu_change_counts[cpu];
1217 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1218 
1219 		for (i = 0; i < distance_ref_points_depth; i++)
1220 			counts[i] = hypervisor_counts[i];
1221 	}
1222 }
1223 
1224 /*
1225  * The hypervisor maintains a set of 8 associativity change counters in
1226  * the VPA of each cpu that correspond to the associativity levels in the
1227  * ibm,associativity-reference-points property. When an associativity
1228  * level changes, the corresponding counter is incremented.
1229  *
1230  * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1231  * node associativity levels have changed.
1232  *
1233  * Returns the number of cpus with unhandled associativity changes.
1234  */
1235 static int update_cpu_associativity_changes_mask(void)
1236 {
1237 	int cpu;
1238 	cpumask_t *changes = &cpu_associativity_changes_mask;
1239 
1240 	for_each_possible_cpu(cpu) {
1241 		int i, changed = 0;
1242 		u8 *counts = vphn_cpu_change_counts[cpu];
1243 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1244 
1245 		for (i = 0; i < distance_ref_points_depth; i++) {
1246 			if (hypervisor_counts[i] != counts[i]) {
1247 				counts[i] = hypervisor_counts[i];
1248 				changed = 1;
1249 			}
1250 		}
1251 		if (changed) {
1252 			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1253 			cpu = cpu_last_thread_sibling(cpu);
1254 		}
1255 	}
1256 
1257 	return cpumask_weight(changes);
1258 }
1259 
1260 /*
1261  * Retrieve the new associativity information for a virtual processor's
1262  * home node.
1263  */
1264 static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1265 {
1266 	long rc;
1267 	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1268 	u64 flags = 1;
1269 	int hwcpu = get_hard_smp_processor_id(cpu);
1270 
1271 	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1272 	vphn_unpack_associativity(retbuf, associativity);
1273 
1274 	return rc;
1275 }
1276 
1277 static long vphn_get_associativity(unsigned long cpu,
1278 					__be32 *associativity)
1279 {
1280 	long rc;
1281 
1282 	rc = hcall_vphn(cpu, associativity);
1283 
1284 	switch (rc) {
1285 	case H_FUNCTION:
1286 		printk(KERN_INFO
1287 			"VPHN is not supported. Disabling polling...\n");
1288 		stop_topology_update();
1289 		break;
1290 	case H_HARDWARE:
1291 		printk(KERN_ERR
1292 			"hcall_vphn() experienced a hardware fault "
1293 			"preventing VPHN. Disabling polling...\n");
1294 		stop_topology_update();
1295 	}
1296 
1297 	return rc;
1298 }
1299 
1300 /*
1301  * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1302  * characteristics change. This function doesn't perform any locking and is
1303  * only safe to call from stop_machine().
1304  */
1305 static int update_cpu_topology(void *data)
1306 {
1307 	struct topology_update_data *update;
1308 	unsigned long cpu;
1309 
1310 	if (!data)
1311 		return -EINVAL;
1312 
1313 	cpu = smp_processor_id();
1314 
1315 	for (update = data; update; update = update->next) {
1316 		int new_nid = update->new_nid;
1317 		if (cpu != update->cpu)
1318 			continue;
1319 
1320 		unmap_cpu_from_node(cpu);
1321 		map_cpu_to_node(cpu, new_nid);
1322 		set_cpu_numa_node(cpu, new_nid);
1323 		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1324 		vdso_getcpu_init();
1325 	}
1326 
1327 	return 0;
1328 }
1329 
1330 static int update_lookup_table(void *data)
1331 {
1332 	struct topology_update_data *update;
1333 
1334 	if (!data)
1335 		return -EINVAL;
1336 
1337 	/*
1338 	 * Upon topology update, the numa-cpu lookup table needs to be updated
1339 	 * for all threads in the core, including offline CPUs, to ensure that
1340 	 * future hotplug operations respect the cpu-to-node associativity
1341 	 * properly.
1342 	 */
1343 	for (update = data; update; update = update->next) {
1344 		int nid, base, j;
1345 
1346 		nid = update->new_nid;
1347 		base = cpu_first_thread_sibling(update->cpu);
1348 
1349 		for (j = 0; j < threads_per_core; j++) {
1350 			update_numa_cpu_lookup_table(base + j, nid);
1351 		}
1352 	}
1353 
1354 	return 0;
1355 }
1356 
1357 /*
1358  * Update the node maps and sysfs entries for each cpu whose home node
1359  * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1360  */
1361 int arch_update_cpu_topology(void)
1362 {
1363 	unsigned int cpu, sibling, changed = 0;
1364 	struct topology_update_data *updates, *ud;
1365 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1366 	cpumask_t updated_cpus;
1367 	struct device *dev;
1368 	int weight, new_nid, i = 0;
1369 
1370 	if (!prrn_enabled && !vphn_enabled)
1371 		return 0;
1372 
1373 	weight = cpumask_weight(&cpu_associativity_changes_mask);
1374 	if (!weight)
1375 		return 0;
1376 
1377 	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1378 	if (!updates)
1379 		return 0;
1380 
1381 	cpumask_clear(&updated_cpus);
1382 
1383 	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1384 		/*
1385 		 * If siblings aren't flagged for changes, updates list
1386 		 * will be too short. Skip on this update and set for next
1387 		 * update.
