xref: /openbmc/linux/arch/powerpc/mm/numa.c (revision 643d1f7f)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <asm/sparsemem.h>
21 #include <asm/lmb.h>
22 #include <asm/system.h>
23 #include <asm/smp.h>
24 
25 static int numa_enabled = 1;
26 
27 static int numa_debug;
28 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
29 
30 int numa_cpu_lookup_table[NR_CPUS];
31 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
32 struct pglist_data *node_data[MAX_NUMNODES];
33 
34 EXPORT_SYMBOL(numa_cpu_lookup_table);
35 EXPORT_SYMBOL(numa_cpumask_lookup_table);
36 EXPORT_SYMBOL(node_data);
37 
38 static bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
39 static int min_common_depth;
40 static int n_mem_addr_cells, n_mem_size_cells;
41 
42 static void __cpuinit map_cpu_to_node(int cpu, int node)
43 {
44 	numa_cpu_lookup_table[cpu] = node;
45 
46 	dbg("adding cpu %d to node %d\n", cpu, node);
47 
48 	if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
49 		cpu_set(cpu, numa_cpumask_lookup_table[node]);
50 }
51 
52 #ifdef CONFIG_HOTPLUG_CPU
53 static void unmap_cpu_from_node(unsigned long cpu)
54 {
55 	int node = numa_cpu_lookup_table[cpu];
56 
57 	dbg("removing cpu %lu from node %d\n", cpu, node);
58 
59 	if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
60 		cpu_clear(cpu, numa_cpumask_lookup_table[node]);
61 	} else {
62 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
63 		       cpu, node);
64 	}
65 }
66 #endif /* CONFIG_HOTPLUG_CPU */
67 
68 static struct device_node * __cpuinit find_cpu_node(unsigned int cpu)
69 {
70 	unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
71 	struct device_node *cpu_node = NULL;
72 	const unsigned int *interrupt_server, *reg;
73 	int len;
74 
75 	while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
76 		/* Try interrupt server first */
77 		interrupt_server = of_get_property(cpu_node,
78 					"ibm,ppc-interrupt-server#s", &len);
79 
80 		len = len / sizeof(u32);
81 
82 		if (interrupt_server && (len > 0)) {
83 			while (len--) {
84 				if (interrupt_server[len] == hw_cpuid)
85 					return cpu_node;
86 			}
87 		} else {
88 			reg = of_get_property(cpu_node, "reg", &len);
89 			if (reg && (len > 0) && (reg[0] == hw_cpuid))
90 				return cpu_node;
91 		}
92 	}
93 
94 	return NULL;
95 }
96 
97 /* must hold reference to node during call */
98 static const int *of_get_associativity(struct device_node *dev)
99 {
100 	return of_get_property(dev, "ibm,associativity", NULL);
101 }
102 
103 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
104  * info is found.
105  */
106 static int of_node_to_nid_single(struct device_node *device)
107 {
108 	int nid = -1;
109 	const unsigned int *tmp;
110 
111 	if (min_common_depth == -1)
112 		goto out;
113 
114 	tmp = of_get_associativity(device);
115 	if (!tmp)
116 		goto out;
117 
118 	if (tmp[0] >= min_common_depth)
119 		nid = tmp[min_common_depth];
120 
121 	/* POWER4 LPAR uses 0xffff as invalid node */
122 	if (nid == 0xffff || nid >= MAX_NUMNODES)
123 		nid = -1;
124 out:
125 	return nid;
126 }
127 
128 /* Walk the device tree upwards, looking for an associativity id */
129 int of_node_to_nid(struct device_node *device)
130 {
131 	struct device_node *tmp;
132 	int nid = -1;
133 
134 	of_node_get(device);
135 	while (device) {
136 		nid = of_node_to_nid_single(device);
137 		if (nid != -1)
138 			break;
139 
140 	        tmp = device;
141 		device = of_get_parent(tmp);
142 		of_node_put(tmp);
143 	}
144 	of_node_put(device);
145 
146 	return nid;
147 }
148 EXPORT_SYMBOL_GPL(of_node_to_nid);
149 
150 /*
151  * In theory, the "ibm,associativity" property may contain multiple
152  * associativity lists because a resource may be multiply connected
153  * into the machine.  This resource then has different associativity
154  * characteristics relative to its multiple connections.  We ignore
155  * this for now.  We also assume that all cpu and memory sets have
156  * their distances represented at a common level.  This won't be
157  * true for hierarchical NUMA.
158  *
159  * In any case the ibm,associativity-reference-points should give
160  * the correct depth for a normal NUMA system.
