1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * pSeries NUMA support 4 * 5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 6 */ 7 #define pr_fmt(fmt) "numa: " fmt 8 9 #include <linux/threads.h> 10 #include <linux/memblock.h> 11 #include <linux/init.h> 12 #include <linux/mm.h> 13 #include <linux/mmzone.h> 14 #include <linux/export.h> 15 #include <linux/nodemask.h> 16 #include <linux/cpu.h> 17 #include <linux/notifier.h> 18 #include <linux/of.h> 19 #include <linux/pfn.h> 20 #include <linux/cpuset.h> 21 #include <linux/node.h> 22 #include <linux/stop_machine.h> 23 #include <linux/proc_fs.h> 24 #include <linux/seq_file.h> 25 #include <linux/uaccess.h> 26 #include <linux/slab.h> 27 #include <asm/cputhreads.h> 28 #include <asm/sparsemem.h> 29 #include <asm/prom.h> 30 #include <asm/smp.h> 31 #include <asm/topology.h> 32 #include <asm/firmware.h> 33 #include <asm/paca.h> 34 #include <asm/hvcall.h> 35 #include <asm/setup.h> 36 #include <asm/vdso.h> 37 #include <asm/drmem.h> 38 39 static int numa_enabled = 1; 40 41 static char *cmdline __initdata; 42 43 int numa_cpu_lookup_table[NR_CPUS]; 44 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 45 struct pglist_data *node_data[MAX_NUMNODES]; 46 47 EXPORT_SYMBOL(numa_cpu_lookup_table); 48 EXPORT_SYMBOL(node_to_cpumask_map); 49 EXPORT_SYMBOL(node_data); 50 51 static int primary_domain_index; 52 static int n_mem_addr_cells, n_mem_size_cells; 53 54 #define FORM0_AFFINITY 0 55 #define FORM1_AFFINITY 1 56 #define FORM2_AFFINITY 2 57 static int affinity_form; 58 59 #define MAX_DISTANCE_REF_POINTS 4 60 static int distance_ref_points_depth; 61 static const __be32 *distance_ref_points; 62 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 63 static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = { 64 [0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 } 65 }; 66 static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE }; 67 68 /* 69 * Allocate node_to_cpumask_map based on number of available nodes 70 * Requires node_possible_map to be valid. 71 * 72 * Note: cpumask_of_node() is not valid until after this is done. 73 */ 74 static void __init setup_node_to_cpumask_map(void) 75 { 76 unsigned int node; 77 78 /* setup nr_node_ids if not done yet */ 79 if (nr_node_ids == MAX_NUMNODES) 80 setup_nr_node_ids(); 81 82 /* allocate the map */ 83 for_each_node(node) 84 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 85 86 /* cpumask_of_node() will now work */ 87 pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids); 88 } 89 90 static int __init fake_numa_create_new_node(unsigned long end_pfn, 91 unsigned int *nid) 92 { 93 unsigned long long mem; 94 char *p = cmdline; 95 static unsigned int fake_nid; 96 static unsigned long long curr_boundary; 97 98 /* 99 * Modify node id, iff we started creating NUMA nodes 100 * We want to continue from where we left of the last time 101 */ 102 if (fake_nid) 103 *nid = fake_nid; 104 /* 105 * In case there are no more arguments to parse, the 106 * node_id should be the same as the last fake node id 107 * (we've handled this above). 108 */ 109 if (!p) 110 return 0; 111 112 mem = memparse(p, &p); 113 if (!mem) 114 return 0; 115 116 if (mem < curr_boundary) 117 return 0; 118 119 curr_boundary = mem; 120 121 if ((end_pfn << PAGE_SHIFT) > mem) { 122 /* 123 * Skip commas and spaces 124 */ 125 while (*p == ',' || *p == ' ' || *p == '\t') 126 p++; 127 128 cmdline = p; 129 fake_nid++; 130 *nid = fake_nid; 131 pr_debug("created new fake_node with id %d\n", fake_nid); 132 return 1; 133 } 134 return 0; 135 } 136 137 static void reset_numa_cpu_lookup_table(void) 138 { 139 unsigned int cpu; 140 141 for_each_possible_cpu(cpu) 142 numa_cpu_lookup_table[cpu] = -1; 143 } 144 145 void map_cpu_to_node(int cpu, int node) 146 { 147 update_numa_cpu_lookup_table(cpu, node); 148 149 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) { 150 pr_debug("adding cpu %d to node %d\n", cpu, node); 151 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 152 } 153 } 154 155 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 156 void unmap_cpu_from_node(unsigned long cpu) 157 { 158 int node = numa_cpu_lookup_table[cpu]; 159 160 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 161 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 162 pr_debug("removing cpu %lu from node %d\n", cpu, node); 163 } else { 164 pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node); 165 } 166 } 167 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 168 169 static int __associativity_to_nid(const __be32 *associativity, 170 int max_array_sz) 171 { 172 int nid; 173 /* 174 * primary_domain_index is 1 based array index. 175 */ 176 int index = primary_domain_index - 1; 177 178 if (!numa_enabled || index >= max_array_sz) 179 return NUMA_NO_NODE; 180 181 nid = of_read_number(&associativity[index], 1); 182 183 /* POWER4 LPAR uses 0xffff as invalid node */ 184 if (nid == 0xffff || nid >= nr_node_ids) 185 nid = NUMA_NO_NODE; 186 return nid; 187 } 188 /* 189 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA 190 * info is found. 