1388 		 */
1389 		if (!cpumask_subset(cpu_sibling_mask(cpu),
1390 					&cpu_associativity_changes_mask)) {
1391 			pr_info("Sibling bits not set for associativity "
1392 					"change, cpu%d\n", cpu);
1393 			cpumask_or(&cpu_associativity_changes_mask,
1394 					&cpu_associativity_changes_mask,
1395 					cpu_sibling_mask(cpu));
1396 			cpu = cpu_last_thread_sibling(cpu);
1397 			continue;
1398 		}
1399 
1400 		/* Use associativity from first thread for all siblings */
1401 		vphn_get_associativity(cpu, associativity);
1402 		new_nid = associativity_to_nid(associativity);
1403 		if (new_nid < 0 || !node_online(new_nid))
1404 			new_nid = first_online_node;
1405 
1406 		if (new_nid == numa_cpu_lookup_table[cpu]) {
1407 			cpumask_andnot(&cpu_associativity_changes_mask,
1408 					&cpu_associativity_changes_mask,
1409 					cpu_sibling_mask(cpu));
1410 			cpu = cpu_last_thread_sibling(cpu);
1411 			continue;
1412 		}
1413 
1414 		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1415 			ud = &updates[i++];
1416 			ud->cpu = sibling;
1417 			ud->new_nid = new_nid;
1418 			ud->old_nid = numa_cpu_lookup_table[sibling];
1419 			cpumask_set_cpu(sibling, &updated_cpus);
1420 			if (i < weight)
1421 				ud->next = &updates[i];
1422 		}
1423 		cpu = cpu_last_thread_sibling(cpu);
1424 	}
1425 
1426 	pr_debug("Topology update for the following CPUs:\n");
1427 	if (cpumask_weight(&updated_cpus)) {
1428 		for (ud = &updates[0]; ud; ud = ud->next) {
1429 			pr_debug("cpu %d moving from node %d "
1430 					  "to %d\n", ud->cpu,
1431 					  ud->old_nid, ud->new_nid);
1432 		}
1433 	}
1434 
1435 	/*
1436 	 * In cases where we have nothing to update (because the updates list
1437 	 * is too short or because the new topology is same as the old one),
1438 	 * skip invoking update_cpu_topology() via stop-machine(). This is
1439 	 * necessary (and not just a fast-path optimization) since stop-machine
1440 	 * can end up electing a random CPU to run update_cpu_topology(), and
1441 	 * thus trick us into setting up incorrect cpu-node mappings (since
1442 	 * 'updates' is kzalloc()'ed).
1443 	 *
1444 	 * And for the similar reason, we will skip all the following updating.
1445 	 */
1446 	if (!cpumask_weight(&updated_cpus))
1447 		goto out;
1448 
1449 	stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1450 
1451 	/*
1452 	 * Update the numa-cpu lookup table with the new mappings, even for
1453 	 * offline CPUs. It is best to perform this update from the stop-
1454 	 * machine context.
