xref: /openbmc/linux/arch/powerpc/mm/numa.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/lmb.h>
21 #include <linux/of.h>
22 #include <asm/sparsemem.h>
23 #include <asm/prom.h>
24 #include <asm/system.h>
25 #include <asm/smp.h>
26 
27 static int numa_enabled = 1;
28 
29 static char *cmdline __initdata;
30 
31 static int numa_debug;
32 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
33 
34 int numa_cpu_lookup_table[NR_CPUS];
35 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
36 struct pglist_data *node_data[MAX_NUMNODES];
37 
38 EXPORT_SYMBOL(numa_cpu_lookup_table);
39 EXPORT_SYMBOL(numa_cpumask_lookup_table);
40 EXPORT_SYMBOL(node_data);
41 
42 static int min_common_depth;
43 static int n_mem_addr_cells, n_mem_size_cells;
44 
45 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
46 						unsigned int *nid)
47 {
48 	unsigned long long mem;
49 	char *p = cmdline;
50 	static unsigned int fake_nid;
51 	static unsigned long long curr_boundary;
52 
53 	/*
54 	 * Modify node id, iff we started creating NUMA nodes
55 	 * We want to continue from where we left of the last time
56 	 */
57 	if (fake_nid)
58 		*nid = fake_nid;
59 	/*
60 	 * In case there are no more arguments to parse, the
61 	 * node_id should be the same as the last fake node id
62 	 * (we've handled this above).
63 	 */
64 	if (!p)
65 		return 0;
66 
67 	mem = memparse(p, &p);
68 	if (!mem)
69 		return 0;
70 
71 	if (mem < curr_boundary)
72 		return 0;
73 
74 	curr_boundary = mem;
75 
76 	if ((end_pfn << PAGE_SHIFT) > mem) {
77 		/*
78 		 * Skip commas and spaces
79 		 */
80 		while (*p == ',' || *p == ' ' || *p == '\t')
81 			p++;
82 
83 		cmdline = p;
84 		fake_nid++;
85 		*nid = fake_nid;
86 		dbg("created new fake_node with id %d\n", fake_nid);
87 		return 1;
88 	}
89 	return 0;
90 }
91 
92 /*
93  * get_active_region_work_fn - A helper function for get_node_active_region
94  *	Returns datax set to the start_pfn and end_pfn if they contain
95  *	the initial value of datax->start_pfn between them
96  * @start_pfn: start page(inclusive) of region to check
97  * @end_pfn: end page(exclusive) of region to check
98  * @datax: comes in with ->start_pfn set to value to search for and
99  *	goes out with active range if it contains it
100  * Returns 1 if search value is in range else 0
101  */
102 static int __init get_active_region_work_fn(unsigned long start_pfn,
103 					unsigned long end_pfn, void *datax)
104 {
105 	struct node_active_region *data;
106 	data = (struct node_active_region *)datax;
107 
108 	if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
109 		data->start_pfn = start_pfn;
110 		data->end_pfn = end_pfn;
111 		return 1;
112 	}
113 	return 0;
114 
115 }
116 
117 /*
118  * get_node_active_region - Return active region containing start_pfn
119  * Active range returned is empty if none found.
120  * @start_pfn: The page to return the region for.
