1 /* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/threads.h> 12 #include <linux/bootmem.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/mmzone.h> 16 #include <linux/module.h> 17 #include <linux/nodemask.h> 18 #include <linux/cpu.h> 19 #include <linux/notifier.h> 20 #include <asm/sparsemem.h> 21 #include <asm/lmb.h> 22 #include <asm/system.h> 23 #include <asm/smp.h> 24 25 static int numa_enabled = 1; 26 27 static int numa_debug; 28 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 29 30 int numa_cpu_lookup_table[NR_CPUS]; 31 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; 32 struct pglist_data *node_data[MAX_NUMNODES]; 33 34 EXPORT_SYMBOL(numa_cpu_lookup_table); 35 EXPORT_SYMBOL(numa_cpumask_lookup_table); 36 EXPORT_SYMBOL(node_data); 37 38 static bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES]; 39 static int min_common_depth; 40 static int n_mem_addr_cells, n_mem_size_cells; 41 42 /* 43 * We need somewhere to store start/end/node for each region until we have 44 * allocated the real node_data structures. 45 */ 46 #define MAX_REGIONS (MAX_LMB_REGIONS*2) 47 static struct { 48 unsigned long start_pfn; 49 unsigned long end_pfn; 50 int nid; 51 } init_node_data[MAX_REGIONS] __initdata; 52 53 int __init early_pfn_to_nid(unsigned long pfn) 54 { 55 unsigned int i; 56 57 for (i = 0; init_node_data[i].end_pfn; i++) { 58 unsigned long start_pfn = init_node_data[i].start_pfn; 59 unsigned long end_pfn = init_node_data[i].end_pfn; 60 61 if ((start_pfn <= pfn) && (pfn < end_pfn)) 62 return init_node_data[i].nid; 63 } 64 65 return -1; 66 } 67 68 void __init add_region(unsigned int nid, unsigned long start_pfn, 69 unsigned long pages) 70 { 71 unsigned int i; 72 73 dbg("add_region nid %d start_pfn 0x%lx pages 0x%lx\n", 74 nid, start_pfn, pages); 75 76 for (i = 0; init_node_data[i].end_pfn; i++) { 77 if (init_node_data[i].nid != nid) 78 continue; 79 if (init_node_data[i].end_pfn == start_pfn) { 80 init_node_data[i].end_pfn += pages; 81 return; 82 } 83 if (init_node_data[i].start_pfn == (start_pfn + pages)) { 84 init_node_data[i].start_pfn -= pages; 85 return; 86 } 87 } 88 89 /* 90 * Leave last entry NULL so we dont iterate off the end (we use 91 * entry.end_pfn to terminate the walk). 92 */ 93 if (i >= (MAX_REGIONS - 1)) { 94 printk(KERN_ERR "WARNING: too many memory regions in " 95 "numa code, truncating\n"); 96 return; 97 } 98 99 init_node_data[i].start_pfn = start_pfn; 100 init_node_data[i].end_pfn = start_pfn + pages; 101 init_node_data[i].nid = nid; 102 } 103 104 /* We assume init_node_data has no overlapping regions */ 105 void __init get_region(unsigned int nid, unsigned long *start_pfn, 106 unsigned long *end_pfn, unsigned long *pages_present) 107 { 108 unsigned int i; 109 110 *start_pfn = -1UL; 111 *end_pfn = *pages_present = 0; 112 113 for (i = 0; init_node_data[i].end_pfn; i++) { 114 if (init_node_data[i].nid != nid) 115 continue; 116 117 *pages_present += init_node_data[i].end_pfn - 118 init_node_data[i].start_pfn; 119 120 if (init_node_data[i].start_pfn < *start_pfn) 121 *start_pfn = init_node_data[i].start_pfn; 122 123 if (init_node_data[i].end_pfn > *end_pfn) 124 *end_pfn = init_node_data[i].end_pfn; 125 } 126 127 /* We didnt find a matching region, return start/end as 0 */ 128 if (*start_pfn == -1UL) 129 *start_pfn = 0; 130 } 131 132 static inline void map_cpu_to_node(int cpu, int node) 133 { 134 numa_cpu_lookup_table[cpu] = node; 135 136 if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node]))) 137 cpu_set(cpu, numa_cpumask_lookup_table[node]); 138 } 139 140 #ifdef CONFIG_HOTPLUG_CPU 141 static void