xref: /openbmc/linux/arch/powerpc/mm/numa.c (revision 7dd65feb)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/lmb.h>
21 #include <linux/of.h>
22 #include <linux/pfn.h>
23 #include <asm/sparsemem.h>
24 #include <asm/prom.h>
25 #include <asm/system.h>
26 #include <asm/smp.h>
27 
28 static int numa_enabled = 1;
29 
30 static char *cmdline __initdata;
31 
32 static int numa_debug;
33 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
34 
35 int numa_cpu_lookup_table[NR_CPUS];
36 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
37 struct pglist_data *node_data[MAX_NUMNODES];
38 
39 EXPORT_SYMBOL(numa_cpu_lookup_table);
40 EXPORT_SYMBOL(numa_cpumask_lookup_table);
41 EXPORT_SYMBOL(node_data);
42 
43 static int min_common_depth;
44 static int n_mem_addr_cells, n_mem_size_cells;
45 
46 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
47 						unsigned int *nid)
48 {
49 	unsigned long long mem;
50 	char *p = cmdline;
51 	static unsigned int fake_nid;
52 	static unsigned long long curr_boundary;
53 
54 	/*
55 	 * Modify node id, iff we started creating NUMA nodes
56 	 * We want to continue from where we left of the last time
57 	 */
58 	if (fake_nid)
59 		*nid = fake_nid;
60 	/*
61 	 * In case there are no more arguments to parse, the
62 	 * node_id should be the same as the last fake node id
63 	 * (we've handled this above).
64 	 */
65 	if (!p)
66 		return 0;
67 
68 	mem = memparse(p, &p);
69 	if (!mem)
70 		return 0;
71 
72 	if (mem < curr_boundary)
73 		return 0;
74 
75 	curr_boundary = mem;
76 
77 	if ((end_pfn << PAGE_SHIFT) > mem) {
78 		/*
79 		 * Skip commas and spaces
80 		 */
81 		while (*p == ',' || *p == ' ' || *p == '\t')
82 			p++;
83 
84 		cmdline = p;
85 		fake_nid++;
86 		*nid = fake_nid;
87 		dbg("created new fake_node with id %d\n", fake_nid);
88 		return 1;
89 	}
90 	return 0;
91 }
92 
93 /*
94  * get_active_region_work_fn - A helper function for get_node_active_region
95  *	Returns datax set to the start_pfn and end_pfn if they contain
96  *	the initial value of datax->start_pfn between them
97  * @start_pfn: start page(inclusive) of region to check
98  * @end_pfn: end page(exclusive) of region to check
99  * @datax: comes in with ->start_pfn set to value to search for and
100  *	goes out with active range if it contains it
101  * Returns 1 if search value is in range else 0
102  */
103 static int __init get_active_region_work_fn(unsigned long start_pfn,
104 					unsigned long end_pfn, void *datax)
105 {
106 	struct node_active_region *data;
107 	data = (struct node_active_region *)datax;
108 
109 	if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
110 		data->start_pfn = start_pfn;
111 		data->end_pfn = end_pfn;
112 		return 1;
113 	}
114 	return 0;
115 
116 }
117 
118 /*
119  * get_node_active_region - Return active region containing start_pfn
120  * Active range returned is empty if none found.
121  * @start_pfn: The page to return the region for.
122  * @node_ar: Returned set to the active region containing start_pfn
123  */
124 static void __init get_node_active_region(unsigned long start_pfn,
125 		       struct node_active_region *node_ar)
126 {
127 	int nid = early_pfn_to_nid(start_pfn);
128 
129 	node_ar->nid = nid;
130 	node_ar->start_pfn = start_pfn;
131 	node_ar->end_pfn = start_pfn;
132 	work_with_active_regions(nid, get_active_region_work_fn, node_ar);
133 }
134 
135 static void __cpuinit map_cpu_to_node(int cpu, int node)
136 {
137 	numa_cpu_lookup_table[cpu] = node;
138 
139 	dbg("adding cpu %d to node %d\n", cpu, node);
140 
141 	if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
142 		cpu_set(cpu, numa_cpumask_lookup_table[node]);
143 }
144 
145 #ifdef CONFIG_HOTPLUG_CPU
146 static void unmap_cpu_from_node(unsigned long cpu)
147 {
148 	int node = numa_cpu_lookup_table[cpu];
149 
150 	dbg("removing cpu %lu from node %d\n", cpu, node);
151 
152 	if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
153 		cpu_clear(cpu, numa_cpumask_lookup_table[node]);
154 	} else {
155 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
156 		       cpu, node);
157 	}
158 }
159 #endif /* CONFIG_HOTPLUG_CPU */
160 
161 /* must hold reference to node during call */
162 static const int *of_get_associativity(struct device_node *dev)
163 {
164 	return of_get_property(dev, "ibm,associativity", NULL);
165 }
166 
167 /*
168  * Returns the property linux,drconf-usable-memory if
169  * it exists (the property exists only in kexec/kdump kernels,
170  * added by kexec-tools)
171  */
172 static const u32 *of_get_usable_memory(struct device_node *memory)
173 {
174 	const u32 *prop;
175 	u32 len;
176 	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
177 	if (!prop || len < sizeof(unsigned int))
178 		return 0;
179 	return prop;
180 }
181 
182 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
183  * info is found.