121  * @node_ar: Returned set to the active region containing start_pfn
122  */
123 static void __init get_node_active_region(unsigned long start_pfn,
124 		       struct node_active_region *node_ar)
125 {
126 	int nid = early_pfn_to_nid(start_pfn);
127 
128 	node_ar->nid = nid;
129 	node_ar->start_pfn = start_pfn;
130 	node_ar->end_pfn = start_pfn;
131 	work_with_active_regions(nid, get_active_region_work_fn, node_ar);
132 }
133 
134 static void __cpuinit map_cpu_to_node(int cpu, int node)
135 {
136 	numa_cpu_lookup_table[cpu] = node;
137 
138 	dbg("adding cpu %d to node %d\n", cpu, node);
139 
140 	if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
141 		cpu_set(cpu, numa_cpumask_lookup_table[node]);
142 }
143 
144 #ifdef CONFIG_HOTPLUG_CPU
145 static void unmap_cpu_from_node(unsigned long cpu)
146 {
147 	int node = numa_cpu_lookup_table[cpu];
148 
149 	dbg("removing cpu %lu from node %d\n", cpu, node);
150 
151 	if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
152 		cpu_clear(cpu, numa_cpumask_lookup_table[node]);
153 	} else {
154 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
155 		       cpu, node);
156 	}
157 }
158 #endif /* CONFIG_HOTPLUG_CPU */
159 
160 static struct device_node * __cpuinit find_cpu_node(unsigned int cpu)
161 {
162 	unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
163 	struct device_node *cpu_node = NULL;
164 	const unsigned int *interrupt_server, *reg;
165 	int len;
166 
167 	while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
168 		/* Try interrupt server first */
169 		interrupt_server = of_get_property(cpu_node,
170 					"ibm,ppc-interrupt-server#s", &len);
171 
172 		len = len / sizeof(u32);
173 
174 		if (interrupt_server && (len > 0)) {
175 			while (len--) {
176 				if (interrupt_server[len] == hw_cpuid)
177 					return cpu_node;
178 			}
179 		} else {
180 			reg = of_get_property(cpu_node, "reg", &len);
181 			if (reg && (len > 0) && (reg[0] == hw_cpuid))
182 				return cpu_node;
183 		}
184 	}
185 
186 	return NULL;
187 }
188 
189 /* must hold reference to node during call */
190 static const int *of_get_associativity(struct device_node *dev)
191 {
192 	return of_get_property(dev, "ibm,associativity", NULL);
193 }
194 
195 /*
196  * Returns the property linux,drconf-usable-memory if
197  * it exists (the property exists only in kexec/kdump kernels,
198  * added by kexec-tools)
199  */
200 static const u32 *of_get_usable_memory(struct device_node *memory)
201 {
202 	const u32 *prop;
203 	u32 len;
204 	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
205 	if (!prop || len < sizeof(unsigned int))
206 		return 0;
207 	return prop;
208 }
209 
210 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
211  * info is found.
212  */
213 static int of_node_to_nid_single(struct device_node *device)
214 {
215 	int nid = -1;
216 	const unsigned int *tmp;
217 
218 	if (min_common_depth == -1)
219 		goto out;
220 
221 	tmp = of_get_associativity(device);
222 	if (!tmp)
223 		goto out;
224 
225 	if (tmp[0] >= min_common_depth)
226 		nid = tmp[min_common_depth];
227 
228 	/* POWER4 LPAR uses 0xffff as invalid node */
229 	if (nid == 0xffff || nid >= MAX_NUMNODES)
230 		nid = -1;
231 out:
232 	return nid;
233 }
234 
235 /* Walk the device tree upwards, looking for an associativity id */
236 int of_node_to_nid(struct device_node *device)
237 {
238 	struct device_node *tmp;
239 	int nid = -1;
240 
241 	of_node_get(device);
242 	while (device) {
243 		nid = of_node_to_nid_single(device);
244 		if (nid != -1)
245 			break;
246 
247 	        tmp = device;
248 		device = of_get_parent(tmp);
249 		of_node_put(tmp);
250 	}
251 	of_node_put(device);
252 
253 	return nid;
254 }
255 EXPORT_SYMBOL_GPL(of_node_to_nid);
256 
257 /*
258  * In theory, the "ibm,associativity" property may contain multiple
259  * associativity lists because a resource may be multiply connected
260  * into the machine.  This resource then has different associativity
261  * characteristics relative to its multiple connections.  We ignore
262  * this for now.  We also assume that all cpu and memory sets have
263  * their distances represented at a common level.  This won't be
264  * true for hierarchical NUMA.
265  *
266  * In any case the ibm,associativity-reference-points should give
267  * the correct depth for a normal NUMA system.
268  *
269  * - Dave Hansen <haveblue@us.ibm.com>
270  */
271 static int __init find_min_common_depth(void)
272 {
273 	int depth;
274 	const unsigned int *ref_points;
275 	struct device_node *rtas_root;
276 	unsigned int len;
277 
278 	rtas_root = of_find_node_by_path("/rtas");
279 
280 	if (!rtas_root)
281 		return -1;
282 
283 	/*
284 	 * this property is 2 32-bit integers, each representing a level of
285 	 * depth in the associativity nodes.  The first is for an SMP
286 	 * configuration (should be all 0's) and the second is for a normal
287 	 * NUMA configuration.