unmap_cpu_from_node(unsigned long cpu) 142 { 143 int node = numa_cpu_lookup_table[cpu]; 144 145 dbg("removing cpu %lu from node %d\n", cpu, node); 146 147 if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) { 148 cpu_clear(cpu, numa_cpumask_lookup_table[node]); 149 } else { 150 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 151 cpu, node); 152 } 153 } 154 #endif /* CONFIG_HOTPLUG_CPU */ 155 156 static struct device_node *find_cpu_node(unsigned int cpu) 157 { 158 unsigned int hw_cpuid = get_hard_smp_processor_id(cpu); 159 struct device_node *cpu_node = NULL; 160 unsigned int *interrupt_server, *reg; 161 int len; 162 163 while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) { 164 /* Try interrupt server first */ 165 interrupt_server = (unsigned int *)get_property(cpu_node, 166 "ibm,ppc-interrupt-server#s", &len); 167 168 len = len / sizeof(u32); 169 170 if (interrupt_server && (len > 0)) { 171 while (len--) { 172 if (interrupt_server[len] == hw_cpuid) 173 return cpu_node; 174 } 175 } else { 176 reg = (unsigned int *)get_property(cpu_node, 177 "reg", &len); 178 if (reg && (len > 0) && (reg[0] == hw_cpuid)) 179 return cpu_node; 180 } 181 } 182 183 return NULL; 184 } 185 186 /* must hold reference to node during call */ 187 static int *of_get_associativity(struct device_node *dev) 188 { 189 return (unsigned int *)get_property(dev, "ibm,associativity", NULL); 190 } 191 192 static int of_node_numa_domain(struct device_node *device) 193 { 194 int numa_domain; 195 unsigned int *tmp; 196 197 if (min_common_depth == -1) 198 return 0; 199 200 tmp = of_get_associativity(device); 201 if (tmp && (tmp[0] >= min_common_depth)) { 202 numa_domain = tmp[min_common_depth]; 203 } else { 204 dbg("WARNING: no NUMA information for %s\n", 205 device->full_name); 206 numa_domain = 0; 207 } 208 return numa_domain; 209 } 210 211 /* 212 * In theory, the "ibm,associativity" property may contain multiple 213 * associativity lists because a resource may be multiply connected 214 * into the machine. This resource then has different associativity 215 * characteristics relative to its multiple connections. We ignore 216 * this for now. We also assume that all cpu and memory sets have 217 * their distances represented at a common level. This won't be 218 * true for heirarchical NUMA. 219 * 220 * In any case the ibm,associativity-reference-points should give 221 * the correct depth for a normal NUMA system. 222 * 223 * - Dave Hansen <haveblue@us.ibm.com> 224 */ 225 static int __init find_min_common_depth(void) 226 { 227 int depth; 228 unsigned int *ref_points; 229 struct device_node *rtas_root; 230 unsigned int len; 231 232 rtas_root = of_find_node_by_path("/rtas"); 233 234 if (!rtas_root) 235 return -1; 236 237 /* 238 * this property is 2 32-bit integers, each representing a level of 239 * depth in the associativity nodes. The first is for an SMP 240 * configuration (should be all 0's) and the second is for a normal 241 * NUMA configuration. 242 */ 243 ref_points = (unsigned int *)get_property(rtas_root, 244 "ibm,associativity-reference-points", &len); 245 246 if ((len >= 1) && ref_points) { 247 depth = ref_points[1]; 248 } else { 249 dbg("WARNING: could not find NUMA " 250 "associativity reference point\n"); 251 depth = -1; 252 } 253 of_node_put(rtas_root); 254 255 return depth; 256 } 257 258 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 259 { 260 struct device_node *memory = NULL; 261 262 memory = of_find_node_by_type(memory, "memory"); 263 if (!memory) 264 panic("numa.c: No memory nodes found!"); 265 266 *n_addr_cells = prom_n_addr_cells(memory); 267 *n_size_cells = prom_n_size_cells(memory); 268 of_node_put(memory); 269 } 270 271 static unsigned long __devinit read_n_cells(int n, unsigned int **buf) 272 { 273 unsigned long result = 0; 274 275 while (n--) { 276 result = (result << 32) | **buf; 277 (*buf)++; 278 } 279 return result; 280 } 281 282 /* 283 * Figure out to which domain a cpu belongs and stick it there. 