xref: /openbmc/linux/arch/powerpc/mm/numa.c (revision 87c2ce3b)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <asm/sparsemem.h>
21 #include <asm/lmb.h>
22 #include <asm/system.h>
23 #include <asm/smp.h>
24 
25 static int numa_enabled = 1;
26 
27 static int numa_debug;
28 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
29 
30 int numa_cpu_lookup_table[NR_CPUS];
31 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
32 struct pglist_data *node_data[MAX_NUMNODES];
33 
34 EXPORT_SYMBOL(numa_cpu_lookup_table);
35 EXPORT_SYMBOL(numa_cpumask_lookup_table);
36 EXPORT_SYMBOL(node_data);
37 
38 static bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
39 static int min_common_depth;
40 static int n_mem_addr_cells, n_mem_size_cells;
41 
42 /*
43  * We need somewhere to store start/end/node for each region until we have
44  * allocated the real node_data structures.
45  */
46 #define MAX_REGIONS	(MAX_LMB_REGIONS*2)
47 static struct {
48 	unsigned long start_pfn;
49 	unsigned long end_pfn;
50 	int nid;
51 } init_node_data[MAX_REGIONS] __initdata;
52 
53 int __init early_pfn_to_nid(unsigned long pfn)
54 {
55 	unsigned int i;
56 
57 	for (i = 0; init_node_data[i].end_pfn; i++) {
58 		unsigned long start_pfn = init_node_data[i].start_pfn;
59 		unsigned long end_pfn = init_node_data[i].end_pfn;
60 
61 		if ((start_pfn <= pfn) && (pfn < end_pfn))
62 			return init_node_data[i].nid;
63 	}
64 
65 	return -1;
66 }
67 
68 void __init add_region(unsigned int nid, unsigned long start_pfn,
69 		       unsigned long pages)
70 {
71 	unsigned int i;
72 
73 	dbg("add_region nid %d start_pfn 0x%lx pages 0x%lx\n",
74 		nid, start_pfn, pages);
75 
76 	for (i = 0; init_node_data[i].end_pfn; i++) {
77 		if (init_node_data[i].nid != nid)
78 			continue;
79 		if (init_node_data[i].end_pfn == start_pfn) {
80 			init_node_data[i].end_pfn += pages;
81 			return;
82 		}
83 		if (init_node_data[i].start_pfn == (start_pfn + pages)) {
84 			init_node_data[i].start_pfn -= pages;
85 			return;
86 		}
87 	}
88 
89 	/*
90 	 * Leave last entry NULL so we dont iterate off the end (we use
91 	 * entry.end_pfn to terminate the walk).
92 	 */
93 	if (i >= (MAX_REGIONS - 1)) {
94 		printk(KERN_ERR "WARNING: too many memory regions in "
95 				"numa code, truncating\n");
96 		return;
97 	}
98 
99 	init_node_data[i].start_pfn = start_pfn;
100 	init_node_data[i].end_pfn = start_pfn + pages;
101 	init_node_data[i].nid = nid;
102 }
103 
104 /* We assume init_node_data has no overlapping regions */
105 void __init get_region(unsigned int nid, unsigned long *start_pfn,
106 		       unsigned long *end_pfn, unsigned long *pages_present)
107 {
108 	unsigned int i;
109 
110 	*start_pfn = -1UL;
111 	*end_pfn = *pages_present = 0;
112 
113 	for (i = 0; init_node_data[i].end_pfn; i++) {
114 		if (init_node_data[i].nid != nid)
115 			continue;
116 
117 		*pages_present += init_node_data[i].end_pfn -
118 			init_node_data[i].start_pfn;
119 
120 		if (init_node_data[i].start_pfn < *start_pfn)
121 			*start_pfn = init_node_data[i].start_pfn;
122 
123 		if (init_node_data[i].end_pfn > *end_pfn)
124 			*end_pfn = init_node_data[i].end_pfn;
125 	}
126 
127 	/* We didnt find a matching region, return start/end as 0 */
128 	if (*start_pfn == -1UL)
129 		*start_pfn = 0;
130 }
131 
132 static inline void map_cpu_to_node(int cpu, int node)
133 {
134 	numa_cpu_lookup_table[cpu] = node;
135 
136 	if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
137 		cpu_set(cpu, numa_cpumask_lookup_table[node]);
138 }
139 
140 #ifdef CONFIG_HOTPLUG_CPU
141 static void unmap_cpu_from_node(unsigned long cpu)
142 {
143 	int node = numa_cpu_lookup_table[cpu];
144 
145 	dbg("removing cpu %lu from node %d\n", cpu, node);
146 
147 	if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
148 		cpu_clear(cpu, numa_cpumask_lookup_table[node]);
149 	} else {