288 	 */
289 	ref_points = of_get_property(rtas_root,
290 			"ibm,associativity-reference-points", &len);
291 
292 	if ((len >= 1) && ref_points) {
293 		depth = ref_points[1];
294 	} else {
295 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
296 		depth = -1;
297 	}
298 	of_node_put(rtas_root);
299 
300 	return depth;
301 }
302 
303 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
304 {
305 	struct device_node *memory = NULL;
306 
307 	memory = of_find_node_by_type(memory, "memory");
308 	if (!memory)
309 		panic("numa.c: No memory nodes found!");
310 
311 	*n_addr_cells = of_n_addr_cells(memory);
312 	*n_size_cells = of_n_size_cells(memory);
313 	of_node_put(memory);
314 }
315 
316 static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
317 {
318 	unsigned long result = 0;
319 
320 	while (n--) {
321 		result = (result << 32) | **buf;
322 		(*buf)++;
323 	}
324 	return result;
325 }
326 
327 struct of_drconf_cell {
328 	u64	base_addr;
329 	u32	drc_index;
330 	u32	reserved;
331 	u32	aa_index;
332 	u32	flags;
333 };
334 
335 #define DRCONF_MEM_ASSIGNED	0x00000008
336 #define DRCONF_MEM_AI_INVALID	0x00000040
337 #define DRCONF_MEM_RESERVED	0x00000080
338 
339 /*
340  * Read the next lmb list entry from the ibm,dynamic-memory property
341  * and return the information in the provided of_drconf_cell structure.
342  */
343 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
344 {
345 	const u32 *cp;
346 
347 	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
348 
349 	cp = *cellp;
350 	drmem->drc_index = cp[0];
351 	drmem->reserved = cp[1];
352 	drmem->aa_index = cp[2];
353 	drmem->flags = cp[3];
354 
355 	*cellp = cp + 4;
356 }
357 
358 /*
359  * Retreive and validate the ibm,dynamic-memory property of the device tree.
360  *
361  * The layout of the ibm,dynamic-memory property is a number N of lmb
362  * list entries followed by N lmb list entries.  Each lmb list entry
363  * contains information as layed out in the of_drconf_cell struct above.
364  */
365 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
366 {
367 	const u32 *prop;
368 	u32 len, entries;
369 
370 	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
371 	if (!prop || len < sizeof(unsigned int))
372 		return 0;
373 
374 	entries = *prop++;
375 
376 	/* Now that we know the number of entries, revalidate the size
377 	 * of the property read in to ensure we have everything
378 	 */
379 	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
380 		return 0;
381 
382 	*dm = prop;
383 	return entries;
384 }
385 
386 /*
387  * Retreive and validate the ibm,lmb-size property for drconf memory
388  * from the device tree.
389  */
390 static u64 of_get_lmb_size(struct device_node *memory)
391 {
392 	const u32 *prop;
393 	u32 len;
394 
395 	prop = of_get_property(memory, "ibm,lmb-size", &len);
396 	if (!prop || len < sizeof(unsigned int))
397 		return 0;
398 
399 	return read_n_cells(n_mem_size_cells, &prop);
400 }
401 
402 struct assoc_arrays {
403 	u32	n_arrays;
404 	u32	array_sz;
405 	const u32 *arrays;
406 };
407 
408 /*
409  * Retreive and validate the list of associativity arrays for drconf
410  * memory from the ibm,associativity-lookup-arrays property of the
411  * device tree..
412  *
413  * The layout of the ibm,associativity-lookup-arrays property is a number N
414  * indicating the number of associativity arrays, followed by a number M
415  * indicating the size of each associativity array, followed by a list
416  * of N associativity arrays.
417  */
418 static int of_get_assoc_arrays(struct device_node *memory,
419 			       struct assoc_arrays *aa)
420 {
421 	const u32 *prop;
422 	u32 len;
423 
424 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
425 	if (!prop || len < 2 * sizeof(unsigned int))
426 		return -1;
427 
428 	aa->n_arrays = *prop++;
429 	aa->array_sz = *prop++;
430 
431 	/* Now that we know the number of arrrays and size of each array,
432 	 * revalidate the size of the property read in.
