1 /* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/threads.h> 12 #include <linux/bootmem.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/mmzone.h> 16 #include <linux/module.h> 17 #include <linux/nodemask.h> 18 #include <linux/cpu.h> 19 #include <linux/notifier.h> 20 #include <linux/memblock.h> 21 #include <linux/of.h> 22 #include <linux/pfn.h> 23 #include <linux/cpuset.h> 24 #include <linux/node.h> 25 #include <asm/sparsemem.h> 26 #include <asm/prom.h> 27 #include <asm/system.h> 28 #include <asm/smp.h> 29 #include <asm/firmware.h> 30 #include <asm/paca.h> 31 #include <asm/hvcall.h> 32 33 static int numa_enabled = 1; 34 35 static char *cmdline __initdata; 36 37 static int numa_debug; 38 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 39 40 int numa_cpu_lookup_table[NR_CPUS]; 41 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 42 struct pglist_data *node_data[MAX_NUMNODES]; 43 44 EXPORT_SYMBOL(numa_cpu_lookup_table); 45 EXPORT_SYMBOL(node_to_cpumask_map); 46 EXPORT_SYMBOL(node_data); 47 48 static int min_common_depth; 49 static int n_mem_addr_cells, n_mem_size_cells; 50 static int form1_affinity; 51 52 #define MAX_DISTANCE_REF_POINTS 4 53 static int distance_ref_points_depth; 54 static const unsigned int *distance_ref_points; 55 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 56 57 /* 58 * Allocate node_to_cpumask_map based on number of available nodes 59 * Requires node_possible_map to be valid. 60 * 61 * Note: node_to_cpumask() is not valid until after this is done. 62 */ 63 static void __init setup_node_to_cpumask_map(void) 64 { 65 unsigned int node, num = 0; 66 67 /* setup nr_node_ids if not done yet */ 68 if (nr_node_ids == MAX_NUMNODES) { 69 for_each_node_mask(node, node_possible_map) 70 num = node; 71 nr_node_ids = num + 1; 72 } 73 74 /* allocate the map */ 75 for (node = 0; node < nr_node_ids; node++) 76 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 77 78 /* cpumask_of_node() will now work */ 79 dbg("Node to cpumask map for %d nodes\n", nr_node_ids); 80 } 81 82 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn, 83 unsigned int *nid) 84 { 85 unsigned long long mem; 86 char *p = cmdline; 87 static unsigned int fake_nid; 88 static unsigned long long curr_boundary; 89 90 /* 91 * Modify node id, iff we started creating NUMA nodes 92 * We want to continue from where we left of the last time 93 */ 94 if (fake_nid) 95 *nid = fake_nid; 96 /* 97 * In case there are no more arguments to parse, the 98 * node_id should be the same as the last fake node id 99 * (we've handled this above). 100 */ 101 if (!p) 102 return 0; 103 104 mem = memparse(p, &p); 105 if (!mem) 106 return 0; 107 108 if (mem < curr_boundary) 109 return 0; 110 111 curr_boundary = mem; 112 113 if ((end_pfn << PAGE_SHIFT) > mem) { 114 /* 115 * Skip commas and spaces 116 */ 117 while (*p == ',' || *p == ' ' || *p == '\t') 118 p++; 119 120 cmdline = p; 121 fake_nid++; 122 *nid = fake_nid; 123 dbg("created new fake_node with id %d\n", fake_nid); 124 return 1; 125 } 126 return 0; 127 } 128 129 /* 130 * get_active_region_work_fn - A helper function for get_node_active_region 131 * Returns datax set to the start_pfn and end_pfn if they contain 132 * the initial value of datax->start_pfn between them 133 * @start_pfn: start page(inclusive) of region to check 134 * @end_pfn: end page(exclusive) of region to check 135 * @datax: comes in with ->start_pfn set to value to search for and 136 * goes out with active range if it contains it 137 * Returns 1 if search value is in range else 0 138 */ 139 static int __init get_active_region_work_fn(unsigned long start_pfn, 140 unsigned long end_pfn, void *datax) 141 { 142 struct node_active_region *data; 143 data = (struct node_active_region *)datax; 144 145 if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) { 146 data->start_pfn = start_pfn; 147 data->end_pfn = end_pfn; 148 return 1; 149 } 150 return 0; 151 152 } 153 154 /* 155 * get_node_active_region - Return active region containing start_pfn 156 * Active range returned is empty if none found. 157 * @start_pfn: The page to return the region for. 158 * @node_ar: Returned set to the active region containing start_pfn 159 */ 160 static void __init get_node_active_region(unsigned long start_pfn, 161 struct node_active_region *node_ar) 162 { 163 int nid = early_pfn_to_nid(start_pfn); 164 165 node_ar->nid = nid; 166 node_ar->start_pfn = start_pfn; 167 node_ar->end_pfn = start_pfn; 168 work_with_active_regions(nid, get_active_region_work_fn, node_ar); 169 } 170 171 static void map_cpu_to_node(int cpu, int node) 172 { 173 numa_cpu_lookup_table[cpu] = node; 174 175 dbg("adding cpu %d to node %d\n", cpu, node); 176 177 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) 178 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 179 } 180 181 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 182 static void unmap_cpu_from_node(unsigned long cpu) 183 { 184 int node = numa_cpu_lookup_table[cpu]; 185 186 dbg("removing cpu %lu from node %d\n", cpu, node); 187 188 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 189 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 190 } else { 191 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 