1 /* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #define pr_fmt(fmt) "numa: " fmt 12 13 #include <linux/threads.h> 14 #include <linux/bootmem.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/mmzone.h> 18 #include <linux/export.h> 19 #include <linux/nodemask.h> 20 #include <linux/cpu.h> 21 #include <linux/notifier.h> 22 #include <linux/memblock.h> 23 #include <linux/of.h> 24 #include <linux/pfn.h> 25 #include <linux/cpuset.h> 26 #include <linux/node.h> 27 #include <linux/stop_machine.h> 28 #include <linux/proc_fs.h> 29 #include <linux/seq_file.h> 30 #include <linux/uaccess.h> 31 #include <linux/slab.h> 32 #include <asm/cputhreads.h> 33 #include <asm/sparsemem.h> 34 #include <asm/prom.h> 35 #include <asm/smp.h> 36 #include <asm/cputhreads.h> 37 #include <asm/topology.h> 38 #include <asm/firmware.h> 39 #include <asm/paca.h> 40 #include <asm/hvcall.h> 41 #include <asm/setup.h> 42 #include <asm/vdso.h> 43 #include <asm/drmem.h> 44 45 static int numa_enabled = 1; 46 47 static char *cmdline __initdata; 48 49 static int numa_debug; 50 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 51 52 int numa_cpu_lookup_table[NR_CPUS]; 53 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 54 struct pglist_data *node_data[MAX_NUMNODES]; 55 56 EXPORT_SYMBOL(numa_cpu_lookup_table); 57 EXPORT_SYMBOL(node_to_cpumask_map); 58 EXPORT_SYMBOL(node_data); 59 60 static int min_common_depth; 61 static int n_mem_addr_cells, n_mem_size_cells; 62 static int form1_affinity; 63 64 #define MAX_DISTANCE_REF_POINTS 4 65 static int distance_ref_points_depth; 66 static const __be32 *distance_ref_points; 67 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 68 69 /* 70 * Allocate node_to_cpumask_map based on number of available nodes 71 * Requires node_possible_map to be valid. 72 * 73 * Note: cpumask_of_node() is not valid until after this is done. 74 */ 75 static void __init setup_node_to_cpumask_map(void) 76 { 77 unsigned int node; 78 79 /* setup nr_node_ids if not done yet */ 80 if (nr_node_ids == MAX_NUMNODES) 81 setup_nr_node_ids(); 82 83 /* allocate the map */ 84 for_each_node(node) 85 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 86 87 /* cpumask_of_node() will now work */ 88 dbg("Node to cpumask map for %d nodes\n", nr_node_ids); 89 } 90 91 static int __init fake_numa_create_new_node(unsigned long end_pfn, 92 unsigned int *nid) 93 { 94 unsigned long long mem; 95 char *p = cmdline; 96 static unsigned int fake_nid; 97 static unsigned long long curr_boundary; 98 99 /* 100 * Modify node id, iff we started creating NUMA nodes 101 * We want to continue from where we left of the last time 102 */ 103 if (fake_nid) 104 *nid = fake_nid; 105 /* 106 * In case there are no more arguments to parse, the 107 * node_id should be the same as the last fake node id 108 * (we've handled this above). 109 */ 110 if (!p) 111 return 0; 112 113 mem = memparse(p, &p); 114 if (!mem) 115 return 0; 116 117 if (mem < curr_boundary) 118 return 0; 119 120 curr_boundary = mem; 121 122 if ((end_pfn << PAGE_SHIFT) > mem) { 123 /* 124 * Skip commas and spaces 125 */ 126 while (*p == ',' || *p == ' ' || *p == '\t') 127 p++; 128 129 cmdline = p; 130 fake_nid++; 131 *nid = fake_nid; 132 dbg("created new fake_node with id %d\n", fake_nid); 133 return 1; 134 } 135 return 0; 136 } 137 138 static void reset_numa_cpu_lookup_table(void) 139 { 140 unsigned int cpu; 141 142 for_each_possible_cpu(cpu) 143 numa_cpu_lookup_table[cpu] = -1; 144 } 145 146 static void map_cpu_to_node(int cpu, int node) 147 { 148 update_numa_cpu_lookup_table(cpu, node); 149 150 dbg("adding cpu %d to node %d\n", cpu, node); 151 152 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) 153 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 154 } 155 156 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 157 static void unmap_cpu_from_node(unsigned long cpu) 158 { 159 int node = numa_cpu_lookup_table[cpu]; 160 161 dbg("removing cpu %lu from node %d\n", cpu, node); 162 163 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 164 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 165 } else { 166 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 167 cpu, node); 168 } 169 } 170 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 171 172 /* must hold reference to node during call */ 173 static const __be32 *of_get_associativity(struct device_node *dev) 174 { 175 return of_get_property(dev, "ibm,associativity", NULL); 176 } 177 178 int __node_distance(int a, int b) 179 { 180 int i; 181 int distance = LOCAL_DISTANCE; 182 183 if (!form1_affinity) 184 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); 185 186 for (i = 0; i < distance_ref_points_depth; i++) { 187 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 188 break; 189 190 /* Double the distance for each NUMA level */ 191 distance *= 2; 192 } 193 194 return distance; 195 } 196 EXPORT_SYMBOL(__node_distance); 197 198 static void initialize_distance_lookup_table(int nid, 199 const __be32 *associativity) 200 { 201 int i; 202 203 if (!form1_affinity) 204 return; 205 206 for (i = 0; i < distance_ref_points_depth; i++) { 207 const __be32 *entry; 208 209 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1]; 210 distance_lookup_table[nid][i] = of_read_number(entry, 1); 211 } 212 } 213 214 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa 215 * info is found. 