184  */
185 static int of_node_to_nid_single(struct device_node *device)
186 {
187 	int nid = -1;
188 	const unsigned int *tmp;
189 
190 	if (min_common_depth == -1)
191 		goto out;
192 
193 	tmp = of_get_associativity(device);
194 	if (!tmp)
195 		goto out;
196 
197 	if (tmp[0] >= min_common_depth)
198 		nid = tmp[min_common_depth];
199 
200 	/* POWER4 LPAR uses 0xffff as invalid node */
201 	if (nid == 0xffff || nid >= MAX_NUMNODES)
202 		nid = -1;
203 out:
204 	return nid;
205 }
206 
207 /* Walk the device tree upwards, looking for an associativity id */
208 int of_node_to_nid(struct device_node *device)
209 {
210 	struct device_node *tmp;
211 	int nid = -1;
212 
213 	of_node_get(device);
214 	while (device) {
215 		nid = of_node_to_nid_single(device);
216 		if (nid != -1)
217 			break;
218 
219 	        tmp = device;
220 		device = of_get_parent(tmp);
221 		of_node_put(tmp);
222 	}
223 	of_node_put(device);
224 
225 	return nid;
226 }
227 EXPORT_SYMBOL_GPL(of_node_to_nid);
228 
229 /*
230  * In theory, the "ibm,associativity" property may contain multiple
231  * associativity lists because a resource may be multiply connected
232  * into the machine.  This resource then has different associativity
233  * characteristics relative to its multiple connections.  We ignore
234  * this for now.  We also assume that all cpu and memory sets have
235  * their distances represented at a common level.  This won't be
236  * true for hierarchical NUMA.
237  *
238  * In any case the ibm,associativity-reference-points should give
239  * the correct depth for a normal NUMA system.
240  *
241  * - Dave Hansen <haveblue@us.ibm.com>
242  */
243 static int __init find_min_common_depth(void)
244 {
245 	int depth;
246 	const unsigned int *ref_points;
247 	struct device_node *rtas_root;
248 	unsigned int len;
249 
250 	rtas_root = of_find_node_by_path("/rtas");
251 
252 	if (!rtas_root)
253 		return -1;
254 
255 	/*
256 	 * this property is 2 32-bit integers, each representing a level of
257 	 * depth in the associativity nodes.  The first is for an SMP
258 	 * configuration (should be all 0's) and the second is for a normal
259 	 * NUMA configuration.
260 	 */
261 	ref_points = of_get_property(rtas_root,
262 			"ibm,associativity-reference-points", &len);
263 
264 	if ((len >= 2 * sizeof(unsigned int)) && ref_points) {
265 		depth = ref_points[1];
266 	} else {
267 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
268 		depth = -1;
269 	}
270 	of_node_put(rtas_root);
271 
272 	return depth;
273 }
274 
275 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
276 {
277 	struct device_node *memory = NULL;
278 
279 	memory = of_find_node_by_type(memory, "memory");
280 	if (!memory)
281 		panic("numa.c: No memory nodes found!");
282 
283 	*n_addr_cells = of_n_addr_cells(memory);
284 	*n_size_cells = of_n_size_cells(memory);
285 	of_node_put(memory);
286 }
287 
288 static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
289 {
290 	unsigned long result = 0;
291 
292 	while (n--) {
293 		result = (result << 32) | **buf;
294 		(*buf)++;
295 	}
296 	return result;
297 }
298 
299 struct of_drconf_cell {
300 	u64	base_addr;
301 	u32	drc_index;
302 	u32	reserved;
303 	u32	aa_index;
304 	u32	flags;
305 };
306 
307 #define DRCONF_MEM_ASSIGNED	0x00000008
308 #define DRCONF_MEM_AI_INVALID	0x00000040
309 #define DRCONF_MEM_RESERVED	0x00000080
310 
311 /*
312  * Read the next lmb list entry from the ibm,dynamic-memory property
313  * and return the information in the provided of_drconf_cell structure.