161  *
162  * - Dave Hansen <haveblue@us.ibm.com>
163  */
164 static int __init find_min_common_depth(void)
165 {
166 	int depth;
167 	const unsigned int *ref_points;
168 	struct device_node *rtas_root;
169 	unsigned int len;
170 
171 	rtas_root = of_find_node_by_path("/rtas");
172 
173 	if (!rtas_root)
174 		return -1;
175 
176 	/*
177 	 * this property is 2 32-bit integers, each representing a level of
178 	 * depth in the associativity nodes.  The first is for an SMP
179 	 * configuration (should be all 0's) and the second is for a normal
180 	 * NUMA configuration.
181 	 */
182 	ref_points = of_get_property(rtas_root,
183 			"ibm,associativity-reference-points", &len);
184 
185 	if ((len >= 1) && ref_points) {
186 		depth = ref_points[1];
187 	} else {
188 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
189 		depth = -1;
190 	}
191 	of_node_put(rtas_root);
192 
193 	return depth;
194 }
195 
196 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
197 {
198 	struct device_node *memory = NULL;
199 
200 	memory = of_find_node_by_type(memory, "memory");
201 	if (!memory)
202 		panic("numa.c: No memory nodes found!");
203 
204 	*n_addr_cells = of_n_addr_cells(memory);
205 	*n_size_cells = of_n_size_cells(memory);
206 	of_node_put(memory);
207 }
208 
209 static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
210 {
211 	unsigned long result = 0;
212 
213 	while (n--) {
214 		result = (result << 32) | **buf;
215 		(*buf)++;
216 	}
217 	return result;
218 }
219 
220 /*
221  * Figure out to which domain a cpu belongs and stick it there.
222  * Return the id of the domain used.
223  */
224 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
225 {
226 	int nid = 0;
227 	struct device_node *cpu = find_cpu_node(lcpu);
228 
229 	if (!cpu) {
230 		WARN_ON(1);
231 		goto out;
232 	}
233 
234 	nid = of_node_to_nid_single(cpu);
235 
236 	if (nid < 0 || !node_online(nid))
237 		nid = any_online_node(NODE_MASK_ALL);
238 out:
239 	map_cpu_to_node(lcpu, nid);
240 
241 	of_node_put(cpu);
242 
243 	return nid;
244 }
245 
246 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
247 			     unsigned long action,
248 			     void *hcpu)
249 {
250 	unsigned long lcpu = (unsigned long)hcpu;
251 	int ret = NOTIFY_DONE;
252 
253 	switch (action) {
254 	case CPU_UP_PREPARE:
255 	case CPU_UP_PREPARE_FROZEN:
256 		numa_setup_cpu(lcpu);
257 		ret = NOTIFY_OK;
258 		break;
259 #ifdef CONFIG_HOTPLUG_CPU
260 	case CPU_DEAD:
261 	case CPU_DEAD_FROZEN:
262 	case CPU_UP_CANCELED:
263 	case CPU_UP_CANCELED_FROZEN:
264 		unmap_cpu_from_node(lcpu);
265 		break;
266 		ret = NOTIFY_OK;
267 #endif
268 	}
269 	return ret;
270 }
271 
272 /*
273  * Check and possibly modify a memory region to enforce the memory limit.
274  *
275  * Returns the size the region should have to enforce the memory limit.
276  * This will either be the original value of size, a truncated value,
277  * or zero. If the returned value of size is 0 the region should be
278  * discarded as it lies wholy above the memory limit.
279  */
280 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
281 						      unsigned long size)
282 {
283 	/*
284 	 * We use lmb_end_of_DRAM() in here instead of memory_limit because
285 	 * we've already adjusted it for the limit and it takes care of
286 	 * having memory holes below the limit.
287 	 */
288 
289 	if (! memory_limit)
290 		return size;
291 
292 	if (start + size <= lmb_end_of_DRAM())
293 		return size;
294 
295 	if (start >= lmb_end_of_DRAM())
296 		return 0;
297 
298 	return lmb_end_of_DRAM() - start;
299 }
300 
301 /*
302  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
303  * node.  This assumes n_mem_{addr,size}_cells have been set.