191 */ 192 static int associativity_to_nid(const __be32 *associativity) 193 { 194 int array_sz = of_read_number(associativity, 1); 195 196 /* Skip the first element in the associativity array */ 197 return __associativity_to_nid((associativity + 1), array_sz); 198 } 199 200 static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc) 201 { 202 int dist; 203 int node1, node2; 204 205 node1 = associativity_to_nid(cpu1_assoc); 206 node2 = associativity_to_nid(cpu2_assoc); 207 208 dist = numa_distance_table[node1][node2]; 209 if (dist <= LOCAL_DISTANCE) 210 return 0; 211 else if (dist <= REMOTE_DISTANCE) 212 return 1; 213 else 214 return 2; 215 } 216 217 static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc) 218 { 219 int dist = 0; 220 221 int i, index; 222 223 for (i = 0; i < distance_ref_points_depth; i++) { 224 index = be32_to_cpu(distance_ref_points[i]); 225 if (cpu1_assoc[index] == cpu2_assoc[index]) 226 break; 227 dist++; 228 } 229 230 return dist; 231 } 232 233 int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc) 234 { 235 /* We should not get called with FORM0 */ 236 VM_WARN_ON(affinity_form == FORM0_AFFINITY); 237 if (affinity_form == FORM1_AFFINITY) 238 return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc); 239 return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc); 240 } 241 242 /* must hold reference to node during call */ 243 static const __be32 *of_get_associativity(struct device_node *dev) 244 { 245 return of_get_property(dev, "ibm,associativity", NULL); 246 } 247 248 int __node_distance(int a, int b) 249 { 250 int i; 251 int distance = LOCAL_DISTANCE; 252 253 if (affinity_form == FORM2_AFFINITY) 254 return numa_distance_table[a][b]; 255 else if (affinity_form == FORM0_AFFINITY) 256 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); 257 258 for (i = 0; i < distance_ref_points_depth; i++) { 259 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 260 break; 261 262 /* Double the distance for each NUMA level */ 263 distance *= 2; 264 } 265 266 return distance; 267 } 268 EXPORT_SYMBOL(__node_distance); 269 270 /* Returns the nid associated with the given device tree node, 271 * or -1 if not found. 272 */ 273 static int of_node_to_nid_single(struct device_node *device) 274 { 275 int nid = NUMA_NO_NODE; 276 const __be32 *tmp; 277 278 tmp = of_get_associativity(device); 279 if (tmp) 280 nid = associativity_to_nid(tmp); 281 return nid; 282 } 283 284 /* Walk the device tree upwards, looking for an associativity id */ 285 int of_node_to_nid(struct device_node *device) 286 { 287 int nid = NUMA_NO_NODE; 288 289 of_node_get(device); 290 while (device) { 291 nid = of_node_to_nid_single(device); 292 if (nid != -1) 293 break; 294 295 device = of_get_next_parent(device); 296 } 297 of_node_put(device); 298 299 return nid; 300 } 301 EXPORT_SYMBOL(of_node_to_nid); 302 303 static void __initialize_form1_numa_distance(const __be32 *associativity, 304 int max_array_sz) 305 { 306 int i, nid; 307 308 if (affinity_form != FORM1_AFFINITY) 309 return; 310 311 nid = __associativity_to_nid(associativity, max_array_sz); 312 if (nid != NUMA_NO_NODE) { 313 for (i = 0; i < distance_ref_points_depth; i++) { 314 const __be32 *entry; 315 int index = be32_to_cpu(distance_ref_points[i]) - 1; 316 317 /* 318 * broken hierarchy, return with broken distance table 319 */ 320 if (WARN(index >= max_array_sz, "Broken ibm,associativity property")) 321 return; 322 323 entry = &associativity[index]; 324 distance_lookup_table[nid][i] = of_read_number(entry, 1); 325 } 326 } 327 } 328 329 static void initialize_form1_numa_distance(const __be32 *associativity) 330 { 331 int array_sz; 332 333 array_sz = of_read_number(associativity, 1); 334 /* Skip the first element in the associativity array */ 335 __initialize_form1_numa_distance(associativity + 1, array_sz); 336 } 337 338 /* 339 * Used to update distance information w.r.t newly added node. 340 */ 341 void update_numa_distance(struct device_node *node) 342 { 343 int nid; 344 345 if (affinity_form == FORM0_AFFINITY) 346 return; 347 else if (affinity_form == FORM1_AFFINITY) { 348 const __be32 *associativity; 349 350 associativity = of_get_associativity(node); 351 if (!associativity) 352 return; 353 354 initialize_form1_numa_distance(associativity); 355 return; 356 } 357 358 /* FORM2 affinity */ 359 nid = of_node_to_nid_single(node); 360 if (nid == NUMA_NO_NODE) 361 return; 362 363 /* 364 * With FORM2 we expect NUMA distance of all possible NUMA 365 * nodes to be provided during boot. 366 */ 367 WARN(numa_distance_table[nid][nid] == -1, 368 "NUMA distance details for node %d not provided\n", nid); 369 } 370 371 /* 372 * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN} 373 * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements} 374 */ 375 static void initialize_form2_numa_distance_lookup_table(void) 376 { 377 int i, j; 378 struct device_node *root; 379 const __u8 *numa_dist_table; 380 const __be32 *numa_lookup_index; 381 int numa_dist_table_length; 382 int max_numa_index, distance_index; 383 384 if (firmware_has_feature(FW_FEATURE_OPAL)) 385 root = of_find_node_by_path("/ibm,opal"); 386 else 387 root = of_find_node_by_path("/rtas"); 388 if (!root) 389 root = of_find_node_by_path("/"); 390 391 numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL); 392 max_numa_index = of_read_number(&numa_lookup_index[0], 1); 393 394 /* first element of the array is the size and is encode-int */ 395 numa_dist_table = of_get_property(root, "ibm,numa-distance-table", NULL); 396 numa_dist_table_length = of_read_number((const __be32 *)&numa_dist_table[0], 1); 397 /* Skip the size which is encoded int */ 398 numa_dist_table += sizeof(__be32); 399 400 pr_debug("numa_dist_table_len = %d, numa_dist_indexes_len = %d\n", 401 numa_dist_table_length, max_numa_index); 402 403 for (i = 0; i < max_numa_index; i++) 404 /* +1 skip the max_numa_index in the property */ 405 numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1); 406 407 408 if (numa_dist_table_length != max_numa_index * max_numa_index) { 409 WARN(1, "Wrong NUMA distance information\n"); 410 /* consider everybody else just remote. */ 411 for (i = 0; i < max_numa_index; i++) { 412 for (j = 0; j < max_numa_index; j++) { 413 int nodeA = numa_id_index_table[i]; 414 int nodeB = numa_id_index_table[j]; 415 416 if (nodeA == nodeB) 417 numa_distance_table[nodeA][nodeB] = LOCAL_DISTANCE; 418 else 419 numa_distance_table[nodeA][nodeB] = REMOTE_DISTANCE; 420 } 421 } 422 } 423 424 distance_index = 0; 425 for (i = 0; i < max_numa_index; i++) { 426 for (j = 0; j < max_numa_index; j++) { 427 int nodeA = numa_id_index_table[i]; 428 int nodeB = numa_id_index_table[j]; 429 430 numa_distance_table[nodeA][nodeB] = numa_dist_table[distance_index++]; 431 pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, numa_distance_table[nodeA][nodeB]); 432 } 433 } 434 of_node_put(root); 435 } 436 437 static int __init find_primary_domain_index(void) 438 { 439 int index; 440 struct device_node *root; 441 442 /* 443 * Check for which form of affinity. 444 */ 445 if (firmware_has_feature(FW_FEATURE_OPAL)) { 446 affinity_form = FORM1_AFFINITY; 447 } else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) { 448 pr_debug("Using form 2 affinity\n"); 449 affinity_form = FORM2_AFFINITY; 450 } else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) { 451 pr_debug("Using form 1 affinity\n"); 452 affinity_form = FORM1_AFFINITY; 453 } else 454 affinity_form = FORM0_AFFINITY; 455 456 if (firmware_has_feature(FW_FEATURE_OPAL)) 457 root = of_find_node_by_path("/ibm,opal"); 458 else 459 root = of_find_node_by_path("/rtas"); 460 if (!root) 461 root = of_find_node_by_path("/"); 462 463 /* 464 * This property is a set of 32-bit integers, each representing 465 * an index into the ibm,associativity nodes. 466 * 467 * With form 0 affinity the first integer is for an SMP configuration 468 * (should be all 0's) and the second is for a normal NUMA 469 * configuration. We have only one level of NUMA. 470 * 471 * With form 1 affinity the first integer is the most significant 472 * NUMA boundary and the following are progressively less significant 473 * boundaries. There can be more than one level of NUMA. 474 */ 475 distance_ref_points = of_get_property(root, 476 "ibm,associativity-reference-points", 477 &distance_ref_points_depth); 478 479 if (!distance_ref_points) { 480 pr_debug("ibm,associativity-reference-points not found.\n"); 481 goto err; 482 } 483 484 distance_ref_points_depth /= sizeof(int); 485 if (affinity_form == FORM0_AFFINITY) { 486 if (distance_ref_points_depth < 2) { 487 pr_warn("short ibm,associativity-reference-points\n"); 488 goto err; 489 } 490 491 index = of_read_number(&distance_ref_points[1], 1); 492 } else { 493 /* 494 * Both FORM1 and FORM2 affinity find the primary domain details 495 * at the same offset. 496 */ 497 index = of_read_number(distance_ref_points, 1); 498 } 499 /* 500 * Warn and cap if the hardware supports more than 501 * MAX_DISTANCE_REF_POINTS domains. 502 */ 503 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 504 pr_warn("distance array capped at %d entries\n", 505 MAX_DISTANCE_REF_POINTS); 506 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 507 } 508 509 of_node_put(root); 510 return index; 511 512 err: 513 of_node_put(root); 514 return -1; 515 } 516 517 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 518 { 519 struct device_node *memory = NULL; 520 521 memory = of_find_node_by_type(memory, "memory"); 522 if (!memory) 523 panic("numa.c: No memory nodes found!"); 524 525 *n_addr_cells = of_n_addr_cells(memory); 526 *n_size_cells = of_n_size_cells(memory); 527 of_node_put(memory); 528 } 529 530 static unsigned long read_n_cells(int n, const __be32 **buf) 531 { 532 unsigned long result = 0; 533 534 while (n--) { 535 result = (result << 32) | of_read_number(*buf, 1); 536 (*buf)++; 537 } 538 return result; 539 } 540 541 struct assoc_arrays { 542 u32 n_arrays; 543 u32 array_sz; 544 const __be32 *arrays; 545 }; 546 547 /* 548 * Retrieve and validate the list of associativity arrays for drconf 549 * memory from the ibm,associativity-lookup-arrays property of the 550 * device tree.. 551 * 552 * The layout of the ibm,associativity-lookup-arrays property is a number N 553 * indicating the number of associativity arrays, followed by a number M 554 * indicating the size of each associativity array, followed by a list 555 * of N associativity arrays. 