150 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
151 		       cpu, node);
152 	}
153 }
154 #endif /* CONFIG_HOTPLUG_CPU */
155 
156 static struct device_node *find_cpu_node(unsigned int cpu)
157 {
158 	unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
159 	struct device_node *cpu_node = NULL;
160 	unsigned int *interrupt_server, *reg;
161 	int len;
162 
163 	while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
164 		/* Try interrupt server first */
165 		interrupt_server = (unsigned int *)get_property(cpu_node,
166 					"ibm,ppc-interrupt-server#s", &len);
167 
168 		len = len / sizeof(u32);
169 
170 		if (interrupt_server && (len > 0)) {
171 			while (len--) {
172 				if (interrupt_server[len] == hw_cpuid)
173 					return cpu_node;
174 			}
175 		} else {
176 			reg = (unsigned int *)get_property(cpu_node,
177 							   "reg", &len);
178 			if (reg && (len > 0) && (reg[0] == hw_cpuid))
179 				return cpu_node;
180 		}
181 	}
182 
183 	return NULL;
184 }
185 
186 /* must hold reference to node during call */
187 static int *of_get_associativity(struct device_node *dev)
188 {
189 	return (unsigned int *)get_property(dev, "ibm,associativity", NULL);
190 }
191 
192 static int of_node_numa_domain(struct device_node *device)
193 {
194 	int numa_domain;
195 	unsigned int *tmp;
196 
197 	if (min_common_depth == -1)
198 		return 0;
199 
200 	tmp = of_get_associativity(device);
201 	if (tmp && (tmp[0] >= min_common_depth)) {
202 		numa_domain = tmp[min_common_depth];
203 	} else {
204 		dbg("WARNING: no NUMA information for %s\n",
205 		    device->full_name);
206 		numa_domain = 0;
207 	}
208 	return numa_domain;
209 }
210 
211 /*
212  * In theory, the "ibm,associativity" property may contain multiple
213  * associativity lists because a resource may be multiply connected
214  * into the machine.  This resource then has different associativity
215  * characteristics relative to its multiple connections.  We ignore
216  * this for now.  We also assume that all cpu and memory sets have
217  * their distances represented at a common level.  This won't be
218  * true for heirarchical NUMA.
219  *
220  * In any case the ibm,associativity-reference-points should give
221  * the correct depth for a normal NUMA system.
222  *
223  * - Dave Hansen <haveblue@us.ibm.com>
224  */
225 static int __init find_min_common_depth(void)
226 {
227 	int depth;
228 	unsigned int *ref_points;
229 	struct device_node *rtas_root;
230 	unsigned int len;
231 
232 	rtas_root = of_find_node_by_path("/rtas");
233 
234 	if (!rtas_root)
235 		return -1;
236 
237 	/*
238 	 * this property is 2 32-bit integers, each representing a level of
239 	 * depth in the associativity nodes.  The first is for an SMP
240 	 * configuration (should be all 0's) and the second is for a normal
241 	 * NUMA configuration.
242 	 */
243 	ref_points = (unsigned int *)get_property(rtas_root,
244 			"ibm,associativity-reference-points", &len);
245 
246 	if ((len >= 1) && ref_points) {
247 		depth = ref_points[1];
248 	} else {
249 		dbg("WARNING: could not find NUMA "
250 		    "associativity reference point\n");
251 		depth = -1;
252 	}
253 	of_node_put(rtas_root);
254 
255 	return depth;
256 }
257 
258 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
259 {
260 	struct device_node *memory = NULL;
261 
262 	memory = of_find_node_by_type(memory, "memory");
263 	if (!memory)
264 		panic("numa.c: No memory nodes found!");
265 
266 	*n_addr_cells = prom_n_addr_cells(memory);
267 	*n_size_cells = prom_n_size_cells(memory);
268 	of_node_put(memory);
269 }
270 
271 static unsigned long __devinit read_n_cells(int n, unsigned int **buf)
272 {
273 	unsigned long result = 0;
274 
275 	while (n--) {
276 		result = (result << 32) | **buf;
277 		(*buf)++;
278 	}
279 	return result;
280 }
281 
282 /*
283  * Figure out to which domain a cpu belongs and stick it there.