216 */ 217 static int associativity_to_nid(const __be32 *associativity) 218 { 219 int nid = -1; 220 221 if (min_common_depth == -1) 222 goto out; 223 224 if (of_read_number(associativity, 1) >= min_common_depth) 225 nid = of_read_number(&associativity[min_common_depth], 1); 226 227 /* POWER4 LPAR uses 0xffff as invalid node */ 228 if (nid == 0xffff || nid >= MAX_NUMNODES) 229 nid = -1; 230 231 if (nid > 0 && 232 of_read_number(associativity, 1) >= distance_ref_points_depth) { 233 /* 234 * Skip the length field and send start of associativity array 235 */ 236 initialize_distance_lookup_table(nid, associativity + 1); 237 } 238 239 out: 240 return nid; 241 } 242 243 /* Returns the nid associated with the given device tree node, 244 * or -1 if not found. 245 */ 246 static int of_node_to_nid_single(struct device_node *device) 247 { 248 int nid = -1; 249 const __be32 *tmp; 250 251 tmp = of_get_associativity(device); 252 if (tmp) 253 nid = associativity_to_nid(tmp); 254 return nid; 255 } 256 257 /* Walk the device tree upwards, looking for an associativity id */ 258 int of_node_to_nid(struct device_node *device) 259 { 260 int nid = -1; 261 262 of_node_get(device); 263 while (device) { 264 nid = of_node_to_nid_single(device); 265 if (nid != -1) 266 break; 267 268 device = of_get_next_parent(device); 269 } 270 of_node_put(device); 271 272 return nid; 273 } 274 EXPORT_SYMBOL(of_node_to_nid); 275 276 static int __init find_min_common_depth(void) 277 { 278 int depth; 279 struct device_node *root; 280 281 if (firmware_has_feature(FW_FEATURE_OPAL)) 282 root = of_find_node_by_path("/ibm,opal"); 283 else 284 root = of_find_node_by_path("/rtas"); 285 if (!root) 286 root = of_find_node_by_path("/"); 287 288 /* 289 * This property is a set of 32-bit integers, each representing 290 * an index into the ibm,associativity nodes. 291 * 292 * With form 0 affinity the first integer is for an SMP configuration 293 * (should be all 0's) and the second is for a normal NUMA 294 * configuration. We have only one level of NUMA. 295 * 296 * With form 1 affinity the first integer is the most significant 297 * NUMA boundary and the following are progressively less significant 298 * boundaries. There can be more than one level of NUMA. 299 */ 300 distance_ref_points = of_get_property(root, 301 "ibm,associativity-reference-points", 302 &distance_ref_points_depth); 303 304 if (!distance_ref_points) { 305 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 306 goto err; 307 } 308 309 distance_ref_points_depth /= sizeof(int); 310 311 if (firmware_has_feature(FW_FEATURE_OPAL) || 312 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { 313 dbg("Using form 1 affinity\n"); 314 form1_affinity = 1; 315 } 316 317 if (form1_affinity) { 318 depth = of_read_number(distance_ref_points, 1); 319 } else { 320 if (distance_ref_points_depth < 2) { 321 printk(KERN_WARNING "NUMA: " 322 "short ibm,associativity-reference-points\n"); 323 goto err; 324 } 325 326 depth = of_read_number(&distance_ref_points[1], 1); 327 } 328 329 /* 330 * Warn and cap if the hardware supports more than 331 * MAX_DISTANCE_REF_POINTS domains. 332 */ 333 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 334 printk(KERN_WARNING "NUMA: distance array capped at " 335 "%d entries\n", MAX_DISTANCE_REF_POINTS); 336 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 337 } 338 339 of_node_put(root); 340 return depth; 341 342 err: 343 of_node_put(root); 344 return -1; 345 } 346 347 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 348 { 349 struct device_node *memory = NULL; 350 351 memory = of_find_node_by_type(memory, "memory"); 352 if (!memory) 353 panic("numa.c: No memory nodes found!"); 354 355 *n_addr_cells = of_n_addr_cells(memory); 356 *n_size_cells = of_n_size_cells(memory); 357 of_node_put(memory); 358 } 359 360 static unsigned long read_n_cells(int n, const __be32 **buf) 361 { 362 unsigned long result = 0; 363 364 while (n--) { 365 result = (result << 32) | of_read_number(*buf, 1); 366 (*buf)++; 367 } 368 return result; 369 } 370 371 struct assoc_arrays { 372 u32 n_arrays; 373 u32 array_sz; 374 const __be32 *arrays; 375 }; 376 377 /* 378 * Retrieve and validate the list of associativity arrays for drconf 379 * memory from the ibm,associativity-lookup-arrays property of the 380 * device tree.. 381 * 382 * The layout of the ibm,associativity-lookup-arrays property is a number N 383 * indicating the number of associativity arrays, followed by a number M 384 * indicating the size of each associativity array, followed by a list 385 * of N associativity arrays. 386 */ 387 static int of_get_assoc_arrays(struct assoc_arrays *aa) 388 { 389 struct device_node *memory; 390 const __be32 *prop; 391 u32 len; 392 393 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 394 if (!memory) 395 return -1; 396 397 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 398 if (!prop || len < 2 * sizeof(unsigned int)) { 399 of_node_put(memory); 400 return -1; 401 } 402 403 aa->n_arrays = of_read_number(prop++, 1); 404 aa->array_sz = of_read_number(prop++, 1); 405 406 of_node_put(memory); 407 408 /* Now that we know the number of arrays and size of each array, 409 * revalidate the size of the property read in. 410 */ 411 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 412 return -1; 413 414 aa->arrays = prop; 415 return 0; 416 } 417 418 /* 419 * This is like of_node_to_nid_single() for memory represented in the 420 * ibm,dynamic-reconfiguration-memory node. 421 */ 422 static int of_drconf_to_nid_single(struct drmem_lmb *lmb) 423 { 424 struct assoc_arrays aa = { .arrays = NULL }; 425 int default_nid = 0; 426 int nid = default_nid; 427 int rc, index; 428 429 rc = of_get_assoc_arrays(&aa); 430 if (rc) 431 return default_nid; 432 433 if (min_common_depth > 0 && min_common_depth <= aa.array_sz && 434 !