556 */ 557 static int of_get_assoc_arrays(struct assoc_arrays *aa) 558 { 559 struct device_node *memory; 560 const __be32 *prop; 561 u32 len; 562 563 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 564 if (!memory) 565 return -1; 566 567 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 568 if (!prop || len < 2 * sizeof(unsigned int)) { 569 of_node_put(memory); 570 return -1; 571 } 572 573 aa->n_arrays = of_read_number(prop++, 1); 574 aa->array_sz = of_read_number(prop++, 1); 575 576 of_node_put(memory); 577 578 /* Now that we know the number of arrays and size of each array, 579 * revalidate the size of the property read in. 580 */ 581 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 582 return -1; 583 584 aa->arrays = prop; 585 return 0; 586 } 587 588 static int get_nid_and_numa_distance(struct drmem_lmb *lmb) 589 { 590 struct assoc_arrays aa = { .arrays = NULL }; 591 int default_nid = NUMA_NO_NODE; 592 int nid = default_nid; 593 int rc, index; 594 595 if ((primary_domain_index < 0) || !numa_enabled) 596 return default_nid; 597 598 rc = of_get_assoc_arrays(&aa); 599 if (rc) 600 return default_nid; 601 602 if (primary_domain_index <= aa.array_sz && 603 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) { 604 const __be32 *associativity; 605 606 index = lmb->aa_index * aa.array_sz; 607 associativity = &aa.arrays[index]; 608 nid = __associativity_to_nid(associativity, aa.array_sz); 609 if (nid > 0 && affinity_form == FORM1_AFFINITY) { 610 /* 611 * lookup array associativity entries have 612 * no length of the array as the first element. 613 */ 614 __initialize_form1_numa_distance(associativity, aa.array_sz); 615 } 616 } 617 return nid; 618 } 619 620 /* 621 * This is like of_node_to_nid_single() for memory represented in the 622 * ibm,dynamic-reconfiguration-memory node. 623 */ 624 int of_drconf_to_nid_single(struct drmem_lmb *lmb) 625 { 626 struct assoc_arrays aa = { .arrays = NULL }; 627 int default_nid = NUMA_NO_NODE; 628 int nid = default_nid; 629 int rc, index; 630 631 if ((primary_domain_index < 0) || !numa_enabled) 632 return default_nid; 633 634 rc = of_get_assoc_arrays(&aa); 635 if (rc) 636 return default_nid; 637 638 if (primary_domain_index <= aa.array_sz && 639 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) { 640 const __be32 *associativity; 641 642 index = lmb->aa_index * aa.array_sz; 643 associativity = &aa.arrays[index]; 644 nid = __associativity_to_nid(associativity, aa.array_sz); 645 } 646 return nid; 647 } 648 649 #ifdef CONFIG_PPC_SPLPAR 650 651 static int __vphn_get_associativity(long lcpu, __be32 *associativity) 652 { 653 long rc, hwid; 654 655 /* 656 * On a shared lpar, device tree will not have node associativity. 657 * At this time lppaca, or its __old_status field may not be 658 * updated. Hence kernel cannot detect if its on a shared lpar. So 659 * request an explicit associativity irrespective of whether the 660 * lpar is shared or dedicated. Use the device tree property as a 661 * fallback. cpu_to_phys_id is only valid between 662 * smp_setup_cpu_maps() and smp_setup_pacas(). 663 */ 664 if (firmware_has_feature(FW_FEATURE_VPHN)) { 665 if (cpu_to_phys_id) 666 hwid = cpu_to_phys_id[lcpu]; 667 else 668 hwid = get_hard_smp_processor_id(lcpu); 669 670 rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity); 671 if (rc == H_SUCCESS) 672 return 0; 673 } 674 675 return -1; 676 } 677 678 static int vphn_get_nid(long lcpu) 679 { 680 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; 681 682 683 if (!__vphn_get_associativity(lcpu, associativity)) 684 return associativity_to_nid(associativity); 685 686 return NUMA_NO_NODE; 687 688 } 689 #else 690 691 static int __vphn_get_associativity(long lcpu, __be32 *associativity) 692 { 693 return -1; 694 } 695 696 static int vphn_get_nid(long unused) 697 { 698 return NUMA_NO_NODE; 699 } 700 #endif /* CONFIG_PPC_SPLPAR */ 701 702 /* 703 * Figure out to which domain a cpu belongs and stick it there. 704 * Return the id of the domain used. 705 */ 706 static int numa_setup_cpu(unsigned long lcpu) 707 { 708 struct device_node *cpu; 709 int fcpu = cpu_first_thread_sibling(lcpu); 710 int nid = NUMA_NO_NODE; 711 712 if (!cpu_present(lcpu)) { 713 set_cpu_numa_node(lcpu, first_online_node); 714 return first_online_node; 715 } 716 717 /* 718 * If a valid cpu-to-node mapping is already available, use it 719 * directly instead of querying the firmware, since it represents 720 * the most recent mapping notified to us by the platform (eg: VPHN). 721 * Since cpu_to_node binding remains the same for all threads in the 722 * core. If a valid cpu-to-node mapping is already available, for 723 * the first thread in the core, use it. 724 */ 725 nid = numa_cpu_lookup_table[fcpu]; 726 if (nid >= 0) { 727 map_cpu_to_node(lcpu, nid); 728 return nid; 729 } 730 731 nid = vphn_get_nid(lcpu); 732 if (nid != NUMA_NO_NODE) 733 goto out_present; 734 735 cpu = of_get_cpu_node(lcpu, NULL); 736 737 if (!cpu) { 738 WARN_ON(1); 739 if (cpu_present(lcpu)) 740 goto out_present; 741 else 742 goto out; 743 } 744 745 nid = of_node_to_nid_single(cpu); 746 of_node_put(cpu); 747 748 out_present: 749 if (nid < 0 || !node_possible(nid)) 750 nid = first_online_node; 751 752 /* 753 * Update for the first thread of the core. All threads of a core 754 * have to be part of the same node. This not only avoids querying 755 * for every other thread in the core, but always avoids a case 756 * where virtual node associativity change causes subsequent threads 757 * of a core to be associated with different nid. However if first 758 * thread is already online, expect it to have a valid mapping. 