284  * Return the id of the domain used.
285  */
286 static int numa_setup_cpu(unsigned long lcpu)
287 {
288 	int numa_domain = 0;
289 	struct device_node *cpu = find_cpu_node(lcpu);
290 
291 	if (!cpu) {
292 		WARN_ON(1);
293 		goto out;
294 	}
295 
296 	numa_domain = of_node_numa_domain(cpu);
297 
298 	if (numa_domain >= num_online_nodes()) {
299 		/*
300 		 * POWER4 LPAR uses 0xffff as invalid node,
301 		 * dont warn in this case.
302 		 */
303 		if (numa_domain != 0xffff)
304 			printk(KERN_ERR "WARNING: cpu %ld "
305 			       "maps to invalid NUMA node %d\n",
306 			       lcpu, numa_domain);
307 		numa_domain = 0;
308 	}
309 out:
310 	node_set_online(numa_domain);
311 
312 	map_cpu_to_node(lcpu, numa_domain);
313 
314 	of_node_put(cpu);
315 
316 	return numa_domain;
317 }
318 
319 static int cpu_numa_callback(struct notifier_block *nfb,
320 			     unsigned long action,
321 			     void *hcpu)
322 {
323 	unsigned long lcpu = (unsigned long)hcpu;
324 	int ret = NOTIFY_DONE;
325 
326 	switch (action) {
327 	case CPU_UP_PREPARE:
328 		if (min_common_depth == -1 || !numa_enabled)
329 			map_cpu_to_node(lcpu, 0);
330 		else
331 			numa_setup_cpu(lcpu);
332 		ret = NOTIFY_OK;
333 		break;
334 #ifdef CONFIG_HOTPLUG_CPU
335 	case CPU_DEAD:
336 	case CPU_UP_CANCELED:
337 		unmap_cpu_from_node(lcpu);
338 		break;
339 		ret = NOTIFY_OK;
340 #endif
341 	}
342 	return ret;
343 }
344 
345 /*
346  * Check and possibly modify a memory region to enforce the memory limit.
347  *
348  * Returns the size the region should have to enforce the memory limit.
349  * This will either be the original value of size, a truncated value,
350  * or zero. If the returned value of size is 0 the region should be
351  * discarded as it lies wholy above the memory limit.
352  */
353 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
354 						      unsigned long size)
355 {
356 	/*
357 	 * We use lmb_end_of_DRAM() in here instead of memory_limit because
358 	 * we've already adjusted it for the limit and it takes care of
359 	 * having memory holes below the limit.
360 	 */
361 
362 	if (! memory_limit)
363 		return size;
364 
365 	if (start + size <= lmb_end_of_DRAM())
366 		return size;
367 
368 	if (start >= lmb_end_of_DRAM())
369 		return 0;
370 
371 	return lmb_end_of_DRAM() - start;
372 }
373 
374 static int __init parse_numa_properties(void)
375 {
376 	struct device_node *cpu = NULL;
377 	struct device_node *memory = NULL;
378 	int max_domain;
379 	unsigned long i;
380 
381 	if (numa_enabled == 0) {
382 		printk(KERN_WARNING "NUMA disabled by user\n");
383 		return -1;
384 	}
385 
386 	min_common_depth = find_min_common_depth();
387 
388 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
389 	if (min_common_depth < 0)
390 		return min_common_depth;
391 
392 	max_domain = numa_setup_cpu(boot_cpuid);
393 
394 	/*
395 	 * Even though we connect cpus to numa domains later in SMP init,
396 	 * we need to know the maximum node id now. This is because each
397 	 * node id must have NODE_DATA etc backing it.
398 	 * As a result of hotplug we could still have cpus appear later on
399 	 * with larger node ids. In that case we force the cpu into node 0.