192 cpu, node); 193 } 194 } 195 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 196 197 /* must hold reference to node during call */ 198 static const int *of_get_associativity(struct device_node *dev) 199 { 200 return of_get_property(dev, "ibm,associativity", NULL); 201 } 202 203 /* 204 * Returns the property linux,drconf-usable-memory if 205 * it exists (the property exists only in kexec/kdump kernels, 206 * added by kexec-tools) 207 */ 208 static const u32 *of_get_usable_memory(struct device_node *memory) 209 { 210 const u32 *prop; 211 u32 len; 212 prop = of_get_property(memory, "linux,drconf-usable-memory", &len); 213 if (!prop || len < sizeof(unsigned int)) 214 return 0; 215 return prop; 216 } 217 218 int __node_distance(int a, int b) 219 { 220 int i; 221 int distance = LOCAL_DISTANCE; 222 223 if (!form1_affinity) 224 return distance; 225 226 for (i = 0; i < distance_ref_points_depth; i++) { 227 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 228 break; 229 230 /* Double the distance for each NUMA level */ 231 distance *= 2; 232 } 233 234 return distance; 235 } 236 237 static void initialize_distance_lookup_table(int nid, 238 const unsigned int *associativity) 239 { 240 int i; 241 242 if (!form1_affinity) 243 return; 244 245 for (i = 0; i < distance_ref_points_depth; i++) { 246 distance_lookup_table[nid][i] = 247 associativity[distance_ref_points[i]]; 248 } 249 } 250 251 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa 252 * info is found. 253 */ 254 static int associativity_to_nid(const unsigned int *associativity) 255 { 256 int nid = -1; 257 258 if (min_common_depth == -1) 259 goto out; 260 261 if (associativity[0] >= min_common_depth) 262 nid = associativity[min_common_depth]; 263 264 /* POWER4 LPAR uses 0xffff as invalid node */ 265 if (nid == 0xffff || nid >= MAX_NUMNODES) 266 nid = -1; 267 268 if (nid > 0 && associativity[0] >= distance_ref_points_depth) 269 initialize_distance_lookup_table(nid, associativity); 270 271 out: 272 return nid; 273 } 274 275 /* Returns the nid associated with the given device tree node, 276 * or -1 if not found. 277 */ 278 static int of_node_to_nid_single(struct device_node *device) 279 { 280 int nid = -1; 281 const unsigned int *tmp; 282 283 tmp = of_get_associativity(device); 284 if (tmp) 285 nid = associativity_to_nid(tmp); 286 return nid; 287 } 288 289 /* Walk the device tree upwards, looking for an associativity id */ 290 int of_node_to_nid(struct device_node *device) 291 { 292 struct device_node *tmp; 293 int nid = -1; 294 295 of_node_get(device); 296 while (device) { 297 nid = of_node_to_nid_single(device); 298 if (nid != -1) 299 break; 300 301 tmp = device; 302 device = of_get_parent(tmp); 303 of_node_put(tmp); 304 } 305 of_node_put(device); 306 307 return nid; 308 } 309 EXPORT_SYMBOL_GPL(of_node_to_nid); 310 311 static int __init find_min_common_depth(void) 312 { 313 int depth; 314 struct device_node *chosen; 315 struct device_node *root; 316 const char *vec5; 317 318 root = of_find_node_by_path("/rtas"); 319 if (!root) 320 root = of_find_node_by_path("/"); 321 322 /* 323 * This property is a set of 32-bit integers, each representing 324 * an index into the ibm,associativity nodes. 325 * 326 * With form 0 affinity the first integer is for an SMP configuration 327 * (should be all 0's) and the second is for a normal NUMA 328 * configuration. We have only one level of NUMA. 329 * 330 * With form 1 affinity the first integer is the most significant 331 * NUMA boundary and the following are progressively less significant 332 * boundaries. There can be more than one level of NUMA. 333 */ 334 distance_ref_points = of_get_property(root, 335 "ibm,associativity-reference-points", 336 &distance_ref_points_depth); 337 338 if (!distance_ref_points) { 339 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 340 goto err; 341 } 342 343 distance_ref_points_depth /= sizeof(int); 344 345 #define VEC5_AFFINITY_BYTE 5 346 #define VEC5_AFFINITY 0x80 347 chosen = of_find_node_by_path("/chosen"); 348 if (chosen) { 349 vec5 = of_get_property(chosen, "ibm,architecture-vec-5", NULL); 350 if (vec5 && (vec5[VEC5_AFFINITY_BYTE] & VEC5_AFFINITY)) { 351 dbg("Using form 1 affinity\n"); 352 form1_affinity = 1; 353 } 354 } 355 356 if (form1_affinity) { 357 depth = distance_ref_points[0]; 358 } else { 359 if (distance_ref_points_depth < 2) { 360 printk(KERN_WARNING "NUMA: " 361 "short ibm,associativity-reference-points\n"); 362 goto err; 363 } 364 365 depth = distance_ref_points[1]; 366 } 367 368 /* 369 * Warn and cap if the hardware supports more than 370 * MAX_DISTANCE_REF_POINTS domains. 