284 * Return the id of the domain used. 285 */ 286 static int numa_setup_cpu(unsigned long lcpu) 287 { 288 int numa_domain = 0; 289 struct device_node *cpu = find_cpu_node(lcpu); 290 291 if (!cpu) { 292 WARN_ON(1); 293 goto out; 294 } 295 296 numa_domain = of_node_numa_domain(cpu); 297 298 if (numa_domain >= num_online_nodes()) { 299 /* 300 * POWER4 LPAR uses 0xffff as invalid node, 301 * dont warn in this case. 302 */ 303 if (numa_domain != 0xffff) 304 printk(KERN_ERR "WARNING: cpu %ld " 305 "maps to invalid NUMA node %d\n", 306 lcpu, numa_domain); 307 numa_domain = 0; 308 } 309 out: 310 node_set_online(numa_domain); 311 312 map_cpu_to_node(lcpu, numa_domain); 313 314 of_node_put(cpu); 315 316 return numa_domain; 317 } 318 319 static int cpu_numa_callback(struct notifier_block *nfb, 320 unsigned long action, 321 void *hcpu) 322 { 323 unsigned long lcpu = (unsigned long)hcpu; 324 int ret = NOTIFY_DONE; 325 326 switch (action) { 327 case CPU_UP_PREPARE: 328 if (min_common_depth == -1 || !numa_enabled) 329 map_cpu_to_node(lcpu, 0); 330 else 331 numa_setup_cpu(lcpu); 332 ret = NOTIFY_OK; 333 break; 334 #ifdef CONFIG_HOTPLUG_CPU 335 case CPU_DEAD: 336 case CPU_UP_CANCELED: 337 unmap_cpu_from_node(lcpu); 338 break; 339 ret = NOTIFY_OK; 340 #endif 341 } 342 return ret; 343 } 344 345 /* 346 * Check and possibly modify a memory region to enforce the memory limit. 347 * 348 * Returns the size the region should have to enforce the memory limit. 349 * This will either be the original value of size, a truncated value, 350 * or zero. If the returned value of size is 0 the region should be 351 * discarded as it lies wholy above the memory limit. 352 */ 353 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 354 unsigned long size) 355 { 356 /* 357 * We use lmb_end_of_DRAM() in here instead of memory_limit because 358 * we've already adjusted it for the limit and it takes care of 359 * having memory holes below the limit. 360 */ 361 362 if (! memory_limit) 363 return size; 364 365 if (start + size <= lmb_end_of_DRAM()) 366 return size; 367 368 if (start >= lmb_end_of_DRAM()) 369 return 0; 370 371 return lmb_end_of_DRAM() - start; 372 } 373 374 static int __init parse_numa_properties(void) 375 { 376 struct device_node *cpu = NULL; 377 struct device_node *memory = NULL; 378 int max_domain; 379 unsigned long i; 380 381 if (numa_enabled == 0) { 382 printk(KERN_WARNING "NUMA disabled by user\n"); 383 return -1; 384 } 385 386 min_common_depth = find_min_common_depth(); 387 388 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 389 if (min_common_depth < 0) 390 return min_common_depth; 391 392 max_domain = numa_setup_cpu(boot_cpuid); 393 394 /* 395 * Even though we connect cpus to numa domains later in SMP init, 396 * we need to know the maximum node id now. This is because each 397 * node id must have NODE_DATA etc backing it. 398 * As a result of hotplug we could still have cpus appear later on 399 * with larger node ids. In that case we force the cpu into node 0. 