433 	 */
434 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
435 		return -1;
436 
437 	aa->arrays = prop;
438 	return 0;
439 }
440 
441 /*
442  * This is like of_node_to_nid_single() for memory represented in the
443  * ibm,dynamic-reconfiguration-memory node.
444  */
445 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
446 				   struct assoc_arrays *aa)
447 {
448 	int default_nid = 0;
449 	int nid = default_nid;
450 	int index;
451 
452 	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
453 	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
454 	    drmem->aa_index < aa->n_arrays) {
455 		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
456 		nid = aa->arrays[index];
457 
458 		if (nid == 0xffff || nid >= MAX_NUMNODES)
459 			nid = default_nid;
460 	}
461 
462 	return nid;
463 }
464 
465 /*
466  * Figure out to which domain a cpu belongs and stick it there.
467  * Return the id of the domain used.
468  */
469 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
470 {
471 	int nid = 0;
472 	struct device_node *cpu = find_cpu_node(lcpu);
473 
474 	if (!cpu) {
475 		WARN_ON(1);
476 		goto out;
477 	}
478 
479 	nid = of_node_to_nid_single(cpu);
480 
481 	if (nid < 0 || !node_online(nid))
482 		nid = any_online_node(NODE_MASK_ALL);
483 out:
484 	map_cpu_to_node(lcpu, nid);
485 
486 	of_node_put(cpu);
487 
488 	return nid;
489 }
490 
491 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
492 			     unsigned long action,
493 			     void *hcpu)
494 {
495 	unsigned long lcpu = (unsigned long)hcpu;
496 	int ret = NOTIFY_DONE;
497 
498 	switch (action) {
499 	case CPU_UP_PREPARE:
500 	case CPU_UP_PREPARE_FROZEN:
501 		numa_setup_cpu(lcpu);
502 		ret = NOTIFY_OK;
503 		break;
504 #ifdef CONFIG_HOTPLUG_CPU
505 	case CPU_DEAD:
506 	case CPU_DEAD_FROZEN:
507 	case CPU_UP_CANCELED:
508 	case CPU_UP_CANCELED_FROZEN:
509 		unmap_cpu_from_node(lcpu);
510 		break;
511 		ret = NOTIFY_OK;
512 #endif
513 	}
514 	return ret;
515 }
516 
517 /*
518  * Check and possibly modify a memory region to enforce the memory limit.
519  *
520  * Returns the size the region should have to enforce the memory limit.
521  * This will either be the original value of size, a truncated value,
522  * or zero. If the returned value of size is 0 the region should be
523  * discarded as it lies wholy above the memory limit.
524  */
525 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
526 						      unsigned long size)
527 {
528 	/*
529 	 * We use lmb_end_of_DRAM() in here instead of memory_limit because
530 	 * we've already adjusted it for the limit and it takes care of
531 	 * having memory holes below the limit.  Also, in the case of
532 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
533 	 */
534 
535 	if (start + size <= lmb_end_of_DRAM())
536 		return size;
537 
538 	if (start >= lmb_end_of_DRAM())
539 		return 0;
540 
541 	return lmb_end_of_DRAM() - start;
542 }
543 
544 /*
545  * Reads the counter for a given entry in
546  * linux,drconf-usable-memory property
547  */
548 static inline int __init read_usm_ranges(const u32 **usm)
549 {
550 	/*
551 	 * For each lmb in ibm,dynamic-memory a corresponding
552 	 * entry in linux,drconf-usable-memory property contains
553 	 * a counter followed by that many (base, size) duple.
554 	 * read the counter from linux,drconf-usable-memory
555 	 */
556 	return read_n_cells(n_mem_size_cells, usm);
557 }
558 
559 /*
560  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
561  * node.  This assumes n_mem_{addr,size}_cells have been set.