371 */ 372 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 373 printk(KERN_WARNING "NUMA: distance array capped at " 374 "%d entries\n", MAX_DISTANCE_REF_POINTS); 375 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 376 } 377 378 of_node_put(root); 379 return depth; 380 381 err: 382 of_node_put(root); 383 return -1; 384 } 385 386 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 387 { 388 struct device_node *memory = NULL; 389 390 memory = of_find_node_by_type(memory, "memory"); 391 if (!memory) 392 panic("numa.c: No memory nodes found!"); 393 394 *n_addr_cells = of_n_addr_cells(memory); 395 *n_size_cells = of_n_size_cells(memory); 396 of_node_put(memory); 397 } 398 399 static unsigned long __devinit read_n_cells(int n, const unsigned int **buf) 400 { 401 unsigned long result = 0; 402 403 while (n--) { 404 result = (result << 32) | **buf; 405 (*buf)++; 406 } 407 return result; 408 } 409 410 struct of_drconf_cell { 411 u64 base_addr; 412 u32 drc_index; 413 u32 reserved; 414 u32 aa_index; 415 u32 flags; 416 }; 417 418 #define DRCONF_MEM_ASSIGNED 0x00000008 419 #define DRCONF_MEM_AI_INVALID 0x00000040 420 #define DRCONF_MEM_RESERVED 0x00000080 421 422 /* 423 * Read the next memblock list entry from the ibm,dynamic-memory property 424 * and return the information in the provided of_drconf_cell structure. 425 */ 426 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp) 427 { 428 const u32 *cp; 429 430 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); 431 432 cp = *cellp; 433 drmem->drc_index = cp[0]; 434 drmem->reserved = cp[1]; 435 drmem->aa_index = cp[2]; 436 drmem->flags = cp[3]; 437 438 *cellp = cp + 4; 439 } 440 441 /* 442 * Retrieve and validate the ibm,dynamic-memory property of the device tree. 443 * 444 * The layout of the ibm,dynamic-memory property is a number N of memblock 445 * list entries followed by N memblock list entries. Each memblock list entry 446 * contains information as laid out in the of_drconf_cell struct above. 447 */ 448 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm) 449 { 450 const u32 *prop; 451 u32 len, entries; 452 453 prop = of_get_property(memory, "ibm,dynamic-memory", &len); 454 if (!prop || len < sizeof(unsigned int)) 455 return 0; 456 457 entries = *prop++; 458 459 /* Now that we know the number of entries, revalidate the size 460 * of the property read in to ensure we have everything 461 */ 462 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) 463 return 0; 464 465 *dm = prop; 466 return entries; 467 } 468 469 /* 470 * Retrieve and validate the ibm,lmb-size property for drconf memory 471 * from the device tree. 472 */ 473 static u64 of_get_lmb_size(struct device_node *memory) 474 { 475 const u32 *prop; 476 u32 len; 477 478 prop = of_get_property(memory, "ibm,lmb-size", &len); 479 if (!prop || len < sizeof(unsigned int)) 480 return 0; 481 482 return read_n_cells(n_mem_size_cells, &prop); 483 } 484 485 struct assoc_arrays { 486 u32 n_arrays; 487 u32 array_sz; 488 const u32 *arrays; 489 }; 490 491 /* 492 * Retrieve and validate the list of associativity arrays for drconf 493 * memory from the ibm,associativity-lookup-arrays property of the 494 * device tree.. 495 * 496 * The layout of the ibm,associativity-lookup-arrays property is a number N 497 * indicating the number of associativity arrays, followed by a number M 498 * indicating the size of each associativity array, followed by a list 499 * of N associativity arrays. 500 */ 501 static int of_get_assoc_arrays(struct device_node *memory, 502 struct assoc_arrays *aa) 503 { 504 const u32 *prop; 505 u32 len; 506 507 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 508 if (!prop || len < 2 * sizeof(unsigned int)) 509 return -1; 510 511 aa->n_arrays = *prop++; 512 aa->array_sz = *prop++; 513 514 /* Now that we know the number of arrrays and size of each array, 515 * revalidate the size of the property read in. 516 */ 517 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 518 return -1; 519 520 aa->arrays = prop; 521 return 0; 522 } 523 524 /* 525 * This is like of_node_to_nid_single() for memory represented in the 526 * ibm,dynamic-reconfiguration-memory node. 527 */ 528 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, 529 struct assoc_arrays *aa) 530 { 531 int default_nid = 0; 532 int nid = default_nid; 533 int index; 534 535 if (min_common_depth > 0 && min_common_depth <= aa->array_sz && 536 !(drmem->flags & DRCONF_MEM_AI_INVALID) && 537 drmem->aa_index < aa->n_arrays) { 538 index = drmem->aa_index * aa->array_sz + min_common_depth - 1; 539 nid = aa->arrays[index]; 540 541 if (nid == 0xffff || nid >= MAX_NUMNODES) 542 nid = default_nid; 543 } 544 545 return nid; 546 } 547 548 /* 549 * Figure out to which domain a cpu belongs and stick it there. 550 * Return the id of the domain used. 551 */ 552 static int __cpuinit numa_setup_cpu(unsigned long lcpu) 553 { 554 int nid = 0; 555 struct device_node *cpu = of_get_cpu_node(lcpu, NULL); 556 557 if (!cpu) { 558 WARN_ON(1); 559 goto out; 560 } 561 562 nid = of_node_to_nid_single(cpu); 563 564 if (nid < 0 || !node_online(nid)) 565 nid = first_online_node; 566 out: 567 map_cpu_to_node(lcpu, nid); 568 569 of_node_put(cpu); 570 571 return nid; 572 } 573 574 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb, 575 unsigned long action, 576 void *hcpu) 577 { 578 unsigned long lcpu = (unsigned long)hcpu; 579 int ret = NOTIFY_DONE; 580 581 switch (action) { 582 case CPU_UP_PREPARE: 583 case CPU_UP_PREPARE_FROZEN: 584 numa_setup_cpu(lcpu); 585 ret = NOTIFY_OK; 586 break; 587 #ifdef CONFIG_HOTPLUG_CPU 588 case CPU_DEAD: 589 case CPU_DEAD_FROZEN: 590 case CPU_UP_CANCELED: 591 case CPU_UP_CANCELED_FROZEN: 592 unmap_cpu_from_node(lcpu); 593 break; 594 ret = NOTIFY_OK; 595 #endif 596 } 597 return ret; 598 } 599 600 /* 601 * Check and possibly modify a memory region to enforce the memory limit. 