304  */
305 static void __init parse_drconf_memory(struct device_node *memory)
306 {
307 	const unsigned int *lm, *dm, *aa;
308 	unsigned int ls, ld, la;
309 	unsigned int n, aam, aalen;
310 	unsigned long lmb_size, size, start;
311 	int nid, default_nid = 0;
312 	unsigned int ai, flags;
313 
314 	lm = of_get_property(memory, "ibm,lmb-size", &ls);
315 	dm = of_get_property(memory, "ibm,dynamic-memory", &ld);
316 	aa = of_get_property(memory, "ibm,associativity-lookup-arrays", &la);
317 	if (!lm || !dm || !aa ||
318 	    ls < sizeof(unsigned int) || ld < sizeof(unsigned int) ||
319 	    la < 2 * sizeof(unsigned int))
320 		return;
321 
322 	lmb_size = read_n_cells(n_mem_size_cells, &lm);
323 	n = *dm++;		/* number of LMBs */
324 	aam = *aa++;		/* number of associativity lists */
325 	aalen = *aa++;		/* length of each associativity list */
326 	if (ld < (n * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int) ||
327 	    la < (aam * aalen + 2) * sizeof(unsigned int))
328 		return;
329 
330 	for (; n != 0; --n) {
331 		start = read_n_cells(n_mem_addr_cells, &dm);
332 		ai = dm[2];
333 		flags = dm[3];
334 		dm += 4;
335 		/* 0x80 == reserved, 0x8 = assigned to us */
336 		if ((flags & 0x80) || !(flags & 0x8))
337 			continue;
338 		nid = default_nid;
339 		/* flags & 0x40 means associativity index is invalid */
340 		if (min_common_depth > 0 && min_common_depth <= aalen &&
341 		    (flags & 0x40) == 0 && ai < aam) {
342 			/* this is like of_node_to_nid_single */
343 			nid = aa[ai * aalen + min_common_depth - 1];
344 			if (nid == 0xffff || nid >= MAX_NUMNODES)
345 				nid = default_nid;
346 		}
347 		node_set_online(nid);
348 
349 		size = numa_enforce_memory_limit(start, lmb_size);
350 		if (!size)
351 			continue;
352 
353 		add_active_range(nid, start >> PAGE_SHIFT,
354 				 (start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
355 	}
356 }
357 
358 static int __init parse_numa_properties(void)
359 {
360 	struct device_node *cpu = NULL;
361 	struct device_node *memory = NULL;
362 	int default_nid = 0;
363 	unsigned long i;
364 
365 	if (numa_enabled == 0) {
366 		printk(KERN_WARNING "NUMA disabled by user\n");
367 		return -1;
368 	}
369 
370 	min_common_depth = find_min_common_depth();
371 
372 	if (min_common_depth < 0)
373 		return min_common_depth;
374 
375 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
376 
377 	/*
378 	 * Even though we connect cpus to numa domains later in SMP
379 	 * init, we need to know the node ids now. This is because
380 	 * each node to be onlined must have NODE_DATA etc backing it.
381 	 */
382 	for_each_present_cpu(i) {
383 		int nid;
384 
385 		cpu = find_cpu_node(i);
386 		BUG_ON(!cpu);
387 		nid = of_node_to_nid_single(cpu);
388 		of_node_put(cpu);
389 
390 		/*
391 		 * Don't fall back to default_nid yet -- we will plug
392 		 * cpus into nodes once the memory scan has discovered
393 		 * the topology.
394 		 */
395 		if (nid < 0)
396 			continue;
397 		node_set_online(nid);
398 	}
399 
400 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
401 	memory = NULL;
402 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
403 		unsigned long start;
404 		unsigned long size;
405 		int nid;
406 		int ranges;
407 		const unsigned int *memcell_buf;
408 		unsigned int len;
409 
410 		memcell_buf = of_get_property(memory,
411 			"linux,usable-memory", &len);
412 		if (!memcell_buf || len <= 0)
413 			memcell_buf = of_get_property(memory, "reg", &len);
414 		if (!memcell_buf || len <= 0)
415 			continue;
416 
417 		/* ranges in cell */
418 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
419 new_range:
420 		/* these are order-sensitive, and modify the buffer pointer */
421 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
422 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
423 
424 		/*
425 		 * Assumption: either all memory nodes or none will
426 		 * have associativity properties.  If none, then
427 		 * everything goes to default_nid.
428 		 */
429 		nid = of_node_to_nid_single(memory);
430 		if (nid < 0)
431 			nid = default_nid;
432 		node_set_online(nid);
433 
434 		if (!(size = numa_enforce_memory_limit(start, size))) {
435 			if (--ranges)
436 				goto new_range;
437 			else
438 				continue;
439 		}
440 
441 		add_active_range(nid, start >> PAGE_SHIFT,
442 				(start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
443 
444 		if (--ranges)
445 			goto new_range;
446 	}
447 
448 	/*
449 	 * Now do the same thing for each LMB listed in the ibm,dynamic-memory
450 	 * property in the ibm,dynamic-reconfiguration-memory node.