314  */
315 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
316 {
317 	const u32 *cp;
318 
319 	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
320 
321 	cp = *cellp;
322 	drmem->drc_index = cp[0];
323 	drmem->reserved = cp[1];
324 	drmem->aa_index = cp[2];
325 	drmem->flags = cp[3];
326 
327 	*cellp = cp + 4;
328 }
329 
330 /*
331  * Retreive and validate the ibm,dynamic-memory property of the device tree.
332  *
333  * The layout of the ibm,dynamic-memory property is a number N of lmb
334  * list entries followed by N lmb list entries.  Each lmb list entry
335  * contains information as layed out in the of_drconf_cell struct above.
336  */
337 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
338 {
339 	const u32 *prop;
340 	u32 len, entries;
341 
342 	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
343 	if (!prop || len < sizeof(unsigned int))
344 		return 0;
345 
346 	entries = *prop++;
347 
348 	/* Now that we know the number of entries, revalidate the size
349 	 * of the property read in to ensure we have everything
350 	 */
351 	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
352 		return 0;
353 
354 	*dm = prop;
355 	return entries;
356 }
357 
358 /*
359  * Retreive and validate the ibm,lmb-size property for drconf memory
360  * from the device tree.
361  */
362 static u64 of_get_lmb_size(struct device_node *memory)
363 {
364 	const u32 *prop;
365 	u32 len;
366 
367 	prop = of_get_property(memory, "ibm,lmb-size", &len);
368 	if (!prop || len < sizeof(unsigned int))
369 		return 0;
370 
371 	return read_n_cells(n_mem_size_cells, &prop);
372 }
373 
374 struct assoc_arrays {
375 	u32	n_arrays;
376 	u32	array_sz;
377 	const u32 *arrays;
378 };
379 
380 /*
381  * Retreive and validate the list of associativity arrays for drconf
382  * memory from the ibm,associativity-lookup-arrays property of the
383  * device tree..
384  *
385  * The layout of the ibm,associativity-lookup-arrays property is a number N
386  * indicating the number of associativity arrays, followed by a number M
387  * indicating the size of each associativity array, followed by a list
388  * of N associativity arrays.
389  */
390 static int of_get_assoc_arrays(struct device_node *memory,
391 			       struct assoc_arrays *aa)
392 {
393 	const u32 *prop;
394 	u32 len;
395 
396 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
397 	if (!prop || len < 2 * sizeof(unsigned int))
398 		return -1;
399 
400 	aa->n_arrays = *prop++;
401 	aa->array_sz = *prop++;
402 
403 	/* Now that we know the number of arrrays and size of each array,
404 	 * revalidate the size of the property read in.
405 	 */
406 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
407 		return -1;
408 
409 	aa->arrays = prop;
410 	return 0;
411 }
412 
413 /*
414  * This is like of_node_to_nid_single() for memory represented in the
415  * ibm,dynamic-reconfiguration-memory node.
416  */
417 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
418 				   struct assoc_arrays *aa)
419 {
420 	int default_nid = 0;
421 	int nid = default_nid;
422 	int index;
423 
424 	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
425 	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
426 	    drmem->aa_index < aa->n_arrays) {
427 		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
428 		nid = aa->arrays[index];
429 
430 		if (nid == 0xffff || nid >= MAX_NUMNODES)
431 			nid = default_nid;
432 	}
433 
434 	return nid;
435 }
436 
437 /*
438  * Figure out to which domain a cpu belongs and stick it there.
439  * Return the id of the domain used.