602 * 603 * Returns the size the region should have to enforce the memory limit. 604 * This will either be the original value of size, a truncated value, 605 * or zero. If the returned value of size is 0 the region should be 606 * discarded as it lies wholly above the memory limit. 607 */ 608 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 609 unsigned long size) 610 { 611 /* 612 * We use memblock_end_of_DRAM() in here instead of memory_limit because 613 * we've already adjusted it for the limit and it takes care of 614 * having memory holes below the limit. Also, in the case of 615 * iommu_is_off, memory_limit is not set but is implicitly enforced. 616 */ 617 618 if (start + size <= memblock_end_of_DRAM()) 619 return size; 620 621 if (start >= memblock_end_of_DRAM()) 622 return 0; 623 624 return memblock_end_of_DRAM() - start; 625 } 626 627 /* 628 * Reads the counter for a given entry in 629 * linux,drconf-usable-memory property 630 */ 631 static inline int __init read_usm_ranges(const u32 **usm) 632 { 633 /* 634 * For each lmb in ibm,dynamic-memory a corresponding 635 * entry in linux,drconf-usable-memory property contains 636 * a counter followed by that many (base, size) duple. 637 * read the counter from linux,drconf-usable-memory 638 */ 639 return read_n_cells(n_mem_size_cells, usm); 640 } 641 642 /* 643 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 644 * node. This assumes n_mem_{addr,size}_cells have been set. 645 */ 646 static void __init parse_drconf_memory(struct device_node *memory) 647 { 648 const u32 *dm, *usm; 649 unsigned int n, rc, ranges, is_kexec_kdump = 0; 650 unsigned long lmb_size, base, size, sz; 651 int nid; 652 struct assoc_arrays aa; 653 654 n = of_get_drconf_memory(memory, &dm); 655 if (!n) 656 return; 657 658 lmb_size = of_get_lmb_size(memory); 659 if (!lmb_size) 660 return; 661 662 rc = of_get_assoc_arrays(memory, &aa); 663 if (rc) 664 return; 665 666 /* check if this is a kexec/kdump kernel */ 667 usm = of_get_usable_memory(memory); 668 if (usm != NULL) 669 is_kexec_kdump = 1; 670 671 for (; n != 0; --n) { 672 struct of_drconf_cell drmem; 673 674 read_drconf_cell(&drmem, &dm); 675 676 /* skip this block if the reserved bit is set in flags (0x80) 677 or if the block is not assigned to this partition (0x8) */ 678 if ((drmem.flags & DRCONF_MEM_RESERVED) 679 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 680 continue; 681 682 base = drmem.base_addr; 683 size = lmb_size; 684 ranges = 1; 685 686 if (is_kexec_kdump) { 687 ranges = read_usm_ranges(&usm); 688 if (!ranges) /* there are no (base, size) duple */ 689 continue; 690 } 691 do { 692 if (is_kexec_kdump) { 693 base = read_n_cells(n_mem_addr_cells, &usm); 694 size = read_n_cells(n_mem_size_cells, &usm); 695 } 696 nid = of_drconf_to_nid_single(&drmem, &aa); 697 fake_numa_create_new_node( 698 ((base + size) >> PAGE_SHIFT), 699 &nid); 700 node_set_online(nid); 701 sz = numa_enforce_memory_limit(base, size); 702 if (sz) 703 add_active_range(nid, base >> PAGE_SHIFT, 704 (base >> PAGE_SHIFT) 705 + (sz >> PAGE_SHIFT)); 706 } while (--ranges); 707 } 708 } 709 710 static int __init parse_numa_properties(void) 711 { 712 struct device_node *cpu = NULL; 713 struct device_node *memory = NULL; 714 int default_nid = 0; 715 unsigned long i; 716 717 if (numa_enabled == 0) { 718 printk(KERN_WARNING "NUMA disabled by user\n"); 719 return -1; 720 } 721 722 min_common_depth = find_min_common_depth(); 723 724 if (min_common_depth < 0) 725 return min_common_depth; 726 727 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 728 729 /* 730 * Even though we connect cpus to numa domains later in SMP 731 * init, we need to know the node ids now. This is because 732 * each node to be onlined must have NODE_DATA etc backing it. 733 */ 734 for_each_present_cpu(i) { 735 int nid; 736 737 cpu = of_get_cpu_node(i, NULL); 738 BUG_ON(!cpu); 739 nid = of_node_to_nid_single(cpu); 740 of_node_put(cpu); 741 742 /* 743 * Don't fall back to default_nid yet -- we will plug 744 * cpus into nodes once the memory scan has discovered 745 * the topology. 746 */ 747 if (nid < 0) 748 continue; 749 node_set_online(nid); 750 } 751 752 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 753 memory = NULL; 754 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { 755 unsigned long start; 756 unsigned long size; 757 int nid; 758 int ranges; 759 const unsigned int *memcell_buf; 760 unsigned int len; 761 762 memcell_buf = of_get_property(memory, 763 "linux,usable-memory", &len); 764 if (!memcell_buf || len <= 0) 765 memcell_buf = of_get_property(memory, "reg", &len); 766 if (!memcell_buf || len <= 0) 767 continue; 768 769 /* ranges in cell */ 770 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 771 new_range: 772 /* these are order-sensitive, and modify the buffer pointer */ 773 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 774 size = read_n_cells(n_mem_size_cells, &memcell_buf); 775 776 /* 777 * Assumption: either all memory nodes or none will 778 * have associativity properties. If none, then 779 * everything goes to default_nid. 780 */ 781 nid = of_node_to_nid_single(memory); 782 if (nid < 0) 783 nid = default_nid; 784 785 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 786 node_set_online(nid); 787 788 if (!