759 */ 760 if (fcpu != lcpu) { 761 WARN_ON(cpu_online(fcpu)); 762 map_cpu_to_node(fcpu, nid); 763 } 764 765 map_cpu_to_node(lcpu, nid); 766 out: 767 return nid; 768 } 769 770 static void verify_cpu_node_mapping(int cpu, int node) 771 { 772 int base, sibling, i; 773 774 /* Verify that all the threads in the core belong to the same node */ 775 base = cpu_first_thread_sibling(cpu); 776 777 for (i = 0; i < threads_per_core; i++) { 778 sibling = base + i; 779 780 if (sibling == cpu || cpu_is_offline(sibling)) 781 continue; 782 783 if (cpu_to_node(sibling) != node) { 784 WARN(1, "CPU thread siblings %d and %d don't belong" 785 " to the same node!\n", cpu, sibling); 786 break; 787 } 788 } 789 } 790 791 /* Must run before sched domains notifier. */ 792 static int ppc_numa_cpu_prepare(unsigned int cpu) 793 { 794 int nid; 795 796 nid = numa_setup_cpu(cpu); 797 verify_cpu_node_mapping(cpu, nid); 798 return 0; 799 } 800 801 static int ppc_numa_cpu_dead(unsigned int cpu) 802 { 803 return 0; 804 } 805 806 /* 807 * Check and possibly modify a memory region to enforce the memory limit. 808 * 809 * Returns the size the region should have to enforce the memory limit. 810 * This will either be the original value of size, a truncated value, 811 * or zero. If the returned value of size is 0 the region should be 812 * discarded as it lies wholly above the memory limit. 813 */ 814 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 815 unsigned long size) 816 { 817 /* 818 * We use memblock_end_of_DRAM() in here instead of memory_limit because 819 * we've already adjusted it for the limit and it takes care of 820 * having memory holes below the limit. Also, in the case of 821 * iommu_is_off, memory_limit is not set but is implicitly enforced. 822 */ 823 824 if (start + size <= memblock_end_of_DRAM()) 825 return size; 826 827 if (start >= memblock_end_of_DRAM()) 828 return 0; 829 830 return memblock_end_of_DRAM() - start; 831 } 832 833 /* 834 * Reads the counter for a given entry in 835 * linux,drconf-usable-memory property 836 */ 837 static inline int __init read_usm_ranges(const __be32 **usm) 838 { 839 /* 840 * For each lmb in ibm,dynamic-memory a corresponding 841 * entry in linux,drconf-usable-memory property contains 842 * a counter followed by that many (base, size) duple. 843 * read the counter from linux,drconf-usable-memory 844 */ 845 return read_n_cells(n_mem_size_cells, usm); 846 } 847 848 /* 849 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 850 * node. This assumes n_mem_{addr,size}_cells have been set. 851 */ 852 static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb, 853 const __be32 **usm, 854 void *data) 855 { 856 unsigned int ranges, is_kexec_kdump = 0; 857 unsigned long base, size, sz; 858 int nid; 859 860 /* 861 * Skip this block if the reserved bit is set in flags (0x80) 862 * or if the block is not assigned to this partition (0x8) 863 */ 864 if ((lmb->flags & DRCONF_MEM_RESERVED) 865 || !(lmb->flags & DRCONF_MEM_ASSIGNED)) 866 return 0; 867 868 if (*usm) 869 is_kexec_kdump = 1; 870 871 base = lmb->base_addr; 872 size = drmem_lmb_size(); 873 ranges = 1; 874 875 if (is_kexec_kdump) { 876 ranges = read_usm_ranges(usm); 877 if (!ranges) /* there are no (base, size) duple */ 878 return 0; 879 } 880 881 do { 882 if (is_kexec_kdump) { 883 base = read_n_cells(n_mem_addr_cells, usm); 884 size = read_n_cells(n_mem_size_cells, usm); 885 } 886 887 nid = get_nid_and_numa_distance(lmb); 888 fake_numa_create_new_node(((base + size) >> PAGE_SHIFT), 889 &nid); 890 node_set_online(nid); 891 sz = numa_enforce_memory_limit(base, size); 892 if (sz) 893 memblock_set_node(base, sz, &memblock.memory, nid); 894 } while (--ranges); 895 896 return 0; 897 } 898 899 static int __init parse_numa_properties(void) 900 { 901 struct device_node *memory; 902 int default_nid = 0; 903 unsigned long i; 904 const __be32 *associativity; 905 906 if (numa_enabled == 0) { 907 pr_warn("disabled by user\n"); 908 return -1; 909 } 910 911 primary_domain_index = find_primary_domain_index(); 912 913 if (primary_domain_index < 0) { 914 /* 915 * if we fail to parse primary_domain_index from device tree 916 * mark the numa disabled, boot with numa disabled. 917 */ 918 numa_enabled = false; 919 return primary_domain_index; 920 } 921 922 pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index); 923 924 /* 925 * If it is FORM2 initialize the distance table here. 926 */ 927 if (affinity_form == FORM2_AFFINITY) 928 initialize_form2_numa_distance_lookup_table(); 929 930 /* 931 * Even though we connect cpus to numa domains later in SMP 932 * init, we need to know the node ids now. This is because 933 * each node to be onlined must have NODE_DATA etc backing it. 934 */ 935 for_each_present_cpu(i) { 936 __be32 vphn_assoc[VPHN_ASSOC_BUFSIZE]; 937 struct device_node *cpu; 938 int nid = NUMA_NO_NODE; 939 940 memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32)); 941 942 if (__vphn_get_associativity(i, vphn_assoc) == 0) { 943 nid = associativity_to_nid(vphn_assoc); 944 initialize_form1_numa_distance(vphn_assoc); 945 } else { 946 947 /* 948 * Don't fall back to default_nid yet -- we will plug 949 * cpus into nodes once the memory scan has discovered 950 * the topology. 