440  */
441 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
442 {
443 	int nid = 0;
444 	struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
445 
446 	if (!cpu) {
447 		WARN_ON(1);
448 		goto out;
449 	}
450 
451 	nid = of_node_to_nid_single(cpu);
452 
453 	if (nid < 0 || !node_online(nid))
454 		nid = any_online_node(NODE_MASK_ALL);
455 out:
456 	map_cpu_to_node(lcpu, nid);
457 
458 	of_node_put(cpu);
459 
460 	return nid;
461 }
462 
463 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
464 			     unsigned long action,
465 			     void *hcpu)
466 {
467 	unsigned long lcpu = (unsigned long)hcpu;
468 	int ret = NOTIFY_DONE;
469 
470 	switch (action) {
471 	case CPU_UP_PREPARE:
472 	case CPU_UP_PREPARE_FROZEN:
473 		numa_setup_cpu(lcpu);
474 		ret = NOTIFY_OK;
475 		break;
476 #ifdef CONFIG_HOTPLUG_CPU
477 	case CPU_DEAD:
478 	case CPU_DEAD_FROZEN:
479 	case CPU_UP_CANCELED:
480 	case CPU_UP_CANCELED_FROZEN:
481 		unmap_cpu_from_node(lcpu);
482 		break;
483 		ret = NOTIFY_OK;
484 #endif
485 	}
486 	return ret;
487 }
488 
489 /*
490  * Check and possibly modify a memory region to enforce the memory limit.
491  *
492  * Returns the size the region should have to enforce the memory limit.
493  * This will either be the original value of size, a truncated value,
494  * or zero. If the returned value of size is 0 the region should be
495  * discarded as it lies wholy above the memory limit.
496  */
497 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
498 						      unsigned long size)
499 {
500 	/*
501 	 * We use lmb_end_of_DRAM() in here instead of memory_limit because
502 	 * we've already adjusted it for the limit and it takes care of
503 	 * having memory holes below the limit.  Also, in the case of
504 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
505 	 */
506 
507 	if (start + size <= lmb_end_of_DRAM())
508 		return size;
509 
510 	if (start >= lmb_end_of_DRAM())
511 		return 0;
512 
513 	return lmb_end_of_DRAM() - start;
514 }
515 
516 /*
517  * Reads the counter for a given entry in
518  * linux,drconf-usable-memory property
519  */
520 static inline int __init read_usm_ranges(const u32 **usm)
521 {
522 	/*
523 	 * For each lmb in ibm,dynamic-memory a corresponding
524 	 * entry in linux,drconf-usable-memory property contains
525 	 * a counter followed by that many (base, size) duple.
526 	 * read the counter from linux,drconf-usable-memory
527 	 */
528 	return read_n_cells(n_mem_size_cells, usm);
529 }
530 
531 /*
532  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
533  * node.  This assumes n_mem_{addr,size}_cells have been set.
534  */
535 static void __init parse_drconf_memory(struct device_node *memory)
536 {
537 	const u32 *dm, *usm;
538 	unsigned int n, rc, ranges, is_kexec_kdump = 0;
539 	unsigned long lmb_size, base, size, sz;
540 	int nid;
541 	struct assoc_arrays aa;
542 
543 	n = of_get_drconf_memory(memory, &dm);
544 	if (!n)
545 		return;
546 
547 	lmb_size = of_get_lmb_size(memory);
548 	if (!lmb_size)
549 		return;
550 
551 	rc = of_get_assoc_arrays(memory, &aa);
552 	if (rc)
553 		return;
554 
555 	/* check if this is a kexec/kdump kernel */
556 	usm = of_get_usable_memory(memory);
557 	if (usm != NULL)
558 		is_kexec_kdump = 1;
559 
560 	for (; n != 0; --n) {
561 		struct of_drconf_cell drmem;
562 
563 		read_drconf_cell(&drmem, &dm);
564 
565 		/* skip this block if the reserved bit is set in flags (0x80)
566 		   or if the block is not assigned to this partition (0x8) */
567 		if ((drmem.flags & DRCONF_MEM_RESERVED)
568 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
569 			continue;
570 
571 		base = drmem.base_addr;
572 		size = lmb_size;
573 		ranges = 1;
574 
575 		if (is_kexec_kdump) {
576 			ranges = read_usm_ranges(&usm);
577 			if (!ranges) /* there are no (base, size) duple */
578 				continue;
579 		}
580 		do {
581 			if (is_kexec_kdump) {
582 				base = read_n_cells(n_mem_addr_cells, &usm);
583 				size = read_n_cells(n_mem_size_cells, &usm);
584 			}
585 			nid = of_drconf_to_nid_single(&drmem, &aa);
586 			fake_numa_create_new_node(
587 				((base + size) >> PAGE_SHIFT),
588 					   &nid);
589 			node_set_online(nid);
590 			sz = numa_enforce_memory_limit(base, size);