(size = numa_enforce_memory_limit(start, size))) { 789 if (--ranges) 790 goto new_range; 791 else 792 continue; 793 } 794 795 add_active_range(nid, start >> PAGE_SHIFT, 796 (start >> PAGE_SHIFT) + (size >> PAGE_SHIFT)); 797 798 if (--ranges) 799 goto new_range; 800 } 801 802 /* 803 * Now do the same thing for each MEMBLOCK listed in the ibm,dynamic-memory 804 * property in the ibm,dynamic-reconfiguration-memory node. 805 */ 806 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 807 if (memory) 808 parse_drconf_memory(memory); 809 810 return 0; 811 } 812 813 static void __init setup_nonnuma(void) 814 { 815 unsigned long top_of_ram = memblock_end_of_DRAM(); 816 unsigned long total_ram = memblock_phys_mem_size(); 817 unsigned long start_pfn, end_pfn; 818 unsigned int nid = 0; 819 struct memblock_region *reg; 820 821 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 822 top_of_ram, total_ram); 823 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 824 (top_of_ram - total_ram) >> 20); 825 826 for_each_memblock(memory, reg) { 827 start_pfn = memblock_region_memory_base_pfn(reg); 828 end_pfn = memblock_region_memory_end_pfn(reg); 829 830 fake_numa_create_new_node(end_pfn, &nid); 831 add_active_range(nid, start_pfn, end_pfn); 832 node_set_online(nid); 833 } 834 } 835 836 void __init dump_numa_cpu_topology(void) 837 { 838 unsigned int node; 839 unsigned int cpu, count; 840 841 if (min_common_depth == -1 || !numa_enabled) 842 return; 843 844 for_each_online_node(node) { 845 printk(KERN_DEBUG "Node %d CPUs:", node); 846 847 count = 0; 848 /* 849 * If we used a CPU iterator here we would miss printing 850 * the holes in the cpumap. 851 */ 852 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 853 if (cpumask_test_cpu(cpu, 854 node_to_cpumask_map[node])) { 855 if (count == 0) 856 printk(" %u", cpu); 857 ++count; 858 } else { 859 if (count > 1) 860 printk("-%u", cpu - 1); 861 count = 0; 862 } 863 } 864 865 if (count > 1) 866 printk("-%u", nr_cpu_ids - 1); 867 printk("\n"); 868 } 869 } 870 871 static void __init dump_numa_memory_topology(void) 872 { 873 unsigned int node; 874 unsigned int count; 875 876 if (min_common_depth == -1 || !numa_enabled) 877 return; 878 879 for_each_online_node(node) { 880 unsigned long i; 881 882 printk(KERN_DEBUG "Node %d Memory:", node); 883 884 count = 0; 885 886 for (i = 0; i < memblock_end_of_DRAM(); 887 i += (1 << SECTION_SIZE_BITS)) { 888 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { 889 if (count == 0) 890 printk(" 0x%lx", i); 891 ++count; 892 } else { 893 if (count > 0) 894 printk("-0x%lx", i); 895 count = 0; 896 } 897 } 898 899 if (count > 0) 900 printk("-0x%lx", i); 901 printk("\n"); 902 } 903 } 904 905 /* 906 * Allocate some memory, satisfying the memblock or bootmem allocator where 907 * required. nid is the preferred node and end is the physical address of 908 * the highest address in the node. 909 * 910 * Returns the virtual address of the memory. 911 */ 912 static void __init *careful_zallocation(int nid, unsigned long size, 913 unsigned long align, 914 unsigned long end_pfn) 915 { 916 void *ret; 917 int new_nid; 918 unsigned long ret_paddr; 919 920 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT); 921 922 /* retry over all memory */ 923 if (!ret_paddr) 924 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM()); 925 926 if (!ret_paddr) 927 panic("numa.c: cannot allocate %lu bytes for node %d", 928 size, nid); 929 930 ret = __va(ret_paddr); 931 932 /* 933 * We initialize the nodes in numeric order: 0, 1, 2... 934 * and hand over control from the MEMBLOCK allocator to the 935 * bootmem allocator. If this function is called for 936 * node 5, then we know that all nodes <5 are using the 937 * bootmem allocator instead of the MEMBLOCK allocator. 938 * 939 * So, check the nid from which this allocation came 940 * and double check to see if we need to use bootmem 941 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory 942 * since it would be useless. 943 */ 944 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT); 945 if (new_nid < nid) { 946 ret = __alloc_bootmem_node(NODE_DATA(new_nid), 947 size, align, 0); 948 949 dbg("alloc_bootmem %p %lx\n", ret, size); 950 } 951 952 memset(ret, 0, size); 953 return ret; 954 } 955 956 static struct notifier_block __cpuinitdata ppc64_numa_nb = { 957 .notifier_call = cpu_numa_callback, 958 .priority = 1 /* Must run before sched domains notifier. */ 959 }; 960 961 static void mark_reserved_regions_for_nid(int nid) 962 { 963 struct pglist_data *node = NODE_DATA(nid); 964 struct memblock_region *reg; 965 966 for_each_memblock(reserved, reg) { 967 unsigned long physbase = reg->base; 968 unsigned long size = reg->size; 969 unsigned long start_pfn = physbase >> PAGE_SHIFT; 970 unsigned long end_pfn = PFN_UP(physbase + size); 971 struct node_active_region node_ar; 972 unsigned long node_end_pfn = node->node_start_pfn + 973 node->node_spanned_pages; 974 975 /* 976 * Check to make sure that this memblock.reserved area is 977 * within the bounds of the node that we care about. 