400 */ 401 for_each_cpu(i) { 402 int numa_domain; 403 404 cpu = find_cpu_node(i); 405 406 if (cpu) { 407 numa_domain = of_node_numa_domain(cpu); 408 of_node_put(cpu); 409 410 if (numa_domain < MAX_NUMNODES && 411 max_domain < numa_domain) 412 max_domain = numa_domain; 413 } 414 } 415 416 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 417 memory = NULL; 418 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { 419 unsigned long start; 420 unsigned long size; 421 int numa_domain; 422 int ranges; 423 unsigned int *memcell_buf; 424 unsigned int len; 425 426 memcell_buf = (unsigned int *)get_property(memory, 427 "linux,usable-memory", &len); 428 if (!memcell_buf || len <= 0) 429 memcell_buf = 430 (unsigned int *)get_property(memory, "reg", 431 &len); 432 if (!memcell_buf || len <= 0) 433 continue; 434 435 /* ranges in cell */ 436 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 437 new_range: 438 /* these are order-sensitive, and modify the buffer pointer */ 439 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 440 size = read_n_cells(n_mem_size_cells, &memcell_buf); 441 442 numa_domain = of_node_numa_domain(memory); 443 444 if (numa_domain >= MAX_NUMNODES) { 445 if (numa_domain != 0xffff) 446 printk(KERN_ERR "WARNING: memory at %lx maps " 447 "to invalid NUMA node %d\n", start, 448 numa_domain); 449 numa_domain = 0; 450 } 451 452 if (max_domain < numa_domain) 453 max_domain = numa_domain; 454 455 if (!(size = numa_enforce_memory_limit(start, size))) { 456 if (--ranges) 457 goto new_range; 458 else 459 continue; 460 } 461 462 add_region(numa_domain, start >> PAGE_SHIFT, 463 size >> PAGE_SHIFT); 464 465 if (--ranges) 466 goto new_range; 467 } 468 469 for (i = 0; i <= max_domain; i++) 470 node_set_online(i); 471 472 return 0; 473 } 474 475 static void __init setup_nonnuma(void) 476 { 477 unsigned long top_of_ram = lmb_end_of_DRAM(); 478 unsigned long total_ram = lmb_phys_mem_size(); 479 unsigned int i; 480 481 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 482 top_of_ram, total_ram); 483 printk(KERN_INFO "Memory hole size: %ldMB\n", 484 (top_of_ram - total_ram) >> 20); 485 486 map_cpu_to_node(boot_cpuid, 0); 487 for (i = 0; i < lmb.memory.cnt; ++i) 488 add_region(0, lmb.memory.region[i].base >> PAGE_SHIFT, 489 lmb_size_pages(&lmb.memory, i)); 490 node_set_online(0); 491 } 492 493 void __init dump_numa_cpu_topology(void) 494 { 495 unsigned int node; 496 unsigned int cpu, count; 497 498 if (min_common_depth == -1 || !numa_enabled) 499 return; 500 501 for_each_online_node(node) { 502 printk(KERN_INFO "Node %d CPUs:", node); 503 504 count = 0; 505 /* 506 * If we used a CPU iterator here we would miss printing 507 * the holes in the cpumap. 508 */ 509 for (cpu = 0; cpu < NR_CPUS; cpu++) { 510 if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) { 511 if (count == 0) 512 printk(" %u", cpu); 513 ++count; 514 } else { 515 if (count > 1) 516 printk("-%u", cpu - 1); 517 count = 0; 518 } 519 } 520 521 if (count > 1) 522 printk("-%u", NR_CPUS - 1); 523 printk("\n"); 524 } 525 } 526 527 static void __init dump_numa_memory_topology(void) 528 { 529 unsigned int node; 530 unsigned int count; 531 532 if (min_common_depth == -1 || !numa_enabled) 533 return; 534 535 for_each_online_node(node) { 536 unsigned long i; 537 538 printk(KERN_INFO "Node %d Memory:", node); 539 540 count = 0; 541 542 for (i = 0; i < lmb_end_of_DRAM(); 543 i += (1 << SECTION_SIZE_BITS)) { 544 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { 545 if (count == 0) 546 printk(" 0x%lx", i); 547 ++count; 548 } else { 549 if (count > 0) 550 printk("-0x%lx", i); 551 count = 0; 552 } 553 } 554 555 if (count > 0) 556 printk("-0x%lx", i); 557 printk("\n"); 558 } 559 } 560 561 /* 562 * Allocate some memory, satisfying the lmb or bootmem allocator where 563 * required. nid is the preferred node and end is the physical address of 564 * the highest address in the node. 565 * 566 * Returns the physical address of the memory. 