(lmb->flags & DRCONF_MEM_AI_INVALID) && 435 lmb->aa_index < aa.n_arrays) { 436 index = lmb->aa_index * aa.array_sz + min_common_depth - 1; 437 nid = of_read_number(&aa.arrays[index], 1); 438 439 if (nid == 0xffff || nid >= MAX_NUMNODES) 440 nid = default_nid; 441 442 if (nid > 0) { 443 index = lmb->aa_index * aa.array_sz; 444 initialize_distance_lookup_table(nid, 445 &aa.arrays[index]); 446 } 447 } 448 449 return nid; 450 } 451 452 /* 453 * Figure out to which domain a cpu belongs and stick it there. 454 * Return the id of the domain used. 455 */ 456 static int numa_setup_cpu(unsigned long lcpu) 457 { 458 int nid = -1; 459 struct device_node *cpu; 460 461 /* 462 * If a valid cpu-to-node mapping is already available, use it 463 * directly instead of querying the firmware, since it represents 464 * the most recent mapping notified to us by the platform (eg: VPHN). 465 */ 466 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) { 467 map_cpu_to_node(lcpu, nid); 468 return nid; 469 } 470 471 cpu = of_get_cpu_node(lcpu, NULL); 472 473 if (!cpu) { 474 WARN_ON(1); 475 if (cpu_present(lcpu)) 476 goto out_present; 477 else 478 goto out; 479 } 480 481 nid = of_node_to_nid_single(cpu); 482 483 out_present: 484 if (nid < 0 || !node_possible(nid)) 485 nid = first_online_node; 486 487 map_cpu_to_node(lcpu, nid); 488 of_node_put(cpu); 489 out: 490 return nid; 491 } 492 493 static void verify_cpu_node_mapping(int cpu, int node) 494 { 495 int base, sibling, i; 496 497 /* Verify that all the threads in the core belong to the same node */ 498 base = cpu_first_thread_sibling(cpu); 499 500 for (i = 0; i < threads_per_core; i++) { 501 sibling = base + i; 502 503 if (sibling == cpu || cpu_is_offline(sibling)) 504 continue; 505 506 if (cpu_to_node(sibling) != node) { 507 WARN(1, "CPU thread siblings %d and %d don't belong" 508 " to the same node!\n", cpu, sibling); 509 break; 510 } 511 } 512 } 513 514 /* Must run before sched domains notifier. */ 515 static int ppc_numa_cpu_prepare(unsigned int cpu) 516 { 517 int nid; 518 519 nid = numa_setup_cpu(cpu); 520 verify_cpu_node_mapping(cpu, nid); 521 return 0; 522 } 523 524 static int ppc_numa_cpu_dead(unsigned int cpu) 525 { 526 #ifdef CONFIG_HOTPLUG_CPU 527 unmap_cpu_from_node(cpu); 528 #endif 529 return 0; 530 } 531 532 /* 533 * Check and possibly modify a memory region to enforce the memory limit. 534 * 535 * Returns the size the region should have to enforce the memory limit. 536 * This will either be the original value of size, a truncated value, 537 * or zero. If the returned value of size is 0 the region should be 538 * discarded as it lies wholly above the memory limit. 539 */ 540 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 541 unsigned long size) 542 { 543 /* 544 * We use memblock_end_of_DRAM() in here instead of memory_limit because 545 * we've already adjusted it for the limit and it takes care of 546 * having memory holes below the limit. Also, in the case of 547 * iommu_is_off, memory_limit is not set but is implicitly enforced. 548 */ 549 550 if (start + size <= memblock_end_of_DRAM()) 551 return size; 552 553 if (start >= memblock_end_of_DRAM()) 554 return 0; 555 556 return memblock_end_of_DRAM() - start; 557 } 558 559 /* 560 * Reads the counter for a given entry in 561 * linux,drconf-usable-memory property 562 */ 563 static inline int __init read_usm_ranges(const __be32 **usm) 564 { 565 /* 566 * For each lmb in ibm,dynamic-memory a corresponding 567 * entry in linux,drconf-usable-memory property contains 568 * a counter followed by that many (base, size) duple. 569 * read the counter from linux,drconf-usable-memory 570 */ 571 return read_n_cells(n_mem_size_cells, usm); 572 } 573 574 /* 575 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 576 * node. This assumes n_mem_{addr,size}_cells have been set. 577 */ 578 static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb, 579 const __be32 **usm) 580 { 581 unsigned int ranges, is_kexec_kdump = 0; 582 unsigned long base, size, sz; 583 int nid; 584 585 /* 586 * Skip this block if the reserved bit is set in flags (0x80) 587 * or if the block is not assigned to this partition (0x8) 588 */ 589 if ((lmb->flags & DRCONF_MEM_RESERVED) 590 || !