591 			if (sz)
592 				add_active_range(nid, base >> PAGE_SHIFT,
593 						 (base >> PAGE_SHIFT)
594 						 + (sz >> PAGE_SHIFT));
595 		} while (--ranges);
596 	}
597 }
598 
599 static int __init parse_numa_properties(void)
600 {
601 	struct device_node *cpu = NULL;
602 	struct device_node *memory = NULL;
603 	int default_nid = 0;
604 	unsigned long i;
605 
606 	if (numa_enabled == 0) {
607 		printk(KERN_WARNING "NUMA disabled by user\n");
608 		return -1;
609 	}
610 
611 	min_common_depth = find_min_common_depth();
612 
613 	if (min_common_depth < 0)
614 		return min_common_depth;
615 
616 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
617 
618 	/*
619 	 * Even though we connect cpus to numa domains later in SMP
620 	 * init, we need to know the node ids now. This is because
621 	 * each node to be onlined must have NODE_DATA etc backing it.
622 	 */
623 	for_each_present_cpu(i) {
624 		int nid;
625 
626 		cpu = of_get_cpu_node(i, NULL);
627 		BUG_ON(!cpu);
628 		nid = of_node_to_nid_single(cpu);
629 		of_node_put(cpu);
630 
631 		/*
632 		 * Don't fall back to default_nid yet -- we will plug
633 		 * cpus into nodes once the memory scan has discovered
634 		 * the topology.
635 		 */
636 		if (nid < 0)
637 			continue;
638 		node_set_online(nid);
639 	}
640 
641 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
642 	memory = NULL;
643 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
644 		unsigned long start;
645 		unsigned long size;
646 		int nid;
647 		int ranges;
648 		const unsigned int *memcell_buf;
649 		unsigned int len;
650 
651 		memcell_buf = of_get_property(memory,
652 			"linux,usable-memory", &len);
653 		if (!memcell_buf || len <= 0)
654 			memcell_buf = of_get_property(memory, "reg", &len);
655 		if (!memcell_buf || len <= 0)
656 			continue;
657 
658 		/* ranges in cell */
659 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
660 new_range:
661 		/* these are order-sensitive, and modify the buffer pointer */
662 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
663 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
664 
665 		/*
666 		 * Assumption: either all memory nodes or none will
667 		 * have associativity properties.  If none, then
668 		 * everything goes to default_nid.
669 		 */
670 		nid = of_node_to_nid_single(memory);
671 		if (nid < 0)
672 			nid = default_nid;
673 
674 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
675 		node_set_online(nid);
676 
677 		if (!(size = numa_enforce_memory_limit(start, size))) {
678 			if (--ranges)
679 				goto new_range;
680 			else
681 				continue;
682 		}
683 
684 		add_active_range(nid, start >> PAGE_SHIFT,
685 				(start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
686 
687 		if (--ranges)
688 			goto new_range;
689 	}
690 
691 	/*
692 	 * Now do the same thing for each LMB listed in the ibm,dynamic-memory
693 	 * property in the ibm,dynamic-reconfiguration-memory node.
694 	 */
695 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
696 	if (memory)
697 		parse_drconf_memory(memory);
698 
699 	return 0;
700 }
701 
702 static void __init setup_nonnuma(void)
703 {
704 	unsigned long top_of_ram = lmb_end_of_DRAM();
705 	unsigned long total_ram = lmb_phys_mem_size();
706 	unsigned long start_pfn, end_pfn;
707 	unsigned int i, nid = 0;
708 
709 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
710 	       top_of_ram, total_ram);
711 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
712 	       (top_of_ram - total_ram) >> 20);
713 
714 	for (i = 0; i < lmb.memory.cnt; ++i) {
715 		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
716 		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
717 
718 		fake_numa_create_new_node(end_pfn, &nid);
719 		add_active_range(nid, start_pfn, end_pfn);
720 		node_set_online(nid);
721 	}
722 }
723 
724 void __init dump_numa_cpu_topology(void)
725 {
726 	unsigned int node;
727 	unsigned int cpu, count;
728 
729 	if (min_common_depth == -1 || !numa_enabled)
730 		return;
731 
732 	for_each_online_node(node) {
733 		printk(KERN_DEBUG "Node %d CPUs:", node);
734 
735 		count = 0;
736 		/*
737 		 * If we used a CPU iterator here we would miss printing
738 		 * the holes in the cpumap.