951 */ 952 cpu = of_get_cpu_node(i, NULL); 953 BUG_ON(!cpu); 954 955 associativity = of_get_associativity(cpu); 956 if (associativity) { 957 nid = associativity_to_nid(associativity); 958 initialize_form1_numa_distance(associativity); 959 } 960 of_node_put(cpu); 961 } 962 963 node_set_online(nid); 964 } 965 966 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 967 968 for_each_node_by_type(memory, "memory") { 969 unsigned long start; 970 unsigned long size; 971 int nid; 972 int ranges; 973 const __be32 *memcell_buf; 974 unsigned int len; 975 976 memcell_buf = of_get_property(memory, 977 "linux,usable-memory", &len); 978 if (!memcell_buf || len <= 0) 979 memcell_buf = of_get_property(memory, "reg", &len); 980 if (!memcell_buf || len <= 0) 981 continue; 982 983 /* ranges in cell */ 984 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 985 new_range: 986 /* these are order-sensitive, and modify the buffer pointer */ 987 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 988 size = read_n_cells(n_mem_size_cells, &memcell_buf); 989 990 /* 991 * Assumption: either all memory nodes or none will 992 * have associativity properties. If none, then 993 * everything goes to default_nid. 994 */ 995 associativity = of_get_associativity(memory); 996 if (associativity) { 997 nid = associativity_to_nid(associativity); 998 initialize_form1_numa_distance(associativity); 999 } else 1000 nid = default_nid; 1001 1002 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 1003 node_set_online(nid); 1004 1005 size = numa_enforce_memory_limit(start, size); 1006 if (size) 1007 memblock_set_node(start, size, &memblock.memory, nid); 1008 1009 if (--ranges) 1010 goto new_range; 1011 } 1012 1013 /* 1014 * Now do the same thing for each MEMBLOCK listed in the 1015 * ibm,dynamic-memory property in the 1016 * ibm,dynamic-reconfiguration-memory node. 1017 */ 1018 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1019 if (memory) { 1020 walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb); 1021 of_node_put(memory); 1022 } 1023 1024 return 0; 1025 } 1026 1027 static void __init setup_nonnuma(void) 1028 { 1029 unsigned long top_of_ram = memblock_end_of_DRAM(); 1030 unsigned long total_ram = memblock_phys_mem_size(); 1031 unsigned long start_pfn, end_pfn; 1032 unsigned int nid = 0; 1033 int i; 1034 1035 pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram); 1036 pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20); 1037 1038 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { 1039 fake_numa_create_new_node(end_pfn, &nid); 1040 memblock_set_node(PFN_PHYS(start_pfn), 1041 PFN_PHYS(end_pfn - start_pfn), 1042 &memblock.memory, nid); 1043 node_set_online(nid); 1044 } 1045 } 1046 1047 void __init dump_numa_cpu_topology(void) 1048 { 1049 unsigned int node; 1050 unsigned int cpu, count; 1051 1052 if (!numa_enabled) 1053 return; 1054 1055 for_each_online_node(node) { 1056 pr_info("Node %d CPUs:", node); 1057 1058 count = 0; 1059 /* 1060 * If we used a CPU iterator here we would miss printing 1061 * the holes in the cpumap. 1062 */ 1063 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 1064 if (cpumask_test_cpu(cpu, 1065 node_to_cpumask_map[node])) { 1066 if (count == 0) 1067 pr_cont(" %u", cpu); 1068 ++count; 1069 } else { 1070 if (count > 1) 1071 pr_cont("-%u", cpu - 1); 1072 count = 0; 1073 } 1074 } 1075 1076 if (count > 1) 1077 pr_cont("-%u", nr_cpu_ids - 1); 1078 pr_cont("\n"); 1079 } 1080 } 1081 1082 /* Initialize NODE_DATA for a node on the local memory */ 1083 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) 1084 { 1085 u64 spanned_pages = end_pfn - start_pfn; 1086 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); 1087 u64 nd_pa; 1088 void *nd; 1089 int tnid; 1090 1091 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); 1092 if (!nd_pa) 1093 panic("Cannot allocate %zu bytes for node %d data\n", 1094 nd_size, nid); 1095 1096 nd = __va(nd_pa); 1097 1098 /* report and initialize */ 1099 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n", 1100 nd_pa, nd_pa + nd_size - 1); 1101 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); 1102 if (tnid != nid) 1103 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid); 1104 1105 node_data[nid] = nd; 1106 memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); 1107 NODE_DATA(nid)->node_id = nid; 1108 NODE_DATA(nid)->node_start_pfn = start_pfn; 1109 NODE_DATA(nid)->node_spanned_pages = spanned_pages; 1110 } 1111 1112 static void __init find_possible_nodes(void) 1113 { 1114 struct device_node *rtas; 1115 const __be32 *domains = NULL; 1116 int prop_length, max_nodes; 1117 u32 i; 1118 1119 if (!numa_enabled) 1120 return; 1121 1122 rtas = of_find_node_by_path("/rtas"); 1123 if (!rtas) 1124 return; 1125 1126 /* 1127 * ibm,current-associativity-domains is a fairly recent property. If 1128 * it doesn't exist, then fallback on ibm,max-associativity-domains. 