(lmb->flags & DRCONF_MEM_ASSIGNED)) 591 return; 592 593 if (*usm) 594 is_kexec_kdump = 1; 595 596 base = lmb->base_addr; 597 size = drmem_lmb_size(); 598 ranges = 1; 599 600 if (is_kexec_kdump) { 601 ranges = read_usm_ranges(usm); 602 if (!ranges) /* there are no (base, size) duple */ 603 return; 604 } 605 606 do { 607 if (is_kexec_kdump) { 608 base = read_n_cells(n_mem_addr_cells, usm); 609 size = read_n_cells(n_mem_size_cells, usm); 610 } 611 612 nid = of_drconf_to_nid_single(lmb); 613 fake_numa_create_new_node(((base + size) >> PAGE_SHIFT), 614 &nid); 615 node_set_online(nid); 616 sz = numa_enforce_memory_limit(base, size); 617 if (sz) 618 memblock_set_node(base, sz, &memblock.memory, nid); 619 } while (--ranges); 620 } 621 622 static int __init parse_numa_properties(void) 623 { 624 struct device_node *memory; 625 int default_nid = 0; 626 unsigned long i; 627 628 if (numa_enabled == 0) { 629 printk(KERN_WARNING "NUMA disabled by user\n"); 630 return -1; 631 } 632 633 min_common_depth = find_min_common_depth(); 634 635 if (min_common_depth < 0) 636 return min_common_depth; 637 638 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 639 640 /* 641 * Even though we connect cpus to numa domains later in SMP 642 * init, we need to know the node ids now. This is because 643 * each node to be onlined must have NODE_DATA etc backing it. 644 */ 645 for_each_present_cpu(i) { 646 struct device_node *cpu; 647 int nid; 648 649 cpu = of_get_cpu_node(i, NULL); 650 BUG_ON(!cpu); 651 nid = of_node_to_nid_single(cpu); 652 of_node_put(cpu); 653 654 /* 655 * Don't fall back to default_nid yet -- we will plug 656 * cpus into nodes once the memory scan has discovered 657 * the topology. 658 */ 659 if (nid < 0) 660 continue; 661 node_set_online(nid); 662 } 663 664 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 665 666 for_each_node_by_type(memory, "memory") { 667 unsigned long start; 668 unsigned long size; 669 int nid; 670 int ranges; 671 const __be32 *memcell_buf; 672 unsigned int len; 673 674 memcell_buf = of_get_property(memory, 675 "linux,usable-memory", &len); 676 if (!memcell_buf || len <= 0) 677 memcell_buf = of_get_property(memory, "reg", &len); 678 if (!memcell_buf || len <= 0) 679 continue; 680 681 /* ranges in cell */ 682 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 683 new_range: 684 /* these are order-sensitive, and modify the buffer pointer */ 685 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 686 size = read_n_cells(n_mem_size_cells, &memcell_buf); 687 688 /* 689 * Assumption: either all memory nodes or none will 690 * have associativity properties. If none, then 691 * everything goes to default_nid. 692 */ 693 nid = of_node_to_nid_single(memory); 694 if (nid < 0) 695 nid = default_nid; 696 697 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 698 node_set_online(nid); 699 700 size = numa_enforce_memory_limit(start, size); 701 if (size) 702 memblock_set_node(start, size, &memblock.memory, nid); 703 704 if (--ranges) 705 goto new_range; 706 } 707 708 /* 709 * Now do the same thing for each MEMBLOCK listed in the 710 * ibm,dynamic-memory property in the 711 * ibm,dynamic-reconfiguration-memory node. 712 */ 713 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 714 if (memory) { 715 walk_drmem_lmbs(memory, numa_setup_drmem_lmb); 716 of_node_put(memory); 717 } 718 719 return 0; 720 } 721 722 static void __init setup_nonnuma(void) 723 { 724 unsigned long top_of_ram = memblock_end_of_DRAM(); 725 unsigned long total_ram = memblock_phys_mem_size(); 726 unsigned long start_pfn, end_pfn; 727 unsigned int nid = 0; 728 struct memblock_region *reg; 729 730 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 731 top_of_ram, total_ram); 732 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 733 (top_of_ram - total_ram) >> 20); 734 735 for_each_memblock(memory, reg) { 736 start_pfn = memblock_region_memory_base_pfn(reg); 737 end_pfn = memblock_region_memory_end_pfn(reg); 738 739 fake_numa_create_new_node(end_pfn, &nid); 740 memblock_set_node(PFN_PHYS(start_pfn), 741 PFN_PHYS(end_pfn - start_pfn), 742 &memblock.memory, nid); 743 node_set_online(nid); 744 } 745 } 746 747 void __init dump_numa_cpu_topology(void) 748 { 749 unsigned int node; 750 unsigned int cpu, count; 751 752 if (min_common_depth == -1 || !numa_enabled) 753 return; 754 755 for_each_online_node(node) { 756 pr_info("Node %d CPUs:", node); 757 758 count = 0; 759 /* 760 * If we used a CPU iterator here we would miss printing 761 * the holes in the cpumap. 762 */ 763 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 764 if (cpumask_test_cpu(cpu, 765 node_to_cpumask_map[node])) { 766 if (count == 0) 767 pr_cont(" %u", cpu); 768 ++count; 769 } else { 770 if (count > 1) 771 pr_cont("-%u", cpu - 1); 772 count = 0; 773 } 774 } 775 776 if (count > 1) 777 pr_cont("-%u", nr_cpu_ids - 1); 778 pr_cont("\n"); 779 } 780 } 781 782 /* Initialize NODE_DATA for a node on the local memory */ 783 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) 784 { 785 u64 spanned_pages = end_pfn - start_pfn; 786 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); 787 u64 nd_pa; 788 void *nd; 789 int tnid; 790 791 nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); 792 nd = __va(nd_pa); 793 794 /* report and initialize */ 795 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n", 796 nd_pa, nd_pa + nd_size - 1); 797 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); 798 if (tnid != nid) 799 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid); 800 801 node_data[nid] = nd; 802 memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); 803 NODE_DATA(nid)->node_id = nid; 804 NODE_DATA(nid)->node_start_pfn = start_pfn; 805 NODE_DATA(nid)->node_spanned_pages = spanned_pages; 806 } 807 808 static void __init find_possible_nodes(void) 809 { 810 struct device_node *rtas; 811 u32 numnodes, i; 812 813 if (min_common_depth <= 0) 814 return; 815 816 rtas = of_find_node_by_path("/rtas"); 817 if (!rtas) 818 return; 819 820 if (of_property_read_u32_index(rtas, 821 "ibm,max-associativity-domains", 822 min_common_depth, &numnodes)) 823 goto out; 824 825 for (i = 0; i < numnodes; i++) { 826 if (!node_possible(i)) 827 node_set(i, node_possible_map); 828 } 829 830 out: 831 of_node_put(rtas); 832 } 833 834 void __init mem_topology_setup(void) 835 { 836 int cpu; 837 838 if (parse_numa_properties()) 839 setup_nonnuma(); 840 841 /* 842 * Modify the set of possible NUMA nodes to reflect information 843 * available about the set of online nodes, and the set of nodes 844 * that we expect to make use of for this platform's affinity 845 * calculations. 