562  */
563 static void __init parse_drconf_memory(struct device_node *memory)
564 {
565 	const u32 *dm, *usm;
566 	unsigned int n, rc, ranges, is_kexec_kdump = 0;
567 	unsigned long lmb_size, base, size, sz;
568 	int nid;
569 	struct assoc_arrays aa;
570 
571 	n = of_get_drconf_memory(memory, &dm);
572 	if (!n)
573 		return;
574 
575 	lmb_size = of_get_lmb_size(memory);
576 	if (!lmb_size)
577 		return;
578 
579 	rc = of_get_assoc_arrays(memory, &aa);
580 	if (rc)
581 		return;
582 
583 	/* check if this is a kexec/kdump kernel */
584 	usm = of_get_usable_memory(memory);
585 	if (usm != NULL)
586 		is_kexec_kdump = 1;
587 
588 	for (; n != 0; --n) {
589 		struct of_drconf_cell drmem;
590 
591 		read_drconf_cell(&drmem, &dm);
592 
593 		/* skip this block if the reserved bit is set in flags (0x80)
594 		   or if the block is not assigned to this partition (0x8) */
595 		if ((drmem.flags & DRCONF_MEM_RESERVED)
596 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
597 			continue;
598 
599 		base = drmem.base_addr;
600 		size = lmb_size;
601 		ranges = 1;
602 
603 		if (is_kexec_kdump) {
604 			ranges = read_usm_ranges(&usm);
605 			if (!ranges) /* there are no (base, size) duple */
606 				continue;
607 		}
608 		do {
609 			if (is_kexec_kdump) {
610 				base = read_n_cells(n_mem_addr_cells, &usm);
611 				size = read_n_cells(n_mem_size_cells, &usm);
612 			}
613 			nid = of_drconf_to_nid_single(&drmem, &aa);
614 			fake_numa_create_new_node(
615 				((base + size) >> PAGE_SHIFT),
616 					   &nid);
617 			node_set_online(nid);
618 			sz = numa_enforce_memory_limit(base, size);
619 			if (sz)
620 				add_active_range(nid, base >> PAGE_SHIFT,
621 						 (base >> PAGE_SHIFT)
622 						 + (sz >> PAGE_SHIFT));
623 		} while (--ranges);
624 	}
625 }
626 
627 static int __init parse_numa_properties(void)
628 {
629 	struct device_node *cpu = NULL;
630 	struct device_node *memory = NULL;
631 	int default_nid = 0;
632 	unsigned long i;
633 
634 	if (numa_enabled == 0) {
635 		printk(KERN_WARNING "NUMA disabled by user\n");
636 		return -1;
637 	}
638 
639 	min_common_depth = find_min_common_depth();
640 
641 	if (min_common_depth < 0)
642 		return min_common_depth;
643 
644 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
645 
646 	/*
647 	 * Even though we connect cpus to numa domains later in SMP
648 	 * init, we need to know the node ids now. This is because
649 	 * each node to be onlined must have NODE_DATA etc backing it.
650 	 */
651 	for_each_present_cpu(i) {
652 		int nid;
653 
654 		cpu = find_cpu_node(i);
655 		BUG_ON(!cpu);
656 		nid = of_node_to_nid_single(cpu);
657 		of_node_put(cpu);
658 
659 		/*
660 		 * Don't fall back to default_nid yet -- we will plug
661 		 * cpus into nodes once the memory scan has discovered
662 		 * the topology.
663 		 */
664 		if (nid < 0)
665 			continue;
666 		node_set_online(nid);
667 	}
668 
669 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
670 	memory = NULL;
671 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
672 		unsigned long start;
673 		unsigned long size;
674 		int nid;
675 		int ranges;
676 		const unsigned int *memcell_buf;
677 		unsigned int len;
678 
679 		memcell_buf = of_get_property(memory,
680 			"linux,usable-memory", &len);
681 		if (!memcell_buf || len <= 0)
682 			memcell_buf = of_get_property(memory, "reg", &len);
683 		if (!memcell_buf || len <= 0)
684 			continue;
685 
686 		/* ranges in cell */
687 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
688 new_range:
689 		/* these are order-sensitive, and modify the buffer pointer */
690 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
691 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
692 
693 		/*
694 		 * Assumption: either all memory nodes or none will
695 		 * have associativity properties.  If none, then
696 		 * everything goes to default_nid.