1129 * Current denotes what the platform can support compared to max 1130 * which denotes what the Hypervisor can support. 1131 * 1132 * If the LPAR is migratable, new nodes might be activated after a LPM, 1133 * so we should consider the max number in that case. 1134 */ 1135 if (!of_get_property(of_root, "ibm,migratable-partition", NULL)) 1136 domains = of_get_property(rtas, 1137 "ibm,current-associativity-domains", 1138 &prop_length); 1139 if (!domains) { 1140 domains = of_get_property(rtas, "ibm,max-associativity-domains", 1141 &prop_length); 1142 if (!domains) 1143 goto out; 1144 } 1145 1146 max_nodes = of_read_number(&domains[primary_domain_index], 1); 1147 pr_info("Partition configured for %d NUMA nodes.\n", max_nodes); 1148 1149 for (i = 0; i < max_nodes; i++) { 1150 if (!node_possible(i)) 1151 node_set(i, node_possible_map); 1152 } 1153 1154 prop_length /= sizeof(int); 1155 if (prop_length > primary_domain_index + 2) 1156 coregroup_enabled = 1; 1157 1158 out: 1159 of_node_put(rtas); 1160 } 1161 1162 void __init mem_topology_setup(void) 1163 { 1164 int cpu; 1165 1166 /* 1167 * Linux/mm assumes node 0 to be online at boot. However this is not 1168 * true on PowerPC, where node 0 is similar to any other node, it 1169 * could be cpuless, memoryless node. So force node 0 to be offline 1170 * for now. This will prevent cpuless, memoryless node 0 showing up 1171 * unnecessarily as online. If a node has cpus or memory that need 1172 * to be online, then node will anyway be marked online. 1173 */ 1174 node_set_offline(0); 1175 1176 if (parse_numa_properties()) 1177 setup_nonnuma(); 1178 1179 /* 1180 * Modify the set of possible NUMA nodes to reflect information 1181 * available about the set of online nodes, and the set of nodes 1182 * that we expect to make use of for this platform's affinity 1183 * calculations. 1184 */ 1185 nodes_and(node_possible_map, node_possible_map, node_online_map); 1186 1187 find_possible_nodes(); 1188 1189 setup_node_to_cpumask_map(); 1190 1191 reset_numa_cpu_lookup_table(); 1192 1193 for_each_possible_cpu(cpu) { 1194 /* 1195 * Powerpc with CONFIG_NUMA always used to have a node 0, 1196 * even if it was memoryless or cpuless. For all cpus that 1197 * are possible but not present, cpu_to_node() would point 1198 * to node 0. To remove a cpuless, memoryless dummy node, 1199 * powerpc need to make sure all possible but not present 1200 * cpu_to_node are set to a proper node. 1201 */ 1202 numa_setup_cpu(cpu); 1203 } 1204 } 1205 1206 void __init initmem_init(void) 1207 { 1208 int nid; 1209 1210 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1211 max_pfn = max_low_pfn; 1212 1213 memblock_dump_all(); 1214 1215 for_each_online_node(nid) { 1216 unsigned long start_pfn, end_pfn; 1217 1218 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1219 setup_node_data(nid, start_pfn, end_pfn); 1220 } 1221 1222 sparse_init(); 1223 1224 /* 1225 * We need the numa_cpu_lookup_table to be accurate for all CPUs, 1226 * even before we online them, so that we can use cpu_to_{node,mem} 1227 * early in boot, cf. smp_prepare_cpus(). 1228 * _nocalls() + manual invocation is used because cpuhp is not yet 1229 * initialized for the boot CPU. 1230 */ 1231 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare", 1232 ppc_numa_cpu_prepare, ppc_numa_cpu_dead); 1233 } 1234 1235 static int __init early_numa(char *p) 1236 { 1237 if (!p) 1238 return 0; 1239 1240 if (strstr(p, "off")) 1241 numa_enabled = 0; 1242 1243 p = strstr(p, "fake="); 1244 if (p) 1245 cmdline = p + strlen("fake="); 1246 1247 return 0; 1248 } 1249 early_param("numa", early_numa); 1250 1251 #ifdef CONFIG_MEMORY_HOTPLUG 1252 /* 1253 * Find the node associated with a hot added memory section for 1254 * memory represented in the device tree by the property 1255 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 1256 */ 1257 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr) 1258 { 1259 struct drmem_lmb *lmb; 1260 unsigned long lmb_size; 1261 int nid = NUMA_NO_NODE; 1262 1263 lmb_size = drmem_lmb_size(); 1264 1265 for_each_drmem_lmb(lmb) { 1266 /* skip this block if it is reserved or not assigned to 1267 * this partition */ 1268 if ((lmb->flags & DRCONF_MEM_RESERVED) 1269 || !(lmb->flags & DRCONF_MEM_ASSIGNED)) 1270 continue; 1271 1272 if ((scn_addr < lmb->base_addr) 1273 || (scn_addr >= (lmb->base_addr + lmb_size))) 1274 continue; 1275 1276 nid = of_drconf_to_nid_single(lmb); 1277 break; 1278 } 1279 1280 return nid; 1281 } 1282 1283 /* 1284 * Find the node associated with a hot added memory section for memory 1285 * represented in the device tree as a node (i.e. memory@XXXX) for 1286 * each memblock. 