846 */ 847 nodes_and(node_possible_map, node_possible_map, node_online_map); 848 849 find_possible_nodes(); 850 851 setup_node_to_cpumask_map(); 852 853 reset_numa_cpu_lookup_table(); 854 855 for_each_present_cpu(cpu) 856 numa_setup_cpu(cpu); 857 } 858 859 void __init initmem_init(void) 860 { 861 int nid; 862 863 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 864 max_pfn = max_low_pfn; 865 866 memblock_dump_all(); 867 868 for_each_online_node(nid) { 869 unsigned long start_pfn, end_pfn; 870 871 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 872 setup_node_data(nid, start_pfn, end_pfn); 873 sparse_memory_present_with_active_regions(nid); 874 } 875 876 sparse_init(); 877 878 /* 879 * We need the numa_cpu_lookup_table to be accurate for all CPUs, 880 * even before we online them, so that we can use cpu_to_{node,mem} 881 * early in boot, cf. smp_prepare_cpus(). 882 * _nocalls() + manual invocation is used because cpuhp is not yet 883 * initialized for the boot CPU. 884 */ 885 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare", 886 ppc_numa_cpu_prepare, ppc_numa_cpu_dead); 887 } 888 889 static int __init early_numa(char *p) 890 { 891 if (!p) 892 return 0; 893 894 if (strstr(p, "off")) 895 numa_enabled = 0; 896 897 if (strstr(p, "debug")) 898 numa_debug = 1; 899 900 p = strstr(p, "fake="); 901 if (p) 902 cmdline = p + strlen("fake="); 903 904 return 0; 905 } 906 early_param("numa", early_numa); 907 908 static bool topology_updates_enabled = true; 909 910 static int __init early_topology_updates(char *p) 911 { 912 if (!p) 913 return 0; 914 915 if (!strcmp(p, "off")) { 916 pr_info("Disabling topology updates\n"); 917 topology_updates_enabled = false; 918 } 919 920 return 0; 921 } 922 early_param("topology_updates", early_topology_updates); 923 924 #ifdef CONFIG_MEMORY_HOTPLUG 925 /* 926 * Find the node associated with a hot added memory section for 927 * memory represented in the device tree by the property 928 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 929 */ 930 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr) 931 { 932 struct drmem_lmb *lmb; 933 unsigned long lmb_size; 934 int nid = -1; 935 936 lmb_size = drmem_lmb_size(); 937 938 for_each_drmem_lmb(lmb) { 939 /* skip this block if it is reserved or not assigned to 940 * this partition */ 941 if ((lmb->flags & DRCONF_MEM_RESERVED) 942 || !(lmb->flags & DRCONF_MEM_ASSIGNED)) 943 continue; 944 945 if ((scn_addr < lmb->base_addr) 946 || (scn_addr >= (lmb->base_addr + lmb_size))) 947 continue; 948 949 nid = of_drconf_to_nid_single(lmb); 950 break; 951 } 952 953 return nid; 954 } 955 956 /* 957 * Find the node associated with a hot added memory section for memory 958 * represented in the device tree as a node (i.e. memory@XXXX) for 959 * each memblock. 960 */ 961 static int hot_add_node_scn_to_nid(unsigned long scn_addr) 962 { 963 struct device_node *memory; 964 int nid = -1; 965 966 for_each_node_by_type(memory, "memory") { 967 unsigned long start, size; 968 int ranges; 969 const __be32 *memcell_buf; 970 unsigned int len; 971 972 memcell_buf = of_get_property(memory, "reg", &len); 973 if (!memcell_buf || len <= 0) 974 continue; 975 976 /* ranges in cell */ 977 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 978 979 while (ranges--) { 980 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 981 size = read_n_cells(n_mem_size_cells, &memcell_buf); 982 983 if ((scn_addr < start) || (scn_addr >= (start + size))) 984 continue; 985 986 nid = of_node_to_nid_single(memory); 987 break; 988 } 989 990 if (nid >= 0) 991 break; 992 } 993 994 of_node_put(memory); 995 996 return nid; 997 } 998 999 /* 1000 * Find the node associated with a hot added memory section. Section 1001 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1002 * sections are fully contained within a single MEMBLOCK. 1003 */ 1004 int hot_add_scn_to_nid(unsigned long scn_addr) 1005 { 1006 struct device_node *memory = NULL; 1007 int nid; 1008 1009 if (!numa_enabled || (min_common_depth < 0)) 1010 return first_online_node; 1011 1012 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1013 if (memory) { 1014 nid = hot_add_drconf_scn_to_nid(scn_addr); 1015 of_node_put(memory); 1016 } else { 1017 nid = hot_add_node_scn_to_nid(scn_addr); 1018 } 1019 1020 if (nid < 0 || !node_possible(nid)) 1021 nid = first_online_node; 1022 1023 return nid; 1024 } 1025 1026 static u64 hot_add_drconf_memory_max(void) 1027 { 1028 struct device_node *memory = NULL; 1029 struct device_node *dn = NULL; 1030 const __be64 *lrdr = NULL; 1031 1032 dn = of_find_node_by_path("/rtas"); 1033 if (dn) { 1034 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL); 1035 of_node_put(dn); 1036 if (lrdr) 1037 return be64_to_cpup(lrdr); 1038 } 1039 1040 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1041 if (memory) { 1042 of_node_put(memory); 1043 return drmem_lmb_memory_max(); 1044 } 1045 return 0; 1046 } 1047 1048 /* 1049 * memory_hotplug_max - return max address of memory that may be added 1050 * 1051 * This is currently only used on systems that support drconfig memory 1052 * hotplug. 