1455 	 */
1456 	stop_machine(update_lookup_table, &updates[0],
1457 					cpumask_of(raw_smp_processor_id()));
1458 
1459 	for (ud = &updates[0]; ud; ud = ud->next) {
1460 		unregister_cpu_under_node(ud->cpu, ud->old_nid);
1461 		register_cpu_under_node(ud->cpu, ud->new_nid);
1462 
1463 		dev = get_cpu_device(ud->cpu);
1464 		if (dev)
1465 			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1466 		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1467 		changed = 1;
1468 	}
1469 
1470 out:
1471 	kfree(updates);
1472 	return changed;
1473 }
1474 
1475 static void topology_work_fn(struct work_struct *work)
1476 {
1477 	rebuild_sched_domains();
1478 }
1479 static DECLARE_WORK(topology_work, topology_work_fn);
1480 
1481 static void topology_schedule_update(void)
1482 {
1483 	schedule_work(&topology_work);
1484 }
1485 
1486 static void topology_timer_fn(unsigned long ignored)
1487 {
1488 	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1489 		topology_schedule_update();
1490 	else if (vphn_enabled) {
1491 		if (update_cpu_associativity_changes_mask() > 0)
1492 			topology_schedule_update();
1493 		reset_topology_timer();
1494 	}
1495 }
1496 static struct timer_list topology_timer =
1497 	TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1498 
1499 static void reset_topology_timer(void)
1500 {
1501 	topology_timer.data = 0;
1502 	topology_timer.expires = jiffies + 60 * HZ;
1503 	mod_timer(&topology_timer, topology_timer.expires);
1504 }
1505 
1506 #ifdef CONFIG_SMP
1507 
1508 static void stage_topology_update(int core_id)
1509 {
1510 	cpumask_or(&cpu_associativity_changes_mask,
1511 		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1512 	reset_topology_timer();
1513 }
1514 
1515 static int dt_update_callback(struct notifier_block *nb,
1516 				unsigned long action, void *data)
1517 {
1518 	struct of_reconfig_data *update = data;
1519 	int rc = NOTIFY_DONE;
1520 
1521 	switch (action) {
1522 	case OF_RECONFIG_UPDATE_PROPERTY:
1523 		if (!of_prop_cmp(update->dn->type, "cpu") &&
1524 		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1525 			u32 core_id;
1526 			of_property_read_u32(update->dn, "reg", &core_id);
1527 			stage_topology_update(core_id);
1528 			rc = NOTIFY_OK;
1529 		}
1530 		break;
1531 	}
1532 
1533 	return rc;
1534 }
1535 
1536 static struct notifier_block dt_update_nb = {
1537 	.notifier_call = dt_update_callback,
1538 };
1539 
1540 #endif
1541 
1542 /*
1543  * Start polling for associativity changes.
1544  */
1545 int start_topology_update(void)
1546 {
1547 	int rc = 0;
1548 
1549 	if (firmware_has_feature(FW_FEATURE_PRRN)) {
1550 		if (!prrn_enabled) {
1551 			prrn_enabled = 1;
1552 			vphn_enabled = 0;
1553 #ifdef CONFIG_SMP
1554 			rc = of_reconfig_notifier_register(&dt_update_nb);
1555 #endif
1556 		}
1557 	} else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1558 		   lppaca_shared_proc(get_lppaca())) {
1559 		if (!vphn_enabled) {
1560 			prrn_enabled = 0;
1561 			vphn_enabled = 1;
1562 			setup_cpu_associativity_change_counters();
1563 			init_timer_deferrable(&topology_timer);
1564 			reset_topology_timer();
1565 		}
1566 	}
1567 
1568 	return rc;
1569 }
1570 
1571 /*
1572  * Disable polling for VPHN associativity changes.
1573  */
1574 int stop_topology_update(void)
1575 {
1576 	int rc = 0;
1577 
1578 	if (prrn_enabled) {
1579 		prrn_enabled = 0;
1580 #ifdef CONFIG_SMP
1581 		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1582 #endif
1583 	} else if (vphn_enabled) {
1584 		vphn_enabled = 0;
1585 		rc = del_timer_sync(&topology_timer);
1586 	}
1587 
1588 	return rc;
1589 }
1590 
1591 int prrn_is_enabled(void)
1592 {
1593 	return prrn_enabled;
1594 }
1595 
1596 static int topology_read(struct seq_file *file, void *v)
1597 {
1598 	if (vphn_enabled || prrn_enabled)
1599 		seq_puts(file, "on\n");
1600 	else
1601 		seq_puts(file, "off\n");
1602 
1603 	return 0;
1604 }
1605 
1606 static int topology_open(struct inode *inode, struct file *file)
1607 {
1608 	return single_open(file, topology_read, NULL);
1609 }
1610 
1611 static ssize_t topology_write(struct file *file, const char __user *buf,
1612 			      size_t count, loff_t *off)
1613 {
1614 	char kbuf[4]; /* "on" or "off" plus null. */
1615 	int read_len;
1616 
1617 	read_len = count < 3 ? count : 3;
1618 	if (copy_from_user(kbuf, buf, read_len))
1619 		return -EINVAL;
1620 
1621 	kbuf[read_len] = '\0';
1622 
1623 	if (!strncmp(kbuf, "on", 2))
1624 		start_topology_update();
1625 	else if (!strncmp(kbuf, "off", 3))
1626 		stop_topology_update();
1627 	else
1628 		return -EINVAL;
1629 
1630 	return count;
1631 }
1632 
1633 static const struct file_operations topology_ops = {
1634 	.read = seq_read,
1635 	.write = topology_write,
1636 	.open = topology_open,
1637 	.release = single_release
1638 };
1639 
1640 static int topology_update_init(void)
1641 {
1642 	/* Do not poll for changes if disabled at boot */
1643 	if (topology_updates_enabled)
1644 		start_topology_update();
1645 
1646 	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1647 		return -ENOMEM;
1648 
1649 	return 0;
1650 }
1651 device_initcall(topology_update_init);
1652 #endif /* CONFIG_PPC_SPLPAR */
1653