451 	 */
452 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
453 	if (memory)
454 		parse_drconf_memory(memory);
455 
456 	return 0;
457 }
458 
459 static void __init setup_nonnuma(void)
460 {
461 	unsigned long top_of_ram = lmb_end_of_DRAM();
462 	unsigned long total_ram = lmb_phys_mem_size();
463 	unsigned long start_pfn, end_pfn;
464 	unsigned int i;
465 
466 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
467 	       top_of_ram, total_ram);
468 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
469 	       (top_of_ram - total_ram) >> 20);
470 
471 	for (i = 0; i < lmb.memory.cnt; ++i) {
472 		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
473 		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
474 		add_active_range(0, start_pfn, end_pfn);
475 	}
476 	node_set_online(0);
477 }
478 
479 void __init dump_numa_cpu_topology(void)
480 {
481 	unsigned int node;
482 	unsigned int cpu, count;
483 
484 	if (min_common_depth == -1 || !numa_enabled)
485 		return;
486 
487 	for_each_online_node(node) {
488 		printk(KERN_DEBUG "Node %d CPUs:", node);
489 
490 		count = 0;
491 		/*
492 		 * If we used a CPU iterator here we would miss printing
493 		 * the holes in the cpumap.
494 		 */
495 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
496 			if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
497 				if (count == 0)
498 					printk(" %u", cpu);
499 				++count;
500 			} else {
501 				if (count > 1)
502 					printk("-%u", cpu - 1);
503 				count = 0;
504 			}
505 		}
506 
507 		if (count > 1)
508 			printk("-%u", NR_CPUS - 1);
509 		printk("\n");
510 	}
511 }
512 
513 static void __init dump_numa_memory_topology(void)
514 {
515 	unsigned int node;
516 	unsigned int count;
517 
518 	if (min_common_depth == -1 || !numa_enabled)
519 		return;
520 
521 	for_each_online_node(node) {
522 		unsigned long i;
523 
524 		printk(KERN_DEBUG "Node %d Memory:", node);
525 
526 		count = 0;
527 
528 		for (i = 0; i < lmb_end_of_DRAM();
529 		     i += (1 << SECTION_SIZE_BITS)) {
530 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
531 				if (count == 0)
532 					printk(" 0x%lx", i);
533 				++count;
534 			} else {
535 				if (count > 0)
536 					printk("-0x%lx", i);
537 				count = 0;
538 			}
539 		}
540 
541 		if (count > 0)
542 			printk("-0x%lx", i);
543 		printk("\n");
544 	}
545 }
546 
547 /*
548  * Allocate some memory, satisfying the lmb or bootmem allocator where
549  * required. nid is the preferred node and end is the physical address of
550  * the highest address in the node.
551  *
552  * Returns the physical address of the memory.
553  */
554 static void __init *careful_allocation(int nid, unsigned long size,
555 				       unsigned long align,
556 				       unsigned long end_pfn)
557 {
558 	int new_nid;
559 	unsigned long ret = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
560 
561 	/* retry over all memory */
562 	if (!ret)
563 		ret = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
564 
565 	if (!ret)
566 		panic("numa.c: cannot allocate %lu bytes on node %d",
567 		      size, nid);
568 
569 	/*
570 	 * If the memory came from a previously allocated node, we must
571 	 * retry with the bootmem allocator.