1053 */ 1054 u64 memory_hotplug_max(void) 1055 { 1056 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1057 } 1058 #endif /* CONFIG_MEMORY_HOTPLUG */ 1059 1060 /* Virtual Processor Home Node (VPHN) support */ 1061 #ifdef CONFIG_PPC_SPLPAR 1062 1063 #include "vphn.h" 1064 1065 struct topology_update_data { 1066 struct topology_update_data *next; 1067 unsigned int cpu; 1068 int old_nid; 1069 int new_nid; 1070 }; 1071 1072 #define TOPOLOGY_DEF_TIMER_SECS 60 1073 1074 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; 1075 static cpumask_t cpu_associativity_changes_mask; 1076 static int vphn_enabled; 1077 static int prrn_enabled; 1078 static void reset_topology_timer(void); 1079 static int topology_timer_secs = 1; 1080 static int topology_inited; 1081 1082 /* 1083 * Change polling interval for associativity changes. 1084 */ 1085 int timed_topology_update(int nsecs) 1086 { 1087 if (vphn_enabled) { 1088 if (nsecs > 0) 1089 topology_timer_secs = nsecs; 1090 else 1091 topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS; 1092 1093 reset_topology_timer(); 1094 } 1095 1096 return 0; 1097 } 1098 1099 /* 1100 * Store the current values of the associativity change counters in the 1101 * hypervisor. 1102 */ 1103 static void setup_cpu_associativity_change_counters(void) 1104 { 1105 int cpu; 1106 1107 /* The VPHN feature supports a maximum of 8 reference points */ 1108 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); 1109 1110 for_each_possible_cpu(cpu) { 1111 int i; 1112 u8 *counts = vphn_cpu_change_counts[cpu]; 1113 volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts; 1114 1115 for (i = 0; i < distance_ref_points_depth; i++) 1116 counts[i] = hypervisor_counts[i]; 1117 } 1118 } 1119 1120 /* 1121 * The hypervisor maintains a set of 8 associativity change counters in 1122 * the VPA of each cpu that correspond to the associativity levels in the 1123 * ibm,associativity-reference-points property. When an associativity 1124 * level changes, the corresponding counter is incremented. 1125 * 1126 * Set a bit in cpu_associativity_changes_mask for each cpu whose home 1127 * node associativity levels have changed. 1128 * 1129 * Returns the number of cpus with unhandled associativity changes. 1130 */ 1131 static int update_cpu_associativity_changes_mask(void) 1132 { 1133 int cpu; 1134 cpumask_t *changes = &cpu_associativity_changes_mask; 1135 1136 for_each_possible_cpu(cpu) { 1137 int i, changed = 0; 1138 u8 *counts = vphn_cpu_change_counts[cpu]; 1139 volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts; 1140 1141 for (i = 0; i < distance_ref_points_depth; i++) { 1142 if (hypervisor_counts[i] != counts[i]) { 1143 counts[i] = hypervisor_counts[i]; 1144 changed = 1; 1145 } 1146 } 1147 if (changed) { 1148 cpumask_or(changes, changes, cpu_sibling_mask(cpu)); 1149 cpu = cpu_last_thread_sibling(cpu); 1150 } 1151 } 1152 1153 return cpumask_weight(changes); 1154 } 1155 1156 /* 1157 * Retrieve the new associativity information for a virtual processor's 1158 * home node. 1159 */ 1160 static long hcall_vphn(unsigned long cpu, __be32 *associativity) 1161 { 1162 long rc; 1163 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; 1164 u64 flags = 1; 1165 int hwcpu = get_hard_smp_processor_id(cpu); 1166 1167 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); 1168 vphn_unpack_associativity(retbuf, associativity); 1169 1170 return rc; 1171 } 1172 1173 static long vphn_get_associativity(unsigned long cpu, 1174 __be32 *associativity) 1175 { 1176 long rc; 1177 1178 rc = hcall_vphn(cpu, associativity); 1179 1180 switch (rc) { 1181 case H_FUNCTION: 1182 printk(KERN_INFO 1183 "VPHN is not supported. Disabling polling...\n"); 1184 stop_topology_update(); 1185 break; 1186 case H_HARDWARE: 1187 printk(KERN_ERR 1188 "hcall_vphn() experienced a hardware fault " 1189 "preventing VPHN. Disabling polling...\n"); 1190 stop_topology_update(); 1191 break; 1192 case H_SUCCESS: 1193 dbg("VPHN hcall succeeded. Reset polling...\n"); 1194 timed_topology_update(0); 1195 break; 1196 } 1197 1198 return rc; 1199 } 1200 1201 int find_and_online_cpu_nid(int cpu) 1202 { 1203 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1204 int new_nid; 1205 1206 /* Use associativity from first thread for all siblings */ 1207 vphn_get_associativity(cpu, associativity); 1208 new_nid = associativity_to_nid(associativity); 1209 if (new_nid < 0 || !node_possible(new_nid)) 1210 new_nid = first_online_node; 1211 1212 if (NODE_DATA(new_nid) == NULL) { 1213 #ifdef CONFIG_MEMORY_HOTPLUG 1214 /* 1215 * Need to ensure that NODE_DATA is initialized for a node from 1216 * available memory (see memblock_alloc_try_nid). If unable to 1217 * init the node, then default to nearest node that has memory 1218 * installed. 1219 */ 1220 if (try_online_node(new_nid)) 1221 new_nid = first_online_node; 1222 #else 1223 /* 1224 * Default to using the nearest node that has memory installed. 