739 		 */
740 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
741 			if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
742 				if (count == 0)
743 					printk(" %u", cpu);
744 				++count;
745 			} else {
746 				if (count > 1)
747 					printk("-%u", cpu - 1);
748 				count = 0;
749 			}
750 		}
751 
752 		if (count > 1)
753 			printk("-%u", NR_CPUS - 1);
754 		printk("\n");
755 	}
756 }
757 
758 static void __init dump_numa_memory_topology(void)
759 {
760 	unsigned int node;
761 	unsigned int count;
762 
763 	if (min_common_depth == -1 || !numa_enabled)
764 		return;
765 
766 	for_each_online_node(node) {
767 		unsigned long i;
768 
769 		printk(KERN_DEBUG "Node %d Memory:", node);
770 
771 		count = 0;
772 
773 		for (i = 0; i < lmb_end_of_DRAM();
774 		     i += (1 << SECTION_SIZE_BITS)) {
775 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
776 				if (count == 0)
777 					printk(" 0x%lx", i);
778 				++count;
779 			} else {
780 				if (count > 0)
781 					printk("-0x%lx", i);
782 				count = 0;
783 			}
784 		}
785 
786 		if (count > 0)
787 			printk("-0x%lx", i);
788 		printk("\n");
789 	}
790 }
791 
792 /*
793  * Allocate some memory, satisfying the lmb or bootmem allocator where
794  * required. nid is the preferred node and end is the physical address of
795  * the highest address in the node.
796  *
797  * Returns the virtual address of the memory.
798  */
799 static void __init *careful_zallocation(int nid, unsigned long size,
800 				       unsigned long align,
801 				       unsigned long end_pfn)
802 {
803 	void *ret;
804 	int new_nid;
805 	unsigned long ret_paddr;
806 
807 	ret_paddr = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
808 
809 	/* retry over all memory */
810 	if (!ret_paddr)
811 		ret_paddr = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
812 
813 	if (!ret_paddr)
814 		panic("numa.c: cannot allocate %lu bytes for node %d",
815 		      size, nid);
816 
817 	ret = __va(ret_paddr);
818 
819 	/*
820 	 * We initialize the nodes in numeric order: 0, 1, 2...
821 	 * and hand over control from the LMB allocator to the
822 	 * bootmem allocator.  If this function is called for
823 	 * node 5, then we know that all nodes <5 are using the
824 	 * bootmem allocator instead of the LMB allocator.
825 	 *
826 	 * So, check the nid from which this allocation came
827 	 * and double check to see if we need to use bootmem
828 	 * instead of the LMB.  We don't free the LMB memory
829 	 * since it would be useless.
830 	 */
831 	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
832 	if (new_nid < nid) {
833 		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
834 				size, align, 0);
835 
836 		dbg("alloc_bootmem %p %lx\n", ret, size);
837 	}
838 
839 	memset(ret, 0, size);
840 	return ret;
841 }
842 
843 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
844 	.notifier_call = cpu_numa_callback,
845 	.priority = 1 /* Must run before sched domains notifier. */
846 };
847 
848 static void mark_reserved_regions_for_nid(int nid)
849 {
850 	struct pglist_data *node = NODE_DATA(nid);
851 	int i;
852 
853 	for (i = 0; i < lmb.reserved.cnt; i++) {
854 		unsigned long physbase = lmb.reserved.region[i].base;
855 		unsigned long size = lmb.reserved.region[i].size;
856 		unsigned long start_pfn = physbase >> PAGE_SHIFT;
857 		unsigned long end_pfn = PFN_UP(physbase + size);
858 		struct node_active_region node_ar;
859 		unsigned long node_end_pfn = node->node_start_pfn +
860 					     node->node_spanned_pages;
861 
862 		/*
863 		 * Check to make sure that this lmb.reserved area is
864 		 * within the bounds of the node that we care about.