400 	 */
401 	for_each_cpu(i) {
402 		int numa_domain;
403 
404 		cpu = find_cpu_node(i);
405 
406 		if (cpu) {
407 			numa_domain = of_node_numa_domain(cpu);
408 			of_node_put(cpu);
409 
410 			if (numa_domain < MAX_NUMNODES &&
411 			    max_domain < numa_domain)
412 				max_domain = numa_domain;
413 		}
414 	}
415 
416 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
417 	memory = NULL;
418 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
419 		unsigned long start;
420 		unsigned long size;
421 		int numa_domain;
422 		int ranges;
423 		unsigned int *memcell_buf;
424 		unsigned int len;
425 
426 		memcell_buf = (unsigned int *)get_property(memory,
427 			"linux,usable-memory", &len);
428 		if (!memcell_buf || len <= 0)
429 			memcell_buf =
430 				(unsigned int *)get_property(memory, "reg",
431 					&len);
432 		if (!memcell_buf || len <= 0)
433 			continue;
434 
435 		/* ranges in cell */
436 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
437 new_range:
438 		/* these are order-sensitive, and modify the buffer pointer */
439 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
440 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
441 
442 		numa_domain = of_node_numa_domain(memory);
443 
444 		if (numa_domain >= MAX_NUMNODES) {
445 			if (numa_domain != 0xffff)
446 				printk(KERN_ERR "WARNING: memory at %lx maps "
447 				       "to invalid NUMA node %d\n", start,
448 				       numa_domain);
449 			numa_domain = 0;
450 		}
451 
452 		if (max_domain < numa_domain)
453 			max_domain = numa_domain;
454 
455 		if (!(size = numa_enforce_memory_limit(start, size))) {
456 			if (--ranges)
457 				goto new_range;
458 			else
459 				continue;
460 		}
461 
462 		add_region(numa_domain, start >> PAGE_SHIFT,
463 			   size >> PAGE_SHIFT);
464 
465 		if (--ranges)
466 			goto new_range;
467 	}
468 
469 	for (i = 0; i <= max_domain; i++)
470 		node_set_online(i);
471 
472 	return 0;
473 }
474 
475 static void __init setup_nonnuma(void)
476 {
477 	unsigned long top_of_ram = lmb_end_of_DRAM();
478 	unsigned long total_ram = lmb_phys_mem_size();
479 	unsigned int i;
480 
481 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
482 	       top_of_ram, total_ram);
483 	printk(KERN_INFO "Memory hole size: %ldMB\n",
484 	       (top_of_ram - total_ram) >> 20);
485 
486 	map_cpu_to_node(boot_cpuid, 0);
487 	for (i = 0; i < lmb.memory.cnt; ++i)
488 		add_region(0, lmb.memory.region[i].base >> PAGE_SHIFT,
489 			   lmb_size_pages(&lmb.memory, i));
490 	node_set_online(0);
491 }
492 
493 void __init dump_numa_cpu_topology(void)
494 {
495 	unsigned int node;
496 	unsigned int cpu, count;
497 
498 	if (min_common_depth == -1 || !numa_enabled)
499 		return;
500 
501 	for_each_online_node(node) {
502 		printk(KERN_INFO "Node %d CPUs:", node);
503 
504 		count = 0;
505 		/*
506 		 * If we used a CPU iterator here we would miss printing
507 		 * the holes in the cpumap.
508 		 */
509 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
510 			if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
511 				if (count == 0)
512 					printk(" %u", cpu);
513 				++count;
514 			} else {
515 				if (count > 1)
516 					printk("-%u", cpu - 1);
517 				count = 0;
518 			}
519 		}
520 
521 		if (count > 1)
522 			printk("-%u", NR_CPUS - 1);
523 		printk("\n");
524 	}
525 }
526 
527 static void __init dump_numa_memory_topology(void)
528 {
529 	unsigned int node;
530 	unsigned int count;
531 
532 	if (min_common_depth == -1 || !numa_enabled)
533 		return;
534 
535 	for_each_online_node(node) {
536 		unsigned long i;
537 
538 		printk(KERN_INFO "Node %d Memory:", node);
539 
540 		count = 0;
541 
542 		for (i = 0; i < lmb_end_of_DRAM();
543 		     i += (1 << SECTION_SIZE_BITS)) {
544 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
545 				if (count == 0)
546 					printk(" 0x%lx", i);
547 				++count;
548 			} else {
549 				if (count > 0)
550 					printk("-0x%lx", i);
551 				count = 0;
552 			}
553 		}
554 
555 		if (count > 0)
556 			printk("-0x%lx", i);
557 		printk("\n");
558 	}
559 }
560 
561 /*
562  * Allocate some memory, satisfying the lmb or bootmem allocator where
563  * required. nid is the preferred node and end is the physical address of
564  * the highest address in the node.