1225 * Otherwise, it would be necessary to patch the kernel MM code 1226 * to deal with more memoryless-node error conditions. 1227 */ 1228 new_nid = first_online_node; 1229 #endif 1230 } 1231 1232 pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__, 1233 cpu, new_nid); 1234 return new_nid; 1235 } 1236 1237 /* 1238 * Update the CPU maps and sysfs entries for a single CPU when its NUMA 1239 * characteristics change. This function doesn't perform any locking and is 1240 * only safe to call from stop_machine(). 1241 */ 1242 static int update_cpu_topology(void *data) 1243 { 1244 struct topology_update_data *update; 1245 unsigned long cpu; 1246 1247 if (!data) 1248 return -EINVAL; 1249 1250 cpu = smp_processor_id(); 1251 1252 for (update = data; update; update = update->next) { 1253 int new_nid = update->new_nid; 1254 if (cpu != update->cpu) 1255 continue; 1256 1257 unmap_cpu_from_node(cpu); 1258 map_cpu_to_node(cpu, new_nid); 1259 set_cpu_numa_node(cpu, new_nid); 1260 set_cpu_numa_mem(cpu, local_memory_node(new_nid)); 1261 vdso_getcpu_init(); 1262 } 1263 1264 return 0; 1265 } 1266 1267 static int update_lookup_table(void *data) 1268 { 1269 struct topology_update_data *update; 1270 1271 if (!data) 1272 return -EINVAL; 1273 1274 /* 1275 * Upon topology update, the numa-cpu lookup table needs to be updated 1276 * for all threads in the core, including offline CPUs, to ensure that 1277 * future hotplug operations respect the cpu-to-node associativity 1278 * properly. 1279 */ 1280 for (update = data; update; update = update->next) { 1281 int nid, base, j; 1282 1283 nid = update->new_nid; 1284 base = cpu_first_thread_sibling(update->cpu); 1285 1286 for (j = 0; j < threads_per_core; j++) { 1287 update_numa_cpu_lookup_table(base + j, nid); 1288 } 1289 } 1290 1291 return 0; 1292 } 1293 1294 /* 1295 * Update the node maps and sysfs entries for each cpu whose home node 1296 * has changed. Returns 1 when the topology has changed, and 0 otherwise. 1297 * 1298 * cpus_locked says whether we already hold cpu_hotplug_lock. 1299 */ 1300 int numa_update_cpu_topology(bool cpus_locked) 1301 { 1302 unsigned int cpu, sibling, changed = 0; 1303 struct topology_update_data *updates, *ud; 1304 cpumask_t updated_cpus; 1305 struct device *dev; 1306 int weight, new_nid, i = 0; 1307 1308 if (!prrn_enabled && !vphn_enabled && topology_inited) 1309 return 0; 1310 1311 weight = cpumask_weight(&cpu_associativity_changes_mask); 1312 if (!weight) 1313 return 0; 1314 1315 updates = kcalloc(weight, sizeof(*updates), GFP_KERNEL); 1316 if (!updates) 1317 return 0; 1318 1319 cpumask_clear(&updated_cpus); 1320 1321 for_each_cpu(cpu, &cpu_associativity_changes_mask) { 1322 /* 1323 * If siblings aren't flagged for changes, updates list 1324 * will be too short. Skip on this update and set for next 1325 * update. 1326 */ 1327 if (!cpumask_subset(cpu_sibling_mask(cpu), 1328 &cpu_associativity_changes_mask)) { 1329 pr_info("Sibling bits not set for associativity " 1330 "change, cpu%d\n", cpu); 1331 cpumask_or(&cpu_associativity_changes_mask, 1332 &cpu_associativity_changes_mask, 1333 cpu_sibling_mask(cpu)); 1334 cpu = cpu_last_thread_sibling(cpu); 1335 continue; 1336 } 1337 1338 new_nid = find_and_online_cpu_nid(cpu); 1339 1340 if (new_nid == numa_cpu_lookup_table[cpu]) { 1341 cpumask_andnot(&cpu_associativity_changes_mask, 1342 &cpu_associativity_changes_mask, 1343 cpu_sibling_mask(cpu)); 1344 dbg("Assoc chg gives same node %d for cpu%d\n", 1345 new_nid, cpu); 1346 cpu = cpu_last_thread_sibling(cpu); 1347 continue; 1348 } 1349 1350 for_each_cpu(sibling, cpu_sibling_mask(cpu)) { 1351 ud = &updates[i++]; 1352 ud->next = &updates[i]; 1353 ud->cpu = sibling; 1354 ud->new_nid = new_nid; 1355 ud->old_nid = numa_cpu_lookup_table[sibling]; 1356 cpumask_set_cpu(sibling, &updated_cpus); 1357 } 1358 cpu = cpu_last_thread_sibling(cpu); 1359 } 1360 1361 /* 1362 * Prevent processing of 'updates' from overflowing array 1363 * where last entry filled in a 'next' pointer. 1364 */ 1365 if (i) 1366 updates[i-1].next = NULL; 1367 1368 pr_debug("Topology update for the following CPUs:\n"); 1369 if (cpumask_weight(&updated_cpus)) { 1370 for (ud = &updates[0]; ud; ud = ud->next) { 1371 pr_debug("cpu %d moving from node %d " 1372 "to %d\n", ud->cpu, 1373 ud->old_nid, ud->new_nid); 1374 } 1375 } 1376 1377 /* 1378 * In cases where we have nothing to update (because the updates list 1379 * is too short or because the new topology is same as the old one), 1380 * skip invoking update_cpu_topology() via stop-machine(). This is 1381 * necessary (and not just a fast-path optimization) since stop-machine 1382 * can end up electing a random CPU to run update_cpu_topology(), and 1383 * thus trick us into setting up incorrect cpu-node mappings (since 1384 * 'updates' is kzalloc()'ed). 1385 * 1386 * And for the similar reason, we will skip all the following updating. 1387 */ 1388 if (!cpumask_weight(&updated_cpus)) 1389 goto out; 1390 1391 if (cpus_locked) 1392 stop_machine_cpuslocked(update_cpu_topology, &updates[0], 1393 &updated_cpus); 1394 else 1395 stop_machine(update_cpu_topology, &updates[0], &updated_cpus); 1396 1397 /* 1398 * Update the numa-cpu lookup table with the new mappings, even for 1399 * offline CPUs. It is best to perform this update from the stop- 1400 * machine context. 