865 		 * Checking the nid of the start and end points is not
866 		 * sufficient because the reserved area could span the
867 		 * entire node.
868 		 */
869 		if (end_pfn <= node->node_start_pfn ||
870 		    start_pfn >= node_end_pfn)
871 			continue;
872 
873 		get_node_active_region(start_pfn, &node_ar);
874 		while (start_pfn < end_pfn &&
875 			node_ar.start_pfn < node_ar.end_pfn) {
876 			unsigned long reserve_size = size;
877 			/*
878 			 * if reserved region extends past active region
879 			 * then trim size to active region
880 			 */
881 			if (end_pfn > node_ar.end_pfn)
882 				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
883 					- physbase;
884 			/*
885 			 * Only worry about *this* node, others may not
886 			 * yet have valid NODE_DATA().
887 			 */
888 			if (node_ar.nid == nid) {
889 				dbg("reserve_bootmem %lx %lx nid=%d\n",
890 					physbase, reserve_size, node_ar.nid);
891 				reserve_bootmem_node(NODE_DATA(node_ar.nid),
892 						physbase, reserve_size,
893 						BOOTMEM_DEFAULT);
894 			}
895 			/*
896 			 * if reserved region is contained in the active region
897 			 * then done.
898 			 */
899 			if (end_pfn <= node_ar.end_pfn)
900 				break;
901 
902 			/*
903 			 * reserved region extends past the active region
904 			 *   get next active region that contains this
905 			 *   reserved region
906 			 */
907 			start_pfn = node_ar.end_pfn;
908 			physbase = start_pfn << PAGE_SHIFT;
909 			size = size - reserve_size;
910 			get_node_active_region(start_pfn, &node_ar);
911 		}
912 	}
913 }
914 
915 
916 void __init do_init_bootmem(void)
917 {
918 	int nid;
919 
920 	min_low_pfn = 0;
921 	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
922 	max_pfn = max_low_pfn;
923 
924 	if (parse_numa_properties())
925 		setup_nonnuma();
926 	else
927 		dump_numa_memory_topology();
928 
929 	register_cpu_notifier(&ppc64_numa_nb);
930 	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
931 			  (void *)(unsigned long)boot_cpuid);
932 
933 	for_each_online_node(nid) {
934 		unsigned long start_pfn, end_pfn;
935 		void *bootmem_vaddr;
936 		unsigned long bootmap_pages;
937 
938 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
939 
940 		/*
941 		 * Allocate the node structure node local if possible
942 		 *
943 		 * Be careful moving this around, as it relies on all
944 		 * previous nodes' bootmem to be initialized and have
945 		 * all reserved areas marked.
946 		 */
947 		NODE_DATA(nid) = careful_zallocation(nid,
948 					sizeof(struct pglist_data),
949 					SMP_CACHE_BYTES, end_pfn);
950 
951   		dbg("node %d\n", nid);
952 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
953 
954 		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
955 		NODE_DATA(nid)->node_start_pfn = start_pfn;
956 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
957 
958 		if (NODE_DATA(nid)->node_spanned_pages == 0)
959   			continue;
960 
961   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
962   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
963 
964 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
965 		bootmem_vaddr = careful_zallocation(nid,
966 					bootmap_pages << PAGE_SHIFT,
967 					PAGE_SIZE, end_pfn);
968 
969 		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
970 
971 		init_bootmem_node(NODE_DATA(nid),
972 				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
973 				  start_pfn, end_pfn);
974 
975 		free_bootmem_with_active_regions(nid, end_pfn);
976 		/*
977 		 * Be very careful about moving this around.  Future
978 		 * calls to careful_zallocation() depend on this getting
979 		 * done correctly.