697 		 */
698 		nid = of_node_to_nid_single(memory);
699 		if (nid < 0)
700 			nid = default_nid;
701 
702 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
703 		node_set_online(nid);
704 
705 		if (!(size = numa_enforce_memory_limit(start, size))) {
706 			if (--ranges)
707 				goto new_range;
708 			else
709 				continue;
710 		}
711 
712 		add_active_range(nid, start >> PAGE_SHIFT,
713 				(start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
714 
715 		if (--ranges)
716 			goto new_range;
717 	}
718 
719 	/*
720 	 * Now do the same thing for each LMB listed in the ibm,dynamic-memory
721 	 * property in the ibm,dynamic-reconfiguration-memory node.
722 	 */
723 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
724 	if (memory)
725 		parse_drconf_memory(memory);
726 
727 	return 0;
728 }
729 
730 static void __init setup_nonnuma(void)
731 {
732 	unsigned long top_of_ram = lmb_end_of_DRAM();
733 	unsigned long total_ram = lmb_phys_mem_size();
734 	unsigned long start_pfn, end_pfn;
735 	unsigned int i, nid = 0;
736 
737 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
738 	       top_of_ram, total_ram);
739 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
740 	       (top_of_ram - total_ram) >> 20);
741 
742 	for (i = 0; i < lmb.memory.cnt; ++i) {
743 		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
744 		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
745 
746 		fake_numa_create_new_node(end_pfn, &nid);
747 		add_active_range(nid, start_pfn, end_pfn);
748 		node_set_online(nid);
749 	}
750 }
751 
752 void __init dump_numa_cpu_topology(void)
753 {
754 	unsigned int node;
755 	unsigned int cpu, count;
756 
757 	if (min_common_depth == -1 || !numa_enabled)
758 		return;
759 
760 	for_each_online_node(node) {
761 		printk(KERN_DEBUG "Node %d CPUs:", node);
762 
763 		count = 0;
764 		/*
765 		 * If we used a CPU iterator here we would miss printing
766 		 * the holes in the cpumap.
767 		 */
768 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
769 			if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
770 				if (count == 0)
771 					printk(" %u", cpu);
772 				++count;
773 			} else {
774 				if (count > 1)
775 					printk("-%u", cpu - 1);
776 				count = 0;
777 			}
778 		}
779 
780 		if (count > 1)
781 			printk("-%u", NR_CPUS - 1);
782 		printk("\n");
783 	}
784 }
785 
786 static void __init dump_numa_memory_topology(void)
787 {
788 	unsigned int node;
789 	unsigned int count;
790 
791 	if (min_common_depth == -1 || !numa_enabled)
792 		return;
793 
794 	for_each_online_node(node) {
795 		unsigned long i;
796 
797 		printk(KERN_DEBUG "Node %d Memory:", node);
798 
799 		count = 0;
800 
801 		for (i = 0; i < lmb_end_of_DRAM();
802 		     i += (1 << SECTION_SIZE_BITS)) {
803 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
804 				if (count == 0)
805 					printk(" 0x%lx", i);
806 				++count;
807 			} else {
808 				if (count > 0)
809 					printk("-0x%lx", i);
810 				count = 0;
811 			}
812 		}
813 
814 		if (count > 0)
815 			printk("-0x%lx", i);
816 		printk("\n");
817 	}
818 }
819 
820 /*
821  * Allocate some memory, satisfying the lmb or bootmem allocator where
822  * required. nid is the preferred node and end is the physical address of
823  * the highest address in the node.
824  *
825  * Returns the physical address of the memory.
826  */
827 static void __init *careful_allocation(int nid, unsigned long size,
828 				       unsigned long align,
829 				       unsigned long end_pfn)
830 {
831 	int new_nid;
832 	unsigned long ret = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
833 
834 	/* retry over all memory */
835 	if (!ret)
836 		ret = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
837 
838 	if (!ret)
839 		panic("numa.c: cannot allocate %lu bytes on node %d",
840 		      size, nid);
841 
842 	/*
843 	 * If the memory came from a previously allocated node, we must
844 	 * retry with the bootmem allocator.