1401 */ 1402 if (cpus_locked) 1403 stop_machine_cpuslocked(update_lookup_table, &updates[0], 1404 cpumask_of(raw_smp_processor_id())); 1405 else 1406 stop_machine(update_lookup_table, &updates[0], 1407 cpumask_of(raw_smp_processor_id())); 1408 1409 for (ud = &updates[0]; ud; ud = ud->next) { 1410 unregister_cpu_under_node(ud->cpu, ud->old_nid); 1411 register_cpu_under_node(ud->cpu, ud->new_nid); 1412 1413 dev = get_cpu_device(ud->cpu); 1414 if (dev) 1415 kobject_uevent(&dev->kobj, KOBJ_CHANGE); 1416 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask); 1417 changed = 1; 1418 } 1419 1420 out: 1421 kfree(updates); 1422 return changed; 1423 } 1424 1425 int arch_update_cpu_topology(void) 1426 { 1427 return numa_update_cpu_topology(true); 1428 } 1429 1430 static void topology_work_fn(struct work_struct *work) 1431 { 1432 rebuild_sched_domains(); 1433 } 1434 static DECLARE_WORK(topology_work, topology_work_fn); 1435 1436 static void topology_schedule_update(void) 1437 { 1438 schedule_work(&topology_work); 1439 } 1440 1441 static void topology_timer_fn(struct timer_list *unused) 1442 { 1443 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask)) 1444 topology_schedule_update(); 1445 else if (vphn_enabled) { 1446 if (update_cpu_associativity_changes_mask() > 0) 1447 topology_schedule_update(); 1448 reset_topology_timer(); 1449 } 1450 } 1451 static struct timer_list topology_timer; 1452 1453 static void reset_topology_timer(void) 1454 { 1455 mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ); 1456 } 1457 1458 #ifdef CONFIG_SMP 1459 1460 static void stage_topology_update(int core_id) 1461 { 1462 cpumask_or(&cpu_associativity_changes_mask, 1463 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id)); 1464 reset_topology_timer(); 1465 } 1466 1467 static int dt_update_callback(struct notifier_block *nb, 1468 unsigned long action, void *data) 1469 { 1470 struct of_reconfig_data *update = data; 1471 int rc = NOTIFY_DONE; 1472 1473 switch (action) { 1474 case OF_RECONFIG_UPDATE_PROPERTY: 1475 if (!of_prop_cmp(update->dn->type, "cpu") && 1476 !of_prop_cmp(update->prop->name, "ibm,associativity")) { 1477 u32 core_id; 1478 of_property_read_u32(update->dn, "reg", &core_id); 1479 stage_topology_update(core_id); 1480 rc = NOTIFY_OK; 1481 } 1482 break; 1483 } 1484 1485 return rc; 1486 } 1487 1488 static struct notifier_block dt_update_nb = { 1489 .notifier_call = dt_update_callback, 1490 }; 1491 1492 #endif 1493 1494 /* 1495 * Start polling for associativity changes. 1496 */ 1497 int start_topology_update(void) 1498 { 1499 int rc = 0; 1500 1501 if (firmware_has_feature(FW_FEATURE_PRRN)) { 1502 if (!prrn_enabled) { 1503 prrn_enabled = 1; 1504 #ifdef CONFIG_SMP 1505 rc = of_reconfig_notifier_register(&dt_update_nb); 1506 #endif 1507 } 1508 } 1509 if (firmware_has_feature(FW_FEATURE_VPHN) && 1510 lppaca_shared_proc(get_lppaca())) { 1511 if (!vphn_enabled) { 1512 vphn_enabled = 1; 1513 setup_cpu_associativity_change_counters(); 1514 timer_setup(&topology_timer, topology_timer_fn, 1515 TIMER_DEFERRABLE); 1516 reset_topology_timer(); 1517 } 1518 } 1519 1520 return rc; 1521 } 1522 1523 /* 1524 * Disable polling for VPHN associativity changes. 1525 */ 1526 int stop_topology_update(void) 1527 { 1528 int rc = 0; 1529 1530 if (prrn_enabled) { 1531 prrn_enabled = 0; 1532 #ifdef CONFIG_SMP 1533 rc = of_reconfig_notifier_unregister(&dt_update_nb); 1534 #endif 1535 } 1536 if (vphn_enabled) { 1537 vphn_enabled = 0; 1538 rc = del_timer_sync(&topology_timer); 1539 } 1540 1541 return rc; 1542 } 1543 1544 int prrn_is_enabled(void) 1545 { 1546 return prrn_enabled; 1547 } 1548 1549 void __init shared_proc_topology_init(void) 1550 { 1551 if (lppaca_shared_proc(get_lppaca())) { 1552 bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask), 1553 nr_cpumask_bits); 1554 numa_update_cpu_topology(false); 1555 } 1556 } 1557 1558 static int topology_read(struct seq_file *file, void *v) 1559 { 1560 if (vphn_enabled || prrn_enabled) 1561 seq_puts(file, "on\n"); 1562 else 1563 seq_puts(file, "off\n"); 1564 1565 return 0; 1566 } 1567 1568 static int topology_open(struct inode *inode, struct file *file) 1569 { 1570 return single_open(file, topology_read, NULL); 1571 } 1572 1573 static ssize_t topology_write(struct file *file, const char __user *buf, 1574 size_t count, loff_t *off) 1575 { 1576 char kbuf[4]; /* "on" or "off" plus null. */ 1577 int read_len; 1578 1579 read_len = count < 3 ? count : 3; 1580 if (copy_from_user(kbuf, buf, read_len)) 1581 return -EINVAL; 1582 1583 kbuf[read_len] = '\0'; 1584 1585 if (!strncmp(kbuf, "on", 2)) 1586 start_topology_update(); 1587 else if (!strncmp(kbuf, "off", 3)) 1588 stop_topology_update(); 1589 else 1590 return -EINVAL; 1591 1592 return count; 1593 } 1594 1595 static const struct file_operations topology_ops = { 1596 .read = seq_read, 1597 .write = topology_write, 1598 .open = topology_open, 1599 .release = single_release 1600 }; 1601 1602 static int topology_update_init(void) 1603 { 1604 /* Do not poll for changes if disabled at boot */ 1605 if (topology_updates_enabled) 1606 start_topology_update(); 1607 1608 if (vphn_enabled) 1609 topology_schedule_update(); 1610 1611 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops)) 1612 return -ENOMEM; 1613 1614 topology_inited = 1; 1615 return 0; 1616 } 1617 device_initcall(topology_update_init); 1618 #endif /* CONFIG_PPC_SPLPAR */ 1619