980 		 */
981 		mark_reserved_regions_for_nid(nid);
982 		sparse_memory_present_with_active_regions(nid);
983 	}
984 
985 	init_bootmem_done = 1;
986 }
987 
988 void __init paging_init(void)
989 {
990 	unsigned long max_zone_pfns[MAX_NR_ZONES];
991 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
992 	max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT;
993 	free_area_init_nodes(max_zone_pfns);
994 }
995 
996 static int __init early_numa(char *p)
997 {
998 	if (!p)
999 		return 0;
1000 
1001 	if (strstr(p, "off"))
1002 		numa_enabled = 0;
1003 
1004 	if (strstr(p, "debug"))
1005 		numa_debug = 1;
1006 
1007 	p = strstr(p, "fake=");
1008 	if (p)
1009 		cmdline = p + strlen("fake=");
1010 
1011 	return 0;
1012 }
1013 early_param("numa", early_numa);
1014 
1015 #ifdef CONFIG_MEMORY_HOTPLUG
1016 /*
1017  * Find the node associated with a hot added memory section for
1018  * memory represented in the device tree by the property
1019  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1020  */
1021 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1022 				     unsigned long scn_addr)
1023 {
1024 	const u32 *dm;
1025 	unsigned int drconf_cell_cnt, rc;
1026 	unsigned long lmb_size;
1027 	struct assoc_arrays aa;
1028 	int nid = -1;
1029 
1030 	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1031 	if (!drconf_cell_cnt)
1032 		return -1;
1033 
1034 	lmb_size = of_get_lmb_size(memory);
1035 	if (!lmb_size)
1036 		return -1;
1037 
1038 	rc = of_get_assoc_arrays(memory, &aa);
1039 	if (rc)
1040 		return -1;
1041 
1042 	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1043 		struct of_drconf_cell drmem;
1044 
1045 		read_drconf_cell(&drmem, &dm);
1046 
1047 		/* skip this block if it is reserved or not assigned to
1048 		 * this partition */
1049 		if ((drmem.flags & DRCONF_MEM_RESERVED)
1050 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1051 			continue;
1052 
1053 		if ((scn_addr < drmem.base_addr)
1054 		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1055 			continue;
1056 
1057 		nid = of_drconf_to_nid_single(&drmem, &aa);
1058 		break;
1059 	}
1060 
1061 	return nid;
1062 }
1063 
1064 /*
1065  * Find the node associated with a hot added memory section for memory
1066  * represented in the device tree as a node (i.e. memory@XXXX) for
1067  * each lmb.
1068  */
1069 int hot_add_node_scn_to_nid(unsigned long scn_addr)
1070 {
1071 	struct device_node *memory = NULL;
1072 	int nid = -1;
1073 
1074 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
1075 		unsigned long start, size;
1076 		int ranges;
1077 		const unsigned int *memcell_buf;
1078 		unsigned int len;
1079 
1080 		memcell_buf = of_get_property(memory, "reg", &len);
1081 		if (!memcell_buf || len <= 0)
1082 			continue;
1083 
1084 		/* ranges in cell */
1085 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1086 
1087 		while (ranges--) {
1088 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1089 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1090 
1091 			if ((scn_addr < start) || (scn_addr >= (start + size)))
1092 				continue;
1093 
1094 			nid = of_node_to_nid_single(memory);
1095 			break;
1096 		}
1097 
1098 		of_node_put(memory);
1099 		if (nid >= 0)
1100 			break;
1101 	}
1102 
1103 	return nid;
1104 }
1105 
1106 /*
1107  * Find the node associated with a hot added memory section.  Section
1108  * corresponds to a SPARSEMEM section, not an LMB.  It is assumed that
1109  * sections are fully contained within a single LMB.
1110  */
1111 int hot_add_scn_to_nid(unsigned long scn_addr)
1112 {
1113 	struct device_node *memory = NULL;
1114 	int nid, found = 0;
1115 
1116 	if (!numa_enabled || (min_common_depth < 0))
1117 		return any_online_node(NODE_MASK_ALL);
1118 
1119 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1120 	if (memory) {
1121 		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1122 		of_node_put(memory);
1123 	} else {
1124 		nid = hot_add_node_scn_to_nid(scn_addr);
1125 	}
1126 
1127 	if (nid < 0 || !node_online(nid))
1128 		nid = any_online_node(NODE_MASK_ALL);
1129 
1130 	if (NODE_DATA(nid)->node_spanned_pages)
1131 		return nid;
1132 
1133 	for_each_online_node(nid) {
1134 		if (NODE_DATA(nid)->node_spanned_pages) {
1135 			found = 1;
1136 			break;
1137 		}
1138 	}
1139 
1140 	BUG_ON(!found);
1141 	return nid;
1142 }
1143 
1144 #endif /* CONFIG_MEMORY_HOTPLUG */
1145