567 */ 568 static void __init *careful_allocation(int nid, unsigned long size, 569 unsigned long align, 570 unsigned long end_pfn) 571 { 572 int new_nid; 573 unsigned long ret = lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT); 574 575 /* retry over all memory */ 576 if (!ret) 577 ret = lmb_alloc_base(size, align, lmb_end_of_DRAM()); 578 579 if (!ret) 580 panic("numa.c: cannot allocate %lu bytes on node %d", 581 size, nid); 582 583 /* 584 * If the memory came from a previously allocated node, we must 585 * retry with the bootmem allocator. 586 */ 587 new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT); 588 if (new_nid < nid) { 589 ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid), 590 size, align, 0); 591 592 if (!ret) 593 panic("numa.c: cannot allocate %lu bytes on node %d", 594 size, new_nid); 595 596 ret = __pa(ret); 597 598 dbg("alloc_bootmem %lx %lx\n", ret, size); 599 } 600 601 return (void *)ret; 602 } 603 604 void __init do_init_bootmem(void) 605 { 606 int nid; 607 unsigned int i; 608 static struct notifier_block ppc64_numa_nb = { 609 .notifier_call = cpu_numa_callback, 610 .priority = 1 /* Must run before sched domains notifier. */ 611 }; 612 613 min_low_pfn = 0; 614 max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT; 615 max_pfn = max_low_pfn; 616 617 if (parse_numa_properties()) 618 setup_nonnuma(); 619 else 620 dump_numa_memory_topology(); 621 622 register_cpu_notifier(&ppc64_numa_nb); 623 624 for_each_online_node(nid) { 625 unsigned long start_pfn, end_pfn, pages_present; 626 unsigned long bootmem_paddr; 627 unsigned long bootmap_pages; 628 629 get_region(nid, &start_pfn, &end_pfn, &pages_present); 630 631 /* Allocate the node structure node local if possible */ 632 NODE_DATA(nid) = careful_allocation(nid, 633 sizeof(struct pglist_data), 634 SMP_CACHE_BYTES, end_pfn); 635 NODE_DATA(nid) = __va(NODE_DATA(nid)); 636 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); 637 638 dbg("node %d\n", nid); 639 dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); 640 641 NODE_DATA(nid)->bdata = &plat_node_bdata[nid]; 642 NODE_DATA(nid)->node_start_pfn = start_pfn; 643 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; 644 645 if (NODE_DATA(nid)->node_spanned_pages == 0) 646 continue; 647 648 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); 649 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); 650 651 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); 652 bootmem_paddr = (unsigned long)careful_allocation(nid, 653 bootmap_pages << PAGE_SHIFT, 654 PAGE_SIZE, end_pfn); 655 memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT); 656 657 dbg("bootmap_paddr = %lx\n", bootmem_paddr); 658 659 init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT, 660 start_pfn, end_pfn); 661 662 /* Add free regions on this node */ 663 for (i = 0; init_node_data[i].end_pfn; i++) { 664 unsigned long start, end; 665 666 if (init_node_data[i].nid != nid) 667 continue; 668 669 start = init_node_data[i].start_pfn << PAGE_SHIFT; 670 end = init_node_data[i].end_pfn << PAGE_SHIFT; 671 672 dbg("free_bootmem %lx %lx\n", start, end - start); 673 free_bootmem_node(NODE_DATA(nid), start, end - start); 674 } 675 676 /* Mark reserved regions on this node */ 677 for (i = 0; i < lmb.reserved.cnt; i++) { 678 unsigned long physbase = lmb.reserved.region[i].base; 679 unsigned long size = lmb.reserved.region[i].size; 680 unsigned long start_paddr = start_pfn << PAGE_SHIFT; 681 unsigned long end_paddr = end_pfn << PAGE_SHIFT; 682 683 