978 * Checking the nid of the start and end points is not 979 * sufficient because the reserved area could span the 980 * entire node. 981 */ 982 if (end_pfn <= node->node_start_pfn || 983 start_pfn >= node_end_pfn) 984 continue; 985 986 get_node_active_region(start_pfn, &node_ar); 987 while (start_pfn < end_pfn && 988 node_ar.start_pfn < node_ar.end_pfn) { 989 unsigned long reserve_size = size; 990 /* 991 * if reserved region extends past active region 992 * then trim size to active region 993 */ 994 if (end_pfn > node_ar.end_pfn) 995 reserve_size = (node_ar.end_pfn << PAGE_SHIFT) 996 - physbase; 997 /* 998 * Only worry about *this* node, others may not 999 * yet have valid NODE_DATA(). 1000 */ 1001 if (node_ar.nid == nid) { 1002 dbg("reserve_bootmem %lx %lx nid=%d\n", 1003 physbase, reserve_size, node_ar.nid); 1004 reserve_bootmem_node(NODE_DATA(node_ar.nid), 1005 physbase, reserve_size, 1006 BOOTMEM_DEFAULT); 1007 } 1008 /* 1009 * if reserved region is contained in the active region 1010 * then done. 1011 */ 1012 if (end_pfn <= node_ar.end_pfn) 1013 break; 1014 1015 /* 1016 * reserved region extends past the active region 1017 * get next active region that contains this 1018 * reserved region 1019 */ 1020 start_pfn = node_ar.end_pfn; 1021 physbase = start_pfn << PAGE_SHIFT; 1022 size = size - reserve_size; 1023 get_node_active_region(start_pfn, &node_ar); 1024 } 1025 } 1026 } 1027 1028 1029 void __init do_init_bootmem(void) 1030 { 1031 int nid; 1032 1033 min_low_pfn = 0; 1034 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1035 max_pfn = max_low_pfn; 1036 1037 if (parse_numa_properties()) 1038 setup_nonnuma(); 1039 else 1040 dump_numa_memory_topology(); 1041 1042 for_each_online_node(nid) { 1043 unsigned long start_pfn, end_pfn; 1044 void *bootmem_vaddr; 1045 unsigned long bootmap_pages; 1046 1047 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1048 1049 /* 1050 * Allocate the node structure node local if possible 1051 * 1052 * Be careful moving this around, as it relies on all 1053 * previous nodes' bootmem to be initialized and have 1054 * all reserved areas marked. 1055 */ 1056 NODE_DATA(nid) = careful_zallocation(nid, 1057 sizeof(struct pglist_data), 1058 SMP_CACHE_BYTES, end_pfn); 1059 1060 dbg("node %d\n", nid); 1061 dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); 1062 1063 NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; 1064 NODE_DATA(nid)->node_start_pfn = start_pfn; 1065 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; 1066 1067 if (NODE_DATA(nid)->node_spanned_pages == 0) 1068 continue; 1069 1070 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); 1071 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); 1072 1073 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); 1074 bootmem_vaddr = careful_zallocation(nid, 1075 bootmap_pages << PAGE_SHIFT, 1076 PAGE_SIZE, end_pfn); 1077 1078 dbg("bootmap_vaddr = %p\n", bootmem_vaddr); 1079 1080 init_bootmem_node(NODE_DATA(nid), 1081 __pa(bootmem_vaddr) >> PAGE_SHIFT, 1082 start_pfn, end_pfn); 1083 1084 free_bootmem_with_active_regions(nid, end_pfn); 1085 /* 1086 * Be very careful about moving this around. Future 1087 * calls to careful_zallocation() depend on this getting 1088 * done correctly. 1089 */ 1090 mark_reserved_regions_for_nid(nid); 1091 sparse_memory_present_with_active_regions(nid); 1092 } 1093 1094 init_bootmem_done = 1; 1095 1096 /* 1097 * Now bootmem is initialised we can create the node to cpumask 1098 * lookup tables and setup the cpu callback to populate them. 1099 */ 1100 setup_node_to_cpumask_map(); 1101 1102 register_cpu_notifier(&ppc64_numa_nb); 1103 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, 1104 (void *)(unsigned long)boot_cpuid); 1105 } 1106 1107 void __init paging_init(void) 1108 { 1109 unsigned long max_zone_pfns[MAX_NR_ZONES]; 1110 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 1111 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT; 1112 free_area_init_nodes(max_zone_pfns); 1113 } 1114 1115 static int __init early_numa(char *p) 1116 { 1117 if (!p) 1118 return 0; 1119 1120 if (strstr(p, "off")) 1121 numa_enabled = 0; 1122 1123 if (strstr(p, "debug")) 1124 numa_debug = 1; 1125 1126 p = strstr(p, "fake="); 1127 if (p) 1128 cmdline = p + strlen("fake="); 1129 1130 return 0; 1131 } 1132 early_param("numa", early_numa); 1133 1134 #ifdef CONFIG_MEMORY_HOTPLUG 1135 /* 1136 * Find the node associated with a hot added memory section for 1137 * memory represented in the device tree by the property 1138 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 1139 */ 1140 static int hot_add_drconf_scn_to_nid(struct device_node *memory, 1141 unsigned long scn_addr) 1142 { 1143 const u32 *dm; 1144 unsigned int drconf_cell_cnt, rc; 1145 unsigned long lmb_size; 1146 struct assoc_arrays aa; 1147 int nid = -1; 1148 1149 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1150 if (!drconf_cell_cnt) 1151 return -1; 1152 1153 lmb_size = of_get_lmb_size(memory); 1154 if (!lmb_size) 1155 return -1; 1156 1157 rc = of_get_assoc_arrays(memory, &aa); 1158 if (rc) 1159 return -1; 1160 1161 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { 1162 struct of_drconf_cell drmem; 1163 1164 read_drconf_cell(&drmem, &dm); 1165 1166 /* skip this block if it is reserved or not assigned to 1167 * this partition */ 1168 if ((drmem.flags & DRCONF_MEM_RESERVED) 1169 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 1170 continue; 1171 1172 if ((scn_addr < drmem.base_addr) 1173 || (scn_addr >= (drmem.base_addr + lmb_size))) 1174 continue; 1175 1176 nid = of_drconf_to_nid_single(&drmem, &aa); 1177 break; 1178 } 1179 1180 return nid; 1181 } 1182 1183 /* 1184 * Find the node associated with a hot added memory section for memory 1185 * represented in the device tree as a node (i.e. memory@XXXX) for 1186 * each memblock. 