565  *
566  * Returns the physical address of the memory.
567  */
568 static void __init *careful_allocation(int nid, unsigned long size,
569 				       unsigned long align,
570 				       unsigned long end_pfn)
571 {
572 	int new_nid;
573 	unsigned long ret = lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
574 
575 	/* retry over all memory */
576 	if (!ret)
577 		ret = lmb_alloc_base(size, align, lmb_end_of_DRAM());
578 
579 	if (!ret)
580 		panic("numa.c: cannot allocate %lu bytes on node %d",
581 		      size, nid);
582 
583 	/*
584 	 * If the memory came from a previously allocated node, we must
585 	 * retry with the bootmem allocator.
586 	 */
587 	new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
588 	if (new_nid < nid) {
589 		ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
590 				size, align, 0);
591 
592 		if (!ret)
593 			panic("numa.c: cannot allocate %lu bytes on node %d",
594 			      size, new_nid);
595 
596 		ret = __pa(ret);
597 
598 		dbg("alloc_bootmem %lx %lx\n", ret, size);
599 	}
600 
601 	return (void *)ret;
602 }
603 
604 void __init do_init_bootmem(void)
605 {
606 	int nid;
607 	unsigned int i;
608 	static struct notifier_block ppc64_numa_nb = {
609 		.notifier_call = cpu_numa_callback,
610 		.priority = 1 /* Must run before sched domains notifier. */
611 	};
612 
613 	min_low_pfn = 0;
614 	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
615 	max_pfn = max_low_pfn;
616 
617 	if (parse_numa_properties())
618 		setup_nonnuma();
619 	else
620 		dump_numa_memory_topology();
621 
622 	register_cpu_notifier(&ppc64_numa_nb);
623 
624 	for_each_online_node(nid) {
625 		unsigned long start_pfn, end_pfn, pages_present;
626 		unsigned long bootmem_paddr;
627 		unsigned long bootmap_pages;
628 
629 		get_region(nid, &start_pfn, &end_pfn, &pages_present);
630 
631 		/* Allocate the node structure node local if possible */
632 		NODE_DATA(nid) = careful_allocation(nid,
633 					sizeof(struct pglist_data),
634 					SMP_CACHE_BYTES, end_pfn);
635 		NODE_DATA(nid) = __va(NODE_DATA(nid));
636 		memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
637 
638   		dbg("node %d\n", nid);
639 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
640 
641 		NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
642 		NODE_DATA(nid)->node_start_pfn = start_pfn;
643 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
644 
645 		if (NODE_DATA(nid)->node_spanned_pages == 0)
646   			continue;
647 
648   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
649   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
650 
651 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
652 		bootmem_paddr = (unsigned long)careful_allocation(nid,
653 					bootmap_pages << PAGE_SHIFT,
654 					PAGE_SIZE, end_pfn);
655 		memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
656 
657 		dbg("bootmap_paddr = %lx\n", bootmem_paddr);
658 
659 		init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
660 				  start_pfn, end_pfn);
661 
662 		/* Add free regions on this node */
663 		for (i = 0; init_node_data[i].end_pfn; i++) {
664 			unsigned long start, end;
665 
666 			if (init_node_data[i].nid != nid)
667 				continue;
668 
669 			start = init_node_data[i].start_pfn << PAGE_SHIFT;
670 			end = init_node_data[i].end_pfn << PAGE_SHIFT;
671 
672 			dbg("free_bootmem %lx %lx\n", start, end - start);
673   			free_bootmem_node(NODE_DATA(nid), start, end - start);
674 		}
675 
676 		/* Mark reserved regions on this node */
677 		for (i = 0; i < lmb.reserved.cnt; i++) {
678 			unsigned long physbase = lmb.reserved.region[i].base;
679 			unsigned long size = lmb.reserved.region[i].size;
680 			unsigned long start_paddr = start_pfn << PAGE_SHIFT;
681 			unsigned long end_paddr = end_pfn << PAGE_SHIFT;
682 
683 			if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid &&