if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid && 684 early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid) 685 continue; 686 687 if (physbase < end_paddr && 688 (physbase+size) > start_paddr) { 689 /* overlaps */ 690 if (physbase < start_paddr) { 691 size -= start_paddr - physbase; 692 physbase = start_paddr; 693 } 694 695 if (size > end_paddr - physbase) 696 size = end_paddr - physbase; 697 698 dbg("reserve_bootmem %lx %lx\n", physbase, 699 size); 700 reserve_bootmem_node(NODE_DATA(nid), physbase, 701 size); 702 } 703 } 704 705 /* Add regions into sparsemem */ 706 for (i = 0; init_node_data[i].end_pfn; i++) { 707 unsigned long start, end; 708 709 if (init_node_data[i].nid != nid) 710 continue; 711 712 start = init_node_data[i].start_pfn; 713 end = init_node_data[i].end_pfn; 714 715 memory_present(nid, start, end); 716 } 717 } 718 } 719 720 void __init paging_init(void) 721 { 722 unsigned long zones_size[MAX_NR_ZONES]; 723 unsigned long zholes_size[MAX_NR_ZONES]; 724 int nid; 725 726 memset(zones_size, 0, sizeof(zones_size)); 727 memset(zholes_size, 0, sizeof(zholes_size)); 728 729 for_each_online_node(nid) { 730 unsigned long start_pfn, end_pfn, pages_present; 731 732 get_region(nid, &start_pfn, &end_pfn, &pages_present); 733 734 zones_size[ZONE_DMA] = end_pfn - start_pfn; 735 zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - pages_present; 736 737 dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid, 738 zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]); 739 740 free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn, 741 zholes_size); 742 } 743 } 744 745 static int __init early_numa(char *p) 746 { 747 if (!p) 748 return 0; 749 750 if (strstr(p, "off")) 751 numa_enabled = 0; 752 753 if (strstr(p, "debug")) 754 numa_debug = 1; 755 756 return 0; 757 } 758 early_param("numa", early_numa); 759 760 #ifdef CONFIG_MEMORY_HOTPLUG 761 /* 762 * Find the node associated with a hot added memory section. Section 763 * corresponds to a SPARSEMEM section, not an LMB. It is assumed that 764 * sections are fully contained within a single LMB. 765 */ 766 int hot_add_scn_to_nid(unsigned long scn_addr) 767 { 768 struct device_node *memory = NULL; 769 nodemask_t nodes; 770 int numa_domain = 0; 771 772 if (!numa_enabled || (min_common_depth < 0)) 773 return numa_domain; 774 775 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { 776 unsigned long start, size; 777 int ranges; 778 unsigned int *memcell_buf; 779 unsigned int len; 780 781 memcell_buf = (unsigned int *)get_property(memory, "reg", &len); 782 if (!memcell_buf || len <= 0) 783 continue; 784 785 /* ranges in cell */ 786 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 787 ha_new_range: 788 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 789 size = read_n_cells(n_mem_size_cells, &memcell_buf); 790 numa_domain = of_node_numa_domain(memory); 791 792 /* Domains not present at boot default to 0 */ 793 if (!node_online(numa_domain)) 794 numa_domain = any_online_node(NODE_MASK_ALL); 795 796 if ((scn_addr >= start) && (scn_addr < (start + size))) { 797 of_node_put(memory); 798 goto got_numa_domain; 799 } 800 801 if (--ranges) /* process all ranges in cell */ 802 goto ha_new_range; 803 } 804 BUG(); /* section address should be found above */ 805 806 /* Temporary code to ensure that returned node is not empty */ 807 got_numa_domain: 808 nodes_setall(nodes); 809 while (NODE_DATA(numa_domain)->node_spanned_pages == 0) { 810 node_clear(numa_domain, nodes); 811 numa_domain = any_online_node(nodes); 812 } 813 return numa_domain; 814 } 815 #endif /* CONFIG_MEMORY_HOTPLUG */ 816