1187 */ 1188 int hot_add_node_scn_to_nid(unsigned long scn_addr) 1189 { 1190 struct device_node *memory = NULL; 1191 int nid = -1; 1192 1193 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { 1194 unsigned long start, size; 1195 int ranges; 1196 const unsigned int *memcell_buf; 1197 unsigned int len; 1198 1199 memcell_buf = of_get_property(memory, "reg", &len); 1200 if (!memcell_buf || len <= 0) 1201 continue; 1202 1203 /* ranges in cell */ 1204 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 1205 1206 while (ranges--) { 1207 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 1208 size = read_n_cells(n_mem_size_cells, &memcell_buf); 1209 1210 if ((scn_addr < start) || (scn_addr >= (start + size))) 1211 continue; 1212 1213 nid = of_node_to_nid_single(memory); 1214 break; 1215 } 1216 1217 of_node_put(memory); 1218 if (nid >= 0) 1219 break; 1220 } 1221 1222 return nid; 1223 } 1224 1225 /* 1226 * Find the node associated with a hot added memory section. Section 1227 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1228 * sections are fully contained within a single MEMBLOCK. 1229 */ 1230 int hot_add_scn_to_nid(unsigned long scn_addr) 1231 { 1232 struct device_node *memory = NULL; 1233 int nid, found = 0; 1234 1235 if (!numa_enabled || (min_common_depth < 0)) 1236 return first_online_node; 1237 1238 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1239 if (memory) { 1240 nid = hot_add_drconf_scn_to_nid(memory, scn_addr); 1241 of_node_put(memory); 1242 } else { 1243 nid = hot_add_node_scn_to_nid(scn_addr); 1244 } 1245 1246 if (nid < 0 || !node_online(nid)) 1247 nid = first_online_node; 1248 1249 if (NODE_DATA(nid)->node_spanned_pages) 1250 return nid; 1251 1252 for_each_online_node(nid) { 1253 if (NODE_DATA(nid)->node_spanned_pages) { 1254 found = 1; 1255 break; 1256 } 1257 } 1258 1259 BUG_ON(!found); 1260 return nid; 1261 } 1262 1263 static u64 hot_add_drconf_memory_max(void) 1264 { 1265 struct device_node *memory = NULL; 1266 unsigned int drconf_cell_cnt = 0; 1267 u64 lmb_size = 0; 1268 const u32 *dm = 0; 1269 1270 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1271 if (memory) { 1272 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1273 lmb_size = of_get_lmb_size(memory); 1274 of_node_put(memory); 1275 } 1276 return lmb_size * drconf_cell_cnt; 1277 } 1278 1279 /* 1280 * memory_hotplug_max - return max address of memory that may be added 1281 * 1282 * This is currently only used on systems that support drconfig memory 1283 * hotplug. 1284 */ 1285 u64 memory_hotplug_max(void) 1286 { 1287 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1288 } 1289 #endif /* CONFIG_MEMORY_HOTPLUG */ 1290 1291 /* Virtual Processor Home Node (VPHN) support */ 1292 #ifdef CONFIG_PPC_SPLPAR 1293 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; 1294 static cpumask_t cpu_associativity_changes_mask; 1295 static int vphn_enabled; 1296 static void set_topology_timer(void); 1297 1298 /* 1299 * Store the current values of the associativity change counters in the 1300 * hypervisor. 1301 */ 1302 static void setup_cpu_associativity_change_counters(void) 1303 { 1304 int cpu; 1305 1306 /* The VPHN feature supports a maximum of 8 reference points */ 1307 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); 1308 1309 for_each_possible_cpu(cpu) { 1310 int i; 1311 u8 *counts = vphn_cpu_change_counts[cpu]; 1312 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1313 1314 for (i = 0; i < distance_ref_points_depth; i++) 1315 counts[i] = hypervisor_counts[i]; 1316 } 1317 } 1318 1319 /* 1320 * The hypervisor maintains a set of 8 associativity change counters in 1321 * the VPA of each cpu that correspond to the associativity levels in the 1322 * ibm,associativity-reference-points property. When an associativity 1323 * level changes, the corresponding counter is incremented. 1324 * 1325 * Set a bit in cpu_associativity_changes_mask for each cpu whose home 1326 * node associativity levels have changed. 1327 * 1328 * Returns the number of cpus with unhandled associativity changes. 