845 	 */
846 	new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
847 	if (new_nid < nid) {
848 		ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
849 				size, align, 0);
850 
851 		if (!ret)
852 			panic("numa.c: cannot allocate %lu bytes on node %d",
853 			      size, new_nid);
854 
855 		ret = __pa(ret);
856 
857 		dbg("alloc_bootmem %lx %lx\n", ret, size);
858 	}
859 
860 	return (void *)ret;
861 }
862 
863 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
864 	.notifier_call = cpu_numa_callback,
865 	.priority = 1 /* Must run before sched domains notifier. */
866 };
867 
868 void __init do_init_bootmem(void)
869 {
870 	int nid;
871 	unsigned int i;
872 
873 	min_low_pfn = 0;
874 	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
875 	max_pfn = max_low_pfn;
876 
877 	if (parse_numa_properties())
878 		setup_nonnuma();
879 	else
880 		dump_numa_memory_topology();
881 
882 	register_cpu_notifier(&ppc64_numa_nb);
883 	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
884 			  (void *)(unsigned long)boot_cpuid);
885 
886 	for_each_online_node(nid) {
887 		unsigned long start_pfn, end_pfn;
888 		unsigned long bootmem_paddr;
889 		unsigned long bootmap_pages;
890 
891 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
892 
893 		/* Allocate the node structure node local if possible */
894 		NODE_DATA(nid) = careful_allocation(nid,
895 					sizeof(struct pglist_data),
896 					SMP_CACHE_BYTES, end_pfn);
897 		NODE_DATA(nid) = __va(NODE_DATA(nid));
898 		memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
899 
900   		dbg("node %d\n", nid);
901 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
902 
903 		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
904 		NODE_DATA(nid)->node_start_pfn = start_pfn;
905 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
906 
907 		if (NODE_DATA(nid)->node_spanned_pages == 0)
908   			continue;
909 
910   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
911   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
912 
913 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
914 		bootmem_paddr = (unsigned long)careful_allocation(nid,
915 					bootmap_pages << PAGE_SHIFT,
916 					PAGE_SIZE, end_pfn);
917 		memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
918 
919 		dbg("bootmap_paddr = %lx\n", bootmem_paddr);
920 
921 		init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
922 				  start_pfn, end_pfn);
923 
924 		free_bootmem_with_active_regions(nid, end_pfn);
925 	}
926 
927 	/* Mark reserved regions */
928 	for (i = 0; i < lmb.reserved.cnt; i++) {
929 		unsigned long physbase = lmb.reserved.region[i].base;
930 		unsigned long size = lmb.reserved.region[i].size;
931 		unsigned long start_pfn = physbase >> PAGE_SHIFT;
932 		unsigned long end_pfn = ((physbase + size) >> PAGE_SHIFT);
933 		struct node_active_region node_ar;
934 
935 		get_node_active_region(start_pfn, &node_ar);
936 		while (start_pfn < end_pfn &&
937 			node_ar.start_pfn < node_ar.end_pfn) {
938 			unsigned long reserve_size = size;
939 			/*
940 			 * if reserved region extends past active region
941 			 * then trim size to active region
942 			 */
943 			if (end_pfn > node_ar.end_pfn)
944 				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
945 					- (start_pfn << PAGE_SHIFT);
946 			dbg("reserve_bootmem %lx %lx nid=%d\n", physbase,
947 				reserve_size, node_ar.nid);
948 			reserve_bootmem_node(NODE_DATA(node_ar.nid), physbase,
949 						reserve_size, BOOTMEM_DEFAULT);
950 			/*
951 			 * if reserved region is contained in the active region
952 			 * then done.
953 			 */
954 			if (end_pfn <= node_ar.end_pfn)
955 				break;
956 
957 			/*
958 			 * reserved region extends past the active region
959 			 *   get next active region that contains this
960 			 *   reserved region
961 			 */
962 			start_pfn = node_ar.end_pfn;
963 			physbase = start_pfn << PAGE_SHIFT;
964 			size = size - reserve_size;
965 			get_node_active_region(start_pfn, &node_ar);
966 		}
967 
968 	}
969 
970 	for_each_online_node(nid)
971 		sparse_memory_present_with_active_regions(nid);
972 }
973 
974 void __init paging_init(void)
975 {
976 	unsigned long max_zone_pfns[MAX_NR_ZONES];
977 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
978 	max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT;
979 	free_area_init_nodes(max_zone_pfns);
980 }
981 
982 static int __init early_numa(char *p)
983 {
984 	if (!p)
985 		return 0;
986 
987 	if (strstr(p, "off"))
988 		numa_enabled = 0;
989 
990 	if (strstr(p, "debug"))
991 		numa_debug = 1;
992 
993 	p = strstr(p, "fake=");
994 	if (p)
995 		cmdline = p + strlen("fake=");
996 
997 	return 0;
998 }
999 early_param("numa", early_numa);
1000 
1001 #ifdef CONFIG_MEMORY_HOTPLUG
1002 /*
1003  * Validate the node associated with the memory section we are
1004  * trying to add.