572 	 */
573 	new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
574 	if (new_nid < nid) {
575 		ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
576 				size, align, 0);
577 
578 		if (!ret)
579 			panic("numa.c: cannot allocate %lu bytes on node %d",
580 			      size, new_nid);
581 
582 		ret = __pa(ret);
583 
584 		dbg("alloc_bootmem %lx %lx\n", ret, size);
585 	}
586 
587 	return (void *)ret;
588 }
589 
590 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
591 	.notifier_call = cpu_numa_callback,
592 	.priority = 1 /* Must run before sched domains notifier. */
593 };
594 
595 void __init do_init_bootmem(void)
596 {
597 	int nid;
598 	unsigned int i;
599 
600 	min_low_pfn = 0;
601 	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
602 	max_pfn = max_low_pfn;
603 
604 	if (parse_numa_properties())
605 		setup_nonnuma();
606 	else
607 		dump_numa_memory_topology();
608 
609 	register_cpu_notifier(&ppc64_numa_nb);
610 	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
611 			  (void *)(unsigned long)boot_cpuid);
612 
613 	for_each_online_node(nid) {
614 		unsigned long start_pfn, end_pfn;
615 		unsigned long bootmem_paddr;
616 		unsigned long bootmap_pages;
617 
618 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
619 
620 		/* Allocate the node structure node local if possible */
621 		NODE_DATA(nid) = careful_allocation(nid,
622 					sizeof(struct pglist_data),
623 					SMP_CACHE_BYTES, end_pfn);
624 		NODE_DATA(nid) = __va(NODE_DATA(nid));
625 		memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
626 
627   		dbg("node %d\n", nid);
628 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
629 
630 		NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
631 		NODE_DATA(nid)->node_start_pfn = start_pfn;
632 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
633 
634 		if (NODE_DATA(nid)->node_spanned_pages == 0)
635   			continue;
636 
637   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
638   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
639 
640 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
641 		bootmem_paddr = (unsigned long)careful_allocation(nid,
642 					bootmap_pages << PAGE_SHIFT,
643 					PAGE_SIZE, end_pfn);
644 		memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
645 
646 		dbg("bootmap_paddr = %lx\n", bootmem_paddr);
647 
648 		init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
649 				  start_pfn, end_pfn);
650 
651 		free_bootmem_with_active_regions(nid, end_pfn);
652 
653 		/* Mark reserved regions on this node */
654 		for (i = 0; i < lmb.reserved.cnt; i++) {
655 			unsigned long physbase = lmb.reserved.region[i].base;
656 			unsigned long size = lmb.reserved.region[i].size;
657 			unsigned long start_paddr = start_pfn << PAGE_SHIFT;
658 			unsigned long end_paddr = end_pfn << PAGE_SHIFT;
659 
660 			if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid &&
661 			    early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid)
662 				continue;
663 
664 			if (physbase < end_paddr &&
665 			    (physbase+size) > start_paddr) {
666 				/* overlaps */
667 				if (physbase < start_paddr) {
668 					size -= start_paddr - physbase;
669 					physbase = start_paddr;
670 				}
671 
672 				if (size > end_paddr - physbase)
673 					size = end_paddr - physbase;
674 
675 				dbg("reserve_bootmem %lx %lx\n", physbase,
676 				    size);
677 				reserve_bootmem_node(NODE_DATA(nid), physbase,
678 						     size);
679 			}
680 		}
681 
682 		sparse_memory_present_with_active_regions(nid);
683 	}
684 }
685 
686 void __init paging_init(void)
687 {
688 	unsigned long max_zone_pfns[MAX_NR_ZONES];
689 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
690 	max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT;
691 	free_area_init_nodes(max_zone_pfns);
692 }
693 
694 static int __init early_numa(char *p)
695 {
696 	if (!p)
697 		return 0;
698 
699 	if (strstr(p, "off"))
700 		numa_enabled = 0;
701 
702 	if (strstr(p, "debug"))
703 		numa_debug = 1;
704 
705 	return 0;
706 }
707 early_param("numa", early_numa);
708 
709 #ifdef CONFIG_MEMORY_HOTPLUG
710 /*
711  * Find the node associated with a hot added memory section.  Section
712  * corresponds to a SPARSEMEM section, not an LMB.  It is assumed that
713  * sections are fully contained within a single LMB.
714  */
715 int hot_add_scn_to_nid(unsigned long scn_addr)
716 {
717 	struct device_node *memory = NULL;
718 	nodemask_t nodes;
719 	int default_nid = any_online_node(NODE_MASK_ALL);
720 	int nid;
721 
722 	if (!numa_enabled || (min_common_depth < 0))
723 		return default_nid;
724 
725 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
726 		unsigned long start, size;
727 		int ranges;
728 		const unsigned int *memcell_buf;
729 		unsigned int len;
730 
731 		memcell_buf = of_get_property(memory, "reg", &len);
732 		if (!memcell_buf || len <= 0)
733 			continue;
734 
735 		/* ranges in cell */
736 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
737 ha_new_range:
738 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
739 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
740 		nid = of_node_to_nid_single(memory);
741 
742 		/* Domains not present at boot default to 0 */
743 		if (nid < 0 || !node_online(nid))
744 			nid = default_nid;
745 
746 		if ((scn_addr >= start) && (scn_addr < (start + size))) {
747 			of_node_put(memory);
748 			goto got_nid;
749 		}
750 
751 		if (--ranges)		/* process all ranges in cell */
752 			goto ha_new_range;
753 	}
754 	BUG();	/* section address should be found above */
755 	return 0;
756 
757 	/* Temporary code to ensure that returned node is not empty */
758 got_nid:
759 	nodes_setall(nodes);
760 	while (NODE_DATA(nid)->node_spanned_pages == 0) {
761 		node_clear(nid, nodes);
762 		nid = any_online_node(nodes);
763 	}
764 	return nid;
765 }
766 #endif /* CONFIG_MEMORY_HOTPLUG */
767