1287 */ 1288 static int hot_add_node_scn_to_nid(unsigned long scn_addr) 1289 { 1290 struct device_node *memory; 1291 int nid = NUMA_NO_NODE; 1292 1293 for_each_node_by_type(memory, "memory") { 1294 unsigned long start, size; 1295 int ranges; 1296 const __be32 *memcell_buf; 1297 unsigned int len; 1298 1299 memcell_buf = of_get_property(memory, "reg", &len); 1300 if (!memcell_buf || len <= 0) 1301 continue; 1302 1303 /* ranges in cell */ 1304 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 1305 1306 while (ranges--) { 1307 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 1308 size = read_n_cells(n_mem_size_cells, &memcell_buf); 1309 1310 if ((scn_addr < start) || (scn_addr >= (start + size))) 1311 continue; 1312 1313 nid = of_node_to_nid_single(memory); 1314 break; 1315 } 1316 1317 if (nid >= 0) 1318 break; 1319 } 1320 1321 of_node_put(memory); 1322 1323 return nid; 1324 } 1325 1326 /* 1327 * Find the node associated with a hot added memory section. Section 1328 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1329 * sections are fully contained within a single MEMBLOCK. 1330 */ 1331 int hot_add_scn_to_nid(unsigned long scn_addr) 1332 { 1333 struct device_node *memory = NULL; 1334 int nid; 1335 1336 if (!numa_enabled) 1337 return first_online_node; 1338 1339 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1340 if (memory) { 1341 nid = hot_add_drconf_scn_to_nid(scn_addr); 1342 of_node_put(memory); 1343 } else { 1344 nid = hot_add_node_scn_to_nid(scn_addr); 1345 } 1346 1347 if (nid < 0 || !node_possible(nid)) 1348 nid = first_online_node; 1349 1350 return nid; 1351 } 1352 1353 static u64 hot_add_drconf_memory_max(void) 1354 { 1355 struct device_node *memory = NULL; 1356 struct device_node *dn = NULL; 1357 const __be64 *lrdr = NULL; 1358 1359 dn = of_find_node_by_path("/rtas"); 1360 if (dn) { 1361 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL); 1362 of_node_put(dn); 1363 if (lrdr) 1364 return be64_to_cpup(lrdr); 1365 } 1366 1367 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1368 if (memory) { 1369 of_node_put(memory); 1370 return drmem_lmb_memory_max(); 1371 } 1372 return 0; 1373 } 1374 1375 /* 1376 * memory_hotplug_max - return max address of memory that may be added 1377 * 1378 * This is currently only used on systems that support drconfig memory 1379 * hotplug. 1380 */ 1381 u64 memory_hotplug_max(void) 1382 { 1383 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1384 } 1385 #endif /* CONFIG_MEMORY_HOTPLUG */ 1386 1387 /* Virtual Processor Home Node (VPHN) support */ 1388 #ifdef CONFIG_PPC_SPLPAR 1389 static int topology_inited; 1390 1391 /* 1392 * Retrieve the new associativity information for a virtual processor's 1393 * home node. 1394 */ 1395 static long vphn_get_associativity(unsigned long cpu, 1396 __be32 *associativity) 1397 { 1398 long rc; 1399 1400 rc = hcall_vphn(get_hard_smp_processor_id(cpu), 1401 VPHN_FLAG_VCPU, associativity); 1402 1403 switch (rc) { 1404 case H_SUCCESS: 1405 pr_debug("VPHN hcall succeeded. Reset polling...\n"); 1406 goto out; 1407 1408 case H_FUNCTION: 1409 pr_err_ratelimited("VPHN unsupported. Disabling polling...\n"); 1410 break; 1411 case H_HARDWARE: 1412 pr_err_ratelimited("hcall_vphn() experienced a hardware fault " 1413 "preventing VPHN. Disabling polling...\n"); 1414 break; 1415 case H_PARAMETER: 1416 pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. " 1417 "Disabling polling...\n"); 1418 break; 1419 default: 1420 pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n" 1421 , rc); 1422 break; 1423 } 1424 out: 1425 return rc; 1426 } 1427 1428 int find_and_online_cpu_nid(int cpu) 1429 { 1430 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1431 int new_nid; 1432 1433 /* Use associativity from first thread for all siblings */ 1434 if (vphn_get_associativity(cpu, associativity)) 1435 return cpu_to_node(cpu); 1436 1437 new_nid = associativity_to_nid(associativity); 1438 if (new_nid < 0 || !node_possible(new_nid)) 1439 new_nid = first_online_node; 1440 1441 if (NODE_DATA(new_nid) == NULL) { 1442 #ifdef CONFIG_MEMORY_HOTPLUG 1443 /* 1444 * Need to ensure that NODE_DATA is initialized for a node from 1445 * available memory (see memblock_alloc_try_nid). If unable to 1446 * init the node, then default to nearest node that has memory 1447 * installed. Skip onlining a node if the subsystems are not 1448 * yet initialized. 1449 */ 1450 if (!topology_inited || try_online_node(new_nid)) 1451 new_nid = first_online_node; 1452 #else 1453 /* 1454 * Default to using the nearest node that has memory installed. 1455 * Otherwise, it would be necessary to patch the kernel MM code 1456 * to deal with more memoryless-node error conditions. 1457 */ 1458 new_nid = first_online_node; 1459 #endif 1460 } 1461 1462 pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__, 1463 cpu, new_nid); 1464 return new_nid; 1465 } 1466 1467 int cpu_to_coregroup_id(int cpu) 1468 { 1469 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1470 int index; 1471 1472 if (cpu < 0 || cpu > nr_cpu_ids) 1473 return -1; 1474 1475 if (!coregroup_enabled) 1476 goto out; 1477 1478 if (!firmware_has_feature(FW_FEATURE_VPHN)) 1479 goto out; 1480 1481 if (vphn_get_associativity(cpu, associativity)) 1482 goto out; 1483 1484 index = of_read_number(associativity, 1); 1485 if (index > primary_domain_index + 1) 1486 return of_read_number(&associativity[index - 1], 1); 1487 1488 out: 1489 return cpu_to_core_id(cpu); 1490 } 1491 1492 static int topology_update_init(void) 1493 { 1494 topology_inited = 1; 1495 return 0; 1496 } 1497 device_initcall(topology_update_init); 1498 #endif /* CONFIG_PPC_SPLPAR */ 1499