684 			    early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid)
685 				continue;
686 
687 			if (physbase < end_paddr &&
688 			    (physbase+size) > start_paddr) {
689 				/* overlaps */
690 				if (physbase < start_paddr) {
691 					size -= start_paddr - physbase;
692 					physbase = start_paddr;
693 				}
694 
695 				if (size > end_paddr - physbase)
696 					size = end_paddr - physbase;
697 
698 				dbg("reserve_bootmem %lx %lx\n", physbase,
699 				    size);
700 				reserve_bootmem_node(NODE_DATA(nid), physbase,
701 						     size);
702 			}
703 		}
704 
705 		/* Add regions into sparsemem */
706 		for (i = 0; init_node_data[i].end_pfn; i++) {
707 			unsigned long start, end;
708 
709 			if (init_node_data[i].nid != nid)
710 				continue;
711 
712 			start = init_node_data[i].start_pfn;
713 			end = init_node_data[i].end_pfn;
714 
715 			memory_present(nid, start, end);
716 		}
717 	}
718 }
719 
720 void __init paging_init(void)
721 {
722 	unsigned long zones_size[MAX_NR_ZONES];
723 	unsigned long zholes_size[MAX_NR_ZONES];
724 	int nid;
725 
726 	memset(zones_size, 0, sizeof(zones_size));
727 	memset(zholes_size, 0, sizeof(zholes_size));
728 
729 	for_each_online_node(nid) {
730 		unsigned long start_pfn, end_pfn, pages_present;
731 
732 		get_region(nid, &start_pfn, &end_pfn, &pages_present);
733 
734 		zones_size[ZONE_DMA] = end_pfn - start_pfn;
735 		zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - pages_present;
736 
737 		dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid,
738 		    zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]);
739 
740 		free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn,
741 				    zholes_size);
742 	}
743 }
744 
745 static int __init early_numa(char *p)
746 {
747 	if (!p)
748 		return 0;
749 
750 	if (strstr(p, "off"))
751 		numa_enabled = 0;
752 
753 	if (strstr(p, "debug"))
754 		numa_debug = 1;
755 
756 	return 0;
757 }
758 early_param("numa", early_numa);
759 
760 #ifdef CONFIG_MEMORY_HOTPLUG
761 /*
762  * Find the node associated with a hot added memory section.  Section
763  * corresponds to a SPARSEMEM section, not an LMB.  It is assumed that
764  * sections are fully contained within a single LMB.
765  */
766 int hot_add_scn_to_nid(unsigned long scn_addr)
767 {
768 	struct device_node *memory = NULL;
769 	nodemask_t nodes;
770 	int numa_domain = 0;
771 
772 	if (!numa_enabled || (min_common_depth < 0))
773 		return numa_domain;
774 
775 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
776 		unsigned long start, size;
777 		int ranges;
778 		unsigned int *memcell_buf;
779 		unsigned int len;
780 
781 		memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
782 		if (!memcell_buf || len <= 0)
783 			continue;
784 
785 		/* ranges in cell */
786 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
787 ha_new_range:
788 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
789 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
790 		numa_domain = of_node_numa_domain(memory);
791 
792 		/* Domains not present at boot default to 0 */
793 		if (!node_online(numa_domain))
794 			numa_domain = any_online_node(NODE_MASK_ALL);
795 
796 		if ((scn_addr >= start) && (scn_addr < (start + size))) {
797 			of_node_put(memory);
798 			goto got_numa_domain;
799 		}
800 
801 		if (--ranges)		/* process all ranges in cell */
802 			goto ha_new_range;
803 	}
804 	BUG();	/* section address should be found above */
805 
806 	/* Temporary code to ensure that returned node is not empty */
807 got_numa_domain:
808 	nodes_setall(nodes);
809 	while (NODE_DATA(numa_domain)->node_spanned_pages == 0) {
810 		node_clear(numa_domain, nodes);
811 		numa_domain = any_online_node(nodes);
812 	}
813 	return numa_domain;
814 }
815 #endif /* CONFIG_MEMORY_HOTPLUG */
816