1005  */
1006 int valid_hot_add_scn(int *nid, unsigned long start, u32 lmb_size,
1007 		      unsigned long scn_addr)
1008 {
1009 	nodemask_t nodes;
1010 
1011 	if (*nid < 0 || !node_online(*nid))
1012 		*nid = any_online_node(NODE_MASK_ALL);
1013 
1014 	if ((scn_addr >= start) && (scn_addr < (start + lmb_size))) {
1015 		nodes_setall(nodes);
1016 		while (NODE_DATA(*nid)->node_spanned_pages == 0) {
1017 			node_clear(*nid, nodes);
1018 			*nid = any_online_node(nodes);
1019 		}
1020 
1021 		return 1;
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 /*
1028  * Find the node associated with a hot added memory section represented
1029  * by the ibm,dynamic-reconfiguration-memory node.
1030  */
1031 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1032 				     unsigned long scn_addr)
1033 {
1034 	const u32 *dm;
1035 	unsigned int n, rc;
1036 	unsigned long lmb_size;
1037 	int default_nid = any_online_node(NODE_MASK_ALL);
1038 	int nid;
1039 	struct assoc_arrays aa;
1040 
1041 	n = of_get_drconf_memory(memory, &dm);
1042 	if (!n)
1043 		return default_nid;;
1044 
1045 	lmb_size = of_get_lmb_size(memory);
1046 	if (!lmb_size)
1047 		return default_nid;
1048 
1049 	rc = of_get_assoc_arrays(memory, &aa);
1050 	if (rc)
1051 		return default_nid;
1052 
1053 	for (; n != 0; --n) {
1054 		struct of_drconf_cell drmem;
1055 
1056 		read_drconf_cell(&drmem, &dm);
1057 
1058 		/* skip this block if it is reserved or not assigned to
1059 		 * this partition */
1060 		if ((drmem.flags & DRCONF_MEM_RESERVED)
1061 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1062 			continue;
1063 
1064 		nid = of_drconf_to_nid_single(&drmem, &aa);
1065 
1066 		if (valid_hot_add_scn(&nid, drmem.base_addr, lmb_size,
1067 				      scn_addr))
1068 			return nid;
1069 	}
1070 
1071 	BUG();	/* section address should be found above */
1072 	return 0;
1073 }
1074 
1075 /*
1076  * Find the node associated with a hot added memory section.  Section
1077  * corresponds to a SPARSEMEM section, not an LMB.  It is assumed that
1078  * sections are fully contained within a single LMB.
1079  */
1080 int hot_add_scn_to_nid(unsigned long scn_addr)
1081 {
1082 	struct device_node *memory = NULL;
1083 	int nid;
1084 
1085 	if (!numa_enabled || (min_common_depth < 0))
1086 		return any_online_node(NODE_MASK_ALL);
1087 
1088 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1089 	if (memory) {
1090 		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1091 		of_node_put(memory);
1092 		return nid;
1093 	}
1094 
1095 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
1096 		unsigned long start, size;
1097 		int ranges;
1098 		const unsigned int *memcell_buf;
1099 		unsigned int len;
1100 
1101 		memcell_buf = of_get_property(memory, "reg", &len);
1102 		if (!memcell_buf || len <= 0)
1103 			continue;
1104 
1105 		/* ranges in cell */
1106 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1107 ha_new_range:
1108 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1109 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
1110 		nid = of_node_to_nid_single(memory);
1111 
1112 		if (valid_hot_add_scn(&nid, start, size, scn_addr)) {
1113 			of_node_put(memory);
1114 			return nid;
1115 		}
1116 
1117 		if (--ranges)		/* process all ranges in cell */
1118 			goto ha_new_range;
1119 	}
1120 	BUG();	/* section address should be found above */
1121 	return 0;
1122 }
1123 #endif /* CONFIG_MEMORY_HOTPLUG */
1124