1329 */ 1330 static int update_cpu_associativity_changes_mask(void) 1331 { 1332 int cpu, nr_cpus = 0; 1333 cpumask_t *changes = &cpu_associativity_changes_mask; 1334 1335 cpumask_clear(changes); 1336 1337 for_each_possible_cpu(cpu) { 1338 int i, changed = 0; 1339 u8 *counts = vphn_cpu_change_counts[cpu]; 1340 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1341 1342 for (i = 0; i < distance_ref_points_depth; i++) { 1343 if (hypervisor_counts[i] != counts[i]) { 1344 counts[i] = hypervisor_counts[i]; 1345 changed = 1; 1346 } 1347 } 1348 if (changed) { 1349 cpumask_set_cpu(cpu, changes); 1350 nr_cpus++; 1351 } 1352 } 1353 1354 return nr_cpus; 1355 } 1356 1357 /* 1358 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form 1359 * the complete property we have to add the length in the first cell. 1360 */ 1361 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1) 1362 1363 /* 1364 * Convert the associativity domain numbers returned from the hypervisor 1365 * to the sequence they would appear in the ibm,associativity property. 1366 */ 1367 static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked) 1368 { 1369 int i, nr_assoc_doms = 0; 1370 const u16 *field = (const u16*) packed; 1371 1372 #define VPHN_FIELD_UNUSED (0xffff) 1373 #define VPHN_FIELD_MSB (0x8000) 1374 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB) 1375 1376 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) { 1377 if (*field == VPHN_FIELD_UNUSED) { 1378 /* All significant fields processed, and remaining 1379 * fields contain the reserved value of all 1's. 1380 * Just store them. 1381 */ 1382 unpacked[i] = *((u32*)field); 1383 field += 2; 1384 } else if (*field & VPHN_FIELD_MSB) { 1385 /* Data is in the lower 15 bits of this field */ 1386 unpacked[i] = *field & VPHN_FIELD_MASK; 1387 field++; 1388 nr_assoc_doms++; 1389 } else { 1390 /* Data is in the lower 15 bits of this field 1391 * concatenated with the next 16 bit field 1392 */ 1393 unpacked[i] = *((u32*)field); 1394 field += 2; 1395 nr_assoc_doms++; 1396 } 1397 } 1398 1399 /* The first cell contains the length of the property */ 1400 unpacked[0] = nr_assoc_doms; 1401 1402 return nr_assoc_doms; 1403 } 1404 1405 /* 1406 * Retrieve the new associativity information for a virtual processor's 1407 * home node. 1408 */ 1409 static long hcall_vphn(unsigned long cpu, unsigned int *associativity) 1410 { 1411 long rc; 1412 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; 1413 u64 flags = 1; 1414 int hwcpu = get_hard_smp_processor_id(cpu); 1415 1416 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); 1417 vphn_unpack_associativity(retbuf, associativity); 1418 1419 return rc; 1420 } 1421 1422 static long vphn_get_associativity(unsigned long cpu, 1423 unsigned int *associativity) 1424 { 1425 long rc; 1426 1427 rc = hcall_vphn(cpu, associativity); 1428 1429 switch (rc) { 1430 case H_FUNCTION: 1431 printk(KERN_INFO 1432 "VPHN is not supported. Disabling polling...\n"); 1433 stop_topology_update(); 1434 break; 1435 case H_HARDWARE: 1436 printk(KERN_ERR 1437 "hcall_vphn() experienced a hardware fault " 1438 "preventing VPHN. Disabling polling...\n"); 1439 stop_topology_update(); 1440 } 1441 1442 return rc; 1443 } 1444 1445 /* 1446 * Update the node maps and sysfs entries for each cpu whose home node 1447 * has changed. 1448 */ 1449 int arch_update_cpu_topology(void) 1450 { 1451 int cpu, nid, old_nid; 1452 unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1453 struct sys_device *sysdev; 1454 1455 for_each_cpu(cpu,&cpu_associativity_changes_mask) { 1456 vphn_get_associativity(cpu, associativity); 1457 nid = associativity_to_nid(associativity); 1458 1459 if (nid < 0 || !node_online(nid)) 1460 nid = first_online_node; 1461 1462 old_nid = numa_cpu_lookup_table[cpu]; 1463 1464 /* Disable hotplug while we update the cpu 1465 * masks and sysfs. 1466 */ 1467 get_online_cpus(); 1468 unregister_cpu_under_node(cpu, old_nid); 1469 unmap_cpu_from_node(cpu); 1470 map_cpu_to_node(cpu, nid); 1471 register_cpu_under_node(cpu, nid); 1472 put_online_cpus(); 1473 1474 sysdev = get_cpu_sysdev(cpu); 1475 if (sysdev) 1476 kobject_uevent(&sysdev->kobj, KOBJ_CHANGE); 1477 } 1478 1479 return 1; 1480 } 1481 1482 static void topology_work_fn(struct work_struct *work) 1483 { 1484 rebuild_sched_domains(); 1485 } 1486 static DECLARE_WORK(topology_work, topology_work_fn); 1487 1488 void topology_schedule_update(void) 1489 { 1490 schedule_work(&topology_work); 1491 } 1492 1493 static void topology_timer_fn(unsigned long ignored) 1494 { 1495 if (!vphn_enabled) 1496 return; 1497 if (update_cpu_associativity_changes_mask() > 0) 1498 topology_schedule_update(); 1499 set_topology_timer(); 1500 } 1501 static struct timer_list topology_timer = 1502 TIMER_INITIALIZER(topology_timer_fn, 0, 0); 1503 1504 static void set_topology_timer(void) 1505 { 1506 topology_timer.data = 0; 1507 topology_timer.expires = jiffies + 60 * HZ; 1508 add_timer(&topology_timer); 1509 } 1510 1511 /* 1512 * Start polling for VPHN associativity changes. 1513 */ 1514 int start_topology_update(void) 1515 { 1516 int rc = 0; 1517 1518 /* Disabled until races with load balancing are fixed */ 1519 if (0 && firmware_has_feature(FW_FEATURE_VPHN) && 1520 get_lppaca()->shared_proc) { 1521 vphn_enabled = 1; 1522 setup_cpu_associativity_change_counters(); 1523 init_timer_deferrable(&topology_timer); 1524 set_topology_timer(); 1525 rc = 1; 1526 } 1527 1528 return rc; 1529 } 1530 __initcall(start_topology_update); 1531 1532 /* 1533 * Disable polling for VPHN associativity changes. 1534 */ 1535 int stop_topology_update(void) 1536 { 1537 vphn_enabled = 0; 1538 return del_timer_sync(&topology_timer); 1539 } 1540 #endif /* CONFIG_PPC_SPLPAR */ 1541